Simple
Plant Location Problem Benchmarks
Home Simple Plant Location Problem Benchmarks
Instances on the Finite Projective Planes
The instances are based on the incidence matrices for the finite projective planes. If the plane has dimension k we generate UFLP instances for n = k2 + k + 1 facilities and m = n clients. The fixed costs ci equal 3000. The matrix gij has exactly n + 1 noninfinity elements from the set {0,1,2,3,4} for each row i and column j. Optimal solutions have (n + 1) opening facilities and can be found in polynomial time.Allocation of local optima for the first instance one can see on the diagram.
Finite Projective Planes. Dimension 11
Code | The best found value | Duality Gap (%) | The best found solution |
1 | 36230 |
7.50 |
9 25 38 40 68 74 75 78 86 95 100 119 |
2 | 36220 | 7.48 | 16 39 55 68 70 98 104 105 108 116 125 130 |
3 | 36233 | 7.49 | 13 15 43 49 50 53 61 70 75 94 117 133 |
4 | 36221 | 7.48 | 2 3 6 14 23 28 47 70 86 99 101 129 |
5 | 36226 | 7.49 | 3 26 42 55 57 85 91 92 95 103 112 117 |
6 | 36236 | 7.50 | 6 15 20 39 62 78 91 93 121 127 128 131 |
7 | 36211 | 7.46 | 4 9 28 51 67 80 82 110 116 117 120 128 |
8 | 36220 | 7.47 | 14 27 29 57 63 64 67 75 84 89 108 131 |
9 | 36225 | 7.49 | 4 5 8 16 25 30 49 72 88 101 103 131 |
10 | 36228 | 7.47 | 2 15 17 45 51 52 55 63 72 77 96 119 |
11 | 36219 | 7.49 | 2 10 19 24 43 66 82 95 97 125 131 132 |
12 | 36239 | 7.49 | 17 33 46 48 76 82 83 86 94 103 108 127 |
13 | 36226 | 7.50 | 12 25 27 55 61 62 65 73 82 87 106 129 |
14 | 36224 | 7.49 | 9 25 38 40 68 74 75 78 86 95 100 119 |
15 | 36236 | 7.51 | 4 10 11 14 22 31 36 55 78 94 107 109 |
16 | 36219 | 7.45 | 2 30 36 37 40 48 57 62 81 104 120 133 |
17 | 36234 | 7.50 | 1 7 8 11 19 28 33 52 75 91 104 106 |
18 | 36224 | 7.51 | 20 36 49 51 79 85 86 89 97 106 111 130 |
19 | 36234 | 7.49 | 2 4 32 38 39 42 50 59 64 83 106 122 |
20 | 36228 | 7.49 | 5 24 47 63 76 78 106 112 113 116 124 133 |
21 | 36221 | 7.47 | 9 25 38 40 68 74 75 78 86 95 100 119 |
22 | 36223 | 7.48 | 10 26 39 41 69 75 76 79 87 96 101 120 |
23 | 36223 | 7.45 | 6 19 21 49 55 56 59 67 76 81 100 123 |
24 | 36216 | 7.48 | 20 26 27 30 38 47 52 71 94 110 123 125 |
25 | 36216 | 7.48 | 17 33 46 48 76 82 83 86 94 103 108 127 |
26 | 36232 | 7.47 | 11 17 18 21 29 38 43 62 85 101 114 116 |
27 | 36222 | 7.48 | 15 31 44 46 74 80 81 84 92 101 106 125 |
28 | 36227 | 7.48 | 13 36 52 65 67 95 101 102 105 113 122 127 |
29 | 36213 | 7.79 | 10 33 49 62 64 92 98 99 102 110 119 124 |
30 | 36231 | 7.48 | 16 22 23 26 34 43 48 67 90 106 119 121 |
Finite Projective Planes. Dimension 17
Code | The best found value | Duality Gap (%) | The best found solution |
1 | 54548 | 5.08 | 29 45 49 58 109 111 130 135 158 170 176 203 206 213 214 228 245 302 |
2 | 54531 | 5.06 | 1 24 36 42 69 72 79 80 94 111 168 202 218 222 231 282 284 303 |
3 | 54554 | 5.06 | 7 12 35 47 53 80 83 90 91 105 122 179 213 229 233 242 293 295 |
4 | 54544 | 5.07 | 11 27 31 40 91 93 112 117 140 152 158 185 188 195 196 210 227 284 |
5 | 54541 | 5.07 | 24 27 34 35 49 66 123 157 173 177 186 237 239 258 263 286 298 304 |
6 | 54552 | 5.08 | 1 13 19 46 49 56 57 71 88 145 179 195 199 208 259 261 280 285 |
7 | 54526 | 5.06 | 7 24 81 115 131 135 144 195 197 216 221 244 256 262 289 292 299 300 |
8 | 54546 | 5.07 | 5 21 25 34 85 87 106 111 134 146 152 179 182 189 190 204 221 278 |
9 | 54541 | 5.08 | 15 17 36 41 64 76 82 109 112 119 120 134 151 208 242 258 262 271 |
10 | 54549 | 5.07 | 46 48 67 72 95 107 113 140 143 150 151 165 182 239 273 289 293 302 |
11 | 54528 | 5.05 | 33 67 83 87 96 147 149 168 173 196 208 214 241 244 251 252 266 283 |
12 | 54551 | 5.09 | 6 11 34 46 52 79 82 89 90 104 121 178 212 228 232 241 292 294 |
13 | 54548 | 5.08 | 4 27 39 45 72 75 82 83 97 114 171 205 221 225 234 285 287 306 |
14 | 54548 | 5.08 | 42 76 92 96 105 156 158 177 182 205 217 223 250 253 260 261 275 292 |
15 | 54555 | 5.09 | 5 10 33 45 51 78 81 88 89 103 120 177 211 227 231 240 291 293.. |
16 | 54549 | 5.08 | 51 85 101 105 114 165 167 186 191 214 226 232 259 262 269 270 284 301 |
17 | 54556 | 5.07 | 40 74 90 94 103 154 156 175 180 203 215 221 248 251 258 259 273 290 |
18 | 54540 | 5.06 | 9 14 37 49 55 82 85 92 93 107 124 181 215 231 235 244 295 297 |
19 | 54544 | 5.06 | 10 12 31 36 59 71 77 104 107 114 115 129 146 203 237 253 257 266 |
20 | 54538 | 5.08 | 14 71 105 121 125 134 185 187 206 211 234 246 252 279 282 289 290 304 |
21 | 54557 | 5.08 | 25 28 35 36 50 67 124 158 174 178 187 238 240 259 264 287 299 305 |
22 | 54551 | 5.07 | 4 9 32 44 50 77 80 87 88 102 119 176 210 226 230 239 290 292 |
23 | 54557 | 5.07 | 7 9 28 33 56 68 74 101 104 111 112 126 143 200 234 250 254 263 |
24 | 54531 | 5.06 | 9 13 22 73 75 94 99 122 134 140 167 170 177 178 192 209 266 300 |
25 | 54536 | 5.07 | 13 18 41 53 59 86 89 96 97 111 128 185 219 235 239 248 299 301 |
26 | 54552 | 5.08 | 28 44 48 57 108 110 129 134 157 169 175 202 205 212 213 227 244 301 |
27 | 54543 | 5.07 | 39 41 60 65 88 100 106 133 136 143 144 158 175 232 266 282 286 295 |
28 | 54552 | 5.10 | 32 34 53 58 81 93 99 126 129 136 137 151 168 225 259 275 279 288 |
29 | 54547 | 5.07 | 4 5 19 36 93 127 143 147 156 207 209 228 233 256 268 274 301 304 |
30 | 54541 | 5.08 | 36 70 86 90 99 150 152 171 176 199 211 217 244 247 254 255 269 286 |