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INTRODUCTION

The problem of cluster analysis (taxonomy, group�
ing of objects according to the similarity of their char�
acteristics, unsupervised classification) can be formu�
lated as follows. Suppose given a set of objects
described by a collection of certain variables. From
these objects, it is required to form a relatively small
number of clusters (taxons, groups, or classes) so that
the quality criterion for grouping takes the best value.
By the quality criterion is usually meant a certain
functional depending on the dispersion of objects in a
group and on the distances between groups.

Often one faces the need to cluster objects
described by heterogeneous variables, i.e., variables
measured on different scales: interval, ordinal, nomi�
nal, and Boolean scale. An example of such a problem
is given by the analysis of medical data related to
patients characterized by both quantitative (age,
weight, blood cholesterol level, etc.) and qualitative
(sex, profession, attitude to smoking, etc.) features.

One can list the following main methods for solving
the problems of cluster analysis in the case of hetero�
geneous variables. There are methods based on intro�
ducing the distance between objects in a heteroge�
neous feature space. For example, in [1] the authors
proposed a k�prototype algorithm in which a combi�
nation of Euclidean and Hamming metrics with some
weights are used to calculate distances. By the quality
criterion for grouping is meant the total dispersion of
objects with respect to the “centers” of groups (“pro�
totypes”). However, when introducing a metric in a
heterogeneous space, one faces complicated method�

ical questions, and the definition of the best weights of
the variables still remains an unsolved problem.

Another method consists in reducing the analysis
of heterogeneous variables to the analysis of variables
of the same type. For instance, in [2] the authors pro�
posed a cluster analysis algorithm based on evaluating
the parameters of a mixture of polynomial distribu�
tions defined on combinations of discretized variables
(i.e., the range of quantitative variables is preliminarily
partitioned into intervals of fixed length). A disadvan�
tage of such a method is the loss of information on the
closeness of objects, as well as the fact that, in the case
of high dimension of the space and a large number of
intervals (names), one faces a serious problem of reli�
ability of estimating by a limited number of observa�
tions.

Many authors (see, for example, [3]) describe a
procedure based on an ensemble of algorithms of clus�
ter analysis each of which carries out grouping in a
subspace of variables of the same type. Approaches to
the construction of an ensemble of clustering algo�
rithms are described in [4]. In spite of a large number
of experimental verifications of the advantage of the
ensembles of clustering algorithms, a sufficiently full
theoretical substantiation of their efficiency is still
missing. Some questions related to the theoretical
analysis of the quality of ensembles of clustering algo�
rithms (by a pairwise classification model) were con�
sidered in [5].

One of possible approaches to the cluster analysis
in the presence of heterogeneous variables is based on
the application of decision trees. Decision trees are
often used in classification and prediction problems in
the case of heterogeneous variables; they allow one to
obtain an easily interpretable logical model of group�
ing and to select the most informative factors and do
not require specifying a metric in a heterogeneous
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space. Decision trees were first used in the cluster
analysis of heterogeneous data in [6]. Various modifi�
cations of algorithms for constructing decision trees
for a problem of cluster analysis are described in [5, 7,
8] and other publications.

A specific feature of the approach based on deci�
sion trees is that it allows one not only to obtain a
decomposition of a given set of objects into clusters but
also to construct a hierarchic tree that describes the
structure of the decomposition and allows one to refer
an arbitrary new object to the taxons obtained (or to
point out that this object is not typical and, possibly,
belongs to an unknown class or represents noise, or
background).

When constructing a taxonomic decision tree, one
performs a directed search for the best variant by a
given quality criterion. To this end, one can apply var�
ious modifications of an LRP�type greedy algorithm,
a recursive R algorithm [9], etc. These algorithms
involve a quality criterion based on the concept of a
relative volume of a taxon. However, a disadvantage of
this criterion is that it is insensitive to the number of
objects that make up a cluster. Hence, other condi�
tions being equal, one may prefer nonrepresentative
clusters that consist of a small number of objects. The
aim of the present study is to develop a new quality cri�
terion that allows one to take into account the number
of objects in groups. To this end, we propose the appli�
cation of a combination of information and Bayesian
approaches.

The paper is organized as follows. In the first sec�
tion, we give the main concepts used in the paper. In
the second section, we introduce information quality
criteria for a taxonomic decision tree that are based on
the Kullback–Leibler distance between distributions.
We consider both a frequency estimate for this dis�
tance and an estimate obtained on the basis of a Baye�
sian approach. To obtain the Bayesian estimate, we
find an expression for the expected entropy of an a
posteriori distribution of classes. In the third section,
we describe the method and the results of experimen�
tal investigation of algorithms based on the criteria
introduced. In the Conclusions, we summarize the
main results of the paper.

1. THE BASIC CONCEPTS

Suppose given a set s = {o(1), …, o(N)} of objects cho�
sen from the statistical population. Each object is
described by an ensemble of variables X1, …, Xm. This
ensemble may include variables of different types
(quantitative and qualitative, by which we mean nom�
inal and Boolean, as well as ordinal, variables). Let Dj

stand for the set of values of the variable Xj (which is an
interval of the real axis in the case of a quantitative
variable, or a finite set of values (names) in the case of
a qualitative variable). Let D = . Denote by x =Dj

j

∏

x(o) = (x1(o), …, xm(o)) an ensemble of observations of
the variables for an object o, where xj(o) is the value of
the variable Xj for the given object. We will represent
the ensemble of observations corresponding to the set
of objects as a data table with N rows and m columns.

In a cluster analysis problem, one has to partition
objects into a certain number K (K � N) of clusters so
that a given quality criterion for groping takes an optimal
value. The number of classes may be either chosen in
advance or not specified (in the latter case, the optimal
number of clusters should be defined automatically).

In some problems, one should not only partition
objects into similar groups but also obtain a rule that
would allow one to refer an arbitrary new object to a cer�
tain class with number Y. To this end, one uses the so�
called taxonomic decision function, by which we mean a
mapping D  DY, where DY = {0, 1, …, K} is a set of
numbers of classes such that Y = 0 implies that an object
does not belong to any of the clusters found. Such objects
will be said to be atypical (or noise objects).

Note that the concept of a taxonomic decision
function was introduced in [10], where it was used for
solving a pattern recognition problem.

The main problem is as follows. It is required to
construct a taxonomic decision function that belongs
to a given class and is optimal by a certain criterion. To
solve this problem, one should define an appropriate
class of decision functions, define a quality criterion,
and formulate an algorithm for choosing an optimal
function. Below we consider the above�mentioned
questions as applied to the case of taxonomic decision
trees.

1.1. A Taxonomic Decision Tree

Consider a tree in which each internal vertex
(node) is assigned a variable Xj and the branches ema�
nating from this vertex correspond to a statement of

the form Xj(o) ∈ , where o is an object; i = 1, 2, …, v,
v ≥ 2 is the number of branches emanating from the

given vertex; and , …,  are pairwise disjoint
subsets of the set Dj (intervals of values in the case of a
quantitative variable). Each kth leaf (terminal node)
of the tree corresponds to a group of objects of sample

C(k) = { , …, }, where n(k) is the number of
objects in the group and k = 1, …, K. The objects of a
given group satisfy a chain of statements that are veri�
fied along a path from the root vertex to this leaf, i.e.,
a logical assertion of the form

If (o) ∈  AND

(o) ∈  AND … AND (o) ∈ ,

then the object o belongs to the kth class,
where qk is the length of the given chain and o ∈ C(k).
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By a taxon T(k) corresponding to the kth leaf of a
tree we mean a rectangular subdomain containing
objects from the group C(k) in a multidimensional
space:

where

for the qualitative variable Xj and

for a quantitative variable Xj.

For a new observation x, by verifying the statements
corresponding to the tree, we seek a taxon T(k) that
contains this observation. To x, we assign the kth class.
If x is not contained in any of the taxons available, then
we assign it the value Y = 0.

The tree described is called a taxonomic decision
tree. The vertices of the tree correspond to a certain
nested hierarchy of subsets of objects. Note that the
tree does not necessarily contain the entire original
ensemble of variables.

An illustrative example of the disposition of obser�
vations in a space of two variables is shown in Fig. 1a.
Here X1 is a nominal variable, while X2 is a quantitative
variable. An example of a taxonomic decision tree that
partitions objects into K = 4 groups is shown in Fig. 1b.

1.2. Quality Criterion for a Decision Tree
for a Heterogeneous Space

Suppose that a partition G = {C(1), …, C(k), …, C(K)}
of a set of objects into groups is formed in accordance
with a taxonomic decision tree. In the case of quanti�
tative variables, by a quality criterion for grouping is
usually meant the total dispersion of points with
respect to the centers of clusters. However, in the case

T k( ) T C k( )( ) T1
k( ) … Tj

k( ) … Tm
k( )

,××××= =

Tj
k( ) Xj o( ) o C k( )∈{ }=

Tj
k( ) Xj o( ); Xj o( )

o C
k( )

∈

max
o C

k( )
∈

min[ ]=

of a heterogeneous space of variables, such a criterion
is inapplicable.

In [6], for a heterogeneous space, the authors pro�
posed a quality criterion for grouping that is based on
the minimization of the total relative volume of taxons

where V(k) = V(T(k)) =  is the relative volume

of the taxon T(k); |⋅| stands for the cardinality of the
corresponding set or the length of the interval.

One can easily verify that the minimization of this
criterion is equivalent to the maximization of the cri�
terion

where (T(k)) =  is the relative frequency of falling

into the taxon T(k) and Pu(T(k)) = V(T(k)) is the proba�
bility of falling into the taxon provided that we deal
with independent random variables each of which has
a uniform distribution. Note that the use of the abso�
lute value in the formula for Q '(G) is not necessary if
we assume that we consider only taxons the density of
points in which is higher than the mean density over

the entire space (i.e.,  > , where |T(k) | =

 and |D | = ).

Thus, when using this criterion, one seeks for
groups whose distribution most strongly differs from
the uniform distribution in the above sense.
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Fig. 1. Examples of (a) a clusterization problem and (b) a taxonomic decision tree.
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In [9], the authors used a modification of the crite�
rion (a regularizing criterion) in which the necessary
number of clusters is not defined and one seeks for a
certain compromise between the total volume and the
number of groups:

where α is an heuristic parameter. The experimental
investigations carried out in [9] have shown that there
exists a range of values of this parameter (usually, α is
defined on the interval from one to two) in which the
solutions have acceptable quality.

1.3. An Algorithm for Constructing a Tree

It is well known that the problem of constructing an
optimal decision tree is NP hard in the general case.
Therefore, as a rule, one applies an approximate algo�
rithm for searching for an optimal tree in which a
directed search for variants is applied.

In [9], the authors describe a successive branching
algorithm LRP and a recursive algorithm (the R
method). At each step of the algorithm LRP, a certain
group of objects that corresponds to a vertex of a tree is
partitioned into two new subgroups. The partition is
performed with the use of the quality criterion for
grouping Q; i.e., the total volume of the taxons
obtained is minimized. A vertex for which the relative
volume of the corresponding taxon is greater than a
given parameter is considered to be promising for fur�
ther branching. The branching is continued either
until there remain no more promising vertices or until
a given number of groups is obtained.

The R method involves a recursive scheme of
searching for different variants of a tree to a given
depth R. First, in each of the levels of the tree, one
constructs a maximum possible number of vertices
(defined by a sample). Then these vertices are succes�
sively united until an optimal value of the quality cri�
terion is reached. In this case, one applies a regulariz�
ing criterion QR. The tree obtained is not necessarily
binary.

By increasing the parameter R, one can increase
the depth of the search for variants, which allows one
to take into account more complicated dependence
between the variables (in this case, the operation time
and the required memory volume increase). A distinc�
tive feature of the algorithm is that the number of
branches emanating from each vertex is not fixed in
advance, and one seeks for the optimal number of such
branches. The details of the algorithm are described
in [9].

QR G( ) V k( ) αK
N
���,+

k 1=

K

∑=

2. THE PROPOSED QUALITY CRITERION

The quality criteria for grouping Q and QR consid�
ered above do not take into account the composition
of groups (i.e., the number of objects included in a
group). Let us introduce another criterion, which is
based on the Kullback–Leibler distance between the
distribution of the probability to fall into taxons and a
uniform distribution. Define an empty (or noise)
domain T(0) = D\{T(1) ∪ … ∪ T(k)}. The Kullback–
Leibler distance is defined as

where P(T(k)) is the probability that a randomly chosen
observation belongs to the domain T(k), k = 0, 1, …, K,
and the domain T(0) satisfies the equality Pu(T(0)) = 1 –

. In addition, assume that 0 ⋅ ln0 = 0. To eval�

uate the probability to fall into subdomains, we can use
appropriate frequencies. Denote a criterion based on
the frequency estimate for the above distance by
QFKL(G).

It is well known that frequency estimates have
greater error for a problem of higher dimension and a
relatively small number of objects. To increase the
accuracy of estimates, one can additionally invoke a
priori knowledge available for the researcher. We will
use the earlier developed Bayesian model of classifica�
tion by a finite set of events [9] in which an a priori dis�
tribution is defined on the set of states of nature
according to expert information.

Consider a discrete random variable X with a set of
unordered values DX = {u(0), u(1), …, u(K)}, where u(k) is
the kth value (cell) corresponding to the subdomain
T(k), k = 0, 1, …, K. For convenience, we encode the
variable X by the numbers of cells. Let p(k) be the prob�
ability of the event “X = k,” such that p(k) ≥ 0, k = 0,

1, …, K, and  = 1. Let n(k) be the number of

observations corresponding to the kth cell;  =

N (note that n(0) = 0 in the absence of noise). Denote
an observed vector of frequencies by s = (n(0), n(1), …,
n(K)). Let S stand for a random vector of frequencies
that obeys a polynomial distribution with the parame�
ter vector θ = (p(0), p(1), …, p(K)). Consider a family of
polynomial distribution models defined by a set of
parameters Λ = {θ}. This family (class of distributions)
is also called a set of models of the states of nature.
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We apply a Bayesian approach: Suppose that a ran�
dom variable Θ = (P(0), P(1), …, P(K)) with a known a
priori distribution p(θ) with θ ∈ Λ is defined on Λ.
We will assume that Θ satisfies the Dirichlet distribu�

tion, Θ ~ Dir(d): p(θ) = , where d =

{d(0), d(1), …, d(K)} and d(k) > 0 are some real numbers
that express expert knowledge on the distribution Θ
(k = 0, 1, …, K) and Z is a normalization constant (Z =

, where Γ(⋅) is a gamma function and D =

). The more convinced an expert is that the fre�

quency of the kth taxon should be relatively high, the
greater the value of d(k). In the absence of knowledge
about a priori preferences, one can apply a uniform a
priori distribution (d = 1).

Consider the entropy of a distribution as a function
of θ:

We will call the mathematical expectation of the

entropy  = EΘH(Θ), where the averaging is per�
formed over the set Λ, the expected entropy of a priori
distribution.

Proposition 1. Suppose that the above assumptions
hold. Then the expected entropy is given by

where ψ(z) = lnΓ(z) is the digamma function.

Proof. We have

where I(k) = {l |l = 0, …, K, l ≠ k} and Λ(k) =

, k = 0, …, K.

1
Z
�� p k( )( )

d
k( )

1–

k 0=

K

∏

Γ d k( )( )
k 0=

K

∏
Γ D( )

���������������������

d k( )

k 0=

K

∑

H θ( ) p k( ) p k( )
.ln

k 0=

K

∑–=

H

H ψ D 1+( ) d k( )

D
������ψ d k( ) 1+( ),

k 0=

K

∑–=

d
dz
����

EΘH Θ( ) 1
Z
�� p k( ) p k( )p θ( )ln

k 0=

K

∑ θd

Λ

∫–=

=  1
Z
�� p k( )( )

d
k( )

p k( ) p l( )( )
d

l( )
1–

p l( ) p k( )
,dd

l I
k( )

∈

∏
l I

k( )
∈

∏
Λ

k( )

∫ln

0

1

∫
k 0=

K

∑–

p l( ) p l( )
 = 1 p k( )–

l I
k( )

∈

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

Let us apply an integral formula that follows from
the generalized Liouville formula [11, p. 397]:

where d1, …, dn are positive real numbers. We obtain

Now, we apply the following integral formula ([12, p.
552]):

where Β(⋅, ⋅) is the beta function and μ, ν > 0. We
obtain
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Using the property Β(x, y) = , after transfor�

mations we obtain

which was to be proved. Note that ψ(z) ≈ lnz holds for
large z.

Suppose that a sample (an observable vector of fre�
quencies) s is obtained. By a property of the Dirichlet
distribution, the a posteriori distribution is given by
Θ|S ~ Dir(d(0) + n(0), d(1) + n(1), …, d(K) + n(K)).

We will call the mathematical expectation of the

entropy  = H(Θ), where the averaging is per�
formed over all models of the state of nature according
to an a posteriori distribution, the expected entropy of
the a posteriori distribution. Proposition 1 implies the
following proposition.

Proposition 2. The expected entropy of a posteriori
distribution is given by

where q(k) = , k = 0, 1, …, K.

The quantities q(k) can be interpreted as Bayesian
estimates for the probability to fall into the subdo�
mains T(0), …, T(K).

Consider the Kullback–Leibler distance as a func�
tion of a state θ of nature:

Proposition 3. The a posteriori mathematical expec�
tation ρKL(Θ|s) is defined as follows:

Proof. We have
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Using Proposition 2, we obtain

which implies the validity of Proposition 3.

The quantity ρKL(Θ|s) is called a Bayesian esti�
mate for the Kullback–Leibler distance between the
above�mentioned distributions (note that an a posteri�
ori mathematical expectation is an optimal Bayesian
estimate of a function of a random parameter for a
quadratic loss function [13]). We will use the Bayesian
estimate obtained (with opposite sign) as a quality cri�
terion for grouping.

We can make the following remarks regarding the
practical application of the criterion. For larger
dimension of the space of variables, lnV(0) ≈ 0; there�
fore, up to constants, the criterion takes the form

The minimization of the criterion leads to a certain
compromise between two tendencies: to form taxons
of minimum volume and to obtain clusters that con�
tain as many objects as possible.

In this paper, we apply a recursive algorithm to
construct a decision tree, in which the QBKL criterion
is used in place of the regularizing criterion (the search
scheme remains the same). Moreover, for comparison,
we consider a similar algorithm in which a decision is
constructed with regard to the criterion QFKL.
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3. ANALYSIS WITH THE USE
OF STATISTICAL MODELING

To analyze the algorithm developed, we carried out
statistical modeling and repeatedly solved various
types of cluster analysis problems. Each type of prob�
lems is characterized by properties such as

—the number of classes K,
—the sample volume n(k) for each class,
—the dimension m of the space,
—the number mq of qualitative variables,
—the set of values of each variable,
—the form of the basic distribution.
The basic distribution for each class is chosen to be

multidimensional normal with the same covariance
matrix Σ. The vector of mathematical expectations for
each class is chosen randomly from the set of integer
values of the variables (so that these values for different
classes do not coincide). For qualitative variables, the
values of the realizations obtained are rounded to the
nearest integer. The covariance matrix Σ is defined by
two parameters: the value of the diagonal elements σ
and the value of off�diagonal elements σ'.

To assess the accuracy of the algorithm, we apply a
multiple procedure consisting of the following steps:

—generation of various types of problems with
given properties;

—obtaining random samples according to the
assigned type of problem;

—construction, by the algorithm analyzed, a
group solution for each sample (naturally, the true
numbers of classes are not communicated to the algo�
rithm);

—finding an accuracy index averaged over all sam�
ples, as well as the corresponding confidence interval.

The accuracy of classification is determined by the
Rand index (IR), which represents the relative num�
ber of pairs of objects that have either identical or dif�
ferent numbers of classes in the obtained and true clas�
sifications (the value of index close to 1 provides evi�
dence for a good consistency of classifications). At the
output of the Monte Carlo modeling algorithm, one
has accuracy estimates for the algorithm for the types
of problems considered.

We analyzed the behavior of the algorithm for con�
structing a tree for the three quality criteria described
above: the regularizing criterion QR (the parameter α =
2), the criterion based on the frequency estimate for
the Kullback–Leibler distance QFKL, and the criterion
involving a Bayesian estimate QBKL with d = 1.

Consider the following example. We generated var�
ious types of problems for the case of two classes. The
sample size for the first class was 25 and for the second,
varied from 10 to 25 with a step of 5; the dimension of
the space varied from 5 to 15 with a step of 5; the num�
ber of qualitative (Boolean in the case in question)
variables was defined randomly; the parameter σ
belonged to the set {0.1; 0.2; 0.3; 0.4; 0.5}; and the

parameter σ' = 0.5σ. Thus, we considered 60 types of
problems altogether. For each type of problems, the
modeling procedure was repeated 40 times. It turned
out that the number of problems for which some of the
algorithms yielded substantially more accurate results
compared with other algorithms considered was as fol�
lows: 0 for the algorithm based on the criterion QR,
0 for QFKL, and 13 for QBKL. An example of a graph of
the averaged Rand index as a function of the parame�
ter σ is shown in Fig. 2 (the number of simulated sam�
ples is 200).

Thus, the results of modeling allow us to conclude
that, for the types of problems considered, the algo�
rithm based on the Bayesian estimate for the Kull�
back–Leibler distance much more frequently yielded
more accurate results compared with similar algo�
rithms based on the frequency estimate for this dis�
tance and on the regularizing criterion.

CONCLUSIONS

We have considered algorithms for constructing
taxonomic decision trees that allow one to perform
grouping in a space of heterogeneous variables and to
form logical classification rules for new objects. We
have introduced a modified quality criterion for a tree
that is based on the Bayesian estimate for the Kull�
back–Leibler distance between a distribution corre�
sponding to the clusters formed and a uniform distri�
bution. To this end, we obtained expressions for the
expected entropy of a priori and a posteriori distribu�
tions of the frequencies of classes. Using statistical
modeling, we have shown that there exist examples of
problems in which the algorithm based on the Baye�
sian estimate gives a substantially higher accuracy of
classification compared with a similar algorithm using
a frequency estimate for the Kullback–Leibler dis�

Bayes–Kullbak–Leibler
Kullbak�Leibler
Regularising criterion; α = 1

0.76

0.74

0.72

0.70

0.68

0.66

0.64

0.62

0.60

0.58

0.2 0.3 0.4 0.5 0.6 σ

IR

Fig. 2. Example of simulation results (K = 2, n(1) = n(2) =
25, m = 10, mq = 5, and σ' = 0.5).



598

PATTERN RECOGNITION AND IMAGE ANALYSIS  Vol. 21  No. 4  2011

BERIKOV

tance and an algorithm based on a regularizing crite�
rion.

As promising directions of further investigations,
we can point out the development of quality criteria
for decision trees on the basis of modifications of the
Bayesian model that involve various additional
assumptions on the classification problem [9]; the
development of more efficient search schemes; and
the construction of an ensemble of taxonomic deci�
sion trees. We are going to compare various algorithms
for the cluster analysis of heterogeneous data by means
of statistical modeling and by solving applied prob�
lems.

ACKNOWLEDGMENTS

This work was supported by the Russian Founda�
tion for Basic Research, project no. 11�07�00346.

REFERENCES

1. Zhexue Huang, “Clustering Large Data Sets with
Mixed Numeric and Categorical Values,” in Proc. 1st
Pacific–Asia Conf. on Knowledge Discovery and Data
Mining (Singapore, 1997), pp. 21–34.

2. K. Blekas and A. Likas, “Incremental Mixture Learn�
ing for Clustering Discrete Data,” in Artificial Intelli�
gence: Theories, Models and Applications, Ed. by
J. Darzenta, et al. (Springer, Heidelberg, 2004),
pp. 210–219.

3. A. S. Biryukov, V. V. Ryazanov, and A. S. Shmakov,
“Solving Clusterization Problems Using Groups of
Algorithms,” Comp. Math.  Math. Phys. 48 (1), 168–
183  (2008).

4. A. Strehl and J. Ghosh, “Clustering Ensembles—a
Knowledge Reuse Framework for Combining Multiple
Partitions,” J. Mach. Learn. Res. 3, 583–617 (2002).

5. V. B. Berikov, “The Way to Create the Decision Trees
Ensemble in Cluster Analysis,” Vychisl. Tekhnol. 15
(1), 40–52 (2010) [in Russian].

6. G. S. Lbov and T. M. Pestunova, “Pooling Objects in
the Space of Different Variables,” in Analysis of Nonnu�
merical Information in Sociological Researches (Nauka,
Moscow, 1985), pp. 141–149 [in Russian].

7. T. Shi and S. Horvath, “Learning with Random Forest
Predictors,” J. Comput. Graph. Stat. 15 (1), 118–138
(2006).

8. H. Blockeel, L. Raedt, and J. Ramon, “Top–Down
Induction of Clustering Trees,” in Proc. 15th Int. Conf.
Machine Learning, Ed. by J. Shavlik (Morgan Kauf�
mann, 1998), pp. 55–63.

9. G. S. Lbov and V. B. Berikov, Decision Functions Stabil�
ity in the Problems of Pattern Recognition and Multitype
Information Analysis (Izd. Inst. Matematiki, Novosi�
birsk, 2005) [in Russian].

10. N. G. Zagoruiko, Recognition Methods and Their Appli�
cation (Sovetskoe radio, Moscow, 1972) [in Russian].

11. G. M. Fikhtengol’ts, Course of Differential and Integra�
tion Calculus (Fizmatlit, Moscow, 1960), Vol. 3 [in Rus�
sian].

12. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals,
Sums, Series and Products (Gos. izd. fiz.–mat. lit.,
Moscow, 1963) [in Russian].

13. E. L. Lehman, Theory of Point Estimation (John Wiley,
New York, 1983; Nauka, Moscow, 1991).

Vladimir Borisovich Berikov. Born
1964. Graduated from the Novosi�
birsk State University in 1986.
Received candidate’s degree in 1996
and doctoral degree in 2007. Cur�
rently is a leading researcher at the
Institute of Mathematics, Siberian
Branch, Russian Academy of Sci�
ences. Scientific interests: mathe�
matical theory of pattern recognition
and cluster analysis; image analysis;
and application of mathematical

methods in biology, medicine, and historical studies. 


