Multi Stage Uncapacitated Facility Location Problemline.jpg (1129 bytes)

ballred.gif (861 bytes) Home ballred.gif (861 bytes) Multi Stage Uncapacitated Facility Location Problem ballred.gif (861 bytes)  

Instances on random quadruples of facilities

and Euclidean transportation matrix 

(R4-Eucl)

This class of instances for the Multi Stage Uncapacitated Facility Location Problem is created as Euclidean class for the Simple Plant Location Problem. Each admissible facility path consists of  4 facilities selected at random. Transportation matrix is distances between points on Euclidean plane. The points are selected in square 7000x7000 at random with uniform distribution and independently from each other. The fixed cost for arbitrary  facility is 3000. The dimension of the instances is 50 facilities, 100 admissble facility paths, 100 customers. 

Table shows the input data and results for 30 benchmarks. The first column of the table is codes of input data and hyperlinks to text files. The second column is the optimal value of the objective function. The third column is the duality gap. The forth column is the optimal set of open facilities.

All instances type Euclid.zip 1 319 Kb

Code

The optimal value

 Duality Gap (%)

The optimal set of open facilities

471

 43008

18,4

3, 8, 9, 11, 13, 37, 40

472

 42996

 18,5

4, 11, 21, 23, 24, 36, 40

473

 45935

 23,4

15, 17, 24, 31, 33, 44, 45

474

 47742

 26,9

4, 11, 13, 18, 46, 48, 49

475

 42747

 22,8

1, 8, 12, 34, 39, 40, 48, 49

476

 46461

 26,1

5, 13, 21, 24, 25, 46

477

 45244

 23,5

27, 37, 41, 43, 48, 50

478

 44716

 24,1

15, 17, 24, 31, 33, 44, 45

479

 46876

 25,2

4, 11, 13, 18, 46, 48, 49

480

 44750

 25,4

1, 8, 12, 34, 39, 40, 48, 49

481

 42698

 19,2

5, 13, 21, 24, 25, 46

482

 45056

 23,6

27, 37, 41, 43, 48, 50

483

 45537

 22,8

13, 15, 20, 27, 30, 34, 50

484

 44457

 22,2

19, 22, 30, 33, 44

485

 44990

 22,9

10, 19, 24, 27, 38, 41

486

 45234

 24,2

8, 9, 19, 25, 36, 46, 48, 50

487

 43035

 17,5

2, 10, 15, 25, 38, 40

488

 45123

 22,3

1, 9, 20, 28, 34, 37, 44

489

 44492

 20,8

1, 8, 10, 14, 16, 18, 36

490

 46221

 23,4

17, 25, 30, 33, 36, 45, 50

491

 46579

 26,2

5, 17, 20, 22, 25, 26, 43, 45

492

 44876

 22,6

11, 14, 18, 32, 44

493

 45140

 25,3

10, 13, 24, 35, 42, 44, 49

494

 46710

 25,2

16, 25, 30, 32, 36, 43, 49, 50

495

 45663

 23,4

1, 17, 18, 22, 24, 29, 34

496

 46183

 24,7

1, 4, 21, 29, 30, 35, 42, 48

497

 44848

 24,3

13, 16, 17, 43, 46, 47, 50

498

 43936

 21,1

11, 12, 30, 31, 39, 43, 50

499

 45856

 22,4

2, 3, 5, 17, 18, 30, 34

500

 45427

 24,9

3, 9, 16, 19, 28, 32, 37