Discrete Location Problems ballred.gif (861 bytes) Benchmarks Library
line.jpg (1129 bytes)

Supply Management Problem 
with Lower-Bounded
Demands            

ballred.gif (861 bytes)  Home  

ballred.gif (861 bytes)  Benchmarks


Benchmarks

Series RAN

Series RAN consists of 8 SMPLD instances obtained from FCTP benchmarks with given m; n and mij = 0, constructed by Gottlieb and Paulmann (1998), using a modi¯cation of NETGEN generator (Barr et al., 1981). The original FCTP problems are available at http://plato.la.asu.edu/ftp/fctp/ 

Results for series RAN

All instances series RAN  RAN.zip 

Code

fbest

f h cplex

fGAmipr

fGAgrd

ran13×13

3252*

3252

3271

3284

ran12×21

3664*

3675

3664

3671

ran14×18

3712*

3746

3712

3714

ran 4×64

9711*

9711

9711

9726

ran8×32

5247*

5247

5247

5247

ran16×16

3823*

3827

3823

3823

ran10×26

4270*

4270

4270

4270

ran17×17

1373*

1373

1373

1373

 


Series H

Series H consists of 14 larger FCTP instances h_0, h_1, ... , h_c and h_e (the instance h d is omitted because it turned out to be identical to h_c) with m = 100; n = 50, mij = 0 and the range ofixed costs 6400-25600, produced by the same generator (Sun et al., 1998). The original FCTP problems are available at  http://plato.la.asu.edu/ftp/fctp/ 

Results for series H

All instances series H  H.zip 

Code

LB

fbest

f h cplex

fGAmipr

fGAgrd

h_0

1002063

1208672

1260048

1217305

1284070

h_1

990406

1204194

1241812

1231028

1303920

h_2

991110

1192687

1269582

1198609

1305210

h_3

954486

1188904

1236705

1215025

1305520

h_4

992374

1209357

1283998

1238455

1332310

h_5

997677

1202258

1264337

1214291

1311000

h_6

990739

1201097

1258163

1235884

1305000

h_7

967693

1172931

1259481

1204284

1281000

h_8

984973

1198108

1272177

1236018

1306000

h_9

972743

1192529

1267414

1227936

1308000

h_a

994451

1233688

1294036

1259553

1304000

h_b

1003666

1208211

1289744

1237080

1319000

h_c

990923

1209685

1260134

1233882

1338000

h_e

987160

1185378

1257240

1195558

1326000

 


Series S

Series S consists of 8 randomly generated SMPLD instances with m = n = 50. All mij = 10, the values Mi Î [400; 600], Aj Î [350; 550], aij Î [500; 4500] and cij Î [20; 1020] are obtained by a uniformly distributed pseudo-random numbers generator. So, on average, the total supply is by 10% greater than the overall demand.

Results for series S

All instances series S  S.zip 

Code

LB

fbest

f h cplex

fGAmipr

fGAgrd

s_1

604685

613951

613951

613951

614289

s_2

622470

631219

631219

631219

631540

s_3

617403

627294

627294

627294

627392

s_4

622761

634609

636855

634609

634872

s_5

595627

605145

605145

605380

605432

s_6

655595

669346

669371

669787

670730

s_7

589851

602737

602737

602737

603788

s_8

633324

645843

645843

645843

647242

 

 


Series P

Series P consists of 14 randomly generated SMPLD instances with n = m = 50. The values  Mi Î [12; 20], Aj Î [10; 20], aij Î [5; 10], cij Î [10; 20], and mij Î [5; 10] are obtained by a uniformly distributed generator. These ranges of parameters imply that on average the total supply is slightly higher than the overall demand. The values mij are big enough to make it particularly difficult to find a feasible solution.

Results for series P

All instances series P  P.zip 

Code

fbest

f h cplex

fGAmipr

fGAgrd

p_1

8527

8527

8597

p_2

7836

7836

7840

7865

p_3

8423

8423

8513

p_4

8409

8574

p_5

8007

8011

8007

8027

p_6

8320

8369

8320

8392

p_7

7874

7874

7876

7889

p_8

9543

p_9

8831

8928

p_10

8524

8524

8603

p_11

8196

8196

8263

p_12

8323

8323

8547

p_13

8276

8696

8276

p_14

8916

8916

 


Series MIS

Series MIS consists of 6 instances obtained from the maximum independent set problems, using the reduction proposed by Eremeev et al. (2006). In these SMPLD instances m = | E | + 1 and  n = | V |, where V and E are the sets of vertices and edges in the graph of maximum independent set problem. The instances are obtained from the graphs of DIMACS collection of benchmarks (Johnson and Trick, 1996). The values of m, n and the magnitude of coeffcients aij are given in Table 1. The graphs from DIMACS set can be found by ftp://dimacs.rutgers.edu/pub/challenge/graph/

Results for series MIS

All instances series MIS  MIS.zip 

Code

fbest

f h cplex

fGAmipr

fGAgrd

hamming64

60*

60

60

60

c125.9

91*

91

91

94

johnson16.2.4

112*

112

112

112

mann.a27

252*

262

259

gen200_p0.9_44

156*

166

164

171

gen200_p0.9_55

145*

164

165

171

 


References

1. Barr, R.S., R.S. Glover and D. Klingman (1981). A new optimization method for large scale ¯xed charge transportation problems. Oper. Res. 29(3), 448-463.

2. Eremeev, A.V., A.A. Romanova, V.V. Servakh and S.S. Chauhan (2006).

 


ballred.gif (861 bytes) Home ballred.gif (861 bytes)