The main definitions from representative measurement theory are reviewed in this section. A relational structure A consists of a set A and relations $S_1,...,S_n$ defined on A

$$\mathbf{A} = \langle \mathbf{A}, \mathbf{S}_1, \dots, \mathbf{S}_n \rangle.$$

Each relation S_i is a Boolean function (predicate) with n_i arguments from A. The relational structure $A = \langle A, S_1, ..., S_n \rangle$ is considered along with a relational structure of the same type

 $R = \langle R, T_1, ..., T_n \rangle$.

Usually the set R is a subset of Re^m , $m \ge 1$, where Re^m is a set of m-tuples of real numbers and each relation T_i has the same n_i as the corresponding relation S_i . T_i and S_i are called a k-ary relation on R. Theoretically, it is not a formal requirement that R be numerical.

Next, the relational system A is interpreted as an empirical real-world system and R is interpreted as a numerical system designed as a numerical representation of A. To formalize the idea of numeric representation, we define a homomorphism ϕ as a mapping from A to R.

A mapping φ : A \rightarrow R is called a homomorphism if for all i (i = 1,...,n),

$$(a_1,...,a_{k(i)}) \in S_i \iff (\phi(a_1),...,\phi(a_{k(i)})) \in T_i.$$

In other notation,

 $S_i(a_1,...,a_{k(i)}) \Leftrightarrow T_i(\phi(a_1),...,\phi(a_{k(i)})).$

Let $\Phi(A,R)$ be the set of all homomorphisms for A and R. It is possible that $\Phi(A,R)$ is empty or contains a variety of representations. Several theorems are proved in RMT about the contents of $\Phi(A,R)$. These theorems involve: (1) whether $\Phi(A,R)$ is empty, and (2) the size of $\Phi(A,R)$. The first theorems are called representation theorems. The second theorems are called uniqueness theorems.

Using the set of homomorphisms $\Phi(A, R)$ we can define the notion of permissible transformations and the data type (scale types). The most natural concept of permissible transformations is a mapping of the numerical set R into itself, which should bring a "good" representation. More precisely, γ is permissible for $\Phi(A, R)$ if γ maps R into itself, and for every ϕ in $\Phi(A, R)$, $\gamma\phi$ is also in $\Phi(A, R)$. For instance, the permissible transformations could be transformations, $x \rightarrow rx$ or monotone transformations $x \rightarrow \gamma(x)$.