
FAULT TREE CONSTRUCTION ON THE BASIS OF  MULTIVARIATE TIME 
SERIES ANALYSIS. 

 
 

 At the analysis of potentially dangerous events (technological catastrophes, extreme 
phenomena of nature etc) there are often used models which have the form of fault trees (also 
called error trees). Fault tree (FT) allows to present in the graphical form a hierarchy of 
consecutively occurring stochastic events which cause certain undesirable event. On the basis 
of FT analysis, the forecast of the undesirable event can be made, as well as measures for its 
prevention elaborated. 

Usually FT  is designed by an expert on the basis of his experience and other a prior 

information on the given event and on similar events. Often the expert may use  statistical 
information describing the object under investigation and similar objects, and this 
information can also be used for the construction of fault tree. 

We assume that the problem in question has the following specific features: 
– the set of features describing objects may simultaneously contain binary, nominal, and 

quantitative features. Thus, we have a multidimensional series composed of a set of binary, 
symbolic, and numerical sequences: 

– the corresponding distributions of the multidimensional random process are unknown. 
The decision functions for the prediction are based on a limited statistical material. Since the 
sample size is small and the space of states has a high dimension, the derivation of 
statistically stable solutions becomes a problem; 

– some features may not be measured at some instants of time. Then their values are 
missing in the time series. 

In the given work we suggest a method for fault tree design (or construction of some of its 
parts, for finding of which it is necessary to analyze statistical data) by means of the analysis 
of multidimensional time series describing the dynamic properties of object. 

Fig. 1 An example of fault tree.        – events;              – 
leaves;       – AND gate;          – OR gate 
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The rest of the paper is organized as follows. In paragraph 2, we give short description of 
fault trees and decision trees. In paragraph 3, we briefly describe a method of decision tree 
construction for time series analysis. Paragraph 4 holds an algorithm for fault tree formation 
from decision tree. In the conclusion, we discuss the suggested method and indicate possible 
ways of future development. 

 
 Fault tree and decision tree 

The root of FT (Fig.1) corresponds to so called top undesirable event (TUE). The nodes of  
the first layer of FT correspond to some events, preceded TUE and able to cause it. These 
events can be connected by gates AND, OR. Besides that, the probabilities that specified 
events cause TUE are evaluated. Similarly, each node (event) of the first layer of the tree can 
be matched to nodes (events) of the second layer etc. The leaves of the tree denote the events 
that are impossible to decompose due to the absence of information or other reasons.  

Let it is required to find a model, where feature Y depends on features X.  The example 
(Fig.2) illustrates such a model, which can be seen as a decision tree. The decision tree (DT) 
consists of nodes stand for rectangular, the branches stand for pieces connecting the nodes. 
Each node corresponds with a certain feature and the branches correspond with a range of 
values. These ranges of values can be joint in the set of values of the given feature. 

When precisely two branches grow out from an internal node (the tree of such type is 
called a dichotomous tree), each of these branches can give a true of false statement 
concerning the given feature as is shown on Fig. 2.  

The value Y is ascribed for each terminal node of a tree (named "leaf"). In case of pattern 
recognition problem the given value is a certain class. 

For any observation of х, using DT, we can find the predicted value Y. For this purpose we 
start with a root of a tree, we consider the feature, corresponding to a root and we define, to 
which branch the observed value of the given feature corresponds. Then we consider the node 
in which the given branch comes. We repeat the same operations for this node etc., until we 
reach a leaf. The value YS ascribed to S-th leaf will be the forecast for x. 

 
Multidimensional time series and decision trees 

 
Let a set of random features X(t)=(X1(t),...,   Xn(t)), whose values vary with time, be used to 

describe a certain object. We denote the set of possible values of Xj by Dj. The following 
types of features can be distinguished: 
– binary feature: Dj= {0,1}; 

–nominal feature: Dj={ 1 l j
j ju ,...,u } where { 1 l j

j ju ,...,u }a is a set of symbols (names); 

–quantitative feature: jD R⊆ where R is a set of real numbers. 

The binary and nominal features are also referred to as qualitative features. 
Let features be measured at the consecutive moments of time t1,..., t µ,... . For definiteness 

we will assume that measurements will be carried out through equal intervals of time. We will 
designate through xj(t

µ)=Xj(t
µ) the value of feature Xj at the moment of time t µ. Thus, we have 

n-dimensional heterogeneous time series xj(t 
µ), j=1,...,n, µ=1,2,.... 

Let us choose one predicted feature  
0j

X , 01 j n≤ ≤ . We designate, for convenience, this 

feature through Y. In this paper, we consider feature Y of qualitative type. 
Let us consider the moment of time t µ, and also a set of the previous moments of time t µ–1, 

tµ–2,…,t  µ–l , where l is a given size (“deep of history”), 1 l µ≤ < . 
We suppose that conditional distribution Y(t µ), when all previous values X(t) are given, 

depends only on values of series in l previous moments of time. 
Besides, we suppose, that this dependence is the same for any value µ. The given 



assumption means, that the statistical properties of series determining dependence are 
stationary. 

For any moment of time t µ , it is possible to form a set v µ =(Xj(t 
µ–i)), i=1,...,l, j=1,...,n, 

representing the time series in l previous moments of time. We will call a set vµ background of 
length l for the moment t           µ. 
It is required to construct a model of dependence of feature Y from its background for any 
moment of time. The model allows to predict the value of feature Y at the future moment of 
time on values of features for l last moments. In other words, the given model, using 
background, represents decision function for forecasting. In analogy to a usual pattern 
recognition problem, we will call a problem of the given type a problem of recognition of 
dynamic object. The analyzed object can change its class in the run of time. 

We will represent a decision function for forecasting time series on its background as a 
decision tree. This decision tree differs from the described in paragraph 2 trees in statements 
concerning a features Xj in some i-th moment of time back are checked. For convenience, we 

will designate these features, with a glance to background, through i
jX  (Fig. 3). Thus, i

jX  

means feature Xj  in i-th previous moment of time (concerning a present situation). 
Let there be a set of measurements of features X=(X1,...,Xn) at the moment of time t1,...,tN  

and value l is also given. Thus, we have a multivariate heterogeneous time series of length N. 

We generate set of all histories of length l for the moments of time t l+1,...,t N: A= vµ , 
µ=l+1,...,N. 

For any given decision tree for forecasting by background (DTFB), it is possible to define 
its quality: we will designate through Ŷ ( t )µ  predicted value Y received with the help of a tree 

by background vµ. The criterion of quality will be 
1

1 N

l

Q h( )
N l µ

µ
= +

=
−
∑ ,where 

))t(Y),t(Ŷ(L)(h µµµ = , L(a,b) is loss function, determining losses if class a is predicted then b 
is true class. Thus, Q is the estimate of risk function. 
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Fig.3. An example of decision tree for time series prediction 
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Fig.6. Formation of FT first layer from decision tree 

The initial problem of construction of DTFB is divided into some more simple pattern 
recognition problems. 

We will present set vµ as the table vµ =(Xj(t
µ–i), i=1,...,l, j=1,...,n containing l rows and n 

columns. Then, the initial information for forecasting is the set of tables vµ, together with the 
values of predicted feature Y specified for each table Y(tµ), µ=l+1,...,N. It is possible to 
present set A= v l+1,…, vN as the three-dimensional table of dimension l×n×(N–l) to which the 
vector (yl+1,...,yN) corresponds (Fig. 4). However, available methods of recognition with using 
of DT use bi-dimensional tables as input information. Below we suggest one of the possible 
ways to use given methods for the analysis of three-dimensional data tables. 

Consider l tables i
jX ( t ),Y( t )µ µ− , where { }1 2j , ,...,n∈ , { }1 2l ,l ,...,Nµ ∈ + + , { }1 2i , ,...,l∈ . Thus, 

we have l horizontal cuts of 3-D data table (Fig. 5). For each cut (two-dimensional table), the 
decision tree minimizing Q is constructed. In a result we receive a set of trees T1,T2,..., Tl. We 
will denote the best of these trees (with minimal Q) as T*.  
 

From decision tree to fault tree. 
 

Let feature Y corresponds to the coming of some undesirable event: Y=1, if this event 
comes, Y=0 otherwise. Thus, the number of predicted classes equals two. Consider loss 
function with the following properties: L(0,0)=L(1,1)=0; L(1,0)<<L(0,1) (the error of 
classification of undesirable event  costs much more than the error of classification of 
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Fig. 5. Horizontal cuts of 3-D data table 
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Fig.7 FT next layer formation 

ordinary event).  
In T*, all features are measured for the same moment of time in the past. This tree is used 

then for the formation of first layer of FT. (Note that in other variant of the method all trees 
T1,T2,..., Tl  can be used for FT formation ). 

Consider the following algorithm: 
1. Find all statements in paths from root node of T* to the leaves that correspond to 
undesirable events; 
2. Use these statements as nodes (events) of current level of FT (Fig. 6). The conjunctions of 
statements are  connected with TUE by means of AND gates, and different paths are 
connected with TUE by means of OR gates. Choose non-terminal nodes of FT; 
3. For each non-terminal event Em of current level of FT form new feature Zm: Zm=1, if this 
event takes place, Zm=0 otherwise, where m=1,…,M, M is number of non-terminal nodes; 
4. For each m construct sub-tree for prediction Zm on the basis of its background; 
5. Use statements of obtained DTFB as nodes (events) for next level of FT (Fig.7);  
 
 6.Repeat steps 3-5 until no non-terminal nodes left. 

The constructed FT may be corrected and complemented by an expert. The probabilities of 
events in FT are evaluated as frequencies of correspondent observations in time series.  
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