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Preface

On several occasions I and colleagues have found ourselves teaching a one-
semester course for students at the second year of graduate study in math-
ematics who want to gain a general perspective on Jordan algebras, their
structure, and their role in mathematics, or want to gain direct experience
with nonassociative algebra. These students typically have a solid grounding
in first–year graduate algebra and the Artin–Wedderburn theory of associa-
tive algebras, and a few have been introduced to Lie algebras (perhaps even
Cayley algebras, in an offhand way), but otherwise they have not seen any
nonassociative algebras. Most of them will not go on to do research in nonas-
sociative algebra, so the course is not primarily meant to be a training or
breeding ground for research, though the instructor often hopes that one or
two will be motivated to pursue the subject further.
This text is meant to serve as an accompaniment to such a course. It

is designed first and foremost to be read by students on their own without
assistance by a teacher. It is a direct mathematical conversation between the
author and a reader whose mind (as far as nonassociative algebra goes) is a
tabula rasa. In keeping with the tone of a private conversation, I give more
heuristic and explanatory comment than is usual in graduate texts at this level
(pep talks, philosophical pronouncements on the proper way to think about
certain concepts, historical anecdotes, mention of some mathematicians who
have contributed to our understanding of Jordan algebras, etc.), and employ
a few English words which do not standardly appear in mathematical works.
I have tried to capture to colloquial tone and rhythm of an oral presentation,
and have not felt bound (to my copy editor’s chagrin) to always adhere to the
formal “rules” of English grammar.
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This book tells the story of one aspect of Jordan structure theory: the
origin of the theory in an attempt by quantum physicists to find algebraic
systems more general than hermitian matrices, and ending with the surpris-
ing proof by Efim Zel’manov that there is really only one such system, the
27-dimensional Albert algebra, much too small to accommodate quantum me-
chanics. I try to give students a feeling for the historical development of the
subject, so they will realize that mathematics is an ongoing process, but I
have not tried to write a history of Jordan theory; I mention people only as
they contribute directly to the particular story I am telling, so I have had to
leave out many important colleagues. I also try to give students a sense of how
the subject of Jordan structures has become intertwined with other aspects
of mathematics, so students will realize that mathematics does not develop in
isolation; I describe some applications outside algebra which have been en-
riched by Jordan theory, and which have influenced in turn purely algebraic
developments, but I have not tried to give a compendium of applications, and
I have had to leave out many important ones.
It is important for the reader to develop a visceral intuitive feeling for the

living subject. The reader should see isomorphisms as cloning maps, isotopes
as subtle rearrangements of an algebra’s DNA, radicals as pathogens to be
isolated and removed by radical surgery, annihilators as biological agents for
killing off elements, Peircers as mathematical enzymes (“Jordan-ase”) which
break an algebra down into its Peirce spaces. Like Charlie Brown’s kite-eating
trees, Jordan theory has Zel’manov’s tetrad-eating ideals (though we shall
stay clear of these carnivores in our book). The reader must think of both
mathematicians and abstract ideas as active participants in the theory. Just as
the mathematicians have proper names that need to be recognized, so too the
results need to be appreciated and remembered. To this end, I have christened
all statements (theorems, examples, definitions, etc.) and basic equations with
a proper name (using capital letters as with ordinary proper names). Instead
of saying “by Lemma 21.2.1(1), which of course you will remember,” I say
“by Nuclear Slipping 21.2.1(1),” hoping to trigger long-repressed memories of
a formula for how nuclear elements of alternative algebras slip in and out of
associators. The reader should get on a first-name basis with these characters
in our story, and be able to comfortably use locutions like “Nuclear Slipping
says that such-and-such holds”.
While I wind up doing most of the talking, there is some room in Parts II

and III for the reader to participate (and stay mathematically fit) by doing
exercises. The Exercises give slight extensions, or alternate proofs, of results
in the text, and are placed immediately after the results; they give practice in
proving variations on the previous mathematical theme. At the end of each
chapter I gather a few problems and questions. The Problems usually take the
form “Prove that something-or-other”; they involve deeper investigations or
lengthier digressions than exercises, and develop more extensive proof skills on
a new theme. The Questions are more open-ended, taking the form “What can
you say about something-or-other” without giving a hint as to which way the



Preface ix

answer goes; they develop proof skills in uncharted territories, in composing
a mathematical theme from scratch (most valuable for budding researchers).
Hints are given at the back of the book for the starred exercises, problems,
and questions (though these should be consulted only after a good-faith effort
to prove them).
The Introduction A Colloquial Survey of Jordan Theory is in the nature

of an extended colloquium talk, a brief survey of the life and times of Jor-
dan algebras, to provide appreciation of the role Jordan algebras play on the
broader stage of mathematics. It is divided into eight sections: the origin of the
species, the genus of related Jordan structures, and links to six other areas
of mathematics (Lie algebras, differential geometry, Riemannian symmetric
spaces, bounded symmetric domains, functional analysis, and projective ge-
ometry). Since the students at this level cannot be assumed to be familiar
with all these areas, the description has to be a bit loose; readers can glean
from this part just enough respect and appreciation to sanction and legiti-
mate their investment in reading further. There are no direct references to
this material in the rest of the book.
Part I A Historical Survey of Jordan Structure Theory is designed to pro-

vide an overview of Jordan structure theory in its historical context. It gives
a general historical survey, divided chronologically into eight chapters, from
the origins in quantum mechanics in 1934 to Efim Zel’manov’s breathtaking
description of arbitrary simple algebras in 1983 (which later played a role in
his Fields Medal work on the Burnside Problem). I give precise definitions and
examples, but no proofs, except in the last chapter where I give brief sketches
of Zel’manov’s revolutionary proof techniques. In keeping with its nature as
a survey, I have not included any exercises.
In contrast to the Introduction, the definitions and results in the Sur-

vey will be recur in Parts II and III when material from the Survey is being
restated. These restatements not only make Part II and Part III fully indepen-
dent units, capable of serving as course texts, but the repetition itself helps
solidify the material in students’ minds. All statements (theorems, examples,
definitions, etc.) and named equations throughout the book have been chris-
tened with a proper name, and readers should try to remember statements
by their verbal mnemonic tags. When material from the Survey is being re-
peated, this will be quietly noted in a footnote. I have been careful to try to
keep the same name as in the Survey. Hopefully the name itself will trigger
memory of the result, but a numerical tag is included in the reference to help
locate the result when the mnemonic tag has not been memorable enough.
For the purpose of navigating back to the tagged location, each chapter in the
Survey is divided into numbered sections.
Part II The Classical Theory and Part III Zel’manov’s Exceptional Theo-

rem are designed to provide direct experience with nonassociativity, and ei-
ther one (in conjunction with Part I) could serve as a basis for a one-semester
course. Throughout, I stick to linear Jordan algebras over rings of scalars
containing 1

2 , but give major emphasis to the quadratic point of view.
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The Classical Part gives a development of Jacobson’s classical structure
theory for nondegenerate Jordan algebras with capacity, in complete detail
and with full proofs. It is suitable for a one-semester course aiming to in-
troduce students to the methods and techniques of nonassociative algebra.
The (sometimes arcane) details of Peirce decompositions, Peirce relations,
and coordinatization theorems are the key tools leading to Jacobson’s Clas-
sical Structure Theory for Jordan algebras with capacity. The assumption of
nondegeneracy allows me to avoid a lengthy discussion of radicals and the
passage from a general algebra to a semisimple one.
Zel’manov’s Part gives a full treatment of his Exceptional Theorem, that

the only simple i-exceptional Jordan algebras are the Albert algebras, closing
the historical search for an exceptional setting for quantum mechanics. This
part is much more concerned with understanding and translating to the Jor-
dan setting some classical ideas of associative theory, including primitivity;
it is suitable for a one-semester course aiming to introduce students to the
modern methods of Jordan algebras. The ultrafilter argument, that if prim-
itive systems come in only a finite number of flavors then a prime system
must come in one of those pure flavors, is covered in full detail; ultrafilters
provide a useful tool that many students at this level are unacquainted with.
Surprisingly, though the focus is entirely on prime and simple algebras, along
the way we need to introduce and characterize several different radicals. Due
to their associative heritage, the techniques in this Part seem more intuitive
and less remote than the minutiae of Peirce decompositions.
The book contains five appendices. The first three establish important

results whose technical proofs would have disrupted the narrative flow of
the main body of the text. We have made free use of these results in Parts
II and III, but their proofs are long, combinatorial or computational, and
do not contribute ideas and methods of proof which are important for the
mainstream of our story. These are digressions from the main path, and should
be consulted only after gaining a global picture. A hypertext version of this
book would have links to the appendices which could only be opened after
the main body of text had been perused at least once. Appendix A Cohn’s
Special Theorems establishes the useful Shirshov–Cohn Theorem which allows
us to prove results involving only two elements entirely within an associative
context. Appendix B Macdonald’s Theorem establishes Macdonald’s Theorem
that likewise reduces verification of operator identities in two variables to an
associative setting. Appendix C Jordan Algebras of Degree 3 gives detailed
proofs that the constructions of cubic factors in Section II.4 do indeed produce
Jordan algebras. I have made the treatment of strict simplicity in Part II and
prime dichotomy in Part III independent of the Density Theorem, but their
proofs could have been streamlined using this powerful result; in Appendix D
The Jacobson–Bourbaki Density Theorem I give a proof of this theorem. A fifth
Appendix E Hints gives hints to selected exercises and problems (indicated
by an asterisk).
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In addition to the appendices, I include several indexes. The first index
is a very brief Index of Collateral Reading, listing several standard reference
books in Jordan theory and a few articles mentioned specifically in the text.
In keeping with the book’s purpose as a textbook, I do not attempt a detailed
bibliography of monographs and research articles; students wishing to pursue
a topic of research in more detail will be guided by an advisor to the relevant
literature.
A Pronouncing Index of Names lists the mathematicians mentioned in the

book, and gives references to places where their work is mentioned (but not
to every occurrence of a theorem named after them). In addition, it gives a
phonetic description of how to pronounce their name correctly — a goal more
to strive for than to achieve. (In preparing the guide I have learned to my
chagrin that I have been mispronouncing my colleagues’ names for years: Let
not the sins of the father pass on to the children!)
An Index of Notations contains symbols other than words which are de-

fined in the text, with a helpful but brief description of their meaning, and
a reference to the location of their formal introduction. An Index of Named
Statements provides an alphabetical list of the given names of all statements
or equations, with a reference to the location of their statement, but does re-
state them or list all references to them in the text. All other boldface terms
are collected in a final Index of Definitions, where again reference is given
only to their page of definition.
I have dedicated the book to the memory of Nathan and Florie Jacobson,

both of whom passed away during this book’s long gestation period. They
had an enormous influence on my mathematical development. I am greatly
indebted to my colleague Kurt Meyberg, who carefully read through Part
II and made many suggestions which vastly improved the exposition. I am
also deeply indebted to my colleague Wilhelm Kaup, who patiently corrected
many of my misconceptions about the role of Jordan theory in differential
geometry, improving the exposition in Part I and removing flagrant errors.
My colleague John Faulkner helped improve my discussion of applications
to projective geometries. I would also like to thank generations of graduate
students at Virginia who read and commented upon the text, especially my
students Jim Bowling, Bernard Fulgham, Dan King, and Matt Neal. Several
colleagues helped correct my pronunciation of the names of foreign mathemati-
cians. Finally, I wish to thank David Kramer for his careful and illuminating
copyediting of the manuscript, and Michael Koy of Springer-Verlag for his
patience as editor.

Charlottesville, Virginia, USA Kevin McCrimmon
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Standard Notation

General Typographical Conventions

• Rings of scalars (unital, commutative, associative rings) are indicated by
capital Greek letters Φ,Ω. Individual scalars are denoted by lowercase Greek
letters: α, β, γ, . . . . Our algebraic systems will be algebras or modules over a
fixed ring of scalars Φ which usually contains an element 1

2 .
• Mere sets are indicated by italic capital letters X,Y, Z at the end of the

alphabet, index sets also by I, J, S. The cardinality of the set X is denoted by
|X|. The power set P(X) is the set of all subsets of the set X.

• Modules and linear spaces are denoted by italic capital letters: A, B, C,
J , V ,W, . . . . The zero subspace will be denoted by boldface 0 to distinguish it
from the vector 0 and the scalar 0. This signals a subtle and not-too-important
distinction between the set 0 = {0} consisting of a single element zero, and
the element itself.

• Algebraic systems are denoted by letters in small caps: general linear
algebras by A,B,C, ideals by I,J,K. Associative algebras are indicated by
D when they appear as coordinates for Jordan algebras. Jordan algebras are
indicated by J,Ji,J′, etc.

• Maps or functions between sets or spaces are denoted by italic lowercase
letters f, g, h, . . . ; morphisms between algebraic systems often by lowercase
Greek letters ϕ, σ, τ, ρ, sometimes uppercase italic letters T, S. The restriction
of a mapping f : X → Y to a subset U ⊆ X is denoted by f |U . The range
f(X) of some function on a set X will always be a set, while the value f(x)
will be an element. The range or image of a map f is denoted by Im(f), while
the kernel of a (linear) map is denoted by Ker(f). Injective maps are denoted
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by ↪→, surjective maps by �; the notation T ↔ S is used to indicate that the
operators T, S commute.

• Functors and functorial constructions are denoted by script capital let-
ters F , G, or by abbreviations beginning with a script capital (e.g., Der(A),
Aut(A)).

• Blackboard bold is used for the standard systems N (natural numbers
1, 2, . . . ), the even-more-natural numbers I (0, 1, 2, . . . used as indices or car-
dinals), Z (the ring of integers), the fields Q (rational numbers), R (real num-
bers), C (complex numbers), the real division rings H (Hamilton’s quater-
nions), K (Cayley’s [nonassociative] octonions), O (split octonions), and A
(the Albert algebra, a formally real exceptional Jordan algebra).

Specific Typographical Notation

• The identity map on a set X is denoted by 1X , the n×n identity matrix
by 1nn. The projection of a set on a quotient set is denoted by π : X → X/∼;
the coset or equivalence class of x ∈ X is denoted by π(x) = x̄ = [x].

• Cartesian products of sets are denoted by X × Y . Module direct sums
are indicated by V ⊕W . Algebra direct sums, where multiplication as well as
addition is performed componentwise, are written A� B to distinguish them
from mere module direct sums.

• Subsets are denoted by X ⊆ Y , with strict inclusion denoted by X ⊂ Y .
Subspaces of linear spaces are denoted by B ≤ A, with strict inclusion B < A.
Two-sided, left, and right ideals are indicated by  ,  �,  r, e.g., B  A.

• Isomorphic algebraic systems are denoted by A ∼= B. The linear trans-
formations from Φ-modules V to W are denoted by HomΦ(V,W ), the linear
operators on V by EndΦ(V ). [We usually suppress the Φ.]

• Involutions on algebras are indicated by a star ∗. H(A, ∗) denotes the
hermitian elements x∗ = x of an algebra A under an involution ∗, Skew(A, ∗)
the skew elements x∗ = −x. Involutions on coordinate algebras of matrix
algebras are often denoted by a bar, x �→ x̄, while reversal involutions on
algebras generated by hermitian elements (for example, the free algebra F [X]
on a set X) are denoted by ρ.

• Products in algebras are denoted by x · y or just xy (especially for asso-
ciative products); the special symbol x • y is used for the bilinear product in
Jordan algebras. The left and right multiplication operators by an element x
in a linear algebra are denoted by Lx, Rx. The quadratic and trilinear products
in Jordan algebras are denoted by Uxy and {x, y, z}, with operators Ux, Vx,y .

• Unit elements of algebras are denoted by 1. We will speak of a unit
element and unital algebras rather than identity element and algebras with
identity; we will reserve the term identity for identical relations or laws (such
as the Jordan identity or associative law). Â will denote the formal unital
hull, the Φ-algebra Φ1̂⊕A obtained by formal adjunction of a unit element.
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• n × n matrices and hermitian matrices are denoted by Mn and Hn.
Matrices are denoted by X = (xij); their traces and determinants are denoted
by tr(X) and det(X) respectively, and the transpose is indicated by Xtr.
The standard matrix units (with 1 in the ij-entry and 0’s elsewhere) are
denoted by Eij . If the matrix entries come from a ring with involution, the
standard involution (the adjoint or conjugate transpose) on matrices hasX∗ =
(X)tr =

(
xji

)
. A diagonal n × n matrix with γ1, . . . , γn down the diagonal

will be denoted by Γ = diag(γ1, . . . , γn); a matrix involution of the form
X �→ ΓX∗Γ−1 will be called a canonical involution.

• We use := to mean equals by definition. This is used whenever a term is
first defined by means of a formula. It is occasionally used thereafter to remind
the reader that the equality does not follow from any fact or calculation, but
directly from the definition.

• An open box � in Parts II and III indicates the end of a proof ; if it
immediately follows the statement of a result, it means the result follows
immediately from previous results and there will be no further proof given.
In the Introduction and Part I no proofs are ever given, and we use � only in
Chapter 8 (describing Zel’manov’s exceptional methods) to indicate the end
of a proof sketch.

Labeling Conventions

• Terms or names of theorems or equations being defined or stated for the
first time are given in boldface type. Ordinary terms are given without capital
letters. Most of the important equations, rules, and laws are given proper
names (with capital letters), and have the same status as named theorems.

• In the Introduction and the Historical Survey (Part I), statements are
named but not numbered. In Parts II and III, statements are numbered con-
secutively within each section. References of the form II.1.2.3 mean Part II,
Chapter 1, Section 2, Statement 3. References within a single Part omit the
initial Part designation, e.g., 1.2.3. Some theorems or definitions have several
sub-parts, indicated by parenthesized numbers (1),(2),(3) etc. To guide the
reader to the specific location within the item I use the notation II.1.2.3(1),
so the parenthesized numbers are not statement counters. All statements and
named equations have a proper name attached to them, as in “Nuclear Slip-
ping Formula 21.2.1(1),” and I hope the reader will try to remember state-
ments by their verbal mnemonic tags; the numerical tag is there only to look
up the reference when the mnemonic tag is not sufficient.

• In the course of a proof, the first time a result is referred to its full name is
given (e.g., “Peirce Associativity 9.1.3”), but thereafter it is referred to only
by its first name without the numerical tag (e.g., “Peirce Associativity”).
This first-name usage sometimes carries over to an immediately following
proof which continues the same train of thought. We seldom include a result’s
middle name (e.g., “Peirce Associativity Proposition 9.1.3”).
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• Exercises are given in footnotesize type, in order to distract as little
as possible from the flow of the narrative. They follow immediately after a
numbered result, and usually provide variations on the theme of that result;
they are given the same number as the result (with suffixes A,B, etc. if there
are several exercises on the same theme), and are titled in small caps (less
distractive than boldface). Problems and Questions are given at the end of
each chapter, and are each numbered consecutively in that chapter; they are
titled in small caps, but are given in normal size type. Some exercises and
problems carry an asterisk, indicating that a hint appears in Appendix E.
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0

A Colloquial Survey of Jordan Theory

In this Survey I want to sketch what Jordan algebras are, and why people
might want to study them. On a philosophical level, in the rapidly expanding
universe of mathematics it is important for you to have a feeling for the overall
connectedness of things, to remember the common origins and the continuing
ties that bind distant areas of mathematics together. On a practical level,
before you plunge into a detailed study of Jordan algebras in the rest of
the book, it is important for you to have an overall picture of their “Sitz
im Leben” — to be aware of the larger Jordan family of algebraic systems
(algebras, triples, pairs, and superalgebras), and to have some appreciation of
the important role this family plays in the mathematical world at large.
Jordan algebras were created to illuminate a particular aspect of physics,

quantum-mechanical observables, but turned out to have illuminating connec-
tions with many areas of mathematics. Jordan systems arise naturally as “co-
ordinates” for Lie algebras having a grading into 3 parts. The physical inves-
tigation turned up one unexpected system, an “exceptional” 27-dimensional
simple Jordan algebra, and it was soon recognized that this exceptional Jor-
dan algebra could help us understand the five exceptional Lie algebras.
Later came surprising applications to differential geometry, first to certain

symmetric spaces, the self-dual homogeneous cones in real n-space, and then
a deep connection with bounded symmetric domains in complex n-space. In
these cases the algebraic structure of the Jordan system encodes the basic
geometric information for the associated space or domain. Once more the
exceptional geometric spaces turned out to be connected with the exceptional
Jordan algebra.
Another surprising application of the exceptional Jordan algebra was to

octonion planes in projective geometry; once these planes were realized in
terms of the exceptional Jordan algebra, it became possible to describe their
automorphisms.
This presentation is meant for a general graduate-level mathematical au-

dience (graduate students rather than experts in Lie algebras, differential
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geometry, etc.). As in any colloquium, the audience is not expected to be ac-
quainted with all the mathematical subjects discussed. There are many other
applications (to differential equations, genetics, probability, statistics), but I
won’t try to present a compendium of applications here — this survey can
only convey a taste of how Jordan algebras come to play a role in several im-
portant subjects. It will suffice if the reader comes to understand that Jordan
algebras are not an eccentric axiomatic system, but a mathematical structure
which arises naturally and usefully in a wide range of mathematical settings.

0.1 Origin of the Species

Jordan algebras arose from the search for an “exceptional” setting for quan-
tummechanics. In the usual interpretation of quantummechanics (the “Copen-
hagen model”), the physical observables are represented by self-adjoint or
Hermitian matrices (or operators on Hilbert space). The basic operations on
matrices or operators are multiplication by a complex scalar, addition, mul-
tiplication of matrices (composition of operators), and forming the complex
conjugate transpose matrix (adjoint operator). But these underlying matrix
operations are not “observable”: the scalar multiple of a hermitian matrix is
not again hermitian unless the scalar is real, the product is not hermitian
unless the factors happen to commute, and the adjoint is just the identity
map on hermitian matrices.
In 1932 the physicist Pascual Jordan proposed a program to discover a

new algebraic setting for quantum mechanics, which would be freed from de-
pendence on an invisible all-determining metaphysical matrix structure, yet
would enjoy all the same algebraic benefits as the highly successful Copen-
hagen model. He wished to study the intrinsic algebraic properties of hermi-
tian matrices, to capture these properties in formal algebraic properties, and
then to see what other possible non-matrix systems satisfied these axioms.

Jordan Algebras

The first step in analyzing the algebraic properties of hermitian matrices or
operators was to decide what the basic observable operations were. There are
many possible ways of combining hermitian matrices to get another hermitian
matrix, but after some empirical experimentation Jordan decided that they
could all be expressed in terms of quasi-multiplication

x • y := 1
2 (xy + yx)

(we now call this symmetric bilinear product the Jordan product). Thus in
addition to its observable linear structure as a real vector space, the model
carried a basic observable product, quasi-multiplication.
The next step in the empirical investigation of the algebraic properties

enjoyed by the model was to decide what crucial formal axioms or laws the
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operations on hermitian matrices obey. Jordan thought the key law governing
quasi-multiplication, besides its obvious commutativity, was

x2 • (y • x) = (x2 • y) • x
(we now call this equation of degree four in two variables the Jordan identity,
in the sense of identical relation satisfied by all elements). Quasi-multiplication
satisfied the additional “positivity” condition that a sum of squares never
vanishes, which (in analogy with the recently-invented formally real fields) was
called formal reality. The outcome of all this experimentation was a distillation
of the algebraic essence of quantum mechanics into an axiomatically defined
algebraic system.

Jordan Definition. A Jordan algebra consists of a real vector space equipped
with a bilinear product x • y satisfying the commutative law and the Jordan
identity:

x • y = y • x, (x2 • y) • x = x2 • (y • x).
A Jordan algebra is formally real if

x2
1 + · · ·+ x2

n = 0 =⇒ x1 = · · · = xn = 0.

Any associative algebra A over R gives rise to a Jordan algebra A+ under
quasi-multiplication: the product x • y := 1

2 (xy + yx) is clearly commutative,
and satisfies the Jordan identity since

4(x2 • y) • x = (x2y + yx2)x+ x(x2y + yx2)
= x2yx+ yx3 + x3y + xyx2

= x2(yx+ xy) + (yx+ xy)x2 = 4x2 • (y • x).
A Jordan algebra is called special if it can be realized as a Jordan subalgebra
of some A+. For example, if A carries an involution ∗ then the subspace of
hermitian elements x∗ = x is also closed under the Jordan product, since if
x∗ = x, y∗ = y then (x • y)∗ = y∗ • x∗ = y • x = x • y, and therefore forms a
special Jordan algebra H(A, ∗). These hermitian algebras are the archetypes
of all Jordan algebras.
It is easy to check that the hermitian matrices over the reals, complexes,

and quaternions form special Jordan algebras that are formally real. One
obtains another special formally real Jordan algebra (which we now call a
spin factor JSpinn) on the space R1⊕ Rn for n ≥ 2, by making 1 act as unit
and defining the product of vectors v, w in Rn to be given by the dot or inner
product

v • w := 〈v, w〉1.
In a special Jordan algebra the algebraic structure is derived from an

ambient associative structure xy via quasi-multiplication. What the physicists
were looking for, of course, were Jordan algebras where there is no invisible
structure xy governing the visible structure x • y from behind the scenes. A
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Jordan algebra is called exceptional if it is not special, i.e., does not result
from quasi-multiplication.

The Jordan Classification

Having settled on the basic axioms for his systems, it remained to find ex-
ceptional Jordan algebras. Jordan hoped that by studying finite-dimensional
algebras he could find families of simple exceptional algebras En parameter-
ized by natural numbers n, so that letting n go to infinity would provide a
suitable infinite-dimensional exceptional home for quantum mechanics. In a
fundamental 1934 paper, Jordan, John von Neumann, and Eugene Wigner
showed that every finite-dimensional formally real Jordan algebra is a direct
sum of a finite number of simple ideals, and that there are only five basic
types of simple building blocks: four types of hermitian n×n matrix algebras
Hn(C) corresponding to the four real division algebras C [the reals, com-
plexes, quaternions, and the octonions or Cayley algebra K] of dimensions
1, 2, 4, 8 (but for the octonions only n ≤ 3 is allowed), together with the spin
factors.
There were two surprises in this list, two new structures which met the

Jordan axioms but weren’t themselves hermitian matrices: the spin factors
and H3(K). While the spin factor was not one of the invited guests, it was
related to the guest of honor: it can be realized as a certain subspace of all
hermitian 2n × 2n real matrices, so it too is special. The other uninvited
guest, H3(K), was quite a different creature. It did not seem to be special,
since its coordinates came from the not-associative coordinate Cayley algebra
K, and A.A. Albert showed that it is indeed an exceptional Jordan algebra
of dimension 27 (we now call such 27-dimensional exceptional algebras Albert
algebras, and denote H3(K) by A).

The Physical End of Exceptional Algebras

These results were deeply disappointing to physicists: there was only one
exceptional algebra in this list, for n = 3; for n > 3 the algebra Hn(K) is not
a Jordan algebra at all, and for n = 2 it is isomorphic to JSpin9, and for n = 1
it is just R+. This lone exceptional algebra H3(K) was too tiny to provide
a home for quantum mechanics, and too isolated to give a clue as to the
possible existence of infinite-dimensional exceptional algebras. Half a century
later the brilliant young Novosibirsk mathematician Efim Zel’manov quashed
all remaining hopes for such an exceptional system. In 1979 he showed that
even in infinite dimensions there are no simple exceptional Jordan algebras
other than Albert algebras: as it is written,

. . . and there is no new thing under the sun
especially in the way of exceptional Jordan algebras;
unto mortals the Albert algebra alone is given.



0.1 Origin of the Species 5

In 1983 Zel’manov proved the astounding theorem that any simple Jordan
algebra, of arbitrary dimension, is either (1) an algebra of Hermitian elements
H(A, ∗) for a ∗-simple associative algebra with involution, (2) an algebra of
spin type determined by a nondegenerate quadratic form, or (3) an Albert
algebra of dimension 27 over its center. This brought an end to the search
for an exceptional setting for quantum mechanics: it is an ineluctable fact of
mathematical nature that simple algebraic systems obeying the basic laws of
Jordan must (outside of dimension 27) have an invisible associative support
behind them.

Special Identities

While physicists abandoned the poor orphan child of their theory, the Albert
algebra, algebraists adopted it and moved to new territories. This orphan
turned out to have many surprising and important connections with diverse
branches of mathematics. Actually, the child should never have been conceived
in the first place: it does not obey all the algebraic properties of the Copen-
hagen model, and so was in fact unsuitable as a home for quantum mechanics,
not superficially due to its finite-dimensionality, but genetically because of its
unsuitable algebraic structure. In 1963 Jacobson’s student C.M. Glennie dis-
covered two identities satisfied by hermitian matrices (indeed, by all special
Jordan algebras) but not satisfied by the Albert algebra. Such identities are
called special identities (or s-identities) since they are satisfied by all special
algebras but not all Jordan algebras, and so serve to separate the special from
the non-special.
Jordan can be excused for missing these identities, of degree 8 and 9 in 3

variables, since they cannot even be intelligibly expressed without using the
(then new-fangled) quadratic Jordan product and Jordan triple product

Ux(y) := 2x • (x • y)− x2 • y,
{x, y, z} := 2(x • (y • z) + (x • y) • z − (x • z) • y)

(corresponding to xyx and xyz + zyx in special Jordan algebras). In 1958
I.G. Macdonald had established that this U -operator satisfied a very simple
identity, which Jacobson called the Fundamental Formula:

UUx(y) = UxUyUx.

In terms of these products, Glennie’s identities take the none-too-memorable
forms

G8 : H8(x, y, z) = H8(y, x, z), G9 : H9(x, y, z) = H9(y, x, z),

where

H8(x, y, z) := {UxUy(z), z, x • y} − UxUyUz(x • y),
H9(x, y, z) := 2Ux(z) • Uy,xUz(y2)− UxUzUx,yUy(z).



6 Colloquial Survey

Observe that G8, G9 vanish in special algebras sinceH8, H9 reduce to the sym-
metric 8 and 9-tads {x, y, z, y, x, z, x, y}, {x, z, x, x, z, y, y, z, y} respectively
[by an n-tad we mean the symmetric associative product {x1, . . . , xn} :=
x1 · · ·xn + xn · · ·x1].
In 1987 Armin Thedy came out of right field (or rather, right alternative

algebras) carrying an operator s-identity of degree 10 in 3 variables that finally
a mortal could remember:

T10 : UU[x,y](z) = U[x,y]UzU[x,y]
(
U[x,y] := 4Ux•y − 2(UxUy + UyUx)

)
.

This is just a “fundamental formula” or “structural condition” for the U -
operator of the “commutator” [x, y]. Notice that this vanishes on all special
algebras because U[x,y] really is the map z �→ (xy+yx)z(xy+yx)−2(xyzyx+
yxzxy) = [x, y]z[x, y], which clearly satisfies the fundamental formula. Of
course, there is no such thing as a commutator in a Jordan algebra (in special
Jordan algebras J ⊆ A+ the commutators do exist in the associative envelope
A), but these spiritual entities still manifest their presence by acting on the
Jordan algebra. In 1999 Ivan Shestakov discovered that Glennie’s identities
could be rewritten in a very memorable form using commutators, [[x, y]3, z2] =
{z, [[x, y]3, z]} and [[x, y]3, z3] = {z2, [[x, y]3, z]}+ Uz

(
[[x, y]3, z]

)
.

The quick modern proof that the Albert algebra is exceptional is to show
that for judicious choice of x, y, z some polynomial G8, G9,X8,X9, or T10
does not vanish on H3(K).
Thus it was serendipitous that the Albert algebra was allowed on the

mathematical stage in the first place. Many algebraic structures are famous
for 15 minutes and then disappear from the action, but others go on to feature
in a variety of settings (keep on ticking, like the bunny) and prove to be
an enduring part of the mathematical landscape. So it was with the Albert
algebra. This Survey will describe some of the places where Jordan algebras,
especially the Albert algebra, have played a starring role.

0.2 The Jordan River

The stream of Jordan theory originates in Jordan algebras, but soon divides
into several algebraic structures (quadratic Jordan algebras, Jordan triples,
Jordan pairs, and Jordan superalgebras). All these more general systems take
their basic genetic structure from the parental algebras, but require their
own special treatment and analysis, and result in new fields of application.
Although this book is entirely concerned with algebras, any student of Jordan
algebras must be aware of the extended family of Jordan systems to which
they belong.
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Quadratic Jordan Algebras

In their mature roles, Jordan algebras appear not just wearing a Jordan prod-
uct, but sporting a powerful quadratic product as well. It took audiences
some getting used to this new product, since (unlike quasi-multiplication, Lie
bracket, dot products, or any of the familiar algebraic products) it is not bi-
linear : its polarized version is a triple product trilinear in three variables, but
it is itself a binary product quadratic in one variable and linear in the other.
Over the years algebraists had developed a comprehensive theory of finite-

dimensional Jordan algebras over arbitrary fields of characteristic different
from 2. But it was clear that quasi-multiplication, with its reliance on a scalar
1
2 , was not sufficient for a theory of Jordan algebras in characteristic 2, or over
arbitrary rings of scalars. In particular, there was no clear notion of Jordan
rings (where the ring of scalars was the integers). For example, arithmetic in-
vestigations led naturally to hermitian matrices over the integers, and residue
class fields led naturally to characteristic 2.
In the 1960s several lines of investigation revealed the crucial importance

of the quadratic product Ux(y) and the associated triple product {x, y, z}
in Jordan theory. Kantor, and Koecher and his students, showed that the
triple product arose naturally in connections with Lie algebras and differen-
tial geometry. Nathan Jacobson and his students showed how these products
facilitated many purely algebraic constructions.
The U-operator of “two-sided multiplication” Ux by x has the somewhat

messy form Ux = 2L2
x − Lx2 in terms of left multiplications Lx(y) := x • y

in the algebra, and the important V-operator Vx,y(z) := {x, y, z} := (Ux+z −
Ux − Uz)(y) of “left multiplication” by x, y in the Jordan triple product has
the even-messier form Vx,y = 2

(
Lx•y + [Lx, Ly]

)
. In Jordan algebras with a

unit element 1 • x = x we have U1(x) = x and x2 = Ux(1). The brace product
is the linearization of the square, {x, y} := Ux,y(1) = {x, 1, y} = 2x • y, and
we can recover the linear product from the quadratic product. We will see
that the brace product and its multiplication operator Vx(y) := {x, y} are in
many situations more natural than the bullet product x • y and Lx.
The crucial property of the quadratic product was the so-called Funda-

mental Formula UUx(y) = UxUyUx; this came up in several situations, and
seemed to play a role in the Jordan story like that of the associative law
Lxy = LxLy in the associative story. After a period of experimentation (much
like Jordan’s original investigation of quasi-multiplication), it was found that
the entire theory of unital Jordan algebras could be based on the U -operator.
A unital quadratic Jordan algebra is a space together with a distinguished
element 1 and a product Ux(y) linear in y and quadratic in x, which is unital
and satisfies the Commuting Formula and the Fundamental Formula

U1 = 1J, UxVy,x = Vx,yUx, UUx(y) = UxUyUx.
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These are analogous to the axioms for the bilinear product x • y of old-
fashioned unital linear Jordan algebras

L1 = 1J, Lx = Rx, Lx2Lx = LxLx2

in terms of left and right multiplications Lx, Rx. Like Zeus shoving aside
Kronos, the quadratic product has largely usurped governance of the Jordan
domain (though to this day pockets of the theory retain the old faith in quasi-
multiplication).

Moral: The story of Jordan algebras is not the story of a nonassociative
product x • y, it is the story of a quadratic product Ux(y) which is about as
associative as it can be.

Jordan Triples

The first Jordan stream to branch off from algebras was Jordan triple systems,
whose algebraic study was initiated by Max Koecher’s student Kurt Meyberg
in 1969 in the process of generalizing the Tits–Kantor–Koecher construction
of Lie algebras (to which we will return when we discuss applications to Lie
theory). Jordan triples are basically Jordan algebras with the unit thrown
away, so there is no square or bilinear product, only a Jordan triple product
{x, y, z} which is symmetric and satisfies the 5-linear Jordan identity

{x, y, z} = {z, y, x},
{x, y, {u, v, w}} = {{x, y, u}, v, w} − {u, {y, x, v}, w}+ {u, v, {x, y, w}}.

A space with such a triple product is called a linear Jordan triple. This theory
worked only in the presence of a scalar 1

6 ; in 1972 Meyberg gave axioms for
quadratic Jordan triple systems that worked smoothly for arbitrary scalars.
These were based on a quadratic product Px(y) (the operators U, V are usu-
ally denoted by P,L in triples) satisfying the Shifting Formula , Commuting
Formula , and the Fundamental Formula

LPx(y),y = Lx,Py(x), PxLy,x = Lx,yPx, PPx(y) = PxPyPx.

Any Jordan algebra J gives rise to a Jordan triple Jt by applying the
forgetful functor, throwing away the unit and square and setting Px(y) :=
Ux(y), Lx,y := Vx,y. In particular, any associative algebra A gives rise to a
Jordan triple At via Px(y) := xyx, {x, y, z} := xyz + zyx. A triple is special
if it can be imbedded as a sub-triple of some At, otherwise it is exceptional.
An important example of a Jordan triple which doesn’t come from a bilinear
product consists of the rectangular matrices Mpq(R) under xytrz + zytrx; if
p  = q there is no natural way to multiply two p×q matrices to get a third p×q
matrix. Taking rectangular 1 × 2 matrices M12(K) = KE11 + KE12 over a
Cayley algebra gives an exceptional 16-dimensional bi-Cayley triple (so called
because it is obtained by gluing together two copies of the Cayley algebra).
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Experience has shown that the archetype for Jordan triple systems is At∗

obtained from an associative algebra A with involution ∗ via
Px(y) := xy∗x, {x, y, z} := xy∗z + zy∗x.

The presence of the involution ∗ on the middle factor warns us to expect
reversals in that position. It turns out that a triple is special iff it can be
imbedded as a sub-triple of some At∗, so that either model At+ or At∗ can
be used to define speciality.

Jordan Pairs

The second stream to branch off from algebras flows from the same source,
the Tits–Kantor–Koecher construction of Lie algebras. Building on an off-
hand remark of Meyberg that the entire TKK construction would work for
“verbundene Paare,” two independent spaces J+, J− acting on each other like
Jordan triples, a full-grown theory of Jordan pairs sprang from Ottmar Loos’s
mind in 1974. Linear Jordan pairs are pairs V = (V +, V −) of spaces with tri-
linear products {x+, u−, y+} ∈ V +, {u−, x+, v−} ∈ V − (but incestuous triple
products containing adjacent terms from the same space are strictly forbid-
den!) such that both products are symmetric and satisfy the 5-linear identity.
Quadratic Jordan pairs have quadratic products Qxε(u−ε) ∈ V ε (ε = ±)
satisfying the three quadratic Jordan triple axioms (the operators P,L are
usually denoted by Q,D in Jordan pairs).
Every Jordan triple J can be doubled to produce a Jordan pair V(J) =

(J, J), V ε := J under Qxε(y−ε) := Px(y). The double of rectangular matrices
Mpq(F ) could be more naturally viewed as a pair (Mpq(F ),Mqp(F )). More
generally, for any two vector spaces V,W over a field F we have a “rectan-
gular” pair (HomF (V,W ), HomF (W,V )) of different spaces under products
xux, uxu making no reference to a transpose. This also provides an exam-
ple to show that pairs are more than doubled triples. In finite dimensions all
semisimple Jordan pairs have the form V = (J,J) for a Jordan triple sys-
tem J; in particular, V + and V − have the same dimension, but this is quite
accidental and ceases to be true in infinite dimensions. Indeed, for a vector
space W of infinite dimension d the rectangular pair V := (HomF (W,F ),
HomF (F,W )) ∼= (W ∗,W ) has dim(W ∗) =| F |d≥ 2d > d = dim(W ).
The perspective of Jordan pairs has clarified many aspects of the theory

of Jordan triples and algebras.

Jordan Superalgebras

The third main branching of the Jordan River leads to Jordan superalgebras
introduced by KKK (Victor Kac, Issai Kantor, Irving Kaplansky). Once more
this river springs from a physical source: Jordan superalgebras are dual to the
Lie superalgebras invented by physicists to provide a formalism to encompass
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supersymmetry, handling bosons and fermions in one algebraic system. A Lie
superalgebra is a Z2-graded algebra L = L0 ⊕ L1 where L0 is a Lie algebra
and L1 an L0-module with a “Jordan-like” product into L0. Dually, a Jordan
superalgebra is a Z2-graded algebra J = J0 ⊕J1 where J0 is a Jordan algebra
and J1 a J0-bimodule with a “Lie-like” product into J0. For example, any Z2-
graded associative algebra A = A0 ⊕ A1 becomes a Lie superalgebra under
the graded Lie product

[xi, yj ] = xiyj − (−1)ijyjxi
(reducing to the Lie bracket xy − yx if at least one factor is even, but to
the Jordan brace xy + yx if both i, j are odd), and dually becomes a Jordan
superalgebra under the graded Jordan brace

{xi, yj} = xiyj + (−1)ijyjxi
(reducing to the Jordan brace xy + yx if at least one factor is even, but to
the Lie bracket xy − yx if both factors are odd). Jordan superalgebras shed
light on Pchelinstev Monsters, a strange class of prime Jordan algebras which
seem genetically unrelated to all normal Jordan algebras.
We have indicated how these branches of the Jordan river had their origin

in an outside impetus. We now want to indicate how the branches, in turn,
have influenced and enriched various areas of mathematics.

0.3 Links with Lie Algebras and Groups

The Jordan river flows parallel to the Lie river with its extended family of Lie
systems (algebras, triples, and superalgebras), and an informed view of Jordan
algebras must also reflect awareness of the Lie connections. Historically, the
first connection of Jordan algebras to another area of mathematics was to the
theory of Lie algebras, and the remarkably fruitful interplay between Jordan
and Lie theory continues to generate interest in Jordan algebras.
Jordan algebras played a role in Zel’manov’s celebrated solution of the Re-

stricted Burnside Problem, for which he was awarded a Fields Medal in 1994.
That problem, about finiteness of finitely-generated torsion groups, could be
reduced to a problem in certain Lie p-rings, which in turn could be illuminated
by a natural Jordan algebra structure of characteristic p. The most difficult
case, where the characteristic was p = 2, could be most clearly settled making
use of a quadratic Jordan structure. Lie algebras in characteristic 2 are weak,
pitiable things; linear Jordan algebras aren’t much better, since the Jordan
product xy+yx is indistinguishable from the Lie bracket xy−yx in that case.
The crucial extra product xyx of the quadratic Jordan theory was the key
that turned the tide of battle.
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Lies

Recall that a Lie algebra is a linear algebra with product [x, y] which is anti-
commutative and satisfies the Jacobi Identity

[x, y] = −[y, x], [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Just as any associative algebra A becomes a linear Jordan algebra A+ under
the anticommutator or Jordan brace {x, y} = xy + yx, it also becomes a Lie
algebra A− under the commutator or Lie bracket [x, y] := xy−yx. In contrast
to the Jordan case, all Lie algebras (at least those that are free as modules,
e.g., algebras over a field) are special in the sense of arising as a commutator-
closed subspace of some A−. A− contains many subspaces which are closed
under the Lie bracket but not under the ordinary product; any such subspace
produces a Lie subalgebra which need not be of the formE− for any associative
subalgebra E of A.
There are three main ways of singling out such subspaces. The first is

by means of the trace: If A is the algebra of n × n matrices over a field,
or more abstractly all linear transformations on a finite-dimensional vector
space, then the subspace of elements of trace zero is closed under brackets
since the Lie bracket T1T2 − T2T1 of any two transformations has trace zero,
due to symmetry tr(T1T2) = tr(T2T1) of the trace function.
The second way is by means of an involution: In general, for any involu-

tion ∗ on an associative algebra A the subspace Skew(A, ∗) of skew elements
x∗ = −x is closed under brackets since [x1, x2]∗ = [x∗2, x

∗
1] = [−x2,−x1] =

[x2, x1] = −[x1, x2]. If a finite-dimensional vector space V carries a nonde-
generate symmetric or skew bilinear form, the process 〈T (v), w〉 = 〈v, T ∗(w)〉
of moving a transformation from one side of the bilinear form to the other
induces an adjoint involution on the linear transformations A = EndF (V ),
and the skew transformations T satisfying 〈T (v), w〉 = −〈v, T (w)〉 form a Lie
subalgebra.
The third method is by means of derivations: In the associative algebra

A = End(C) of all linear transformations on an arbitrary linear algebra C (not
necessarily associative or commutative), the subspace Der(A) of derivations of
A (linear transformations satisfying the product rule D(xy) = D(x)y+xD(y))
is closed under brackets, due to symmetry in D1, D2 of

(D1D2)(xy)− (D1D2)(x)y − x(D1D2)(y)

= D1
(
D2(x)y + xD2(y)

)−D1
(
D2(x)

)
y − xD1

(
D2(y)

)
= D2(x)D1(y) +D1(x)D2(y).

The exceptional Jordan algebra (the Albert algebra), the exceptional com-
position algebra (the Cayley or octonion algebra), and the five exceptional
Lie algebras are enduring features of the mathematical landscape, and they
are all genetically related. Algebraists first became interested in the newborn
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Albert algebra through its unexpected connections with exceptional Lie alge-
bras and groups. The four great classes of simple Lie algebras (respectively
groups) An, Bn, Cn, Dn consist of matrices of trace 0 (respectively determi-
nant 1) or skew T ∗ = −T (respectively isometric T ∗ = T−1) with respect
to a nondegenerate symmetric or skew-symmetric bilinear form. The five ex-
ceptional Lie algebras and groups G2, F4, E6, E7, E8 appearing mysteriously
in the nineteenth-century Cartan–Killing classification were originally defined
in terms of a multiplication table over an algebraically closed field. When
these were found in the 1930s, ’40s, and ’50s to be describable in an intrin-
sic coordinate-free manner using the Albert algebra A and Cayley algebra K,
it became possible to study them over general fields. The Lie algebra (resp.
group) G2 of dimension 14 arises as the derivation algebra (resp. automor-
phism group) of K; F4 of dimension 52 arises as the derivation algebra Der
(resp. automorphism group Aut) of A; E6 arises by reducing the structure al-
gebra Strl(A) := L(A)+Der(A) (resp. structure group Strg(A) := U(A)Aut(A))
of A to get Strl0(A) := L(A0) +Der(A) of dimension (27− 1) + 52 = 78 (the
subscript 0 indicates trace zero elements); E7 arises from the Tits–Kantor–
Koecher construction T KK(A) := A ⊕ Strl(A) ⊕ A (resp. T KK group) of A
of dimension 27 + 79 + 27 = 133, while E8 of dimension 248 arises in a more
complicated manner from A and K by a process due to Jacques Tits. We first
turn to this construction.

The Freudenthal–Tits Magic Square

Jacques Tits discovered in 1966 a general construction of a Lie algebra
FT (C,J), starting from a composition algebra C and a Jordan algebra J of
“degree 3,” which produces E8 when J is the Albert algebra and C the Cayley
algebra. Varying the possible ingredients leads to a square arrangement that
had been noticed earlier by Hans Freudenthal:

The Freudenthal–Tits Magic Square: FT (C,J)
C \ J R H3(R) H3(C) H3(H) H3(K)
R 0 A1 A2 C3 F4

C 0 A2 A2 ⊕A2 A5 E6

H A1 C3 A5 A6 E7

K G2 F4 E6 E7 E8

Some have doubted whether this is square, but no one has ever doubted
that it is magic. The ingredients for this Lie recipe are a composition alge-
bra C (R,C,H,K of dimension 1, 2, 4, 8) and a Jordan algebra J (either R
or H3(D) [D = R,C,H,K] of dimension either 1 or 6, 9, 15, 27). The recipe
creates a space FT (C,J) := Der(C)⊕ (C0⊗J0)⊕Der(J) (again the subscript
0 indicates trace zero elements) with complicated Lie product requiring 1

12 .
For example, the lower right corner of the table produces a Lie algebra of
dimension 14 + (7× 26) + 52 = 248, which is precisely the dimension of E8.
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The Tits–Kantor–Koecher Construction

In the late 1960s Issai Kantor and Max Koecher independently showed how
to build a Lie algebra T KK(J) := L1 ⊕ L0 ⊕ L−1 with “short 3-grading”
[Li, Lj ] ⊆ Li+j by taking L±1 to be two copies of any Jordan algebra J glued
together by the inner structure Lie algebra L0 = Instrl(J) := VJ,J spanned by
the V -operators (note that the 5-linear elemental identity {x, y, {u, v, w}} =
{{x, y, u}, v, w}−{u, {y, x, v}, w}+{u, v, {x, y, w}} becomes the operator iden-
tity [Vx,y, Vu,v] = V{x,y,u},v−Vu,{y,x,v} acting on the element w, showing that
the inner structure algebra is closed under the Lie bracket). Thus we have a
space

L := T KK(J) := J1 ⊕ Instrl(J)⊕ J−1

(where the Ji are copies of the module J under cloning maps x �→ xi) with
an anticommutative bracket determined by

[T, x1] := T (x)1, [T, y−1] := −T ∗(y)−1, [xi, yi] := 0 (i = ±1),
[x1, y−1] := Vx,y, [T1, T2] := T1T2 − T2T1

for T ∈ Instrl(J), x, y ∈ J ; the natural involution ∗ on Instrl(J) determined
by V ∗

x,y = Vy,x extends to an involution (x, T, y) �→ (y, T ∗, x) on all of L.
Later it was noticed that this was a special case of a 1953 construction by
Jacques Tits of a Lie algebra L′ = (J⊗ L0)⊕ Inder(J) built out of a Jordan
algebra J and a simple 3-dimensional Lie algebra L0 of type A1 with bracket
determined by

[D,x⊗ ?] := D(x)⊗ ?, [D1, D2] := D1D2 −D2D1,

[x⊗ ?, y ⊗m] := (x • y)⊗ [?,m] + 1
8κ(?,m)Dx,y

for inner derivations D spanned by all Dx,y := Vx,y − Vy,x = [Vx, Vy], x, y ∈
J, ?,m ∈ L0, κ the Killing form tr(ad(x)ad(y)) on L0. Since always VJ,J =
VJ ⊕ Inder(J), in the special case where L0 = {e, f, h} is a split s?2, the map
(x⊗ e+ y⊗ f + z⊗ h)⊕D �→ x1 ⊕ (Vz +D)⊕ y−1 is an isomorphism sending
e, f, h to 11, 1−1, V1 = 21J, and L is a clone of L′.
The Tits–Kantor–Koecher Construction is not only intrinsically impor-

tant, it is historically important because it gave birth to two streams in Jor-
dan theory. The Jacobi identity for TKK to be a Lie algebra boils down to
outer-symmetry and the 5-linear identity for the Jordan triple product. This
observation led Meyberg to take these two conditions as the axioms for a
new algebraic system, a Jordan triple system, and he showed that the Tits–
Kantor–Koecher construction T KK(J) := J ⊕ Strl(J)⊕ J produced a graded
Lie algebra with reversal involution x⊕ T ⊕ y �→ y⊕ T ∗ ⊕ x iff J was a linear
Jordan triple system. This was the first Jordan stream to branch off the main
line.
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The second stream branches off from the same source, the T KK con-
struction. Loos formulated the axioms for Jordan pairs V = (V1, V−1) (a
pair of spaces V1, V−1 acting on each other like Jordan triples), and showed
that they are precisely what is needed in the T KK-Construction of Lie al-
gebras: T KK(V) := V1 ⊕ Inder(V) ⊕ V−1 produces a graded Lie algebra iff
V = (V1, V−1) is a linear Jordan pair. Jordan triples arise precisely from pairs
with involution, and Jordan algebras arise from pairs where the grading and
involution come from a little s?2 = {e, f, h} = {11, 1−1, 2(1J)}.
Thus Jordan systems arise naturally as “coordinates” for graded Lie alge-

bras, leading to the dictum of Kantor: “There are no Jordan algebras, there
are only Lie algebras.” Of course, this can be turned around: nine times out
of ten, when you open up a Lie algebra you find a Jordan algebra inside which
makes it tick.

0.4 Links with Differential Geometry

Though mathematical physics gave birth to Jordan algebras and superal-
gebras, and Lie algebras gave birth to Jordan triples and pairs, differential
geometry has had a more pronounced influence on the algebraic development
of Jordan theory than any other mathematical discipline. Investigations of
the role played by Jordan systems in differential geometry have revealed new
perspectives on purely algebraic features of the subject. We now indicate what
Jordan algebras were doing in such a strange landscape.

Inverses and Isotopy

For the first application we need to say a few words about inverses in unital
Jordan algebras. An element x is invertible in J iff the operator Ux is an
invertible operator on J, in which case its inverse is the operator U−1

x = Ux−1

of the inverse element x−1 := U−1
x (x). In special Jordan algebras J ⊆ A+ an

element x is invertible iff it is invertible in A and its associative inverse x−1

lies in J, in which case x−1 is also the Jordan inverse.
An important concept in Jordan algebras is that of isotopy. The funda-

mental tenet of isotopy is the belief that all invertible elements of a Jordan
algebra have an equal entitlement to serve as unit element. If u is an invertible
element of an associative algebra A, we can form a new associative algebra,
the associative isotope Au with new product, unit, and inverse given by

xuy := xu−1y, 1u := u, x[−1,u] := ux−1u.

We can do the same thing in any Jordan algebra: the Jordan isotope J[u] has
new bullet, quadratic, and triple products

x •[u] y := 1
2{x, u−1, y}, Ux[u] := UxUu−1 , {x, y, z}[u] := {x, Uu−1y, z}
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and new unit and inverses

1[u] := u, x[−1,u] = Uux
−1.

Thus each invertible u is indeed the unit in its own isotope.
As an example of the power of isotopy, consider the Hua Identity

(x+ xy−1x)−1 + (x+ y)−1 = x−1

in associative division algebras, which plays an important role in the study of
projective lines. It is not hard to get bogged down trying to verify the identity
directly, but for x = 1 the “Weak Hua Identity” (1 + y−1)−1 + (1 + y)−1 = 1
has a “third-grade proof”:

1
1 + y−1 +

1
1 + y

=
y

y + 1
+

1
1 + y

=
y + 1
1 + y

= 1.

Using the concept of isotopy, we can bootstrap the commutative third-grade
proof into a noncommutative graduate-school proof: taking Weak Hua in the
isotope Ax gives (

1x + y [−1,x]) [−1,x] +
(
1x + y

) [−1,x] = 1x,

which becomes, in the original algebra, using the above formulas

x(x+ xy−1x)−1x+ x(x+ y)−1x = x.

Applying U−1
x to both sides to cancel x fore and aft gives us Strong Hua

(x+ xy−1x)−1 + (x+ y)−1 = x−1.

One consequence of the Hua Identity is that the U -product can be built out of
translations and inversions. T.A. Springer later used this to give an axiomatic
description of Jordan algebras just in terms of the operation of inversion,
which we may loosely describe by saying that an algebra is Jordan iff its
inverse is given by the geometric series in all isotopes,

(1− x)[−1,u] =
∞∑
n=0

x[n,u].

This formula also suggests why the inverse might encode all the information
about the Jordan algebra: it contains information about all the powers of an
element, and from x[2,u] = Uxu

−1 for u = 1 we can recover the square, hence
the bullet product.
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0.5 Links with the Real World

We begin with situations in which real Jordan algebras are intimately con-
nected with real differentiable manifolds, especially the formally real Jordan
algebras with the positive cones.

Riemannian Symmetric Spaces

A Riemannian manifold is a smooth (C∞) manifoldM carrying a Riemannian
metric,a smoothly-varying positive-definite inner product 〈 , 〉p on the tangent
space Tp(M) to the manifold at each point p. For simplicity we will assume
that all our manifolds are connected. An isomorphism f of Riemannian mani-
folds is a diffeomorphism of smooth manifolds whose differential df is isomet-
ric on each tangent space, i.e., preserves the inner product 〈dfp(u), dfp(v)〉f(p)
= 〈u, v〉p. Recall that the differential dfp lives on the tangent space Tp(M)
with values dfp(v) = ∂vf |p on v representing the directional derivative of f in
the direction of the tangent vector v at the point p.
In such manifolds we can talk of geodesics (paths of “locally shortest

length”), and at p there is a unique geodesic curve γp,v(t) (defined for t
in a neighborhood of 0) passing through p at t = 0 with tangent vector
v. At each point p there is a neighborhood on which the geodesic symme-
try γp,v(t) �→ γp,v(−t) is an involutive local diffeomorphism [in general not an
isometry with respect to the Riemann metric] having p as isolated fixed point.
The exponential map expp maps a neighborhood of 0 in Tp(M) down onto a
neighborhood of p in the manifold via v �→ γp,v(1), so that the straight line
segments through the origin in the tangent space go into the local geodesics
through p. In case M is complete (the geodesics γp,v(t) are defined for all t),
expp maps all of Tp(M) down onto all of M .
A Riemannian symmetric space is a Riemannian manifold M having at

each point p a symmetry sp (an involutive global isometry of the manifold
having p as isolated fixed point, equivalently having differential −1 at p).
The existence of such symmetries is a very strong condition on the manifold.
For example, it forces M to be complete and the group of all isometries of
M to be a real Lie group G acting transitively on M , in particular it forces
the manifold to be real analytic instead of merely smooth. Then the sym-
metries sp are unique and induce the geodesic symmetry about the point p
[sp(expp(v)) = expp(−v)]. Note that by uniqueness any isometry g ∈ G con-
jugates the symmetry sp at a point p to the symmetry g ◦sp ◦g−1 at the point
g(p). Thus we can rephrase the condition for symmetry for M as (i) there is
a symmetry sp0 at one point p0, (ii) isometries act transitively on M . The
subgroup K of G fixing a point p is compact, and M is isomorphic to G/K.
This leads to the traditional Lie-theoretic approach to symmetric spaces.
In 1969 Loos gave an algebraic formulation of symmetric spaces which

clearly revealed a Jordan connection: A symmetric space is a (Hausdorff C∞)
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manifold with a differentiable multiplication x · y whose left multiplications
sx(y) = x · y satisfies the symmetric axioms

sx is an involutive map: s2
x = 1M ,

sx satisfies the Fundamental Formula: sx·y = sxsysx,
x is an isolated fixed point of sx.

Here sx represents the symmetry at the point x ∈ M . If one fixes a basepoint
c ∈ M , the maps Qx := sxsc satisfy the usual Fundamental Formula QQxy =
QxQyQx. Here Qc = 1M , and j = sc is “inversion.” For example, in any Lie
group the product x · y := xy−1x gives such a multiplication, and for c = e
the maps Q, j take the form Qx(y) = xyx, j(x) = x−1 in terms of the group
operations.

Self-Dual Cones

Certain symmetric spaces can be described more fruitfully using Jordan al-
gebras. For instance, there is a 1-to-1 correspondence between the self-dual
open homogeneous cones in Rn and n-dimensional formally real Jordan alge-
bras, wherein the geometric structure is intimately connected with the Jordan
algebraic structure living in the tangent space.
A subset C of a real vector space V is convex if it is closed under convex

combinations [tx+ (1− t)y ∈ C for all x, y ∈ C and 0 ≤ t ≤ 1], and therefore
connected. A set C is a cone if it is closed under positive dilations [tx ∈ C for all
x ∈ C and t > 0]. An open convex cone is regular if it contains no affine lines.
The dual of a regular open convex cone C is the cone C∗ := {? ∈ V ∗ | ?(C) > 0}
of functionals which are strictly positive on the original cone. For example, for
0 < θ < 2π the wedge of angle θ given by Wθ := {z ∈ C | − θ

2 < arg(z) < θ
2}

is an open cone in R2 ∼= C, which is convex iff θ ≤ π and is regular iff θ < π.
A positive-definite bilinear form σ on V allows us to identify V ∗ with V

and C∗ with the cone {y ∈ V | σ(y, C) > 0} in V , and we say that a cone
is self-dual with respect to σ if under this identification it coincides with its
dual. For example, the dual of the above wedge Wθ with respect to the usual
inner product σ on R2 is W ∗

θ = Wπ−θ, so Wθ is self-dual with respect to σ
only for θ = π

2 .

Formally Real Jordan Algebras

The formally real Jordan algebras investigated by Jordan, von Neumann, and
Wigner are precisely the finite-dimensional real unital Jordan algebras such
that every element has a unique spectral decomposition x = λ1e1 + · · ·+ λrer
for a supplementary family of orthogonal idempotents 1 = e1 + · · · + er and
an increasing family λ1 < · · · < λr of distinct real eigenvalues. This family,
the spectrum of x, is uniquely determined as Spec(x) := {λ ∈ C | λ1 − x is
not invertible in the complexification JC}. In analogy with Jordan canonical
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form for matrices (Camille, not Pascual), we can say that the elements all
have a diagonal Jordan form with real eigenvalues. It is easy to see that this
spectral reality is equivalent to formal reality x2 + y2 = 0 =⇒ x = y =
0: if spectra are real and x2 =

∑
k λ

2
kek with spectrum {λ2

k} agrees with
−y2 =

∑
�(−µ2

�)f� with spectrum {−µ2
�}, then all λk, µ� must be 0 and hence

x = y = 0; conversely, if some Spec(z) is not real, containing λk = αk + iβk
for βk  = 0, then x2 + y2 = 0 for x := Uek

z − αkek = iβkek, y := βkek  = 0.
The spectral decomposition leads to a functional calculus: Every real-

valued function f(t) defined on a subset S ⊆ R induces a map on those x ∈ J
whose spectrum lies wholly in S via f(x) =

∑
k f(λk)ek. In particular, the

invertible elements are those with Spec(x) ⊆ R \ {0}, and f(t) = 1/t induces
inversion f(x) = x−1 =

∑
k λ

−1
k ek. [When f is the discontinuous function

defined on all of S = R by f(t) = 1/t for t  = 0 and f(0) = 0, then f(x) is the
generalized inverse or pseudo-inverse of any x.] If S is open and f(t) is con-
tinuous, smooth, or given by a power series as a function of t, then so is f(x)
as a function of x. It is clear that the set of positive elements (those x with
positive spectrum Spec(x) ⊆ R+) coincides with the set of invertible squares
x2 =

∑
k λ

2
kek and also the exponentials exp(x) =

∑∞
n=0

1
n!x

n =
∑

k e
λkek,

and can (with some effort) be described as the connected component of the
identity element in the set J−1 of invertible elements. The set of positive ele-
ments is called the positive cone Cone(J) of the formally real Jordan algebra
J.

Positive Cone Theorem. The positive cone C := Cone(J) of an n-dimen-
sional formally real Jordan algebra J is an open regular convex cone in J ∼=
Rn that is self-dual with respect to the positive definite bilinear trace form
σ(x, y) := tr(Vx•y) = tr(Vx,y). The linear operators Ux for x ∈ C generate
a group G of linear transformations acting transitively on C. Since C is a
connected open subset of J, it is naturally a smooth manifold, and we may
identify the tangent space Tp(C) with J; taking 〈x, y〉p := σ(U−1

p x, y) at each
point gives a G-invariant Riemannian metric on C. Thus the positive cone
Cone(J) of a formally real Jordan algebra is in a canonical way a homogeneous
Riemannian manifold.
The inversion map j : x �→ x−1 induces a diffeomorphism of J of period 2

leaving C invariant, and having there a unique fixed point 1 [the fixed points
of the inversion map are the e − f for e + f = 1 supplementary orthogonal
idempotents, and those with f  = 0 lie in the other connected components of
J−1], and provides a symmetry of the Riemannian manifold C at p = 1; here
the exponential map is the ordinary algebraic exponential exp1(x) = ex from
T1(M) = J to Cone(J), and negation x �→ −x in the tangent space projects
to inversion ex �→ e−x =

(
ex

)−1 on the manifold. The Jordan product and
U -operator arise from the inversion symmetry s1 = j via djx = −U−1

x and
d2j1(u, v) = ∂u∂vj|1 = Vu(v) = 2 u • v. If we choose a basis {xk} for J,
then the Christoffel symbols determining the affine connection at 1 are just
the multiplication constants for the algebra: xi • xj =

∑
k Γ

k
ijxk.
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Any other point p in Cone(J) can be considered the unit element in its
own algebraic system; since J[p] has the same invertible elements as J, and
by choice p lies in the same connected component as e, so J[p] has the same
connected component of the identity: Cone(J[p]) = Cone(J). Therefore the
manifold has a symmetry at the point p given by x �→ x[−1,p], the exponential
map is expp(x) = e[x,p], and the Christoffel symbols are just the multiplication
constants of J[p] : xi •p xj =

∑
k Γ

k
ij [p]xk. Thus every point is an isolated fixed

point of a symmetry, given by inversion in a Jordan isotope, and the self-dual
positive cone Cone(J) becomes a Riemannian symmetric space.

Rather than use isotopy, we noted above that we can use transitivity to
create the symmetry at p = g(1) once we have one at 1. The structure group
Strg(J) of the Jordan algebra is a real Lie group leaving the set of invertible el-
ements invariant, and having isotropy group at 1 precisely the automorphism
group Aut(J). Its connected component G := Strg(J)0 of the identity leaves
the cone C invariant, and acts transitively because already the linear transfor-
mations Uc (c ∈ C) belong to G and every positive p =

∑
k λkek ∈ C (λk > 0)

has the form p = c2 = Uc(1) for positive c =
√
p =

∑
k

√
λkek ∈ C. Thus

C ∼= G/K for the isotropy group K = G ∩ Aut (J) of G at the identity
(the structural transformations which fix 1 are precisely the automorphisms
of J). The group Aut (J) is compact, since it leaves invariant the positive-
definite inner product σ(x, y) := tr(Vx,y), so K is compact; K is also con-
nected, since a standard argument from simple connectivity of C shows that
K = Aut(J)0. We get a G-invariant metric on C via 〈Ucx, Ucy〉Uc(1) := σ(x, y),
so 〈x, y〉p := σ(U−1

c x, U−1
c y) = σ(U−2

c x, y) = σ(U−1
p x, y) for all points

p = Uc(1) ∈ C.
A particular example may make this clearer.

Hermitian Complex Matrix Example. Let J = Hn(C) be the formally real
Jordan algebra of dimension n2 over the reals consisting of all Z ∈ Mn(C)
with Z∗ = Z. Then the positive cone Cone(J) consists precisely of the positive-
definite matrices (the hermitian matrices whose Jordan form has only posi-
tive real eigenvalues). The structure group is generated by the two involu-
tory transformations Z �→ −Z and Z �→ Z = Ztr together with the con-
nected subgroup G = Strg(J)0 of all Z �→ AZA∗ for A ∈ GLn(C). The
connected component K = Aut (J)0 of the automorphism group consists of
all Z �→ UZU∗ = UZU−1 for unitary U ∈ Un(C). The Riemannian met-
ric flows from σ(X,Y ) := tr(VX,Y ) = 2n tr(XY ) = 2n

∑n
j,k=1 xjkyjk for

X =
(
xjk

)
, Y =

(
yjk

)
, corresponding to a multiple of the Hilbert–Schmidt

norm ‖X‖ = (∑n
j,k=1 |xjk|2

)1/2. The Riemann metric 〈X,Y 〉P at a point P
is given by the matrix trace 2n tr(P−1XP−1Y ).
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To Infinity and Beyond: JB-algebras

In 1978 Alfsen, Shultz, and Størmer obtained a Gelfand–Naimark Theorem
for “Jordan C∗-algebras” in which they showed that the only exceptional C∗-
factors are Albert algebras. In retrospect, this was a harbinger of things to
come, but at the time it did not diminish hope among algebraists for infinite-
dimensional exceptional algebras.
These Jordan C∗-algebras are a beautiful generalization of formally real

Jordan algebras to the infinite-dimensional setting, which combines differ-
ential geometry with functional analysis. The infinite-dimensional algebra is
kept within limits by imposing a norm topology. A norm on a real or complex
vector space V is a real-valued function ‖ · ‖ : V → R which is homogeneous
[ ‖αx‖ = |α| ·‖x‖ for all scalars α ], positive definite [x  = 0 =⇒ ‖x‖ > 0 ],
and satisfies the triangle inequality [ ‖x + y‖ ≤ ‖x‖ + ‖y‖ ]. A Euclidean or
hermitian norm is one that comes from a Euclidean or hermitian inner prod-
uct 〈 , 〉 on V via ‖x‖ = √〈x, x〉. Any norm induces a metric topology with
neighborhoods of x the x+ Br for Br the open r-ball {y ∈ V | ‖y‖ < r} (so
xn → x iff limn→∞ ‖xn − x‖ = 0). A Banach space is a normed linear space
which is complete in the norm topology. In finite dimensions every Banach
space can be re-normed to become a Hilbert space (with norm given by an
inner product), but in infinite dimensions this is far from true.
A Jordan–Banach algebra or JB-algebra is a real Jordan algebra J which

is at the same time a Banach space, with the two structures related by

Banach algebra condition: ‖x • y‖ ≤ ‖x‖ ‖y‖,
C∗-condition: ‖x2‖ = ‖x‖2,
Positivity condition: ‖x2‖ ≤ ‖x2 + y2‖.

An associative algebra is called a Banach algebra if it has a Banach norm
satisfying ‖xy‖ ≤ ‖x‖ ‖y‖; it is called a real C∗-algebra if in addition it
has an isometric involution satisfying ‖xx∗‖ = ‖x‖2 and all 1 + xx∗ are in-
vertible. Thus JB-algebras are a natural Jordan analogue of the associative
C∗-algebras.
Such a norm on a Jordan algebra is unique if it exists, and automatically

‖1‖ = 1 if J has a unit element. With some effort it can be shown that any
JB-algebra can be imbedded in a unital one J′ := R ⊕ J using the spectral
norm on J′, and we will henceforth assume that all our JB-algebras are unital.
Notice that the C∗ and positivity conditions have as immediate consequence
the usual formal reality condition x2 + y2 = 0 ⇒ x = y = 0. Conversely, all
finite-dimensional formally real Jordan algebras (in particular, the real Albert
algebraH3(K)) carry a unique norm making them JB-algebras, so in finite di-
mensions JB is the same as formally real. This is false in infinite-dimensions: A
formally real Jordan algebra can satisfy the Banach algebra and C∗-conditions
but not the crucial Positivity condition. The classical “concrete” JB-algebra
is the algebra H(B(H), ∗) consisting of all bounded self-adjoint operators on
a Hilbert space H with operator norm and the usual Hilbert-space adjoint.
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The analogue of special algebras in the JB category are the “concrete” JC-
algebras, those isomorphic to norm-closed subalgebras of some H(B(H), ∗).
The Albert algebra H3(K) is JB but not JC, since it is not even special.
The celebrated Gelfand–Naimark Theorem for JB-algebras of Erik Alfsen,

Frederic Shultz, and Erling Størmer asserts that every JB-algebra can be
isometrically isomorphically imbedded in some H(B(H), ∗)⊕ C(X,H3(K)), a
direct sum of the JC-algebra of all hermitian operators on some real Hilbert
space, and the purely exceptional algebra of all continuous Albert-algebra-
valued functions on some compact topological spaceX. This has the prophetic
consequence that as soon as a JB-algebra satisfies Glennie’s Identity G8 it is
immediately a special JC-algebra.
We have a continuous functional calculus for JB-algebras: For any ele-

ment x the smallest norm-closed unital subalgebra containing x is isometri-
cally isomorphic to the commutative associative C∗-algebra C(Spec(x)) of all
continuous real-valued functions on the compact spectrum Spec(x) := {λ ∈ R |
λ1−x is not invertible in J}, under an isomorphism sending x to the identity
function 1R(t) = t. Note that x is invertible iff 0 /∈ Spec(x). An element is pos-
itive if it has positive spectrum Spec(x) ⊆ R+; once more, this is equivalent
to being an invertible square, or to being an exponential.
The positive cone Cone(J) consists of all positive elements; it is a regular

open convex cone, and again the existence of square roots shows that the
group G generated by the invertible operators Uc (c ∈ C) acts transitively on
C, so we have a homogeneous cone. Again each point p ∈ C is an isolated fixed
point of a symmetry sp(x) = x[−1,p] = Upx

−1. Since in infinite dimensions the
tangent spaces Tp(C) are merely Banach spaces, not Hilbert spaces, there is
in general no G-invariant Riemannian metric to provide the usual concepts of
differential geometry (geodesics, curvature, etc.), and these must be defined
directly from the symmetric structure. For example, a geodesic is a connected
1-dimensional submanifold M of C which is symmetric (or totally geodesic)
in the sense that it is invariant under the local symmetries, sp(M) = M
for all p ∈ M , and any two distinct points in C can be joined by a unique
geodesic.
The category of JB-algebras is equivalent under complexification to the

category of JB∗-algebras. A JB∗-algebra (J, ∗) is a complex Jordan algebra
with a ∗ (a conjugate-linear algebra involution) having at the same time the
structure of a complex Banach space, where the algebraic structure satisfies
the norm conditions

Banach algebra condition: ‖x • y‖ ≤ ‖x‖ ‖y‖,
C∗-condition: ‖{x, x∗, x}‖ = ‖x‖3,
Isometry condition: ‖x∗‖ = ‖x‖.

A complex associative Banach algebra is called a C∗-algebra it has a C-
antilinear algebra involution (necessarily isometric) satisfying (xy)∗ = y∗x∗
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and ‖x∗x‖ = ‖x‖2. Thus JB∗-algebras are a natural Jordan analogue of the
complex C∗-algebras.
Every complex JB∗-algebra (J, ∗) produces a real JB-algebra H(J, ∗) con-

sisting of all self-adjoint elements, and conversely, for every JB-algebra J the
natural complexification JC := J ⊕ iJ with involution (x + iy)∗ := x − iy
can (with difficulty) be shown to carry a norm which makes it a JB∗-
algebra. We have a similar Gelfand–Naimark Theorem for JB∗ algebras that
every JB∗-algebra can be isometrically isomorphically imbedded in some
B(H) ⊕ C(X,H3(KC)), a direct sum of the C∗-algebra of all bounded op-
erators on some complex Hilbert space H and a purely exceptional algebra of
all continuous functions on some compact topological space X with values in
the complex Albert algebra.
These complex spaces provide a setting for an important bounded sym-

metric domain associated with the cone.

0.6 Links with the Complex World

Next we discuss connections between complex Jordan structures and com-
plex analytic manifolds These hermitian Jordan algebras are complex vector
spaces, but the Jordan triple product is antilinear in the middle variable, so
by our conventions they are real rather than complex Jordan triples.

Bounded Symmetric Domains

The complex analogue of a Riemannian manifold is a hermitian manifold, a
complex analytic manifoldM carrying a hermitian metric, a smoothly-varying
positive-definite hermitian inner product 〈 , 〉p on the tangent space Tp(M)
to the manifold at each point p. An isomorphism of Hermitian manifolds is
a biholomorphic map of analytic manifolds whose differential is isometric on
each tangent space. A hermitian symmetric space is a (connected) hermitian
manifold having at each point p a symmetry sp [an involutive global isomor-
phism of the manifold having p as isolated fixed point]. We henceforth assume
that all our Hermitian manifolds are connected.
These are abstract manifolds, but every Hermitian symmetric space of

“noncompact type” [having negative holomorphic sectional curvature] is a
bounded symmetric domain, a down-to-earth bounded domain in Cn each
point of which is an isolated fixed point of an involutive biholomorphic map
of the domain. Initially there is no metric on such a domain, but there is
a natural way to introduce one (for instance, the Bergmann metric derived
from the Bergmann kernel on a corresponding Hilbert space of holomorphic
functions).
In turn, every bounded symmetric domain is biholomorphically equivalent

via its Harish–Chandra realization to a bounded homogeneous circled domain,
a bounded domain containing the origin which is circled in the sense that the
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circling maps x �→ eitx are automorphisms of the domain for all real t, and
homogeneous in the sense that the group of all biholomorphic automorphisms
acts transitively on the domain. These domains are automatically convex, and
arise as the open unit ball with respect to a certain norm on Cn.
The classical example of an unbounded realization of a bounded symmetric

domain is the upper half-planeM in C, consisting of all x+ iy for real x, y ∈ R
with y > 0. This is the home of the theory of automorphic forms and functions,
a subject central to many areas of mathematics. The upper half-plane can be
mapped by the Cayley transform z �→ i−z

i+z =
1+iz
1−iz onto the open unit disk ∆

(consisting of all w ∈ C with |w| < 1, i.e., 1− ww̄ > 0).
This was generalized by Carl Ludwig Siegel to Siegel’s upper half-space

M (consisting of all X + iY for symmetric X,Y ∈ Mn(R) with Y positive
definite), to provide a home for the Siegel modular forms in the study of
functions of several complex variables. Again, this is mapped by the Cayley
transform Z �→ (i1nn − Z)(i1nn + Z)−1 = (1nn + iZ)(1nn − iZ)−1 onto
the generalized unit disk D consisting of all symmetric W ∈ Mn(C) with
1nn −WW positive definite.
Max Koecher began his life as an arithmetic complex analyst, but his stud-

ies of modular functions led him inexorably to Jordan algebras. He generalized
Siegel’s upper half-space to the case of an arbitrary formally real Jordan al-
gebra J: Koecher’s upper half-space M = Half (J) consists of all Z = X + iY
for X,Y ∈ J with Y in the positive cone Cone(J). These half-spaces or tube
domains J⊕ iC are open and convex in the complexification JC := J⊕ iJ. The
geometry of the unbounded Half (J) is nicely described in terms of the Jor-
dan algebra JC: The biholomorphic automorphisms of Half (J) are the linear
fractional transformations generated by inversion Z �→ −Z−1, translations
Z �→ Z + A (A ∈ J), and Z �→ T̃ (Z) = T (X) + iT (Y ) for complex-linear
extensions T̃ of automorphisms T ∈ Aut(J). These half-spaces are mapped
by the Cayley transform Z �→ (1 + iZ)(1 − iZ)−1 onto the generalized open
unit disk D(J) consisting of all Z = X + iY ∈ JC = J ⊕ iJ with 1J − 1

2VZ,Z
positive definite with respect to the trace form tr(VW,Z) on the Jordan algebra
JC (where Z := X − iY ). D(J) can also be characterized as the unit ball of
JC under a certain spectral norm.

Positive Hermitian Triple Systems

Ottmar Loos showed that there is a natural 1-to-1 correspondence between
bounded homogeneous circled domains D in Cn and the finite-dimensional
positive hermitian Jordan triples. A hermitian Jordan triple is a complex
vector space J with triple product {x, y, z} = Lx,y(z) which is symmetric
and C-linear in the outer variables x, z and conjugate-linear in the middle
variable y, satisfying the 5-linear axiom {x, y, {z, w, v}} = {{x, y, z}, w, v} −
{z, {y, x, w}, v}+ {z, w, {x, y, v}} for a Jordan triple system. A finite-dimen-
sional hermitian Jordan triple is positive if the trace form tr(Lx,y) is a positive
definite Hermitian scalar product.
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Every nonzero element has a unique spectral decomposition x =
∑

λkek
for nonzero orthogonal tripotents e3

k = ek and distinct positive singular values
0 < λ1 < · · · < λr ∈ R (called the singular spectrum of x); the spectral
norm is the maximal size ‖x‖ := maxi λi = λr of the singular values. At first
sight it is surprising that every element seems to be “positive,” but recall
that by conjugate linearity in the middle variable a tripotent can absorb any
unitary complex scalar µ to produce an equivalent tripotent e′ = µe, so any
complex “eigenvalue” ζ = λeiθ = λµ can be replaced by a real singular value
λ : ζe = λe′ for the tripotent e′ = µe. The real singular value is determined
up to ±, but if we use only an odd functional calculus f(x) =∑

k f(λk)ek for
odd functions f on R this ambiguity (−λ)(−e) = λe is resolved: f(−λ)(−e) =
−f(λ)(−e) = f(λ)e is independent of the choice of sign.

The Bergmann kernel function K(x, y), the reproducing function for the
Hibert space of all holomorphic L2-functions on the domain, is intimately
related to the Bergmann operator Bx,y := 1J − Lx,y + PxPy of the triple by
the formula K(x, y) = κ/det(Bx,y) for a fixed constant κ. [This is the reason
for the name and the letter B, although Stefan Bergmann himself had never
heard of a Jordan triple system!]

We have a complete algebraic description of all these positive triples:

Hermitian Triple Classification. Every finite-dimensional positive hermi-
tian triple system is a finite direct sum of simple triples, and there are exactly
six classes of simple triples (together with a positive involution): four great
classes of special triples,
(1) rectangular matrices Mpq(C),
(2) skew matrices Skewn(C),
(3) symmetric matrices Symmn(C),
(4) spin factors JSpinn(C),

and two sporadic exceptional systems,
(5) the bi-Cayley triple M12

(
KC

)
of dimension 16,

(6) the Albert triple H3(KC) of dimension 27
determined by the split octonion algebra KC over the complexes.

The geometric properties of bounded symmetric domains are beautifully
described by the algebraic properties of these triple systems.

Jordan Unit Ball Theorem. Every positive hermitian Jordan triple system
J gives rise to a bounded homogeneous convex circled domain D(J) that is the
open unit ball of J as a Banach space under the spectral norm, or equivalently,

D(J) :=
{
x ∈ J | 1J − 1

2Lx,x > 0
}
.
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Every bounded symmetric domain D arises in this way: its bounded realization
is D(J), where the algebraic triple product can be recovered from the Bergmann
metric 〈 , 〉 and Bergmann kernel K of the domain as the logarithmic deriva-
tive of the kernel at 0:

〈{u, v, w}, z〉0 := d4
0K(x, x)(u, v, w, z) := ∂u∂v∂w∂z logK(x, x)|x=0.

The domain D := D(J) of the triple J becomes a hermitian symmet-
ric space under the Bergmann metric 〈x, y〉p := tr(LB−1

p,px,y
). The automor-

phisms of the domain D fixing 0 are linear and are precisely the algebraic
automorphisms of the triple J. At the origin the exponential map exp0 :
T0(D) = J → D is a real analytic diffeomorphism given by the odd function
exp0(v) = tanh(v), and the curvature tensor is given by R(u, v)0 = Lv,u−Lu,v.
The Shilov boundary of D is the set of maximal tripotents of J, and coin-

cides with the set of all extremal points of the convex set D; it can be described
algebraically as the set of z ∈ J with Bz,z = 0. The holomorphic boundary
components of D are precisely the faces of the convex set D, which are just
the sets e+

(
D ∩Ker(Be,e)

)
for all tripotents e of J.

As an example, in rectangular matrices Mpq(C) for p ≤ q every X can
be written as X = UDV for a unitary p × p matrix U and a unitary q × q
matrix V and diagonal real p × q matrix D with scalars d1 ≥ · · · ≥ dp ≥ 0
down the “main diagonal.” These di are precisely the singular values of X,
and are precisely the nonnegative square roots of the eigenvalues of XX∗ =
UDDtrU−1; the spectral norm of X is ‖X‖ = d1. The condition 1J− 1

2LX,X >
0 is equivalent to 1 > d1, i.e., the unit ball condition. The triple trace is
tr(LX,Y ) = (p+ q)tr(XY ∗), so the hermitian inner product is

〈X,Y 〉P = (p+ q) tr
(
(1pp − PP ∗)−1X(1qq − P ∗P )−1Y ∗).

0.7 Links with the Infinitely Complex World

There are many instances in mathematics where we gain a better under-
standing of the finite-dimensional situation by stepping back to view the
subject from the infinite-dimensional perspective. In Jordan structure the-
ory, Zel’manov’s general classification of simple algebras reveals the sharp
distinction between algebras of Hermitian, Clifford, and Albert type, whereas
the original Jordan–von Neumann–Wigner classification included H3(K) as
an outlying member of the hermitian class, and for a long time the viewpoint
of idempotents caused the division algebras (algebras of capacity 1) to be
considered in a class by themselves.
So too in differential geometry the infinite perspective has revealed more

clearly what is essential and what is accidental in the finite-dimensional situ-
ation.
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From Bounded Symmetric Domains to Unit Balls

In infinite dimensions not all complex Banach spaces can be renormed as
Hilbert spaces, so we cannot hope to put a hermitian norm (coming from an
inner product) on tangent spaces. However, it turns out that there is a natural
way to introduce a norm. A bounded symmetric domain D in a complex Ba-
nach space V is a domain [a connected open subset] which is bounded in norm
[‖D‖ ≤ r for some r] and is symmetric in the sense that at each point p ∈ D
there is a symmetry sp [a biholomorphic map D → D of period 2 having p
as isolated fixed point]. Again the existence of symmetries at all points is a
strong condition: the symmetries sp are unique, and the group G := Aut(D)
of biholomorphic automorphisms of D is a real Banach–Lie group [locally co-
ordinatized by patches from a fixed real Banach space instead of Rn] acting
analytically and transitively on D. Note that any biholomorphic g ∈ G con-
jugates a symmetry sp at a point p to a symmetry g ◦ sp ◦ g−1 at the point
q = g(p). Thus we can rephrase the condition for symmetry for a domain as
(i) there is a symmetry sp0 at some particular basepoint, (ii) Aut (D) acts
transitively on D.
Again in infinite dimensions there is no G-invariant Bergmann metric to

provide the usual concepts of differential geometry. Instead of a hermitian
metric there is a canonical G-invariant Banach norm on each tangent space
Tp(D), the Carathéodory tangent norm ‖v‖ := supf∈Fp

|dfp(v)| taken over
the set Fp of all holomorphic functions of D into the open unit disk which
vanish at p. In finite dimensions the existence of a hermitian inner product
on Cn seduces us into forming a Hilbert norm, even though in many ways
the Carathéodory norm is more natural (for example, for hermitian operators
the Carathéodory norm is the intrinsic operator norm, whereas the Hilbert–
Schmidt norm ‖X‖2 =

∑n
j,k=1 |xjk|2 is basis-dependent). By G-invariance,

for any basepoint p0 of D all tangent spaces can be identified with Tp0(D),
which is equivalent to V .
The Harish–Chandra realization of a bounded symmetric domain in Cn

is replaced by a canonical bounded realization as a unit ball: A Riemann
Mapping–type theorem asserts that every bounded symmetric domain with
basepoint p0 is biholomorphically equivalent (uniquely up to a linear isome-
try) to the full open unit ball with basepoint 0 of a complex Banach space
V = Tp0(D). Here the norm on V grows naturally out of the geometry of D.

Jordan Unit Balls

Note that a unit ball always has the symmetry x �→ −x at the basepoint 0, so
the above conditions (i),(ii) for D to be symmetric reduce to just transitivity.
Thus the Banach unit balls which form symmetric domains are precisely those
whose biholomorphic automorphism group Aut(D) acts transitively. The map
(y, z) �→ sy(z) gives a “multiplication” on D, whose linearization gives rise to
a triple product
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{u, v, w} := − 1
2∂

z
u∂

y
v∂

z
w

(
sy(z)

)|(0,0)
uniquely determined by the symmetric structure. This gives a hermitian Jor-
dan triple product, a product which is complex linear in u,w and complex anti-
linear in v satisfying the 5-linear identity {x, y, {u, v, w}} = {{x, y, u}, v, w}−
{u, {y, x, v}, w}+ {u, v, {x, y, w}}.
Moreover, it is a positive hermitian Jordan triple system. In infinite dimen-

sions there is seldom a trace, so we can no longer use as definition of positiv-
ity for a hermitian Jordan triple Loos’s condition that the trace tr(Lx,y) be
positive-definite. Instead, we delete the trace and require that the operators
Lx,x themselves be positive definite in the sense that

Lx,x is hermitian: exp(itLx,x) is an isometry for all real t,
C∗-condition for Lx,x: ‖Lx,x‖ = ‖x‖2,
Nonnegative spectrum: Spec(Lx,x) ≥ 0.

[The usual notion T ∗ = T of hermitian operators on Hilbert space does not
apply to operators on a Banach space; the correct general definition of hermi-
tian operator is a bounded complex-linear transformation T on V such that
the invertible linear transformation exp(itT ) is an isometry of V for all real
t (just as a complex number z is real iff all eitz are points on the unit circle,
|eitz| = 1).]
Because of the norm conditions, these are also called JB∗-triples in analogy

with JB∗-algebras. Nontrivial consequences of these axioms are

Banach triple condition: ‖{x, y, z}‖ ≤ ‖x‖ ‖y‖ ‖z‖,
C∗-triple condition: ‖{z, z, z}‖ = ‖z‖3.

Any associative C∗-algebra produces a JB∗-triple with triple product {x, y, z}
:= 1

2 (xy
∗z + zy∗x). Thus a JB∗-triple is a Jordan triple analogue of a C∗-

algebra. It can be shown that every JB∗-algebra J carries the JB∗-triple
structure Jt via {x, y, z}t := {x, y∗, z}. [Certainly this modification is a her-
mitian Jordan triple product: it continues to satisfy the Jordan triple ax-
iom since ∗ is a Jordan isomorphism, and it is conjugate-linear in the mid-
dle variable due to the involution ∗ (the triple product on the JB-algebra
H(J, ∗) is R-linear, and that on its complexification J = HC is C-linear).
The C∗-algebra condition immediately implies the C∗-triple condition, but
the other JB∗-triple conditions require more work.] The celebrated Gelfand–
Naimark Theorem for JB∗ Triples of Yakov Friedman and Bernard Russo
asserts that every such triple imbeds isometrically and isomorphically in a
triple Jt = B(H)t ⊕ C(X,H3(OC))t obtained by “tripling” a JB∗-algebra.
(Notice that the triple of rectangular p× q matrices can be imbedded in the
algebra of (p+q)× (p+q) matrices, and the exceptional 16-dimensional triple
imbeds in the tripled Albert algebra.)
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The unit ball D(J) of any JB∗-triple automatically has a transitive bi-
holomorphic automorphism group. Thus the open unit ball of a Banach space
V is a bounded symmetric domain iff V carries naturally the structure of a
JB∗-triple.

Jordan Functor Theorem. There is a category equivalence between the
category of all bounded symmetric domains with base point and the category
of all JB∗-triples, given by the functors (D, p0) �→ (Tp0(D), {·, ·, ·}) and J �→
(D(J), 0).

We have seen that the unit balls of JB∗-algebras (J, ∗) are bounded sym-
metric domains which have an unbounded realization (via the inverse Cayley
transform w �→ i(1−w)(1+w)−1) as tube domains H(J, ∗)+ iC. The geomet-
ric class of tube domains can be singled out algebraically from the class of all
bounded symmetric domains: they are precisely the domains that come from
JB∗-triples which have invertible elements.

These examples, from the real and complex world, suggest a general Prin-
ciple: Geometric structure is often encoded in algebraic Jordan structure.

0.8 Links with Projective Geometry

Another example of the serendipitous appearance of Jordan algebras is in
the study of projective planes. In 1933 Ruth Moufang used an octonion di-
vision algebra to construct a projective plane which satisfied the Harmonic
Point Theorem and Little Desargues’s Theorem, but not Desargues’s Theo-
rem. However, this description did not allow one to describe the automor-
phisms of the plane, since the usual associative approach via invertible 3× 3
matrices breaks down for matrices with nonassociative octonion entries. In
1949 P. Jordan found a way to construct the real octonion plane inside the
formally real Albert algebra A = H3(K) of hermitian 3× 3 Cayley matrices,
using the set of primitive idempotents to coordinatize both the points and
the lines. This was rediscovered in 1951 by Hans Freudenthal. In 1959 this
was greatly extended by T.A. Springer to reduced Albert algebras J = H3(O)
for octonion division algebras over arbitrary fields of characteristic  = 2, 3,
obtaining a “Fundamental Theorem of Octonion Planes” describing the au-
tomorphism group of the plane in terms of the “semi-linear structure group”
of the Jordan ring. In this not-formally-real case the coordinates were the
“rank 1” elements (primitive idempotents or nilpotents of index 2). Finally,
in 1970 John Faulkner extended the construction to algebras over fields of
any characteristic, using the newly-hatched quadratic Jordan algebras. Here
the points and lines are inner ideals with inclusion as incidence; structural
maps naturally preserve this relation, and so induce geometric isomorphisms.
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The Fundamental Theorem of Projective Geometry for octonion planes says
that all isomorphisms are obtained in this way. Thus octonion planes find a
natural home for their isomorphisms in Albert algebras.

Projective Planes

Recall that an abstract plane Π = (P,L, I) consists of a set of points P, a set
of lines L, and an incidence relation I ⊂ P×L. If P IL we say that P lies on L
and L lies on or goes through P. A collection of points are collinear if they are
all incident to a common line, and a collection of lines are concurrent if they
lie on a common point. A plane is projective if it satisfies the three axioms
(I) every two distinct points P1, P2 are incident to a unique line (denoted by
P1 ∨ P2), (II) every two distinct lines L1, L2 are incident to a unique point
(denoted by L1 ∧ L2), (III) there exists a 4-point (four points, no three of
which are collinear). We get a category of projective planes by taking as
morphisms the isomorphisms σ = (σP , σL) : Π → Π′ consisting of bijections
σP : P → P ′ of points and σL : L → L′ of lines which preserve incidence,
P IL ⇔ σP(P ) I′ σL(L). (In fact, either of σP or σL completely determines
the other. Automorphisms σ of a plane are called collineations by geometers,
since the σP are precisely the maps of points which preserve collinearity: all
lines have the form L = P1∨P2, and P I

(
P1∨P2

) ⇔ {P, P1, P2} are collinear.)
The most important example of a projective plane is the vector space plane

Proj (V ) determined by a 3-dimensional vector space V over an associative
division ring ∆, where the points are the 1-dimensional subspaces P , the lines
are the 2-dimensional subspaces L, and incidence is inclusion P IL ⇔ P ⊆ L.
Here P1 ∨ P2 = P1 + P2, L1 ∧L2 = L1 ∩L2 (which has dimension dim(L1) +
dim(L2)−dim(L1+L2) = 2+2−3 = 1). If v1, v2, v3 form a basis for V3, then
these together with v4 = v1+ v2+ v3 form a four point (no three are collinear
since any three span the whole 3-dimensional space). These planes can also be
realized by a construction Proj (∆) directly from the underlying division ring.
Every 3-dimensional left vector space V is isomorphic to ∆∆3, with dual space
V ∗ isomorphic to the right vector space ∆3

∆ under the nondegenerate bilinear
pairing 〈v, w〉 = 〈(α1, α2, α3), (β1, β2, β3)〉 = α1β1 + α2β2 + α3β3. The points
P = ∆v = [v]∗ ≤ ∆∆3 are coordinatized (up to a left multiple) by a nonzero
vector v, the lines L are in 1-to-1 correspondence with their 1-dimensional
orthogonal complements L⊥ ≤ V ∗ corresponding to a “dual point” [w]∗ =
w∆ ≤ ∆3

∆, and incidence P ⊆ L = (L⊥)⊥ reduces to orthogonality P ⊥ L⊥,
i.e.,

[v]∗ I [w]∗ ⇔ 〈v, w〉 = 0
(which is independent of the representing vectors for the 1-dimensional
spaces). We choose particular representatives v, w of the points ∆x, y∆
for nonzero vectors x = (x1, x2, x3), y = (y1, y2, y3) as follows: if x3  = 0
choose v = 1

x3
x = (x, y, 1); if x3 = 0  = x1 choose v = 1

x1
x = (1, n, 0);

if x3 = x1 = 0 choose v = 1
x2
x = (0, 1, 0). Dually, if y2  = 0 choose
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w = −1
y2
y = (m,−1, b); if y2 = 0  = y1 choose w = −1

y1
y = (−1, 0, a); if

y2 = y1 = 0 choose w = 1
y3
y = (0, 0, 1). Then we obtain the following table

of incidences 〈v, w〉 = 0:

Incidence Table [v]∗ I [w]∗ for Proj (∆)
[v]∗ \ [w]∗ [(m,−1, b)]∗ [(−1, 0, a)]∗ [(0, 0, 1)]∗

[(x, y, 1)]∗ y = xm+ b x = a never
[(1, n, 0)]∗ n = m never always
[(0, 1, 0)]∗ never always always

Affine Planes

In affine planes, two distinct lines no longer need to intersect, they may be
parallel (nonintersecting). A plane is called affine if it satisfies the four axioms
(I) every two distinct points are incident to a unique line, (II) every two
nonparallel lines are incident to a unique point, (II′) for every point P and
line L there exists a unique line through P parallel to L (denoted by P‖L),
(III) there exists a 4-point. We again get a category of affine planes by taking
as morphisms the isomorphisms. Parallelism turns out to be an equivalence
relation on lines, and we can speak of the parallel class ‖(L) of a given line L.
Just as in the real affine plane familiar from calculus, every 2-dimensional

vector space V gives rise to an affine plane Aff (V ) with points the vectors
of V and the lines the 1-dimensional affine subspaces (translates A = v +
W of 1-dimensional linear subspaces W ), with incidence being membership
v IA ⇔ v ∈ A. Two such lines A,A′ are parallel iff W = W ′, and coincide iff
v − v′ ∈ W = W ′. Thus the parallel classes correspond to the 1-dimensional
subspaces W .
More concretely, we may represent V as ∆2 and Aff (∆) with affine points

being (x, y) for x, y ∈ ∆, affine lines being either vertical lines [a] = {(x, y) |
x = a} or nonvertical lines [m, b] = {(x, y) | y = xm + b} of “slope” m and
“y-intercept” b, and incidence again being membership. The parallel classes
here are the vertical class (all [a]) together with the slope classes (all [m, b]
for a fixed m).

Back and Forth

We can construct affine planes from projective planes and vice versa, indeed
the category of affine planes is equivalent to the category of projective planes
with choice of distinguished line at infinity. Given a pair (Π, L) consisting of
a projective plane and a distinguished line, we construct the affine restriction
Aff (Π, L) by removing the line L and all points on it, and taking the incidence
relation induced by restriction. Notice that two affine lines are parallel iff their
intersection (which always exists in Π) does not belong to the affine part of
Π, i.e., iff the lines intersect on the “line at infinity” L.
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Conversely, from any affine plane Πa we can construct the projective com-
pletion Π = Proj (Πa) by adjoining one ideal line L∞ and adjoining one ideal
point for each parallel class ‖(L), with incidence extended by declaring that
all ideal points lie on the ideal line, and an ideal point ‖(L) lies on an affine
line M iff M‖L. The pair (Π, L∞) thus constructed is a projective plane with
distinguished line.

These two constructions are functorial, and provide a category equiva-
lence: Πa → (Π, L∞) → Aff (Π, L∞) = Πa is the identity functor, while
(Π, L) → Πa → (Proj (Πa), L∞) is naturally isomorphic to the identity func-
tor. Thus we can use projective planes (where all lines are created equal) or
affine planes (where coordinatization is natural), whichever is most conve-
nient. [Warning: In general, a projective plane looks different when viewed
from different lines L and L′, Aff (Π, L)  ∼= Aff (Π, L′), since in general there
will not be an automorphism of the whole plane sending L to L′.]

For example, it is easy to verify that the projective completion of Aff (∆)
is isomorphic to Proj (∆), where points are mapped (x, y) �→ [(x, y, 1)]∗,
(n) := ‖[n, b] �→ [(1, n, 0)]∗, (∞) := ‖[a] �→ [(0, 1, 0)]∗, and lines are mapped
[m, b] �→ [(m,−1, b)]∗, [a] �→ [(−1, 0, a)]∗, [∞] := L∞ �→ [(0, 0, 1)]∗, since
the incidences (x, y)I[m, b] etc. in Proj (Aff (∆)) coincide with the incidences
[v]∗I[w]∗ in Proj (∆) by the incidence table for Proj (∆).

Coordinates

In the spirit of Descartes’s program of analytic geometry, we can introduce
“algebraic coordinates” into any projective plane using a coordinate system,
an ordered 4-point χ = {X∞, Y∞,0,1}. Here we interpret the plane as the
completion of an affine plane by a line at infinity L∞ := X∞ ∨ Y∞, with 0
as origin and 1 as unit point, X := 0 ∨X∞, Y := 0 ∨ Y∞ the X,Y axes, and
U := 0 ∨ 1 the unit line. The coordinate set consists of the affine points x
of U , together with a symbol ∞. We introduce coordinates (coordinatize the
plane) for the affine points P , points at infinity P∞, affine lines L, and line at
infinity L∞ via

P �→ (x, y), L  ‖ Y �→ [m, b],
P∞  = Y∞ �→ (n), L ‖ Y �→ [a],
P∞ = Y∞ �→ (∞), L∞ �→ [∞],

where the coordinates of points are x = πX(P ) :=
(
P‖Y ) ∧U, y = πY (P ) :=(

P‖X)∧U, n = πY (1, n) = πY
(
(P∞∨0)∧(1‖Y )), and the coordinates of lines

are a = L∧U, b = πY (0, b) = πY
(
L∧Y )

, m = πY (1,m) = πY
(
(0‖L)∧(1‖Y )).

With this set of points and lines we obtain a projective plane Proj (Π, χ) iso-
morphic to Π, where incidence is given by a table similar to that for Proj (∆):
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Incidence Table P IL for Proj (Π, χ)
P \ L [m, b] [a] [∞]
(x, y) y = T (x,m, b) x = a never
(n) n = m never always
(∞) never always always

Thus, once a coordinate system has been chosen, the entire incidence struc-
ture is encoded algebraically in what is called a projective ternary system
Tern(Π, χ), the set of affine coordinates with the ternary product T (x,m, b)
and distinguished elements 0, 1 (somewhat optimistically called a ternary
ring in hopes that the product takes the form T (x,m, b) = xm + b for
a+b = T (a, 1, b), xm = T (x,m, 0)). In general, the ternary system depends on
the coordinate system (different systems χ, χ′ produce nonisomorphic ternary
systems Tern(Π, χ)  ∼= Tern(Π, χ′)), and the ternary product cannot be writ-
ten as xm + b; only when the plane has sufficient “symmetry” do we have a
true coordinate ring with a (commutative, associative) addition and a (nonas-
sociative, noncommutative) bilinear multiplication.

Central Automorphisms

Projective planes are often classified according to how many central auto-
morphisms they possess (following to the motto “the more the merrier”).
An automorphism σ is central if it has a center, a point C which is fixed
linewise by the automorphism: σP(C) = C, σL(L) = L for all L incident to
C. In this case σ automatically has an axis M , a line which is fixed point-
wise: σL(M) = M, σP(P ) = P for all P incident to M , and if σ  = 1 it fixes
no points except the center and those on the axis, and fixes no lines except
the axis and those on the center. If the center lies on the axis, σ is called a
translation, otherwise it is called a dilation. For example, in the completion
of Aff (∆) translation τ(P ) = t+P by a fixed nonzero vector is a translation
with axis the line at infinity and center the point at infinity corresponding to
the parallel class of all lines parallel to ∆t; the dilation δ(P ) = δP by a fixed
scalar δ  = 0, 1 is a dilation with center 0 the unique affine fixed point, and
axis again the line at infinity.
A plane is (C,M)-transitive if the subgroup of (C,M)-automorphisms

(those with center C and axis M) acts as transitively as it can, namely,
transitively on the points Q of any line L through C (except for the fixed
points C,L ∧ M): any point Q off the center and axis can be moved to any
other such point Q′ by some (C,M)-automorphism σ as long as C,Q,Q′ are
collinear, because σ fixes the line L = C ∨Q and so must send Q to another
point Q′ on the same line. Geometrically, a plane is (C,M)-transitive iff De-
sargues’s (C,M) Theorem holds: Whenever two triangles 1, 1′ with vertices
P1P2P3, P

′
1P

′
2P

′
3 and sides L1L2L3, L

′
1L

′
2L

′
3 (Lk = Pi ∨Pj for distinct i, j, k)

are in central perspective from C [i.e., C,Pi, P
′
i are collinear for i = 1, 2, 3]

with two sides in axial perspective from L [i.e., L,Li, L
′
i are concurrent for
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i = 1, 2], then also the third sides are in perspective from L [L,L3, L
′
3 are

concurrent], so the three pairs of sides meet at three points of L.
If a plane is (C,M) transitive for two different centers C on the axis M ,

then it is (C,M)-transitive for all centers C onM , and it is called a translation
plane with respect to the axis M ; this happens iff its ternary product when
we coordinatize it using L∞ := M is linear, T (x,m, b) = x ·m + b, in which
case we speak of Tern(Π, χ) as a coordinate ring (R,+, ·, 0, 1).
If a plane is a translation plane with respect to two distinct axes M,M ′,

then it is a translation plane with respect to every line on C =M ∧M ′; this
happens iff its coordinate ring using (∞) = Y∞ := C,L∞ = [∞] := M is a
left Moufang division ring : it is a unital nonassociative ring with all nonzero
elements invertible, satisfying the Left Inverse Property x−1(xy) = y for all
x  = 0, y, equivalently the left Moufang Law (

x(yx)
)
z = x

(
y(xz)

)
[this implies,

and in characteristic  = 2 is equivalent to, the left alternative law x2z = x(xz)].
We call such a plane a left Moufang plane.
If a plane is a translation plane with respect to three nonconcurrent axes

M,M ′,M ′′, then it is a translation plane with respect to every line, so all
possible translations exist and the plane satisfies the Little Desargues’s The-
orem (Desargues’s (C,M) Theorem for all pairs with C on M). This happens
iff its coordinate ring is an alternative division ring: it is a unital nonassocia-
tive ring with all nonzero elements invertible, satisfying the Inverse Prop-
erty x−1(xy) = y = (yx)x−1 for all y, x  = 0, equivalently the Left and
Right Moufang Laws [where Right Moufang is z

(
(xy)x

)
=

(
(zx)y

)
x], equiv-

alently the left and right alternative laws x2z = x(xz), zx2 = (zx)x, and is
called a translation plane or Moufang plane. In this case all coordinatizations
produce isomorphic coordinate rings, and we can speak of the alternative
coordinate ring D of the plane. In particular, every octonion division alge-
bra O produces a Moufang projective plane Mouf (O) coordinatized by all
(x, y), (n), (∞), [m, b], [a], [∞] for x, y, n,m, b, a ∈ O; such a plane is called an
octonion plane.
If a plane is (C,M)-transitive for all centers C and all axes M not on C,

then it is (C,M)-transitive for all centers C and all axes M whatsoever, and
Desargues’s Theorem holds for all (C,M). Such a plane is called Desarguian.
This happens precisely iff some coordinate ring is an associative division ring
∆, in which case all coordinates are isomorphic to ∆, and the plane is isomor-
phic to Proj (∆). The coordinate ring is a field ∆ = Φ iff the plane satisfies
Pappus’s Theorem (which implies Desargues’s).
Thus the left Moufang, Moufang, Desarguian, and Pappian planes Π rich

in central automorphisms are just the planes coordinatized by nonassociative
division rings that are left Moufang, alternative, associative, or fields. For
these algebraic systems we have powerful theorems (some of the first structure
theorems proven for algebras of arbitrary dimension).

Kleinfeld–Skornyakov–San Soucie Theorem. Every left Moufang divi-
sion ring is alternative.



34 Colloquial Survey

Bruck–Kleinfeld Theorem. Every alternative division ring is either asso-
ciative or an octonion division algebra.

A celebrated theorem of Wedderburn asserts that every finite associative
division ring is commutative, hence a finite field GF (pn) for some prime power.
This holds even for alternative division rings.

Artin–Zorn Theorem. Every finite alternative division ring is associative,
hence a finite field (equivalently, there are no finite octonion division algebras
because a quadratic form of dimension 8 over a finite field is isotropic).

From these algebraic theorems, we obtain geometric theorems for which
no known geometric proofs exist.

Moufang Consequences Theorem. (1) Every left Moufang plane is Mo-
ufang. (2) Every Moufang plane is either a Desarguian Proj (∆) for an asso-
ciative division ring ∆, or an octonion plane Mouf (O) for an octonion divi-
sion algebra O. (3) Every finite left Moufang or Moufang plane is a Pappian
plane Proj (GF (pn)) determined by a finite field.

This is a powerful instance of Descartes’s program of bringing algebra to
bear on geometric questions.

Albert Algebras and Octonion Planes

We have seen that the affine part of an octonion plane Mouf (O) has a coor-
dinatization in terms of points (x, y) and lines [m, b], [a] with octonion coor-
dinates, behaving much like the usual Euclidean plane. However, the Funda-
mental Theorem of Projective Geometry (which says that the isomorphisms
of Desarguian planes Proj (V ) come from semilinear isomorphisms of V ∼= ∆3,
represented by 3× 3 matrices in M3(∆)) breaks down when the coordinates
are nonassociative: the associative composition of isomorphisms cannot be
faithfully captured by the nonassociative multiplication of octonion matri-
ces in M3(O). In order to represent the isomorphisms, we must find a more
abstract representation of Mouf (O). A surprising approach through Albert
algebras H3(O) was discovered by Jordan and Freudenthal, then refined by
Springer and Faulkner.
Let J = H3(O) be a reduced Albert algebra for an octonion division

algebraO over a field Φ. As with ordinary 3×3 matrices, J carries a cubic norm
form N and quadratic adjoint map x �→ x#, with linearization (x, y) �→ x#y
(N(x) ∈ Φ, x#, x#y ∈ J). We construct an octonion plane Proj (J) with points
P the 1-dimensional inner ideals B [these are precisely the spaces B = Φb
determined by rank-one elements b with UbJ = Φb  = 0, equivalently b# =
0  = b] and lines L the 10-dimensional inner ideals C [these are precisely the
spaces c#J for rank-one c], with inclusion as incidence [B IC ⇔ B ⊆ C]. Every



Projective Geometry 35

octonion plane arises (up to isomorphism) by this construction: Mouf (O) ∼=
Proj (H3(O)).
If J,J′ are two such Albert algebras over fields Φ,Φ′, then we call a map

T : J→ J′ structural if it is a bijective Z-linear map such that there exists a
Z-linear bijection T ∗ : J′ → J with

U ′
T (x) = TUxT

∗

for all x. Here T is automatically a τ -linear transformation T (αx) = ατT (x)
for an isomorphism τ : Φ → Φ′ of the underlying fields, and T ∗ is uniquely
determined as T−1U ′

T (1). This ring-theoretic structural condition turns out
to be equivalent to Jacobson’s original cubic norm condition that T be a τ -
linear norm similarity, N ′(T (x)) = νN(x)τ for all x ∈ J. Any such structural
T induces an isomorphism Proj (T ) : Proj (J)→ Proj (J′) of projective planes,
since it preserves dimension, innerness, and incidence.
In particular, since Uu : J(u) → J is always structural, J and any of its

isotopes J(u) produce isomorphic Moufang planes. This explains why we ob-
tain all the octonion planes from just the standard H3(O)’s, because the most
general reduced Albert algebra is a canonical H3(O,Γ), which is isomorphic
to a diagonal isotope H3(O)Γ of a standard Albert algebra.
In Faulkner’s original description, points and lines are two copies of the

same set: the 10-dimensional c#J = {x ∈ J | Vx,c = 0} is uniquely determined
by the 1-dimensional Φc, so we can take as points and lines all [b]∗ and [c]∗

for rank-one elements b, c, where incidence becomes [b]∗ I [c]∗ ⇔ Vb,c = 0
[analogous to [v]∗ I [w]∗ ⇔ 〈v, w〉 = 0 in Proj (∆)]. A structural T induces an
isomorphism of projective planes via σP([b]∗) := [T (b)]∗, σL([b]∗) := [T ′(b)]∗

for T ′ = (T ∗)−1 because this preserves incidence: V ′
T (b),T ′(c) = 0 ⇔ Vb,c = 0

because T automatically satisfies V ′
T (x),T ′(y) = TVx,yT

−1 [acting on T (z) this
is just the linearization x �→ x, z of the structural condition].

Fundamental Theorem of Octonion Planes. The isomorphisms Proj (J)→
Proj (J′) of octonion planes are precisely all Proj (T ) for structural maps
T : J→ J′ of Albert algebras.

The arguments for this make heavy use of a rich supply of structural trans-
formations on J in the form of Bergmann operators Bx,y (known geometrically
as algebraic transvections Tx,−y); while the Ux for invertible x are also struc-
tural, the Bx,y form a more useful family to get from one rank 1 element to
another. The methods are completely Jordanic rather than octonionic. Thus
the octonion planes as well as their automorphisms find a natural home in
the Albert algebra, which has provided shelter for so many exceptional math-
ematical structures.
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Conclusion

This survey has acquainted you with some of the regions this mathematical
river passes through, and a few of the people who have contributed to it.
Mathematics is full of such rivers, gaining nourishment from the mathemati-
cal landscapes they pass through, enriching in turn those regions and others
further downstream.



Part I

A Historical Survey of Jordan Structure
Theory



Introduction

In the Colloquial Survey we discussed the origin of Jordan algebras in Pascual
Jordan’s attempt to discover a new algebraic setting for quantum mechan-
ics, freed from dependence on an invisible but all-determining metaphysical
matrix structure. In studying the intrinsic algebraic properties of hermitian
matrices, he was led to a linear space with commutative product satisfying
the Jordan identity, and an axiomatic study of these abstract systems in finite
dimensions led back to hermitian matrices plus one tiny new system, the Al-
bert algebra. Later, the work of Efim Zel’manov showed that even in infinite
dimensions this is the only simple Jordan algebra which is not governed by
an associative algebra lurking in the background.
In this Historical Survey of Jordan Structure Theory (Part I), we tell

the story of Jordan algebras in more detail, describing chronologically how
our knowledge of the structure of Jordan algebras grew from the physically-
inspired investigations of Jordan, von Neumann, and Wigner in 1934 to the
inspired insights of Zel’manov in 1983. We include no exercises and give no
proofs, though we sketch some of the methods used, comparing the classical
methods using idempotents to the ring-theoretic methods of Zel’manov. The
goal is to get the “big picture” of Jordan structure theory, to understand its
current complete formulation while appreciating the older viewpoints.
In this Part we aim to educate as well as enlighten, and an educated

understanding requires that one at least be able to correctly pronounce the
names of the distinguished mathematicians starring in the story. To that end
I have included warning footnotes, and at the end of the book a page of
pronunciations for all foreign names to help readers past the most egregious
errors (like Henry Higgins leading a mathematical Liza Doolittle, who talks
of the Silo theorem for groups as if it were a branch of American agriculture,
to See-loff [as in Shilov boundary], though perhaps never to Sÿ-lovf [as in
Norway]). This would all be unnecessary if I were giving these lectures orally.
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Jordan Algebras in Physical Antiquity:
The Search for an Exceptional Setting for
Quantum Mechanics

Jordan algebras were conceived and grew to maturity in the landscape of
physics. They were born in 1933 in a paper of the physicist Pascual Jor-
dan1, “Über Verallgemeinerungsmöglichkeiten des Formalismus der Quanten-
mechanik,” which, even without DNA testing, reveals their physical parentage.
Just one year later, with the help of John von Neumann and Eugene Wigner
in the paper “On an algebraic generalization of the quantum mechanical for-
malism,” they reached adulthood. Students can still benefit from reading this
paper, since it was a beacon for papers in nonassociative algebra for the next
50 years (though nowadays we would derive the last 14 pages in a few lines
from the theory of composition algebras).

1.1 The Matrix Interpretation of Quantum Mechanics

In the usual interpretation of quantum mechanics (the so-called Copenhagen
interpretation), the physical observables are represented by Hermitian matri-
ces (or operators on Hilbert space), those which are self-adjoint x∗ = x. The
basic operations on matrices or operators are given in the following table:

Matrix Operations
λx multiplication by a complex scalar λ

x+ y addition
xy multiplication of matrices (composition of operators)
x∗ complex conjugate transpose matrix (adjoint operator)

1 In English, his name and his algebras are Dgor-dan as in Dgudge or Michael, not
Zhor-dahn as in canonical form. As a German (despite Pascual!), his real name was (and
his algebras still are) Yor-dahn.
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This formalism is open to the objection that the operations are not “ob-
servable,” not intrinsic to the physically meaningful part of the system: the
scalar multiple λx is not again hermitian unless the scalar λ is real, the prod-
uct xy is not observable unless x and y commute (or, as the physicists say, x
and y are “simultaneously observable”), and the adjoint is invisible (it is the
identity map on the observables, though nontrivial on matrices or operators
in general).

Observable Operations
αx multiplication by a real scalar α

x+ y addition
xn powers of matrices
x identity map

Not only was the matrix interpretation philosophically unsatisfactory be-
cause it derived the observable algebraic structure from an unobservable one,
there were practical difficulties when one attempted to apply quantum me-
chanics to relativistic and nuclear phenomena.

1.2 The Jordan Program

In 1932 Jordan proposed a program to discover a new algebraic setting for
quantum mechanics, which would be freed from dependence on an invisible but
all-determining metaphysical matrix structure, yet would enjoy all the same
algebraic benefits as the highly successful Copenhagen model. He proposed:

• To study the intrinsic algebraic properties of hermitian matrices, without
reference to the underlying (unobservable) matrix algebra;

• To capture the algebraic essence of the physical situation in formal alge-
braic properties that seemed essential and physically significant ;

• To consider abstract systems axiomatized by these formal properties and
see what other new (non-matrix ) systems satisfied the axioms.

1.3 The Jordan Operations

The first step in analyzing the algebraic properties of hermitian matrices or
operators was to decide what the basic observable operations were. There are
many possible ways of combining hermitian matrices to get another hermitian
matrix. The most natural observable operation was that of forming polyno-
mials: if x was an observable, one could form an observable p(x) for any real
polynomial p(t) with zero constant term; if one experimentally measured the
value v of x in a given state, the value associated with p(x) would just be p(v).
Breaking the operation of forming polynomials down into its basic ingredients,
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we have the operations of multiplication αx by a real scalar, addition x + y,
and raising to a power xn. By linearizing the quadratic squaring operation
x2 we obtain a symmetric bilinear operation2 x • y, to which Jordan gave the
none-too-informative name quasi-multiplication:

x • y := 1
2 (xy + yx).

This is also frequently called the anticommutator (especially by physicists),
but we will call it simply the Jordan product.

1.4 Digression on Linearization

We interrupt our chronological narration for an important announcement
about the general process of linearization (often called polarization, espe-
cially in analysis in dealing with quadratic mappings on a complex space).
This is an important technique in nonassociative algebras which we will en-
counter frequently in the rest of the book. Given a homogeneous polynomial
p(x) of degree n, the process of linearization is designed to create a symmet-
ric multilinear polynomial p′(x1, . . . , xn) in n variables such that the origi-
nal polynomial arises by specializing all the variables to the same value x :
p′(x, . . . , x) = p(x). For example, the full linearization of the square x2 = xx
is 1

2 (x1x2 + x2x1), and the full linearization of the cube x3 = xxx of degree 3
is 1

6 (x1x2x3 + x1x3x2 + x2x1x3 + x2x3x1 + x3x1x2 + x3x2x1).
In general, in order to recover the original p(x) of degree n we will have to

divide by n!. This, of course, never bothers physicists or workers in character-
istic 0, but over general scalars this step is highly illegal. In many algebraic
investigations, the linearization process is important even in situations where
we can’t divide by n!, such as when the scalars are integers or a field of prime
characteristic. Thus we will describe a bare-bones linearization that recovers
only n!p(x), but provides crucial information even without division.
Full linearization is usually achieved one step at a time by a series of

partial linearizations, in which a polynomial homogeneous of degree n in a
particular variable x is replaced by one of degree n − 1 in x and linear in
a new variable y. Intuitively, in an expression with n occurrences of x we
simply replace each occurrence of x, one at a time, by a y, add up the results
[we would have to multiply by 1

n to ensure that restoring y to x produces
the original polynomial instead of n copies of it]. For example, in xx we can
replace the first or the second occurrence of x by y, leading to yx or xy, so the
first linearization is yx+xy, which is linear in x and y. In xxx we can replace
the first, second, or third occurrence of x by a y, so the first linearization
produces yxx + xyx + xxy, which is quadratic in x and linear in y. [Notice

2 Many authors denote the product by x.y or x · y, but since these symbols are often
used for run-of-the-mill products in linear algebras, we will use the bolder, more distinctive
bullet x • y.
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the inconspicuous term xyx buried inside the linearization of the cube; we
now know that this little creature actually governs all of Jordan theory!] We
repeat this process over and over, reducing variables of degree n by a pair
of variables, one of degree n − 1 and one of degree 1. Once we are down to
the case of a polynomial of degree 1 in each of its variables, we have the full
linearization.
In most situations we can’t naively reach into p(x) and take the x’s one

at a time: we often have no very explicit expression for p, and must describe
linearization in a more intrinsic way. The clearest formulation is to take p(x+
λy) for an indeterminate scalar λ and expand this out as a polynomial in λ:

p(x+ λy) = p(x) + λp1(x; y) + λ2p2(x; y) + · · ·+ λnp(y).

Here pi(x; y) is homogeneous of degree n − i in x and i in y (intuitively, we
obtain it by replacing i of the x’s in p(x) by y’s in all possible ways), and
the linearization is just the coefficient p1(x; y) of λ [we would have to divide
by n to recover p]. If we are working over a field with at least n distinct
elements, we don’t have to drag in an indeterminate, we simply let λ run
through n different scalars and use a Vandermonde method to solve a system
of equations to pick out p1(x; y).
A fancy way of getting the full linearization in one fell swoop would be

to replace x by a formal linear combination λ1x1 + λ2x2 + · · ·λnxn of n new
variables xi and n indeterminates λi; then the full linearization p(x1, . . . , xn)
is precisely the coefficient of λ1λ2 · · ·λn in the expansion of p(λ1x1 + λ2x2 +
· · ·+ λnxn) [again we would have to divide by n! to recover p].
The linearization process is very simple when applied to quadratic map-

pings q(x) of degree 2, which is the only case we need at this particular point
in our story. Here we need to linearize only once, and the process takes place
wholly within the original space (there is no need to drag in indeterminate
scalars): we take the value on the sum x + y of two elements, and then sub-
tract the pure x and y terms to obtain q(x, y) := q(x + y) − q(x) − q(y).
Note that despite the fact that we will assume throughout the book that we
have a scalar 1

2 , we will never divide the expression q(x, y) by 2. Thus for
us q(x, x) = q(2x) − q(x) − q(x) = 4q(x) − 2q(x) = 2q(x) does not recover
the original quadratic map. With a glimpse of quadratic Jordan algebras in
our rear-view mirror, we will drive through the Jordan landscape avoiding the
scalar 1

2 as far as possible, only calling upon it in our hour of need.

1.5 Back to the Bullet

Returning to the story of Jordan’s empirical investigation of the algebraic
properties of hermitian matrices, it seemed to him that all the products could
be expressed in terms of the Jordan product x • y. For example, it was not
hard to see that the powers could be defined from the Jordan product via
x1 = x, xn+1 = x • xn, so the power maps could be derived from a single
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bilinear product. We saw that linearization of the cube involved a product
xyx linear in y but quadratic in x; linearizing x to x, z leads to a trilinear
product xyz+zyx (now known as the Jordan triple product); this too could be
expressed in terms of the bilinear Jordan product: xyz+zyx = 2

(
x•(y•z)+z•

(y •x)− (x•z)•y). Of course, like the important dog in Sherlock Holmes who
did not bark in the night, the important product that does not lead back to
hermitian matrices is the associative product xy: the product of two hermitian
matrices is again hermitian iff the two matrices commute. Thus in addition
to its observable linear structure as a real vector space, the model carries a
basic observable product, the Jordan product, out of which more complicated
observable products such as powers or Jordan triple products can be built, but
it does not carry an associative product. Thus Jordan settled on the Jordan
product as the basic algebraic operation.
We now realize that Jordan overlooked several other natural operations on

hermitian elements. Note that if x, y, xi are hermitian matrices or operators,
so are the quadratic product xyx, the inverse x−1, and the n-tad products
{x1, . . . , xn} := x1 · · ·xn + xn · · ·x1. The quadratic product and inverse can
be defined using the Jordan product, though this wasn’t noticed for another 30
years; later, each of these was used (by McCrimmon and Springer) to provide
an alternate axiomatic foundation on which to base the entire Jordan theory.
The n-tad for n = 2 is just twice the Jordan product, and we have already
noted that the 3-tad, or Jordan triple product, can be expressed in terms of the
Jordan product. On the other hand, the n-tads for n ≥ 4 cannot be expressed
in terms of the Jordan product. In particular, the tetrads {x1, x2, x3, x4} :=
x1x2x3x4+x4x3x2x1 were inadvertently excluded from Jordan theory. As we
shall see, this oversight allowed two uninvited guests to join the theory, the
spin factor and the Albert algebra, who were not closed under tetrads but
who had influential friends and applications in many areas of mathematics.

1.6 The Jordan Axioms

The next step in the empirical investigation of the algebraic properties enjoyed
by the model was to decide what crucial formal axioms or laws the operations
on hermitian matrices obey.3 As far as its linear structure went, the operations
of addition and scaling by a real number must of course satisfy the familiar
vector-space rules. But what conditions to impose on the multiplicative struc-
ture was much less clear. The most obvious rule for the operation of forming
polynomials in an observable was the rule that if r(t) = p(q(t)) is the compos-
ite of the polynomials p, q then for all observables x we have r(x) = p(q(x)).
If we write the powers occurring in the polynomials in terms of the Jordan
product, this composition rule is equivalent to power-associativity :

3 Notice the typical terms algebraists use to describe their creations: we say that an
algebra enjoys a property or obeys a law, as if it never had secret longings to be associative
or to lead a revolt against the Jordan identity.
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xn • xm = xn+m (power associative law).

Jordan discovered an important law or identity (in the sense of identical
relation satisfied by all elements) of degree four in two variables satisfied by
the Jordan product:

x2 • (y • x) = (x2 • y) • x
(which we now call the Jordan identity). For example, fourth-power associa-
tivity x2 • x2 = x4(:= x3 • x) follows immediately from this Jordan identity
by setting y = x, and some non-trivial fiddling shows that the Jordan identity
is strong enough to imply associativity of all powers. Thus Jordan thought
he had found the key law governing the Jordan product, besides its obvious
commutativity.
The other crucial property of the Jordan product on hermitian matrices is

its “positive-definiteness.” Recall that a symmetric bilinear form b on a real
or complex vector space is called positive definite if b(x, x) > 0 for all x  = 0
(of course, this does not mean b(x, y) ≥ 0 for all x, y!!). Notice that for an
n× n complex hermitian matrix X = (xij) (xji = xij), the square has as ith
diagonal entry

∑n
j=1 xijxji =

∑n
j=1 xijxij =

∑n
j=1 |xij |2, so the trace bilinear

form b(X,Y ) := tr(XY ) has b(X,X) = tr(X2) =
∑n

i=1
∑n

j=1 |xij |2 > 0 unless
all xij are 0, i.e., unless X = 0. This positivity of squares involves the trace
bilinear form, which is not part of the axiomatic framework considered by
Jordan, but it has purely algebraic consequences for the Jordan product: a
sum of squares can never vanish, since if

∑r
k=1 X

2
k = 0 then taking traces

gives
∑r

k=1 tr(X
2
k) = 0, which forces each of the positive quantities tr(X

2
k) to

vanish individually, and therefore each Xk is 0. This “formal reality” property
was familiar to Jordan from the recent Artin–Schreier theory of formally real
fields.
It was known from the Wedderburn theory of finite-dimensional associative

algebras that once you removed the radical (the largest ideal consisting of
nilpotent elements) you obtained a nice semisimple algebra which was a direct
sum of simple pieces (all of the formMm(∆) consisting of all m×m matrices
over a division ring ∆). Formal reality immediately guarantees that there are
no nilpotent elements whatsoever, providing instant semisimplicity: if there
are nonzero nilpotent elements of index n > 1 (xn = 0  = xn−1) then there are
also elements of index 2 (y2 = 0  = y = xn−1), and formal reality for sums of
length r = 1 shows that squares never vanish: x2

1 = 0 =⇒ x1 = 0.
After a little empirical experimentation, it seemed to Jordan that all other

laws satisfied by the Jordan product were consequences of commutativity, the
Jordan identity, and positivity or formal reality. The outcome of all this exper-
imentation was a distillation of the algebraic essence of quantum mechanics
into an axiomatic definition of a new algebraic system.
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Jordan Definition. A real Jordan algebra J = (V, p) consists of a real
vector space V equipped with a bilinear product p : V × V −→ V (usually ab-
breviated p(x, y) = x • y) satisfying the Commutative Law and the Jordan
Identity:

(JAX1) x • y = y • x (Commutative Law),

(JAX2) (x2 • y) • x = x2 • (y • x) (Jordan Identity).

A Jordan algebra is called Euclidean (or formally real) if it satisfies the
formal reality axiom

x2
1 + · · ·+ x2

n = 0 =⇒ x1 = · · · = xn = 0.

Jordan originally called these r-number algebras; the term “Jordan algebra”
was first used by A.A. Albert in 1946, and caught on immediately.
We now know that Jordan was wrong in thinking that his axioms had

captured the hermitian essence — he had overlooked some algebraic properties
of hermitian matrices, so instead he had captured something slightly more
general. Firstly, he missed an algebraic operation (the tetrad product) which
could not be built from the bullet. Secondly, he missed some laws for the bullet
which cannot be derived from the Jordan identity. The first and smallest of
these so-called “s-identities” is Glennie’s Identity G8 of degree 8 in 3 variables
discovered in 1963, so Jordan may perhaps be excused for overlooking it! In
1987 Thedy discovered a more transparent s-identity T10, even though it was
an operator identity of degree 10 in 3 variables. These overlooked identities will
come to play a vital role later in our story. Not only did the Albert algebra not
carry a tetrad operation as hermitian matrices do, but even with respect to its
Jordan product it was distinguishable from hermitian matrices by its refusal to
obey the s-identities. Thus it squeezed through two separate gaps in Jordan’s
axioms. As we saw in the Colloquial Survey, a large part of the richness of
Jordan theory is due to its exceptional algebras (with their connections to
exceptional Lie algebras, and exceptional symmetric domains), and much of
the power of Jordan theory is its ability to handle these exceptional objects
and hermitian objects in one algebraic framework.

1.7 The First Example: Full Algebras

Let us turn to the Three Basic Examples (Full, Hermitian, and Spin) of these
newly-christened Jordan algebras. Like the Three Musketeers, these three will
cut a swath through our story, and we will meet them at every new concept.
They will be assisted later by the Cubic Examples, which have a quite different
lineage. The progenitor of all three basic examples is an associative algebra
A. If we take the full algebra under the bullet product, we create a Jordan
algebra which has not evolved far from associativity.
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Full Example. Any associative algebra A over R can be converted into a
Jordan algebra, denoted by A+, by forgetting the associative structure but
retaining the Jordan structure: the linear space A, equipped with the product
x • y := 1

2 (xy + yx), is commutative as in (JAX1), and satisfies the Jordan
identity (JAX2).

In the Colloquial Survey we went through the verification of the Jordan iden-
tity (JAX2) in any A+; however, these Jordan algebras are almost never
Euclidean. For example, for the algebra A = Mn(D) of n × n matrices over
an associative ring D, the algebra A+ =Mn(D)+ is never Euclidean if n > 1,
since the matrix units Eij for i  = j square to zero. However, we have seen
that even if the full matrix algebra is not Euclidean, the symmetric matrices
over the reals or the hermitian matrices over the complexes are Euclidean.

1.8 The Second Example: Hermitian Algebras
Any subspace of A which is closed under the Jordan product will continue
to satisfy the axioms (JAX1) and (JAX2), and hence provide a Jordan alge-
bra. The most natural (and historically most important) method of selecting
out a Jordan-closed subspace is by means of an involution ∗, a linear anti-
isomorphism of an associative algebra of period 2.

Hermitian Example. If ∗ is an involution on A, then the space H(A,∗ )
of hermitian elements x∗ = x is closed under symmetric products, but not in
general under the noncommutative product xy: H(A,∗ ) is a Jordan subalgebra
of A+, but not an associative subalgebra of A.

Indeed, if x and y are symmetric we have (xy)∗ = y∗x∗ (by definition of
anti-isomorphism) = yx (by definition of x, y being hermitian) and dually
(yx)∗ = xy, so xy is not hermitian unless x and y happen to commute, but
(x • y)∗ = 1

2 (xy + yx)∗ = 1
2 ((xy)

∗ + (yx)∗) = 1
2 (yx + xy) = x • y is always

hermitian.
A particularly important case is that in which A =Mn(D) consists of all

n× n matrices X = (xij) over a unital associative coordinate algebra D with
involution d �→ d̄, and ∗ is the conjugate transpose involution X∗ := X

tr
on

matrices (with ij-entry xji).

Jordan Matrix Example. If A =Mn(D) is the algebra of all n×n matrices
over an associative coordinate ∗-algebra (D,−), then the algebra H(A, ∗) of
hermitian elements under the conjugate transpose involution is the Jordan
matrix algebra Hn(D,−) consisting of all n × n matrices X whose entries
satisfy xji = xij.
Such a Jordan matrix algebra will be Euclidean if the coordinate ∗-algebra

D is a Euclidean ∗-algebra in the sense that ∑r xrxr = 0 =⇒ all xr = 0. In
particular, the hermitian matrices Hn(R), Hn(C), Hn(H) with entries from
the reals R, complexes C, or quaternions H, under their usual involutions, all
have this positivity.



1.9 The Third Example: Spin Factors 47

1.9 The Third Example: Spin Factors

The first non-hermitian Jordan algebras were the spin factors discovered by
Max Zorn, who noticed that we get a Jordan algebra from Rn+1 = R1 ⊕ Rn

if we select the elements in R1 to act as “scalars,” and the elements of Rn to
act as “vectors” with bullet product a scalar multiple of 1 given by the dot
or inner product. We will use the term inner product instead of dot product,
both to avoid confusion with the bullet and for future generalization.

Spin Factor Example. If 〈·, ·〉 denotes the usual Euclidean inner product on
Rn, then JSpinn = R1 ⊕ Rn becomes a Euclidean Jordan algebra, a Jordan
spin factor, if we define 1 to act as unit and the bullet product of vectors v,w
in Rn to be given by the inner product,

v •w := 〈v,w〉1.
Indeed, commutativity (JAX1) comes from symmetry of the inner prod-
uct, the Jordan identity (JAX2) comes from the fact that x2 is a linear
combination of 1 and x, and formal reality comes from

∑(
αi1 ⊕ vi

)2 =∑
(α2

i+ < vi,vi >)1 ⊕(
2
∑

αivi
)
, where the coefficient of 1 can vanish only

if all αi and all vi are 0 by positive definiteness of the inner product.
This algebra gets its name from mathematical physics. The spin group

is a simply connected universal covering group for the group of rotations on
n-space (the special orthogonal group). The spin group has a mathematical
realization as certain invertible elements of the Clifford algebra, an associative
algebra generated by elements vi (corresponding to an orthonormal basis for
n-space) with defining relations

v2
i = 1, vivj + vjvi = 0 (i  = j).

Any such system of “orthogonal symmetries” vi in an associative algebra
is called a spin system. The linear span of 1 and the vi does not form an
associative algebra (the Clifford algebra has dimension 2n, not n+ 1), but it
does form a Jordan algebra with square (α1 +

∑
i αivi)

2 =
(
α2 +

∑
i α

2
i

)
1 +

2α (
∑

i αivi) , which is precisely the square in JSpinn.
Notice that the trace form t(α1 ⊕ v) := α leads to a trace bilinear form

b(x, y) := t(x • y) with b(x, x) = α2 + 〈v, v〉 > 0 just as for hermitian
matrices, and any time we have such a positive definite bilinear form built
out of multiplications we automatically have formal reality.
Another way to see that this algebra is Euclidean is to note that you

can (if you’re careful!) imbed it in the hermitian 2n × 2n real matrices: let
W be the real inner product space with 2n orthonormal basis vectors eI
parameterized by the distinct n-tuples I = (ε1, . . . , εn) for εk = ±1. De-
fine linear transformations vk, k = 1, 2, . . . n, to act on the basis vectors
by vk(eI) := ε1 · · · εk−1eIk

, scaling them by a factor ±1 which is the prod-
uct of the first k − 1 ε’s, and switching the kth index of the n-tuple to its
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negative Ik := (ε1, . . . ,−εk, . . . , εn). Then by careful calculation we can ver-
ify that (1) the vk are self-adjoint with respect to the inner product, since
〈vk(eI), eJ〉 = 〈eI , vk(eJ)〉 are both zero unless I and J are obtained from
each other by negating the kth index, in which case the inner products are
both the factor ε1 · · · εk−1, and (2) the vk have products v2

k = 1W , vk •vj = 0
for j  = k. Thus the n “orthogonal symmetries” vk form a spin system in
End(W ), so the (n + 1)-dimensional real subspace spanned by 1W and the
orthogonal symmetries vk forms a Jordan algebra with the same multiplica-
tion table as JSpinn. Thus we may regard the algebra JSpinn as some sort of
“thin” Jordan subalgebra of a full algebra of hermitian matrices.

1.10 Special and Exceptional

Recall that the whole point of Jordan’s investigations was to discover Jordan
algebras (in the above sense) which did not result simply from the Jordan
product in associative algebras. We call a Jordan algebra special if it comes
from the Jordan product in an associative algebra, otherwise it is exceptional.
In a special Jordan algebra the algebraic structure is derived from an ambient
associative product xy.

Special Definition. A Jordan algebra is special if it can be linearly imbedded
in an associative algebra so that the product becomes the Jordan product 1

2 (xy+
yx), i.e., if it is isomorphic to some Jordan subalgebra of some Jordan algebra
A+, otherwise it is exceptional.

One would expect a variety where every algebra is either special or excep-
tional to have its roots in Lake Wobegon! The examples H(A,∗ ) are clearly
special, living inside the associative algebra A. In particular, matrix algebras
Hn(D,−) are special, living inside A =Mn(D). JSpinn is also special, since
we just noted that it can be imbedded in suitably large hermitian matrices.

1.11 Classification

Having settled, he thought, on the basic axioms for his systems, Jordan set
about trying to classify them. The algebraic setting for quantum mechan-
ics would have to be infinite-dimensional, of course, but since even for as-
sociative algebras the study of infinite-dimensional algebras was in its in-
fancy, there seemed no hope of obtaining a complete classification of infinite-
dimensional Jordan algebras. Instead, it seemed reasonable to study first the
finite-dimensional algebras, hoping to find families of simple exceptional alge-
bras En parameterized by natural numbers n (e.g., n×n matrices), so that by
letting n go to infinity a suitable home could be found for quantum mechanics.
The purely algebraic aspects were too much for Jordan to handle alone, so he
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called in the mathematical physicist Eugene Wigner and the mathematician
John von Neumann.
In their fundamental 1934 paper the J–vN–W triumvirate showed that

in finite-dimensions the only simple building blocks are the usual hermitian
matrices and the algebra JSpinn, except for one small algebra of 3×3 matrices
whose coordinates come from the nonassociative 8-dimensional algebra K of
Cayley’s octonions.

Jordan–von Neumann–Wigner Theorem. Every finite-dimensional for-
mally real Jordan algebra is a direct sum of a finite number of simple ideals,
and there are five basic types of simple building blocks: four types of her-
mitian matrix algebras corresponding to the four composition division alge-
bras R,C,H,K over the reals, together with the spin factors. Every finite-
dimensional simple formally real Jordan algebra is isomorphic to one of :

H1
n = Hn(R), H2

n = Hn(C), H4
n = Hn(H), H8

3 = H3(K), JSpinn.
The notation was chosen so that Hk

n (calledM
k
n in the original paper) denoted

the n×n hermitian matrices over the k-dimensional real composition division
algebra. R and C are old friends, of course, and Hamilton’s quaternions H
(with basis 1, i, j, k) are at least a nodding acquaintance; Kayley’s octonions
K = H⊕H?may be a stranger — they have basis {1, i, j, k}∪{?, i?, j?, k?} with
nonassociative product h1(h2?) = (h2?)h∗1 = (h2h1)?, (h1?)(h2?) = −(h∗2h1),
and involution (h?)∗ = −h? in terms of the new basic unit ? and old el-
ements h, h1, h2 ∈ H. All four of these carry a positive definite quadratic
form Q(

∑
αixi) =

∑
α2
i (relative to the indicated bases {xi}) which “ad-

mits composition” in the sense that Q of the product is the product of the
Q’s, Q(xy) = Q(x)Q(y), and for that reason are called composition algebras.
A celebrated theorem of Hurwitz asserts that the only possible composition
algebras over any field are the field (dimension 1), a quadratic extension (di-
mension 2), a quaternion algebra (dimension 4), and an octonion algebra
(dimension 8). By the Jordan Matrix Example we see that the first three
algebras Hk

n for k = 1, 2, 4 are special, living inside the full associative alge-
bras Mn(R), Mn(C), Mn(H) of n × n matrices, and after the Spin Factor
Example we noted that the fifth example JSpinn lives inside large hermitian
matrices.
On the other hand, the fourth example H8

3 = H3(K) did not seem to be
special, since its coordinates came from the nonassociative algebra K, but the
authors were unable to prove its exceptionality (and could prove only with
difficulty that it satisfied the Jordan identity). They turned to a bright young
algebraist A.A. Albert, who showed that it was indeed exceptional Jordan.

Albert’s Exceptional Theorem. The algebra H3(K) is an exceptional Jor-
dan algebra of dimension 27.



50 Physical Antiquity

It is easy to see thatH3(K) has dimension 27: in a typical element
(α11 a12 a13
a12 α22 a23
a13 a23 α33

)
,

each of the 3 independent diagonal entries αii comes from the 1-dimensional
space R1 of symmetric octonions, and each of the 3 independent upper di-
agonal entries aij comes from the 8-dimensional space of all octonions [the
sub-diagonal entries are then completely determined], leading to 1 + 1 + 1
+ 8 + 8 + 8 = 27 independent parameters. In view of Albert’s proof of ex-
ceptionality, and his later construction of Jordan division algebras which are
forms of H3(K), these 27-dimensional exceptional algebras are now known as
Albert algebras, and H3(K) is denoted by A.
As we noted in the Colloquial Survey, these results were deeply disap-

pointing to physicists, since the lone exceptional algebra A was too tiny to
provide a home for quantum mechanics, and too isolated to give a clue as
to the possible existence of infinite-dimensional exceptional algebras. It was
still possible that infinite-dimensional exceptional algebras existed, since there
were well-known associative phenomena that appear only in infinite dimen-
sions: in quantum mechanics, the existence of operators p, q on Hilbert space
with [p, q] = �

2π1 (� = Planck’s constant) is possible only in infinite dimen-
sions (in finite dimensions the commutator matrix [p, q] would have trace 0,
hence could not be a nonzero multiple α1nn of the identity matrix 1nn, since
the trace of α1nn is nα  = 0). So there remained a faint hope that there might
still be an exceptional home for quantum mechanics somewhere.
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Jordan Algebras in the Algebraic Renaissance:
Finite-Dimensional Jordan Algebras over
Algebraically Closed Fields

The next stage in the history of Jordan algebras was taken over by algebraists.
While the physicists lost interest in the search for an exceptional setting for
quantum mechanics (the philosophical objections to the theory paling in com-
parison to its amazing achievements), the algebraists found unsuspected rela-
tions between, on the one hand, the strange exceptional simple Albert algebra
of dimension 27 and, on the other hand, the five equally strange exceptional
simple Lie groups and algebras of types G2, F4, E6, E7, E8 of dimensions 14,
52, 78, 133, 248. While these had been discovered by Wilhelm Killing and
Elie Cartan in the 1890s, they were known only through their multiplication
tables: there was no concrete representation for them (the way there was for
the four great classes An, Bn, Cn, Dn discovered by Sophus Lie in the 1870s).
During the 1930s Jacobson discovered that the Lie group G2 could be realized
as the automorphism group (and the Lie algebra G2 as the derivation algebra)
of a Cayley algebra, and in the early 1950s Chevalley, Schafer, Freudenthal,
and others discovered that the Lie group F4 could be realized as the automor-
phism group (and the Lie algebra F4 as the derivation algebra) of the Albert
algebra, that the group E6 could be realized as the isotopy group (and the al-
gebra E6 as the structure algebra) of the Albert algebra, and that the algebra
E7 could be realized as the superstructure Lie algebra of the Albert algebra.
[E8 was connected to the Albert algebra in a more complicated manner.]
These unexpected connections between the physicists’ orphan child and

other important areas of mathematics, spurred algebraists to consider Jordan
algebras over more general fields. By the late 1940s the J–vN–W structure
theory had been extended by A.A. Albert, F. and N. Jacobson, and others to
finite-dimensional Jordan algebras over an arbitrary algebraically closed field
of characteristic not 2, with essentially the same cast of characters appearing
in the title roles.
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2.1 Linear Algebras over General Scalars

We begin our algebraic history by recalling the basic categorical concepts
for general nonassociative algebras OVER AN ARBITRARY RING OF
SCALARS Φ. When dealing with Jordan algebras we will have to assume
that 1

2 ∈ Φ, and we will point this out explicitly. An algebra is simultaneously
a ring and a module over a ring of scalars Φ, such that the ring multiplication
interacts correctly with the linear structure.

Linear Algebra Definition. A ring of scalars is a unital commutative
associative ring Φ. A (nonassociative) linear algebra over Φ (or Φ-algebra,
for short) is a Φ-module A equipped with a Φ-bilinear product A × A −→
A (abbreviated by juxtaposition (x, y) �→ xy). Bilinearity is equivalent to the
condition that the product satisfies the left and right distributive laws

x(y + z) = xy + xz, (y + z)x = yx+ zx,

and that scalars flit in and out of products,

(αx)y = x(αy) = α(xy),

for all elements x, y, z in A. The algebra is unital if there exists a (two-sided)
unit element 1 satisfying 1x = x1 = x for all x.

Notice that we do not require associativity of the product nor existence of
a unit element in A (though we always demand a unit scalar in Φ). Lack of a
unit is easy to repair: we can always enlarge a linear algebra slightly to get a
unital algebra.

Unital Hull Definition. Any linear algebra can be imbedded as an ideal in
its unital hull

Â := Φ1̂⊕A, (α1̂⊕ x)(β1̂⊕ y) := αβ1̂⊕ (αy + βx+ xy).

A is always an ideal in Â since multiplication by the new elements α1̂ are just
scalar multiplications; this means that we can often conveniently formulate
results inside A making use of its unital hull. For example, in an associative
algebra the left ideal Ax + Φx generated by an element x can be written
succinctly as Âx (the left ideal Ax needn’t contain x if A is not already
unital).
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2.2 Categorical Nonsense

We have the usual notions of morphisms, sub-objects, and quotients for linear
algebras.

Morphism Definition. A homomorphism ϕ : A→ A′ is a linear map of
Φ-modules which preserves multiplication,

ϕ(xy) = ϕ(x)ϕ(y);

an anti-homomorphism is a linear map which reverses multiplication,

ϕ(xy) = ϕ(y)ϕ(x).

The kernel Ker(ϕ) := ϕ−1(0′) is the set of elements mapped into 0′ ∈ A′,
and the image Im(ϕ) := ϕ(A) is the range of the map. An isomorphism is
a bijective homomorphism; we say that A is isomorphic to A′, or A and
A′ are isomorphic (written A ∼= A′), if there is an isomorphism of A onto
A′. An automorphism is an isomorphism of an algebra with itself. We have
corresponding notions of anti-isomorphism and anti-automorphism for
anti-homomorphisms.

∗-Algebra Definition. An involution is an anti-automorphism of period 2,

ϕ(xy) = ϕ(y)ϕ(x) and ϕ(ϕ(x)) = x.

We will often be concerned with involutions, since they are a rich source of Jor-
dan algebras. The natural notion of morphism in the category of ∗-algebras
(algebras together with a choice of involution) is that of ∗-homomorphism
(A, ∗) → (A′, ∗′), which is a homomorphism ϕ : A → A′ of algebras which
preserves the involutions, ϕ ◦ ∗ = ∗′ ◦ ϕ (i.e., ϕ(x∗) = ϕ(x)∗

′
for all x ∈ A).

One important involution is the standard involution on a quaternion or
octonion algebra.

Ideal Definition. A subalgebra B ≤ A of a linear algebra A is a Φ-
submodule closed under multiplication: BB ⊆ B. An ideal B  A of A is a
Φ-submodule closed under left and right multiplication by A: AB+BA ⊆ B.
If A has an involution, a ∗-ideal is an ideal invariant under the involution:
B A and B∗ ⊆ B. We will always use 0 to denote the zero submodule, while
ordinary 0 will denote the zero scalar, vector, or transformation (context will
decide which is meant).

Quotient Definition. Any ideal B  A is the kernel of the canonical homo-
morphism π : x �→ x of A onto the quotient algebra A = A/B (consisting
of all cosets x := [x]B := x+B with the induced operations αx := αx, x+y :=
x+ y, x y := xy). The quotient A/B of a ∗-algebra by a ∗-ideal is again a
∗-algebra under the induced involution x̄∗ := x∗.
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We have the usual tripartite theorem relating homomorphisms and quo-
tients.

Fundamental Theorem of Homomorphisms. For homomorphisms (and
similarly for ∗-homomorphisms) we have:
(I) If ϕ : A → A′ is a homomorphism, then Ker(ϕ)  A, Im(ϕ) ≤ A′, and

A/Ker(ϕ) ∼= Im(ϕ) under the map ϕ(x) := ϕ(x).

(II) There is a 1-to-1 correspondence between the ideals (respectively subal-
gebras) C of the quotient A = A/B and those C of A which contain B, given
by C �→ π(C) and C �→ π−1(C); for such ideals C we have A/C ∼= A/C.
(III) If B  A, C ≤ A then C/(C ∩ B) ∼= (C + B)/B under the map

ϕ([x]C∩B) = [x]B.

As usual, we have a way of gluing different algebras together as a direct
sum in such a way that the individual pieces don’t interfere with each other.

Direct Sum Definition. The direct sum A1 � · · ·�An of a finite number
of algebras is the Cartesian product A1 × · · · ×An under the componentwise
operations

α(x1, . . . , xn) := (αx1, . . . , αxn),
(x1, . . . , xn) + (y1, . . . , yn) := (x1 + y1, . . . , xn + yn),
(x1, . . . , xn)(y1, . . . , yn) := (x1y1, . . . , xnyn).

We will consistently write an algebra direct sum with �, and a mere module
direct sum with ⊕.
In algebras with finiteness conditions we only need to consider finite direct

sums of algebras. Direct sums are the most useful (but rarest) “rigid” decom-
positions, and are the goal of many structure theories. In the wide-open spaces
of the infinite-dimensional world, direct sums (finite or otherwise) do not suf-
fice, and we need to deal with infinite direct products.

Direct Product Definition. The direct product
∏

i∈I Ai of an arbitrary
family of algebraic systems Ai indexed by a set I is the Cartesian product
Xi∈IAi under the componentwise operations. We may think of this as all
“strings” a =

∏
ai or “I-tuples” a = (. . . ai . . . ) of elements, one from each

family member Ai, or more rigorously as all maps a : I → ∪iAi such that
a(i) ∈ Ai for each i, under the pointwise operations.
The direct sum �i∈IAi is the subalgebra of all tuples with only a finite

number of nonzero entries (so they can be represented as a finite sum ai1 +
· · ·+ ain of elements aj ∈ Aj). For each i ∈ I we have canonical projections
πi of both the direct product and direct sum onto the ith component Ai.1

1 The direct product and sum are often called the product
∏
Ai and coproduct

∐
Ai;

especially in algebraic topology, these appear as “dual” objects. For finite index sets, the
two concepts coincide.
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Infinite direct products are complicated objects, more topological or combi-
natorial than algebraic. They play a crucial role in the “logic” of algebras
through the construction of ultraproducts. Semi-direct product decomposi-
tions are fairly “loose,” but are crucial in the study of radicals.

Subdirect Product Definition. An algebra is a subdirect product A =∼∏
i∈I Ai of algebras (more often and more inaccurately called a semidirect

sum) if there is (1) a monomorphism ϕ : A→ ∏
i∈I Ai such that (2) for each

i ∈ I the canonical projection πi(ϕ(A)) = Ai maps onto all of Ai. By the
Fundamental Theorem, (2) is equivalent to Ai

∼= A/Ki for an ideal Ki  A,
and (1) is equivalent to

⋂
I Ki = 0. Thus a semi-direct product decomposition

of A is essentially the same as a “disjoint” family of ideals.

For example, the integers Z are a subdirect product of fields Zp for any infinite
collection of primes p, and even of Zpn for a fixed p but infinitely many n.
In a philosophical sense, an algebra A can be recovered from an ideal B

and its quotient A/B. The basic building blocks are those algebras which
cannot be built up from smaller pieces, i.e., have no smaller ingredients B.

Simple Definition. An algebra is simple if it has no proper ideals and is
not trivial, AA  = 0. Analogously, a ∗-algebra is ∗-simple if it has no proper
∗-ideals and is not trivial. Here a submodule B is proper if it is not zero or
the whole module, B  = 0,A. An algebra is semisimple if it is a finite direct
sum of simple algebras.

2.3 Commutators and Associators

We can reformulate the algebra conditions in terms of the left and right
multiplication operators Lx and Rx by the element x, defined by

Lx(y) := xy =: Ry(x).

Bilinearity of the product just means the map L : x �→ Lx (or equivalently
the map R : y �→ Ry) is a linear mapping from the Φ-module A into the
Φ-module EndΦ(A) of Φ-linear transformations on A.
The product (and the algebra) is commutative if xy = yx for all x, y, and

skew if xy = −yx for all x, y; in terms of operators, commutativity means
that Lx = Rx for all x, and skewness means that Lx = −Rx for all x, so in
either case we can dispense with the right multiplications and work only with
the Lx. In working with the commutative law, it is convenient to introduce
the commutator

[x, y] := xy − yx,

which measures how far two elements are from commuting: x and y commute
iff their commutator is zero. In these terms the commutative law is [x, y] = 0,
so an algebra is commutative iff all commutators vanish.
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The product (and the algebra) is associative if (xy)z = x(yz) for all
x, y, z, in which case we drop all parentheses and write the product as xyz.
We can interpret associativity in three ways as an operator identity, depending
on which of x, y, z we treat as the variable: on z it says that Lxy = LxLy, i.e.,
that L is a homomorphism of A into EndΦ(A); on x it says that RzRy = Ryz,
i.e., that R is an anti-homomorphism; on y it says that RzLx = LxRz, i.e.,
that all left multiplications Lx commute with all right multiplications Rz.2 It
is similarly convenient to introduce the associator

[x, y, z] := (xy)z − x(yz),

which measures how far three elements are from associating: x, y, z associate
iff their associator is zero. In these terms an algebra is associative iff all its
associators vanish, and the Jordan identity becomes [x2, y, x] = 0.
Nonassociativity can never be repaired, it is an incurable illness. Instead,

we can focus on the parts of an algebra which do behave associatively. The
nucleus Nuc(A) of a linear algebra A is the part which “associates” with all
other elements, the elements n which hop blithely over parentheses:

Nuc(A) : (nx)y = n(xy), (xn)y = x(ny), (xy)n = x(yn)

for all x, y in A. In terms of associators, nuclear elements are those which
vanish when put into an associator,

Nuc(A) := {n ∈ A | [n,A,A] = [A, n,A] = [A,A, n] = 0}.
Nuclear elements will play a role in several situations (such as forming nuclear
isotopes, or considering involutions whose hermitian elements are all nuclear).
The associative ring theorist Jerry Martindale offers this advice for proving
theorems about nonassociative algebras: never multiply more than two ele-
ments together at a time. We can extend this secret for success even further:
when multiplying n elements together, make sure that at least n–2 of them
belong to the nucleus!
Another useful general concept is that of the center Cent(A), the set of

elements c which both commute and associate, and therefore act like scalars:

Cent(A) : cx = xc, c(xy) = (cx)y = x(cy),
2 Most algebraists of yore were right-handed, i.e., they wrote their maps on the right: a

linear transformation T on V had values xT, the matrix of T with respect to an ordered
basis was built up row by row, and composition S ◦ T meant first do S and then T . For
them, the natural multiplication was Ry , xRy = xy. Modern algebraists are all raised as left-
handers, writing maps on the left (f(x) instead of xf), as learned in the calculus cradle, and
building matrices column by column. Whichever hand you use, in dealing with modules over
noncommutative rings of scalars it is important to keep the scalars on the opposite side of the
vectors from the operators, so linear maps have either T (xα) = (Tx)α or (αx)T = α(xT ).
Since the dual V ∗ of a left (resp. right) vector space V over a noncommutative division
algebra ∆ is a right (resp. left) vector space over ∆, it is important to be ambidextrous,
writing a linear map as T (x) on V, but its adjoint as (x∗)T ∗ on the dual.
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or in terms of associators and commutators

Cent(A) := {c ∈ Nuc(A) | [c,A] = 0}.
Any unital algebra may be considered as an algebra over its center, which is
a ring of scalars over Φ: we simply replace the original scalars by the center
with scalar multiplication c · x := cx. If A is unital then Φ1 ⊆ Cent(A), and
the original scalar action is preserved in the form αx = (α1) ·x. In most cases
the center forms the “natural” scalars for the algebra; a unital Φ-algebra is
central if its center is precisely Φ1. Central-simple algebras (those which are
central and simple) are crucial building-blocks of a structure theory.

2.4 Lie and Jordan Algebras
In defining Jordan algebras over general scalars, the theory always required
the existence of a scalar 1

2 (ruling out characteristic 2) to make sense of its
basic examples, the special algebras under the Jordan product. Outside this
restriction, the structure theory worked smoothly and uniformly in all char-
acteristics.
Jordan Algebra Definition. If Φ is a commutative associative ring of
scalars containing 1

2 , a Jordan algebra over Φ is a linear algebra J equipped
with a commutative product p(x, y) = x•y which satisfies the Jordan identity.
In terms of commutators and associators these can be expressed as

(JAX1) [x, y] = 0 (Commutative Law).
(JAX2) [x2, y, x] = 0 (Jordan Identity).

The product is usually denoted by x • y rather than by mere juxtaposition.
In operator terms, the axioms can be expressed as saying that left and right
multiplications coincide, and left multiplication by x2 commutes with left
multiplication by x:

(JAX1op) Lx = Rx, (JAX2op) [Lx2 , Lx] = 0.

Lie algebras can be defined over general rings, though in practice patholo-
gies crop up as soon as you leave characteristic 0 for characteristic p (and by
the time you reach characteristic 2 almost nothing remains of the structure
theory).
Lie Algebra Definition. A Lie algebra3 over any ring of scalars Φ is a lin-
ear algebra L equipped with an anti-commutative product, universally denoted
by brackets p(x, y) := [x, y], satisfying the Jacobi identity

(LAX1) [x, y] = −[y, x] (Anti-commutative Law),

(LAX2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi Identity).
3 “Lee” as in Sophus or Sara or Robert E., not “Lye.”
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We can write these axioms too as illuminating operator identities:

(LAX1op) Lx = −Rx, (LAX2op) L[x,y] = [Lx, Ly],

so that L is a homomorphism L → EndΦ(L)− of Lie algebras (called the
adjoint representation, with the left multiplication map called the adjoint
map Ad(x) := Lx). The use of the bracket for the product conflicts with the
usual notation for the commutator, which would be [x, y] − [y, x] = 2[x, y],
but this shows that there is no point in using commutators in Lie algebras to
measure commutativity: the bracket says it all.

2.5 The Three Basic Examples Revisited

The creation of the plus and minus algebras A+, A− makes sense for arbi-
trary linear algebras, and these produce Jordan and Lie algebras when A is
associative. These are the first (and most important) examples of Jordan and
Lie algebras.

Full Example. If A is any linear algebra with product xy over a ring of
scalars Φ containing 1

2 , the plus algebra A
+ denotes the linear Φ-algebra with

commutative “Jordan product”

A+ : x • y := 1
2 (xy + yx).

If A is an associative Φ-algebra, then A+ is a Jordan Φ-algebra.

Just as everyone should show, once and only once in his or her life, that ev-
ery associative algebra A gives rise to a Lie algebra A− by verifying directly
the anti-commutativity and Jacobi identity for the commutator product, so
should everyone show that A also gives rise to a Jordan algebra A+ by verify-
ing directly the commutativity and Jordan identity for the anti-commutator
product.
The previous notions of speciality and exceptionality also make sense in

general.

Special Definition. A Jordan algebra is special if it can be imbedded in
an algebra A+ for A associative (i.e., if it is isomorphic to a subalgebra of
some A+), otherwise it is exceptional. We usually think of special algebras
as living inside associative algebras.

As before, the most important examples of special Jordan or Lie subalge-
bras are the algebras of hermitian or skew elements of an associative algebra
with involution.

Hermitian Example. If a linear algebra A has an involution ∗, then H(A, ∗)
denotes the hermitian elements x∗ = x. It is easy to see that if A is an
associative Φ-algebra with involution, then H(A, ∗) is a Jordan Φ-subalgebra
of A+.
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The third basic example of a special Jordan algebra is a spin factor, which
has no natural Lie analogue.

Spin Factor Example. We define a linear Φ-algebra structure JSpinn(Φ)
on Φ1⊕Φn over an arbitrary ring of scalars Φ by having 1 act as unit element
and defining the product of vectors v,w ∈ Φn to be the scalar multiple of 1
given by the dot product 〈v,w〉 (for column vectors this is v trw),

v •w := 〈v,w〉1,
so the global expression for the product is

(α1⊕ v) • (β1⊕w) :=
(
αβ + 〈v,w〉)1⊕ (

αw + βv
)
.

Spin factors over general scalars are Jordan algebras just as they were over
the reals, by symmetry of the dot product and the fact that Lx2 is a linear
combination of Lx, 1J, and again they can be imbedded in hermitian 2n × 2n
matrices over Φ.

2.6 Jordan Matrix Algebras with Associative
Coordinates

An important special case of a Hermitian Jordan algebra H(A, ∗) is that
where the linear algebra A = Mn(D) is the algebra of n × n matrices over
a coordinate algebra (D,−) (a unital linear algebra with involution d �→ d̄).
These are especially useful since one can give an explicit “multiplication table”
for hermitian matrices in terms of the coordinates of the matrices, and the
properties of H closely reflect those of D.

Hermitian Matrix Example. For an arbitrary linear ∗-algebra D with in-
volution , the conjugate transpose mapping X∗ := X

tr (
X := (xij)

)
is an

involution on the linear algebra Mn(D) of all n × n matrices with entries
from D under the usual matrix product XY . The Φ-module Hn(D,−) of all
hermitian matrices X∗ = X with respect to this involution is closed under the
Jordan product X • Y = 1

2 (XY + Y X).4

Using the multiplication table one can show why the exceptional Jordan
matrix algebras in the Jordan–von Neumann–Wigner Theorem stop at n =
3: in order to produce a Jordan matrix algebra, the coordinates must be
alternative if n = 3 and associative if n ≥ 4.5

4 If we used a single symbol D = (D,−) for a ∗-algebra, the hermitian example would
take the form Hn(D). Though this notation more clearly reveals that Hn is a functor from
the categories of associative ∗-algebras to Jordan algebras, we will almost always include
the involution in the notation. The one exception is for composition algebras with their
standard involution: we write Hn(C) when C is R,C,H,K, or an octonion algebra O.

5 In fact, any “respectable” Jordan algebras of “degree” 4 or more (whether or not they
have the specific form of matrix algebras) must be special.
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Associative Coordinates Theorem. If the hermitian matrix algebra
Hn(D,−) for n ≥ 4 and 1

2 ∈ Φ is a Jordan algebra under the product
X •Y = 1

2 (XY +Y X), then D must be associative and Hn(D,−) is a special
Jordan algebra.

2.7 Jordan Matrix Algebras with Alternative
Coordinates

When n = 3 we can even allow D to be slightly nonassociative: the coordinate
algebra must be alternative.

Alternative Algebra Definition. A linear algebra D is alternative if it
satisfies the Left and Right Alternative Laws

(AltAX1) x2y = x(xy) (Left Alternative Law),

(AltAX2) yx2 = (yx)x (Right Alternative Law)

for all x, y in D. An alternative algebra is automatically flexible,

(AltAX3) (xy)x = x(yx) (Flexible Law).

In terms of associators or operators these identities may be expressed as

[x, x, y] = [y, x, x] = [x, y, x] = 0, or

Lx2 = (Lx)2, Rx2 = (Rx)2, LxRx = RxLx.

From the associator conditions we see that alternativity is equivalent to the
associator [x, y, z] being an alternating multilinear function of its arguments
(in the sense that it vanishes if any two of its variables are equal). Perhaps
it would be better to call the algebras alternating instead of alternative. No-
tice that the nuclearity conditions can be written in terms of associators as
[n, x, y] = [x, n, y] = [x, y, n] = 0, so by alternation nuclearity reduces to
[n, x, y] = 0 in alternative algebras.
It is not hard to see that for a matrix algebra H3(D,−) to be a Jordan

algebra it is necessary that the coordinate algebra D be alternative and that
the diagonal coordinates, the hermitian elements H(D,−), lie in the nucleus.
The converse is true, but painful to prove. Note that in the octonions the
hermitian elements do even better: they are scalars lying in Φ1.

Alternative Coordinates Theorem. The hermitian matrix algebraH3(D,−)
over Φ containing 1

2 is a Jordan algebra iff the ∗-algebra D is alternative with
nuclear involution, i.e., its hermitian elements are contained in the nucleus,

[H(D,−),D,D] = 0.
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2.8 The n-Squares Problem

Historically, the first nonassociative algebra, the Cayley numbers (progenitor
of the theory of alternative algebras), arose in the context of the number-
theoretic problem of quadratic forms permitting composition. We will show
how this number-theoretic question can be transformed into one concerning
certain algebraic systems, the composition algebras, and then how a precise
description of these algebras leads to precisely one nonassociative coordinate
algebra suitable for constructing Jordan algebras, the 8-dimensional octonion
algebra with scalar involution.
It was known to Diophantus that sums of two squares could be composed,

i.e., that the product of two such terms could be written as another sum of
two squares: (x2

0 + x2
1)(y

2
0 + y2

1) = (x0y0 − x1y1)2 + (x0y1 + x1y0)2. Indian
mathematicians were aware that this could be generalized to other “binary”
(two-variable) quadratic forms, yielding a “two-square formula”

(x2
0 + λx2

1)(y
2
0 + λy2

1) = (x0y0 − λx1y1)2 + λ(x0y1 + x1y0)2 = z2
0 + λz2

1 .

In 1748 Euler used an extension of this to “quaternary” (4-variable) quadratic
forms x2

0 + x2
1 + x2

2 + x2
3, and in 1770 Lagrange used a general “4-square

formula”:
(x2

0 + λx2
1 + µx2

2 + λµx2
3) × (y2

0 + λy2
1 + µy2

2 + λµy2
3)

= z2
0 + λz2

1 + µz2
2 + λµz2

3

for zi defined by
z0 := x0y0 − λx1y1 − µx2y2 − λµx3y3,
z1 := x0y1 + x1y0 + µx2y3 − µx3y2,
z2 := x0y2 − λx1y3 + x2y0 + λx3y1,
z3 := x0y3 + x1y2 − x2y1 + x3y0.

In 1845 an “8-square formula” was discovered by Cayley; J.T. Graves
claimed to have discovered this earlier, and in fact C.F. Degan had already
noted a more general formula in 1818:

(x2
0 + λx2

1 + µx2
2 + λµx2

3 + νx2
4 + λνx2

5 + µνx2
6 + λµνx2

7)
× (y2

0 + λy2
1 + µy2

2 + λµy2
3 + νy2

4 + λνy2
5 + µνy2

6 + λµνy2
7)

= (z2
0 + λz2

1 + µz2
2 + λµz2

3 + νz2
4 + λνz2

5 + µνz2
6 + λµνz2

7)

for zi defined by
z0 := x0y0 − λx1y1 − µx2y2 − λµx3y3 − νx4y4 − λνx5y5 − µνx6y6 − λµνx7y7,
z1 := x0y1 + x1y0 + µx2y3 − µx3y2 + νx4y5 − νx5y4 − µνx6y7 + µνx7y6,
z2 := x0y2 − λx1y3 + x2y0 + λx3y1 + νx4y6 + λνx5y7 − νx6y4 − λνx7y5,
z3 := x0y3 + x1y2 − x2y1 + x3y0 + νx4y7 − νx5y6 + νx6y5 − νx7y4,
z4 := x0y4 − λx1y5 − µx2y6 − λµx3y7 + x4y0 + λx5y1 + µx6y2 + λµx7y3,
z5 := x0y5 + x1y4 − µx2y7 + µx3y6 − x4y1 + x5y0 − µx6y3 + µx7y2,
z6 := x0y6 + λx1y7 + x2y4 − λx3y5 − x4y2 + λx5y3 + x6y0 − λx7y1,
z7 := x0y7 − x1y6 + x2y5 + x3y4 − x4y3 − x5y2 + x6y1 + x7y0.
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This is clearly not the sort of formula you stumble upon during a casual
mathematical stroll. Indeed, this is too cumbersome to tackle directly, with
its mysterious distribution of plus and minus signs and assorted scalars.

2.9 Forms Permitting Composition

A more concise and conceptual approach is needed. If we interpret the vari-
ables as coordinates of a vector x = (x0, . . . , x7) in an 8-dimensional vector
space, then the expression x2

0+λx2
1+µx2

2+λµx2
3+νx2

4+λνx2
5+µνx2

6+λµνx2
7

defines a quadratic norm form N(x) on this space. The 8-square formula as-
serts that this quadratic form permits (or admits) composition in the sense
that N(x)N(y) = N(z), where the “composite” z = (z0, . . . , z7) is automati-
cally a bilinear function of x and y (i.e., each of its coordinates zi is a bilinear
function of the xj and yk). We may think of z = x·y as some sort of “product”
of x and y. This product is linear in x and y, but it need not be commutative
or associative. Thus the existence of an n-squares formula is equivalent to the
existence of an n-dimensional algebra with product x · y and distinguished
basis e0, . . . , en−1 such that N(x) = N(x0e0 + · · ·+ xn−1en−1) =

∑n
i=0 λix

2
i

permits composition N(x)N(y) = N(x · y) (in the classical case all λi = 1,
and this is a “pure” sum of squares). The element e0 = (1, 0, . . . , 0) (having
x0 = 1, all other xi = 0) acts as unit element: e0 · y = y, x · e0 = x. When
the quadratic form is anisotropic (N(x) = 0 =⇒ x = 0) the algebra is a
“division algebra”: it has no divisors of zero, x, y  = 0 =⇒ x · y  = 0, so in the
finite-dimensional case the injectivity of left and right multiplications makes
them bijections.
The algebra behind the 2-square formula is just the complex numbers C :

z = x01+x1i with basis 1, i over the reals, where 1 acts as identity and i2 = −1
and N(z) = x2

0 + x2
1 = zz is the ordinary norm squared (where z = x01− x1i

is the ordinary complex conjugate). This interpretation was well known to
Gauss. The 4-squares formula led Hamilton to the quaternions H consisting
of all x = x01 + x1i + x2j + x3k, where the formula for x · y means that the
basis elements 1, i, j, k satisfy the now-familiar rules

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Clearly, this algebra is no longer commutative. Again N(x) = xx is the ordi-
nary norm squared (where x = x01−x1i−x2j−x3k is the ordinary quaternion
conjugate).
Clifford and Hamilton invented 8-dimensional algebras (biquaternions),

which were merely the direct sum H � H of two quaternion algebras. Be-
cause of the presence of zero divisors, these algebras were of minor in-
terest. Cayley was the first to use the 8-square formula to create an 8-
dimensional division algebra K of octonions or Cayley numbers. By 1847 he
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recognized that this algebra was not commutative or associative, with basis
e0, . . . , e7 = 1, i, j, k, ?, i?, j?, k? with multiplication table

e0ei = eie0 = ei, e2
i = −1, eiej = −ejei = ek

for ijk = 123, 145, 624, 653, 725, 734, 176.

A subsequent flood of (false!!) higher-dimensional algebras carried names such
as quadrinions, quines, pluquaternions, nonions, tettarions, plutonions. Ire-
land especially seemed a factory for such counterfeit division algebras. In
1878 Frobenius showed that the only associative division algebras over the
reals (permitting composition or not) are R,C,H of dimensions 1, 2, 4. In
1898 Hurwitz proved via group representations that the only quadratic forms
permitting composition over the reals are the standard ones of dimension 1,
2, 4, 8; A.A. Albert later gave an algebra-theoretic proof over a general field
of scalars (with an addition by Irving Kaplansky to include characteristic
2 and non-unital algebras). Only recently was it established that the only
finite-dimensional real nonassociative division algebras have dimensions 1, 2,
4, 8; the algebras themselves were not classified, and the proof was topological
rather than algebraic.

2.10 Composition Algebras

The most important alternative algebras with nuclear involutions are the com-
position algebras. A composition algebra is a unital algebra having a non-
degenerate quadratic norm form N which permits composition,

Q(1) = 1, Q(xy) = Q(x)Q(y).

In general, a quadratic form Q on a Φ-module V is nondegenerate if all
nonzero elements in the module contribute to the values of the form. The
slackers (the set of elements which contribute nothing) are gathered in the
radical

Rad(Q) := {z ∈ V | Q(z) = Q(z, V ) = 0},
so nondegeneracy means that Rad(Q) = 0.6

Even better than nondegeneracy is anisotropy. A vector x is isotropic if it
has “zero weight” Q(x) = 0, and anisotropic if Q(x)  = 0. A form is isotropic
if it has nonzero isotropic vectors, and anisotropic if it has none:

Q anisotropic iff Q(x) = 0⇐⇒ x = 0.

For example, the positive definite norm form Q(x) = x · x on any Euclidean
space is anisotropic. Clearly, any anisotropic form is nondegenerate.

6 Since Q(z) = 1
2Q(z, z), when 1

2 ∈ Φ the radical of the quadratic form reduces to
the usual radical Rad(Q(·, ·)) := {z ∈ V | Q(z, V ) = 0} of the associated bilinear form
Q(·, ·) (the vectors which are “orthogonal to everybody”). But in characteristic 2 there is
an important difference between the radical of the quadratic form and the “bilinear radical”
of its associated bilinear form.
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2.11 The Cayley–Dickson Construction and Process

The famous Hurwitz Theorem of 1898 states that over the real numbers com-
position algebras can exist only in dimensions 1, 2, 4, and 8. In 1958 Nathan
Jacobson gave a beautiful “bootstrap” method, showing clearly how all com-
position algebras are generated internally, by repeated “doubling” (of the
module, the multiplication, the involution, and the norm) starting from any
composition subalgebra. As its name suggests, the Cayley–Dickson doubling
process is due to A.A. Albert.

Cayley–Dickson Definition. The Cayley–Dickson Construction builds
a new ∗-algebra out of an old one together with a choice of scalar. If A is a
unital linear algebra with involution a �→ ā whose norms satisfy aā = n(a)1 for
scalars n(a) ∈ Φ, and µ is an invertible scalar in Φ, then the Cayley–Dickson
algebra

KD(A, µ) = A⊕Am
is obtained by doubling the module A(adjoining a formal copy Am) and defin-
ing a product, scalar involution, and norm by the Cayley–Dickson Recipe:

(a⊕ bm)(c⊕ dm) = (ac+ µd̄b)⊕ (da+ bc̄)m,

(a⊕ bm)∗ = ā⊕−bm,

N(a⊕ bm) = n(a)− µn(b).

The Cayley–Dickson Process consists of iterating the Cayley–Dickson
Construction over and over again. Over a field Φ the Process iterates the
Construction starting from the 1-dimensional A0 = Φ (the scalars) with triv-
ial involution and nondegenerate norm N(α) = α2 to get a 2-dimensional
commutative binarion algebra A1 = KD(A0, µ1) = Φ⊕ Φi (i2 = µ11) with
nontrivial involution,7 then a 4-dimensional noncommutative quaternion al-
gebra A2 = KD(A1, µ2) = A1⊕A1j (j2 = µ21), and finally an 8-dimensional
nonassociative octonion algebra A3 = KD(A2, µ3) = A2 ⊕A2? (?2 = µ31),
all with nondegenerate norms.

Thus octonion algebras are obtained by gluing two copies of a quaternion
algebra together by the Cayley–Dickson Recipe. If the Cayley–Dickson dou-
bling process is carried beyond dimension 8, the resulting algebras no longer
permit composition and are no longer alternative (so cannot be used in con-
structing Jordan matrix algebras). Jacobson’s Bootstrap Theorem shows that
over a field Φ the algebras with involution obtained from the Cayley–Dickson
Process are precisely the composition algebras with standard involution over Φ:
every composition algebra arises by this construction. If we take A0 = Φ = R

7 In characteristic 2, starting from Φ the construction produces larger and larger al-
gebras with trivial involution and possibly degenerate norm; to get out of the rut, one
must construct by hand the binarion algebra A1 := Φ1 + Φv where v [≈ 1

2 (1 + i)] has
v2 := v − ν1, v∗ = 1 − v, with nondegenerate norm N(α + βv) := α2 + αβ + νβ2.
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the reals and µ1 = µ2 = µ3 = −1 in the Cayley–Dickson Process, then A1 is
the complex numbers C, A2 is Hamilton’s quaternions H (the Hamiltonions),
and A3 is Cayley’s octonions K (the Caylions, Cayley numbers, or Cayley
algebra), precisely as in the Jordan–von Neumann–Wigner Theorem.
Notice that we are adopting the convention that the dimension 4 composi-

tion algebras will all be called (generalized) quaternion algebras (as is standard
in noncommutative ring theory) and denoted by Q; by analogy, the dimension
8 composition algebras will be called (generalized) octonion algebras, and de-
noted by O (even though this looks dangerously like zero), and the dimension
2 composition algebras will all be called binarion algebras and denoted by B.
In the alternative literature the octonion algebras are called Cayley algebras,
but we will reserve the term Cayley for the unique 8-dimensional real division
algebra K (the Cayley algebra), just as Hamilton’s quaternions are the unique
4-dimensional real division algebra H. There is no generally accepted term for
the 2-dimensional composition algebras, but that won’t stop us from calling
them binarions. If the 1-dimensional scalars insist on having a high-falutin’
name too, we can call them unarions.
Notice that a composition algebra C consists of a unital algebra plus a

choice of norm form N, and therefore always carries a standard involution
x̄ = N(x, 1)1− x. Thus a composition algebra is always a ∗-algebra (and the
∗ determines the norm, N(x)1 = xx̄).

2.12 Split Composition Algebras

We will often be concerned with split unarions, binarions, quaternions, and
octonions. Over an algebraically closed field the composition algebras are all
“split.” This is an imprecise metaphysical term, meaning roughly that the
system is “completely isotropic,” as far removed from an “anisotropic” or
“division system” as possible, as well as being defined in some simple way
over the integers.8 Each category separately must decide on its own defi-
nition of “split.” For example, in the theory of finite-dimensional associa-
tive algebras we define a split simple algebra over Φ to be a matrix algebra
Mn(Φ) coordinatized by the ground field. The theory of central-simple al-
gebras shows that every simple algebra Mn(∆) coordinatized by a division
algebra ∆ becomes split in some scalar extension, because of the amazing fact
that finite-dimensional division algebras ∆ can be split (turned into Mr(Ω))
by tensoring with a splitting field Ω; in particular, every division algebra has
square dimension dimΦ(∆) = r2 over its center! In the theory of quadratic
forms, a “split” form would have “maximal Witt index,” represented relative
to a suitable basis by the matrix consisting of hyperbolic planes ( 0 1

1 0 ) down
the diagonal, with an additional 1 × 1 matrix (1) if the dimension is odd,
Q(

∑n
i=1(α2i−1x2i−1 ⊕ α2ix2i) + αx2n+1) =

∑n
i=1 α2i−1α2i + α2

2n+1.
8 This has no relation to “split” exact sequences 0 → A → B → C → 0, which have to

do with the middle term “splitting” as a semi-direct sum B ∼= A⊕ C.
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The split composition algebras over an arbitrary ring of scalars (not just
a field) are defined as follows.

Split Definition. The split composition algebras over a scalar ring Φ are
defined to be those ∗-algebras of dimension 2n−1, n = 1, 2, 3, 4, isomorphic to
the following models:

Split Unarions U(Φ) := Φ, the scalars Φ with trivial involution ᾱ := α
and norm N(α) := α2;

Split Binarions B(Φ) = Φ�Φ, a direct sum of scalars with the standard
(exchange) involution (α, β) �→ (β, α) and norm N(α, β) := αβ;

Split Quaternions Q(Φ) with standard involution, i.e., the algebra
M2(Φ) of 2 × 2 matrices with symplectic involution a =

(
β −γ
−δ α

)
for

a =
( α γ
δ β

)
and norm N(a) := det(a);

Split Octonions O(Φ) = Q(Φ) ⊕ Q(Φ)? with standard involution
a⊕ b? = a− b? and norm N(a⊕ b?) := det(a)− det(b).
There is (up to isomorphism) a unique split composition algebra of given

dimension over a given Φ, and the constructions Φ �→ U(Φ), B(Φ),Q(Φ), O(Φ)
are functors from the category of scalar rings to the category of composition
algebras.
Notice that over the reals these split composition algebras are at the op-

posite extreme from the division algebras R,C,H,K occurring in the J–vN–W
classification. They are obtained from the Cayley–Dickson process by choos-
ing all the ingredients to be µi = 1 instead of µi = −1. It is an important
fact that composition algebras over a field are either division algebras or split:
as soon as the quadratic norm form is the least bit isotropic (some nonzero
element has norm zero) then it is split as a quadratic form, and the algebra
has proper idempotents and splits entirely:

N anisotropic ⇐⇒ KD division, N isotropic ⇐⇒ KD split.
This dichotomy for composition algebras, of being entirely anisotropic (divi-
sion algebra) or entirely isotropic (split), does not hold for quadratic forms
in general, or for other algebraic systems. In Jordan algebras there is a tri-
chotomy: an algebra can be anisotropic (“division algebra”), reduced (has
nonzero idempotents but coordinate ring a division algebra), or split (nonzero
idempotents and coordinate ring the ground field). The split Albert alge-
bra Alb(Φ) over Φ is the 27-dimensional Jordan algebra of 3 × 3 hermitian
matrices over the split octonion algebra (with standard involution),

Alb(Φ) := H3(O(Φ)) (split Albert).
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As we will see in the next section, over an algebraically closed field this is the
only exceptional Jordan algebra. But over general fields we can have reduced
Albert algebras H3(O) for non-split octonion algebras, and (as first shown
by Albert) we can even have Albert division algebras (though these can’t be
represented in the form of 3 × 3 matrices, which would always have a non-
invertible idempotent E11).

2.13 Classification

We now return from our long digression on general linear algebras, and con-
sider the development of Jordan theory during the Algebraic Renaissance,
whose crowning achievement was the classification of simple Jordan alge-
bras over an arbitrary algebraically closed field Φ (of characteristic not 2,
of course!). As in the J–vN–W Theorem, the classification of simple Jor-
dan algebras proceeds according to “degree,” where the degree is the max-
imal number of supplementary orthogonal idempotents (analogous to the
matrix units Eii). From another point of view, the degree is the degree of
the generic minimum polynomial of the algebra, the “generic” polynomial
mx(λ) = λn − m1(x)λn−1 + · · · + (−1)nmn(x) (mi : J → Φ homogeneous
of degree i) of minimal degree satisfied by all x, mx(x) = 0. Degree 1 al-
gebras are just the 1-dimensional Φ+; the degree 2 algebras are the JSpinn;
the degree n algebras for n ≥ 3 are all Jordan matrix algebras Hn(C) where
the coordinate ∗-algebras C are precisely the split composition algebras over
Φ with their standard involutions. This leads immediately to the basic clas-
sification of finite-dimensional Jordan algebras over an algebraically closed
field.
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Renaissance Structure Theorem. Consider finite-dimensional Jordan al-
gebras J over an algebraically closed field Φ of characteristic  = 2.

• The radical of J is the maximal nilpotent ideal, and the quotient J/Rad(J)
is semisimple.

• An algebra is semisimple iff it is a finite direct sum of simple ideals.
In this case, the algebra has a unit element, and its simple decomposition is
unique: the simple summands are precisely the minimal ideals.

• Every simple algebra is automatically central-simple over Φ.
• An algebra is simple iff it is isomorphic to exactly one of :

Ground Field Φ+ of degree 1,
Spin Factor JSpinn(Φ) of degree 2, for n ≥ 2,
Hermitian Matrices Hn(C(Φ)) of degree n ≥ 3 coordinatized by a split
composition algebra C(Φ) (Split Unarion, Split Binarion, Split Quater-
nion, or Split Octonion Matrices):

Hn(Φ) for Φ the ground field,
Hn(B(Φ)) ∼=Mn(Φ)+ for B(Φ) the split binarions,
Hn(Q(Φ)) for Q(Φ) the split quaternions,
Alb(Φ) = H3(O(Φ)) for O(Φ) the split octonions.

Once more, the only exceptional algebra in the list is the 27-dimensional split
Albert algebra. Note that the 1-dimensional algebra JSpin0 is the same as
the ground field; the 2-dimensional JSpin1 ∼= B(Φ) is not simple when Φ is
algebraically closed, so only JSpinn for n ≥ 2 contribute new simple algebras.
We are beginning to isolate the Albert algebras conceptually; even though

the split Albert algebra and the real Albert algebra discovered by Jordan, von
Neumann, and Wigner appear to fit into the family of Jordan matrix algebras,
we will see in the next chapter that their non-reduced forms really come via
a completely different construction out of a cubic form.
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Jordan Algebras in the Enlightenment:
Finite-Dimensional Jordan Algebras over
General Fields

After the structure theory of Jordan algebras over an algebraically closed fields
was complete, algebraists naturally turned to algebras over general fields.

3.1 Forms of Algebras

Life over an algebraically closed field Ω is split. When we move to non–
algebraically–closed fields Φ we encounter modifications or “twistings” in the
split algebras which produce new kinds of simple algebras. There may be
several non-isomorphic algebras A over Φ which are not themselves split al-
gebras S(Φ), but “become” S(Ω) over the algebraic closure when we extend
the scalars: AΩ ∼= S(Ω). We call such A’s forms of the split algebra S; in
some Platonic sense they are incipient S’s, and are prevented from revealing
their true S-ness only by deficiencies in the scalars: once they are released
from the constraining field Φ they can burst forth1 and reveal their true split
personality.

Scalar Extension Definition. If Ω is a unital commutative associative al-
gebra over Φ (we call it, by abuse of language, an extension of the ring of
scalars Φ), the scalar extension AΩ of a linear algebra A over Φ is defined to
be the tensor product as a module with the natural induced multiplication:

AΩ := Ω⊗Φ A, (ω1 ⊗ x1)(ω2 ⊗ x2) := ω1ω2 ⊗ x1x2.

Thus AΩ consists of “formal Ω-linear combinations” of elements from A. It is
always a linear algebra over Ω, and there is a natural homomorphism A→ AΩ
of Φ-algebras via x �→ 1 ⊗ x. If A or Ω is free as a Φ-module (e.g., if Φ is
a field), this natural map is a monomorphism, but in general we can’t view
either Φ as a subalgebra of Ω, or A as a subalgebra of AΩ.

1 The analogy of the alien creature released from its spacesuit in the movie “Indepen-
dence Day” is apt, though not flattering.
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Form Definition. If Ω is an extension of Φ, we say that a linear algebra A
over Φ is a form of an algebra A′ over Ω if AΩ ∼= A′.
The general line of attack on the structure theory over general fields Φ is

a “top-down” method: we start from the known simple structures S over the
algebraic closure Ω and try to classify all possible forms of a given S(Ω). In the
Jordan case, we need to know which simple Jordan algebras over Φ will grow
up to be Albert algebras over Ω, which ones will grow up to be spin factors,
and which ones will grow into hermitian algebras. In Lie theory, one says that
a Lie algebra L is of type S (G2, F4, or whatever) if LΩ is the (unique simple)
Lie algebra S(Ω) (G2(Ω), F4(Ω), or whatever), so the problem becomes that
of classifying simple Lie algebras of a given type. The exact classification of
all the possible forms of a given type usually depends very delicately on the
arithmetic nature of the field (e.g., it is trivial for the complex numbers, easy
for the real numbers, but hard for algebraic number fields).

Octonion Example. The only octonion algebra over an algebraically closed
field Ω is the split O(Ω). Over a non–algebraically–closed field Φ of char-
acteristic  = 2, every octonion algebra O can be obtained via the Cayley–
Dickson Construction using a triple of nonzero scalars µi starting from
Φ, O = KD(Φ, µ1, µ2, µ3), but it is a delicate question when two such
triples of scalars produce isomorphic octonion algebras (or, what turns out
to be the same thing, equivalent quadratic norm forms), so producing a
precise description of the distinct isomorphism classes of octonion algebras
KD(Φ, µ1, µ2, µ3) over Φ is difficult. Nevertheless, all KD(Φ, µ1, µ2, µ3) are
forms of O(Ω): if we pass to the algebraic closure Ω of Φ, the octonion algebra
splits, KD(Φ, µ1, µ2, µ3)Ω ∼= O(Ω).

3.2 Inverses and Isotopes

The most important method of twisting Jordan algebras is to take isotopes by
invertible elements. It is helpful to think of passing to an isotope as changing
the unit of the Jordan algebra.

Linear Jordan Inverse Definition. An element x of a unital Jordan algebra
is invertible if it has an inverse y satisfying the Linear Jordan Inverse
Conditions

(LJInv1) x • y = 1, (LJInv2) x2 • y = x.

A unital Jordan algebra is a division algebra if every nonzero element is
invertible.

For elements of associative algebras, Jordan invertibility is exactly the
same as ordinary invertibility. We don’t even need the entire algebra A to be
associative, as long as the invertible element u is associative (i.e., lies in the
nucleus).
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Nuclear Inverse Proposition. If x is a nuclear element of a unital lin-
ear algebra over a ring of scalars containing 1

2 , then x has an inverse with
respect to the Jordan product iff it has an ordinary inverse with respect to
multiplication,

x • y = 1, x2 • y = x ⇐⇒ xy = yx = 1,

in which case the element y is uniquely determined by x, and is again nuclear
with inverse x. We write y = x−1. In particular, if A is associative then A+

is a Jordan division algebra iff A is an associative division algebra.

Homotope Proposition. If u is an arbitrary element of a Jordan algebra J,
then the Jordan u-homotope J(u) is the Jordan algebra with product

x •(u) y := x • (u • y) + (x • u) • y − u • (x • y).
If J is unital and u is invertible, then the u-homotope is again a unital Jordan
algebra, with unit

1(u) := u−1,

and we call it the Jordan u-isotope of J. Two Jordan algebras are isotopic
if one is isomorphic to an isotope of the other.

Isotopy is an equivalence relation, more general than isomorphism, since
we have Isotope Reflexivity, Transitivity, and Symmetry:

J(1) = J,
(
J(u)

)(v)
= J(u•vu), J =

(
J(u)

)(u−2)
.

It is a long and painful process to work with inverses and verify that J(u)

is indeed a Jordan algebra; when we learn to use the U -operators and Jordan
triple products in the next chapter, this will become almost a triviality.

3.3 Nuclear Isotopes

The original motivation for homotopes comes from special algebras, where
they have a thoroughly natural explanation: we obtain a new bilinear product
by sticking a u in the middle of the old associative product.2 We can even take
u-homotopes in nonassociative algebras as long as the element u is nuclear;
this will allow us to form isotopes of the exceptional H3(O).

2 Thus the parameter in a homotope is the inserted element, and the new unit is the
inverse of this element. In the Colloquial Survey we found it convenient to emphasize the new
unit as the parameter in subscripted notation: J[u] := J(u

−1) has inverse 1[u] = (u−1)−1 =
u. Since homotopes as well as isotopes play a role in Jordan theory, from now on we will
stick to the superscript version and consider isotopes as particular cases of homotopes.
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Nuclear Isotope Definition. Let A be a unital linear algebra, and let u be
an invertible element in the nucleus of A. Then we obtain a new unital linear
algebra, the nuclear u-isotope Au with the same linear structure but new
unit 1u = u−1 and new multiplication

xuy := xuy := (xu)y = x(uy).

Notice that by nuclearity of u this product is unambiguous.
We distinguish the nuclear and Jordan concepts of isotope by using plain

subscripts u for nuclear isotopes, and parenthesized superscripts (u) for Jor-
dan isotopes.

Nuclear Isotope Proposition. A nuclear isotope is always isomorphic to
the original algebra: Au

∼= A via the isomorphism ϕ = Lu. Thus if A is
associative, so is Au, and for elements u which happen to be nuclear, the
Jordan isotope of the plus algebra of A is just the plus algebra of the nuclear
isotope, and hence is isomorphic to the original plus algebra:

(A+)(u) = (Au)+ ∼= A+ : x•(u) y = 1
2 (xuy+ yux) = x•u y (u ∈ Nuc(A)).

The analogous recipe uxy for a “left isotope” of an associative algebra pro-
duces a highly non-associative, non-unital algebra; only “middle isotopes”
produce associative algebras again.

3.4 Twisted Involutions

As far as the entire linear algebra goes, Au produces just another copy of A,
which is why the concept of isotopy is largely ignored in associative theory. Iso-
topy does produce something new when we consider algebras with involution,
because ϕ(x) = ux usually does not map H(A, ∗) to itself, and the twisted
involution ∗u need not be algebraically equivalent to the original involution ∗.
Twisted Hermitian Proposition. Let A be a unital linear algebra with
involution ∗ over a ring of scalars Φ containing 1

2 , J = H(A, ∗) ⊆ A+ the
subalgebra of hermitian elements under the Jordan product, and let u be an
invertible hermitian element in the nucleus of A. Then ∗ remains an involu-
tion on the linear algebra Au whose hermitian part is just the Jordan isotope
J(u):

H(A, ∗)(u) = H(Au, ∗).
This isotope J(u) coincides with J as a Φ-module, but not necessarily as an
algebra under the Jordan product.
A better way to view the situation is to keep the original algebra structure

but form the isotopic involution ∗u, the u-conjugate
x∗u := ux∗u−1.



3.5 Twisted Hermitian Matrices 73

This is again an involution on A, with new hermitian elements

H(A, ∗u) = uH(A, ∗).
The map Lu is now a ∗-isomorphism (Au, ∗) → (A, ∗u) of ∗-algebras, so
induces an isomorphism of hermitian elements under the Jordan product :

J(u) = H(Au, ∗) ∼= H(A, ∗u) = uH.

Thus J(u) is really a copy of the u-translate uH, not of J = H.
Thus the Jordan isotope H(A, ∗)(u) can be viewed either as keeping the

involution ∗ but twisting the product via u, or (via the identification map
Lu) keeping the product but twisting the involution via u. An easy example
where the algebraic structure of J(u) is not the same as that of J is when
A = Mn(R), the real n × n matrices with transpose involution ∗, and u =
diag(−1, 1, 1, . . . , 1). Here the original involution is “positive definite” and the
Jordan algebra J = Hn(R) is formally real, but the isotope ∗u is indefinite
and the isotope J(u) has nilpotent elements (x = E11 + E22 − E12 − E21 has
x •u x = 0), so J(u) cannot be algebraically isomorphic to J.

3.5 Twisted Hermitian Matrices

If we consider A = Mn(D) with the conjugate transpose involution, any
diagonal matrix u = Γ with invertible hermitian nuclear elements of D down
the diagonal is invertible hermitian nuclear in A and can be used to twist
the Jordan matrix algebra. Rather than consider the isotope with twisted
product, we prefer to keep within the usual Jordan matrix operations and
twist the involution instead.

Twisted Matrix Example. For an arbitrary linear ∗-algebra (D,−) with
involution d �→ d̄ and diagonal matrix Γ = diag(γ1, . . . , γn) whose entries γi
are invertible hermitian elements in the nucleus of D, the twisted conjugate
transpose mapping X∗Γ = ΓX

tr
Γ−1 is an involution on the algebra Mn(D)

of all n × n matrices with entries from D under the usual matrix product
XY . The Φ-module Hn(D,Γ) := H(Mn(D), ∗Γ) of all hermitian matrices
X∗Γ = X with respect to this new involution forms a Jordan algebra under
the usual matrix operation X • Y = 1

2 (XY + Y X). The Jordan and nuclear
isotope Hn(D,−)(Γ) = Hn(D,−)Γ ⊆ Mn(D)Γ is isomorphic under LΓ to this
twisted matrix algebra Hn(D,Γ).

Note that no parentheses are needed in these products, since the γi lie in the
nucleus of D.
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3.6 Spin Factors

The final Jordan algebras we consider are generalizations of the “split” spin
factors JSpinn(Φ) determined by the dot product. Over non–algebraically–
closed fields we must consider general symmetric bilinear forms. We do not
demand that our modules be finite-dimensional, nor that our forms be non-
degenerate. The construction of spin factors works for arbitrary forms on
modules. (Functional analysts would only use the term “factor” when the
resulting algebra is indecomposable or, in our case, simple.)

Spin Factor Example. If M is a Φ-module with symmetric bilinear form
σ :M ×M → Φ, then we can define a linear Φ-algebra structure JSpin(M,σ)
on Φ1⊕M by having 1 act as unit element and defining the product of vectors
x, y in M to be a scalar multiple of the unit, given by the bilinear form:

x • y := σ(x, y)1.

Since x2 is a linear combination of 1 and x, Lx2 commutes with Lx, and the
resulting algebra is a Jordan algebra, a Jordan spin factor.
If M = Φn consists of column vectors with the standard dot product

σ(x,y) = x · y, then the resulting JSpin(M,σ) is just JSpinn(Φ) as defined
previously :

JSpinn(Φ) = JSpin(Φn, ·).
If we try to twist these algebras, we regret having chosen a particular splitting
of the algebra into unit and vectors, with the unit having a multiplication
rule all to itself: when we change to a new unit element which is half unit,
half vector, the calculations become clumsy. It is better (both practically and
conceptually) to give a global description of the operations. At the same time
we will pass to a quadratic instead of a bilinear form, because the quadratic
norm form explicitly encodes important information about the algebra.

3.7 Quadratic Factors

Since we are working in modules having scalar 1
2 , there is no real difference

between bilinear forms and quadratic forms. Recall that a quadratic form
Q on a module V is a quadratic mapping from V to Φ, i.e., it is homogeneous
of degree 2 (Q(αx) = α2Q(x) for all α ∈ Φ, x ∈ V ) and its linearization

Q(x, y) := Q(x+ y)−Q(x)−Q(y)

is bilinear in x and y (hence a symmetric bilinear form on V ). Note that by
definition Q(x, x) = Q(2x)−Q(x)−Q(x) = 4Q(x)−2Q(x) = 2Q(x), so Q can
be recovered from the bilinear form Q(·, ·) only with the help of a scalar 1

2 , in
which case the correspondences Q ↔ τ given by τ(x, y) := 1

2Q(x, y), Q(x) :=
τ(x, x) give an isomorphism between the categories of quadratic forms and
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symmetric bilinear forms. If we wished to study Jordan algebras where 1
2 is

not available, we would have to use a description in terms of quadratic rather
than bilinear forms.
A basepoint for a quadratic form Q is a point c with unit norm,3

Q(c) = 1. We can form the associated linear trace form T (x) := Q(x, c),
which automatically has T (c) = Q(c, c) = 2. In the presence of 1

2 we can
always decompose our module as M = Φc ⊕ M0 for M0 := {x | T (x) = 0}
the “orthogonal complement” c⊥, but instead of stressing the unit and its
splitting, we will emphasize the equality of vectors and the unity of M . It
turns out that reformulation in terms of quadratic forms and basepoints is
the “proper” way to think of these Jordan algebras.

Quadratic Factor Example. (1) If Q is a quadratic norm form on a space
M with basespoint c over Φ containing 1

2 , we obtain a Jordan algebra J =
Jord(Q, c) on M with unit 1 := c and product

x • y := 1
2

(
T (x)y + T (y)x−Q(x, y)1

)
(T (x) := Q(x, c)).

Taking y = x shows that every element x satsifies the second-degree equation

x2 − T (x)x+Q(x)1 = 0

(we say that Jord(Q, c) has “degree 2”). The norm determines invertibility:
an element in Jord(Q, c) is invertible iff its norm is an invertible scalar,

x invertible in Jord(Q, c) ⇐⇒ Q(x) invertible in Φ,

in which case the inverse is a scalar multiple of x̄ := T (x)1− x,4

x−1 = Q(x)−1x̄.

3 This use of the term “norm” has nothing to do with the metric concept, such as
the norm in a Banach space; the trace and norm are analogues of trace and determinant
of matrices, in particular are always polynomial functions. There is a general notion of
“generic norm” for n-dimensional unital power associative algebras A over a field Φ: in the
scalar extension AΩ, for Ω := Φ[t1, . . . , tn] the polynomial ring in n indeterminates ti, the
element x := t1x1 + · · · + tnxn is a “generic element” of A in the sense that every actual
element of A arises from x through specialization ti �→ αi of the indeterminates to particular
scalars in Φ. Then x satisfies a generic minimum polynomial resembling the characteristic
polynomial for matrices: xm−T (x)xm−1 + · · ·+(−1)mN(x)1 = 0. The constant term N(x)
is the generic norm; it is a homogeneous polynomial function of t1, . . . , tn of degree m.

4 This is completely analogous to the recipe x−1 = det(x)−1adj(x) in 2 × 2 matrices
for the inverse as a scalar multiple of the adjoint. In the case of associative or alternative
algebras the norm form, like the determinant, “permits composition” N(ab) = N(a)N(b) for
all elements a, b ∈ A. In the case of a Jordan algebra the norm permits “Jordan composition”
N(2a • (a • b)−a2 • b) = N(a)N(b)N(a) [this bizarre formula will make more sense once we
introduce the U -operator Uab = 2a • (a • b) − a2 • b in the next chapter and realize that it
represents the product aba in special algebras]. The crucial property in both cases is that
a is invertible iff its norm N(a) is nonzero (i.e., invertible) in Φ.
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(2) Over a field, the norm and basepoint completely determine the Jor-
dan algebra: if we define two quadratic forms with basepoint to be equivalent
(written (Q, c) ∼= (Q′, c′)) if there is a linear isomorphism ϕ :M → M ′ which
preserves norms and basepoint, Q′(ϕ(x)) = Q(x) for all x ∈ M and ϕ(c) = c′,
then

Jord(Q, c) ∼= Jord(Q′, c′)⇐⇒ (Q, c) ∼= (Q′, c′).

(3) All isotopes are again quadratic factors,

Jord(Q, c)(u) = Jord(Q(u), c(u))

(where Q(u) = Q(u)Q and c(u) = u−1).

Thus isotopy just changes basepoint and scales the norm form. It is messier to
describe in terms of bilinear forms: in JSpin(M,σ)(u), the new σ(u) is related
in a complicated manner to the old σ, since it lives half on M and half off,
and we are led ineluctably to the global Q:

JSpin(M,σ)(u) ∼= JSpin(N,σ(u))

for N := {x | Q(x, ū) = 0}, σ(u)(x, y) := − 1
2Q(u)Q(x, y).

All nondegenerate quadratic forms Q (equivalently, all symmetric bilinear
forms σ) of dimension n + 1 over an algebraically closed field Ω of char-
acteristic  = 2 are equivalent: they can be represented, relative to a suit-
able basis (starting with the basepoint c), as the dot product on Ωn+1,
Q(v) = σ(v,v) = vtr v for column vectors v. Therefore all the corresponding
Jordan algebras Jord(Q, c) are isomorphic to good old JSpinn(Ω). Over a
non-algebraically-closed field Φ, every nondegenerate Q can be represented as
a linear combination of squares using a diagonal matrix diag(λ1, λ2, . . . , λn)
for nonzero λi, but it is a delicate question as to when two such diagonal
matrices produce equivalent quadratic forms. Nevertheless, all quadratic fac-
tors Jord(Q, c) of dimension n + 1 over a field Φ are forms of a spin factor
JSpinn(Ω) : Jord(Q, c)Ω ∼= JSpinn(Ω).
We consistently talk of Jordan algebras constructed from a bilinear form

as spin factors JSpin(M,σ), and those constructed from a quadratic form
with basepoint as quadratic factors Jord(Q, c).

3.8 Cubic Factors

In contrast to the case of quadratic forms with basepoint, only certain very
special cubic forms with basepoint can be used to construct Jordan algebras.
A cubic form N on a Φ-module M over Φ is a map M → Φ which is
homogeneous of degree 3 [N(αx) = α3N(x)] and which extends to arbitrary
scalar extensions MΩ by
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N
(∑

i

ωixi
)
=
∑
i

ω3
iN(xi) +

∑
i �=j

ω2
i ωjN(xi;xj) +

∑
i<j<k

ωiωjωkN(xi;xj ;xk),

where the linearization N(x; y) is quadratic in x and linear in y, while
N(x; y; z) is symmetric and trilinear.
The test for admission to the elite circle of Jordan cubics is the existence of

a unit having well-behaved trace and adjoint. A basepoint for N is a point
c ∈ M with N(c) = 1. We have an associated linear trace form T (x) :=
N(c;x) and a quadratic spur form5 S(x) := N(x; c) whose linearization is
just S(x, y) := S(x+ y)− S(x)− S(y) = N(x; y; c); automatically

N(c) = 1, S(c) = T (c) = 3.

Jordan Cubic Definition. A finite-dimensional cubic form with basepoint
(N, c) over a field Φ of characteristic  = 2 is defined to be a Jordan cubic6

if (1) N is nondegenerate at the basepoint c, in the sense that the trace
bilinear form

T (x, y) := T (x)T (y)− S(x, y)

is a nondegenerate bilinear form, and (2) the quadratic sharp(or adjoint)
map # : M → M, defined uniquely by T (x#, y) = N(x; y), strictly satisfies
the Adjoint Identity

(x#)# = N(x)x.

In the presence of nondegeneracy, the Adjoint Identity is all we need.

Springer Construction. (1) From every Jordan cubic form with basepoint
we obtain a Jordan algebra Jord(N, c) with unit 1 := c and product determined
from the linearization x#y := (x + y)# − x# − y# of the sharp mapping by
the formula

x • y := 1
2

(
x#y + T (x)y + T (y)x− S(x, y)1

)
.

This algebra has degree 3,

x3 − T (x)x2 + S(x)x−N(x)1 = 0,

with sharp mapping
x# = x2 − T (x)x+ S(x)1.

(2) An element is invertible iff its norm is nonzero, in which case the
inverse is a multiple of the adjoint (just as in matrix algebras):

u ∈ J is invertible iff N(u)  = 0, in which case u−1 = N(u)−1u#.

5 I’m hoping that the reader won’t notice that “Spur” is just the German word for trace;
in English a spur is something sharp, and here S(x) = T (x#) is the trace of the sharp, so
“spur” is the best I could think of.

6 In the literature this is also called an admissible cubic, but this gives no clue as to
what it is admitted for, whereas the term Jordan makes it clear that the cubic is to be used
for building Jordan algebras.
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(3) For invertible elements the isotope is obtained (as in quadratic factors)
by scaling the norm and shifting the unit :

Jord(N, c)(u) = Jord(N (u), c(u))

for c(u) = u−1, N (u)(x) = N(u)N(x).

3.9 Reduced Cubic Factors

Over a field, the quadratic and cubic factors are either division algebras [where
the norm Q or N is anisotropic], or reduced [where the norm is isotropic,
equivalently, the algebra has proper idempotents]. Simple reduced Jord(N, c)’s
are always isomorphic to Jordan matrix algebras H3(D,Γ) for a composition
algebra D, and are split if the coordinate algebra is a split D = C(Φ), in which
case we can take all γi = 1, Γ = 13 the identity matrix, andH3(D,Γ) becomes
H3(C(Φ)). We define an Albert algebra over a field Φ to be an algebra
Jord(N, c) determined by a Jordan cubic form of dimension 27; these come
in three flavors, Albert division algebras, reduced Albert algebras H3(O,Γ) for
an octonion division algebra O with standard involution, and split Albert
algebras H3(O(Φ)) = Alb(Φ).
The cubic factor construction was originally introduced by H. Freudenthal

for 3× 3 hermitian matrices, where we have a very concrete representation of
the norm.

Freudenthal Construction. If D is an alternative ∗-algebra with involu-
tion such that H(D,−) = Φ1, then for diagonal Γ=diag(γ1, γ2, γ3) with en-
tries invertible scalars, the twisted matrix algebra H3(D,Γ) is a cubic factor
Jord(N, c) with basepoint c := e1 + e2 + e3 and norm given by

N(x) := α1α2α3 −
∑

cyclic (αiγjγkn(ai)) + γ1γ2γ3t(a1a2a3)

summed over all cyclic permutations (i, j, k) of (1, 2, 3) when the elements x, y
are given for αi, βi ∈ Φ, ai, bi ∈ D by

x =
∑

cyclic (αiei + ai[jk]) , y =
∑

cyclic (βiei + bi[jk]) .

In this case we have

T (x) =
∑

i αi, S(x) =
∑

cyclic (αjαk − γjγkn(ai)) ,

T (x, y) =
∑

cyclic (αiβi + γjγkt(aibi)) .
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3.10 Classification

Besides twisting, a new phenomenon that arises only over non-algebraically-
closed fields is that of division algebras. For associative algebras, the only
finite-dimensional division algebra over an algebraically closed field (like the
complexes) is the field itself, but over the reals we have R (of course), as well
as C of dimension 2 (which is not central-simple), but also the central-simple
algebra of Hamilton’s quaternions H of dimension 4. In the same way, the
only finite-dimensional Jordan division algebra over an algebraically closed
field Ω is Ω itself, but over a general field Φ there may be others. We have
already noted that A+ is a Jordan division algebra iff A is an associative
division algebra, Jord(Q, c) is a division algebra iff the quadratic form Q is
anisotropic, and analogously Jord(N, c) is a division algebra iff the cubic form
N is anisotropic. We now have all the ingredients to classify finite-dimensional
Jordan algebras over an arbitrary field of characteristic  = 2, the crowning
achievement of the Age of Enlightenment. If J is finite-dimensional simple
over Φ, its center Ω is a finite extension field of Φ, and J is finite-dimensional
central-simple over Ω, so it suffices to classify all central-simple algebras.

Enlightenment Structure Theorem. Consider finite-dimensional Jordan
algebras J over a field Φ of characteristic  = 2.

• The radical of J is the maximal nilpotent ideal, and the quotient J/Rad(J)
is semisimple.

• An algebra is semisimple iff it is a finite direct sum of simple ideals. In
this case, it has a unit element, and the simple decomposition is unique: the
simple summands are precisely the minimal ideals.

• Every simple algebra is central-simple over its center, which is a field.
• An algebra is central-simple over Φ iff it is isomorphic to exactly one

of :
Division Type: a finite-dimensional central Jordan division algebra over Φ;
Quadratic Type: Jord(Q, c) for an isotropic nondegenerate quadratic form
with basepoint of finite dimension ≥ 3 over Φ;
Hermitian Type: Hn(D,Γ) with coordinates (D,−) of exchange, division,
or split quaternion type and n ≥ 3, i.e., an algebra of Exchange, Orthog-
onal, or Symplectic Type isomorphic respectively to:

Hn(Ex(∆)) ∼=Mn(∆)+ for a finite-dimensional central associative
division algebra ∆ over Φ;

Hn(∆,Γ) for a finite-dimensional central associative division
algebra ∆ with involution over Φ;

Hn(Q(Φ)) for Q(Φ) the split quaternion algebra over Φ with
standard involution;

Albert Type: Jord(N, c) = H3(O,Γ) of dimension 27 for O an octonion
algebra over Φ with standard involution, only for n = 3.
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Once more, the only exceptional algebras in the list are the 27-dimensional
Albert algebras and, possibly, some exceptional division algebras. Note that
the anisotropic Jord(Q, c) are division algebras; all Jord(Q, c) of dimension
1 are Φ+, while those of dimension 2 are either division algebras or non-
simple split binarions Φ+ � Φ+. Hermitian algebras for n = 1, 2 are all of
degree 2 and hence are of Division or Quadratic Type. A hermitian Hn(Q)
is of Orthogonal or Symplectic Type according as the coordinate quaternion
algebra is a division algebra or split. All Jord(N, c) which are not reduced are
division algebras. Thus the listed types of simple algebras are complete and
non-overlapping.
At this stage of development there was no way to classify the division

algebras, especially to decide whether there were any exceptional ones which
were not Albert algebras determined by anisotropic cubic forms. In fact, to
this very day there is no general classification of all finite-dimensional asso-
ciative division algebras: there is a general construction (crossed products)
which yields all the division algebras over many important fields (including
all algebraic number fields), but in 1972 Amitsur gave the first construction of
a non–crossed–product division algebra, and there is as yet no general char-
acterization of these.
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The Classical Theory:
Jordan Algebras with Minimum Condition

In the 1960s surprising new connections were found between Euclidean Jor-
dan algebras and homogeneous cones, symmetric spaces, and bounded homo-
geneous domains in real and complex differential geometry by Max Koecher
and his students. These connections demanded a broadening of the concept
of Jordan systems to include triples and pairs, which were at the same time
arising spontaneously from the mists of Lie algebras through the Tits–Kantor–
Koecher construction.1

A leading role in these investigations was played by Jordan triple prod-
ucts rather than binary products, especially by the U -operator and its inverse
Hx = Ux−1 , which was a geometrically important transformation. The same
U -operator was also cropping up in purely algebraic investigations of N. Ja-
cobson and his students, in connection with inverses, isotopies, and generic
norms. The U -product led naturally to the notion of inner ideal and algebras
with minimum condition on inner ideals, analogues of one-sided ideals and
artinian algebras in associative theory.

4.1 U -Operators

The classical theory of Jordan algebras cannot be understood without a clear
understanding of Jacobson’s U -operators Ux and its auxiliary operators,
the corresponding Jordan triple product {x, y, z} obtained from it by lin-
earization, and the related operators Ux,y, Vx,y, Vx:

Ux := 2L2
x − Lx2 , Ux,z :=

(
Ux+z − Ux − Uz

)
,

Vx,y(z) := {x, y, z} := Ux,z(y),

Vx(y) := {x, y} := {x, 1, y}, Vx = Vx,1 = Ux,1 = V1,x = 2Lx.

1 To avoid embarrassing American mispronunciations, the three distinguished European
mathematicians’ names are zhak teets, iss-eye kahn-tor, and (approximately) muks ke(r)-
ssher. The German ch- should definitely not be pronounced like the ch- in church, nor quite
like Scottish Loch as in Ness, more like the Scottish braw bricht moonlicht nicht (fine bright
moonlit night).
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Note that {x, y, x} = 2Uxy. In your heart, you should always think of the
U operator as “outer multiplication” (simultaneous left and right multipli-
cation), and the V operators as left plus right multiplications, leading to a
meta-principle:

Uxy ≈ xyx, {x, y, z} ≈ xyz + zyx, {x, y} ≈ xy + yx.

This is exactly what these operators amount to in special algebras.2

Now we check what these operators amount to in our basic examples of
Jordan algebras.

Special U Example. In any special Jordan algebra J ⊆ A+ the U -operator
and its relatives are given by

Uxy = xyx, Vxy = {x, y} = xy + yx,

Vx,yz = Ux,zy = {x, y, z} = xyz + zyx.

Quadratic Factor U Example. In the Jordan algebra Jord(Q, c) determined
by a quadratic form with basepoint, the U -operators take the form

Uxy = Q(x, ȳ)x−Q(x)ȳ for ȳ = T (y)c− y.

Cubic Factor U Example. In the Jordan algebra Jord(N, c) determined by
a Jordan cubic form N with basepoint over Φ, the U -operators take the form

Uxy = T (x, y)x− x##y.

4.2 The Quadratic Program

Jacobson conjectured, and in 1958 I.G. Macdonald first proved, the Funda-
mental Formula

UUxy = UxUyUx

for arbitrary Jordan algebras. Analytic and geometric considerations led Max
Koecher to these same operators and the same formula (culminating in his
book Jordan-Algebren with Hel Braun in 1966). Several notions which had
been cumbersome using the L-operators became easy to clarify with U -
operators. These operators will appear on almost every page in the rest of
this book.

2 WARNING: In the linear theory it is more common to use 1
2{xyz} as the triple product,

so that {x, y, x} = Uxy; you must always be careful to determine which convention is being
used. We will always use the convention that makes no reference to 1

2 . Thus our triple
product in special algebras becomes the 3-tad {x1, x2, x3} = x1x2x3 + x3x2x1.
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The emphasis began to switch from the Jordan product x • y = 1
2 (xy +

yx), which was inherently limited to characteristic  = 2, to the product xyx,
which was ring-theoretic in nature and made sense for arbitrary scalars. If a
description of Jordan algebras in quadratic terms could be obtained, it would
not only fill in the gap of characteristic 2, but would also open the way to a
study of arithmetic properties of Jordan rings (where the ring of scalars was
the integers Z, which certainly did not contain 1

2 ). In analogy with Jordan’s
search for Jordan axioms, it was natural to seek a quadratic axiomatization
which:
• Agreed with the usual one over scalars containing 1

2 ;
• Admitted all four basic examples (Full, Hermitian, Quadratic, and Cubic)
of simple algebras in characteristic 2;
• Admitted essentially nothing new in the way of simple algebras.
It was well-known that in the theory of Lie algebras the passage from

the classical characteristic 0 theory to characteristic p produces a raft of new
simple algebras (only classified in characteristics p > 7 during the 1980s).
In contrast, Jordan algebras behave exactly the same in characteristic p  = 2
as they do in characteristic 0, and it was hoped that this would continue to
characteristic 2 as well, making the theory completely uniform.

4.3 The Quadratic Axioms

A student of Emil Artin, Hans-Peter Lorenzen, attempted in 1965 an axiom-
atization based entirely on the Fundamental Formula, but was not quite able
to get a satisfactory theory. It turned out that, in the presence of a unit ele-
ment, one other axiom is needed. The final form, which I gave in 1967, goes
as follows.3

Quadratic Jordan Definition. A unital quadratic Jordan algebra J
consists of a Φ-module on which a product Uxy is defined which is linear in
the variable y and quadratic in x (i.e., U : x �→ Ux is a quadratic mapping
of J into EndΦ(J)), together with a choice of unit element 1, such that the
following operator identities hold strictly:

(QJAX1) U1 = 1J,

(QJAX2) Vx,yUx = UxVy,x (Vx,yz := {x, y, z} := Ux,zy),

(QJAX3) UUxy = UxUyUx.

3 In a 1966 announcement I used in place of (QJAX2) the simpler axiom (QJAX2)′:
Vx,x = Vx2 or {x, x, y} = {x2, y}, but in proving that homotopes remained Jordan it became
clear that one could get the job done quicker by assuming (QJAX2) as the axiom. [Note that
multiplying (QJAX2) on the right by Uy leads immediately to V

(y)
x U

(y)
x = U

(y)
x V

(y)
x , which

is just the Jordan identity in the y-homotope.] Further evidence that this is the “correct”
axiomatization is that Kurt Meyberg showed in 1972 that quadratic Jordan triples, and
Ottmar Loos in 1975 that quadratic Jordan pairs, could be axiomatized by (QJAX2),
(QJAX3), and (QJAX4): VUxy,y = Vx,Uyx [whereas (QJAX2′) made sense only in algebras].
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The strictness condition means that these identities hold not only for all el-
ements x, y in J, but that they also continue to hold in all scalar extensions
JΩ; it suffices if they hold in the polynomial extension JΦ[t] = J[t] for an
indeterminate t. This turns out to be equivalent to the condition that all
formal linearizations of these identities remain valid on J itself. (Notice that
(QJAX2) is of degree 3, and (QJAX3) of degree 4, in x, hence do not auto-
matically linearize [unless there are sufficiently many invertible scalars, e.g.,
a field with at least four elements], but they do automatically linearize in y,
since they are respectively linear and quadratic in y.)

Nonunital Jordan algebras could be intrinsically axiomatized in terms of
two products, Uxy and x2 (which would result from applying Ux to the absent
unit element). However, the resulting axioms are too messy to remember, and
it is much easier to define non-unital algebras as those whose unital hull, under
Uα1⊕x(β1 ⊕ y) := α2β1 ⊕ [α2y + 2αβx + α{x, y} + βx2 + Uxy], satisfies the
three easy-to-grasp identities (QJAX1)–(QJAX3).4

4.4 Justification

We have already indicated why these axioms meet the first criterion of the
program, that quadratic and linear Jordan algebras are the same thing in the
presence of 1

2 . It is not hard to show that these axioms also meet the second
criterion, that the U -operators of the four basic examples do satisfy these
axioms (though the cubic factors provide some tough slogging). For example,
in special algebras J ⊆ A+ the operations xyx and xyz + zyx satisfy

(QJAX1) 1z1 = z,

(QJAX2) xy(xzx) + (xzx)yx = x(yxz + zxy)x,

(QJAX3) (xyx)z(xyx) = x
(
y(xzx)y

)
x,

and the same remains true in the polynomial extension since the extension
remains special, J[t] ⊆ A[t]+.
With considerable effort it can be shown that the third criterion is met,

that these are (up to some characteristic 2 “wrinkles”) the only simple unital
quadratic Jordan algebras. Thus the quadratic approach provides a uniform
way of describing Jordan algebras in all characteristics.

4 For any masochists in the audience, the requisite identities for non-unital algebras are
(QJ1) Vx,x = Vx2 , (QJ2) UxVx = VxUx, (QJ3) Ux(x2) = (x2)2, (QJ4) Ux2 = U2

x , (QJ5)
UxUy(x2) = (Uxy)2, (QJ6) UUx(y) = UxUyUx. For some purposes it is easier to work with
axioms involving only one element x, replacing (QJ5-6) by (CJ5′) (x2)3 = (x3)2, (CJ6′)
Ux3 = U3

x .
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4.5 Inverses

One of the first concepts to be simplified using U -operators was the notion
of inverses. In fact, inverses and U -operators were introduced and the Fun-
damental Formula conjectured by Jacobson in 1956 to fight his way through
algebras of “degree 1,” but until the Fundamental Formula was approved for
use following I.G. Macdonald’s proof in 1958, it was fighting with one hand
tied behind one’s back.

Quadratic Inverse Proposition. The following conditions on an element
x of a unital Jordan algebra are equivalent:
(1) x has a Jordan inverse y: x • y = 1, x2 • y = x;
(2) x has a quadratic Jordan inverse y: Uxy = x, Ux(y2) = 1;
(3) the U -operator Ux is an invertible operator.

In this case the inverse y is unique; if we denote it by x−1, we have x−1 =(
Ux

)−1
x, and it satisfies Ux−1 =

(
Ux

)−1.

In general, the operator Lx is not invertible if x is, and even when it
is invertible we do not generally have Lx−1 = L−1

x . For example, the real
quaternion algebra is a division algebra (both as an associative algebra H
and as a Jordan algebra H+), yet the invertible elements i and j satisfy
i • j = 0, so they are “divisors of zero” with respect to the Jordan product,
and the operators Li and Lj are not invertible. More generally, in an algebra
Jord(Q, c) determined by a quadratic form with basepoint, two invertible
elements x, y (Q(x), Q(y) invertible in Φ) may well have x • y = 0 (if they are
orthogonal and traceless, Q(x, y) = T (x) = T (y) = 0).
Let’s check what inverses amount to in our basic examples of Jordan al-

gebras, and exhibit the basic examples of Jordan division algebras.

Special Inverse Example. In any special Jordan algebra J ⊆ A+, an ele-
ment x ∈ J is invertible in J iff it is invertible in A and the associative inverse
x−1 ∈ A falls in J.
If D is an associative algebra, then D+ is a Jordan division algebra iff

D is an associative division algebra. If D has an involution, the inverse of a
hermitian element is again hermitian, so H(D,∗ ) is a Jordan division algebra
if (but not only if ) D is an associative division algebra.

Quadratic and Cubic Factor Inverse Examples. In a quadratic or cubic
factor Jord(Q, c) or Jord(N, c) determined by a quadratic form Q or cubic
form N over Φ, x is invertible iff Q(x) or N(x) is an invertible scalar (over
a field Φ this just means that Q(x)  = 0 or N(x)  = 0).5

5 This result holds in any Jordan algebra with a “generic norm N,” the analogue of the
determinant. See footnote [3] back in Section 3.7.
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Anisotropic forms beget Jordan division algebras: Jord(Q, c) or Jord(N, c)
determined by a quadratic or cubic form over a field is a division algebra iff
Q or N is anisotropic (Q(x) = 0 or N(x) = 0 implies that x = 0).

4.6 Isotopes

Another concept that is considerably simplified by adopting the U -viewpoint
is that of isotopes; recall from the Homotope Definition in Section 3.2 that
for any element u the homotope J(u) was the Jordan algebra with product

x •u y = x • (u • y) + (x • u) • y − u • (x • y).

Though the left multiplication operator is messy to describe, L(u)
x = Lx•u +

[Lx, Lu] = 1
2Vx,u, the U -operator and square have crisp formulations.

Quadratic Homotope Definition. (1) If u is any element of a Jordan
algebra J, the u-homotope J(u) has shifted products

J(u) : x(2,u) = Uxu, x •u y = 1
2{xuy} = 1

2Ux,yu, U
(u)
x = UxUu.

The homotope is again a Jordan algebra, as can easily be checked using
the quadratic axioms for a Jordan algebra. If J ⊆ A+ is special, so is any
homotope, J(u) ⊆ (

Au

)+.

(2) The homotope is unital iff the original algebra is unital and u invertible,
in which case the unit is 1(u) = u−1, and we speak of the u-isotope.

Homotopy is reflexive and transitive,

J(1) = J,
(
J(u)

)(v) = J(Uuv),

but unlike isotopy is not in general symmetric, therefore not an equivalence
relation: if u is not invertible we cannot recover J from J(u), and information
is lost in the passage to the homotope.

4.7 Inner Ideals

The greatest single advantage of looking at things from the U rather than
the non-U point of view is that it leads naturally to one-sided ideals. Linear
Jordan algebras, or any linear algebra with a commutative or anticommutative
product, will have no notion of one-sided ideal: every left or right ideal is
automatically a two-sided ideal. The quadratic product xyx doesn’t have a
left and right side, it has an inside and an outside: we multiply x on the inside
by y, and y on the outside by x. Just as a left ideal in a linear algebra A
is a submodule B invariant under multiplication by A on the left, ÂB ⊆ B,



4.7 Inner Ideals 87

and a right ideal is invariant under multiplication on the right, BÂ ⊆ B, it
is natural to define an inner ideal to be invariant under multiplication on the
inside. The introduction of inner ideals is one of the most important steps
toward the modern structure theories of Jacobson and Zel’manov.

Inner Ideal Definition. A submodule B ⊆ J is called an inner ideal if it
is closed under multiplication on the inside by Ĵ: UBĴ ⊆ B (or, equivalently,
UBJ ⊆ B and B2 ⊆ B).

Principal Inner Example. The Fundamental Formula shows that any ele-
ment b determines an inner ideal

(b] := UbĴ = Φb2 + UbJ,

called the principal inner ideal determined by b.

To get a feel for this concept, let’s look at the inner ideals in each of the
basic examples of Jordan algebras.

Full Inner Example. In the Jordan algebra A+ for associative A, any left or
right ideal L or R of A is an inner ideal, hence also their intersection L∩R,
as well as any submodule aAb.

Hermitian Inner Example. In the Jordan algebra H(A, ∗) for an associa-
tive ∗-algebra A, any submodule aHa∗ for a in A is an inner ideal.

Quadratic Factor Inner Example. In a quadratic factor Jord(Q, c) over
Φ, any totally isotropic Φ-submodule B (a Φ-submodule consisting entirely of
isotropic vectors, i.e., on which the quadratic form is totally trivial, Q(B) = 0)
forms an inner ideal: UbJ = Q(b, J̄)b − Q(b)J̄ = Q(b, J̄)b ⊆ Φb ⊆ B. Notice
that if B is a totally isotropic submodule, so are all submodules of B, hence
all submodules of B are again inner ideals.
If Q is nondegenerate over a field Φ, these totally isotropic submodules

are the only inner ideals other than J. Indeed, the principal inner ideals are
(b] = J if Q(b)  = 0 [since then b is invertible], and (b] = Φb if Q(b) = 0 [since
if b  = 0 then by nondegeneracy Q(b) = 0  = Q(b, J̄) implies that Q(b, J̄) = Φ
since Φ a field, so UbJ = Q(b, J̄)b = Φb].

Cubic Inner Example. Analogously, in a cubic factor Jord(N, c) any sharp-
less Φ-submodule B ⊆ J (i.e., a submodule on which the sharp mapping van-
ishes, B# = 0) forms an inner ideal : UbJ = T (b,J)b− b##J = T (b,J)b− 0 ⊆
Φb ⊆ B.
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4.8 Nondegeneracy

Another concept which requires U -operators for its formulation is the crucial
“semisimplicity” concept for Jordan algebras, discovered by Jacobson: a Jor-
dan algebra is nondegenerate if it has no nonzero trivial elements, where
an element z ∈ J is trivial if its U -operator is trivial on the unital hull
(equivalently, its principal inner ideal vanishes):

(z] = UzĴ = 0, i.e., UzJ = 0, z2 = 0.

Notice that we never have nonzero elements with Lz trivial on the unital hull.
Nondegeneracy, the absence of trivial elements, is the useful Jordan ver-

sion of the associative concept of semiprimeness, the absence of trivial ideals
BB = 0. For associative algebras, trivial elements z are the same as trivial
ideals B = ÂzÂ, since zÂz = 0 ⇐⇒ BB = (ÂzÂ)(ÂzÂ) = 0. A major
difficulty in Jordan theory is that there is no convenient characterization of
the Jordan ideal generated by a single element z. Because element-conditions
are much easier to work with than ideal-conditions, the element-condition of
nondegeneracy has proven much more useful than semiprimeness.6

We now examine what triviality means in our basic examples of Jordan
algebras.

Full Trivial Example. An element z of A+ is trivial iff it generates a trivial
two-sided ideal B = ÂzÂ. In particular, the Jordan algebra A+ is nondegen-
erate iff the associative algebra A is semiprime.

Hermitian Trivial Example. If H(A, ∗) has trivial elements, then so does
A. In particular, if A is semiprime with involution then H(A, ∗) is nondegen-
erate.

Quadratic Factor Trivial Example. An element of a quadratic factor
Jord(Q, c) determined by a quadratic form with basepoint over a field is triv-
ial iff it belongs to Rad(Q). In particular, Jord(Q, c) is nondegenerate iff the
quadratic form Q is nondegenerate, Rad(Q) = 0.

Cubic Trivial Example. A cubic factor Jord(N, c) determined by a Jordan
cubic form with basepoint over a field is always nondegenerate.

6 In the words of an alert copy editor, ideal-conditions are less than ideal!
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4.9 Radical Remarks

In associative theory there are many different radicals designed to remove
different sorts of pathology and create different sorts of “niceness.” The more
difficult a “pathology” is to remove, the larger the corresponding radical will
have to be. The usual “niceness” condition on an associative algebra A is
semiprimeness (no trivial ideals, equivalently, no nilpotent ideals), which is
equivalent to the vanishing of the obstacle to semiprimeness, the prime radi-
cal Prime(A) (also called the semiprime or Baer radical). This obstacle is the
smallest ideal R such that A/R is semiprime, and is the intersection of all
prime ideals (those P such that A/P is a “prime algebra” in the sense of hav-
ing no orthogonal ideals; for A = Z, A/P has no orthogonal ideals iff P = pZ
for a prime p). For commutative associative rings, prime means integral do-
main, semiprime means no nilpotent elements x2 = 0, and simple means field;
every semiprime commutative ring is a subdirect product of prime rings, and
every prime ring imbeds in a simple ring (its field of fractions). It is often
helpful to think of the relationship of prime to simple for general rings as
analogous to that between a domain and its field of fractions. In noncommu-
tative associative algebras, the matrix algebras Mn(D) are prime if D is a
domain, and they imbed in a simple “ring of central quotients”Mn(F) for F
the field of fractions of D.
The more restrictive notion of semiprimitivity (nonexistence of “quasi-

invertible” ideals) is equivalent to the vanishing of the obstacle to semiprim-
itivity, the larger Jacobson radical Rad(A) (also called the primitive,
semiprimitive, or simply the radical). This is the smallest ideal R such that
A/R is semiprimitive, and is the intersection of all primitive ideals (those
Q such that A/Q is a “primitive algebra,” i.e., has a faithful irreducible
representation).7 For artinian algebras these two important radicals coin-
cide.
There are analogous radicals for Jordan algebras.

Prime Algebra Definition. Two ideals I,K  J in a Jordan algebra are
orthogonal if UIK = 0. A Jordan algebra is prime if it has no orthogonal
ideals,

UIK = 0 =⇒ I = 0 or K = 0 (J prime),
7 Because it is the quotients A/P,A/Q that are prime or primitive, it can be confusing to

call the ideals P,Q prime or primitive (they are not prime or primitive as algebras in their
own right), and it would be more natural to call them co-prime and co-primitive ideals.
An algebra turns out to be semiprime iff it is a subdirect product of prime algebras, and
semiprimitive iff it is a subdirect product of primitive algebras. In general, for any property
P of algebras, semi–P means “subdirect product of P-algebras.” The only exception is
semisimple, which has become fossilized in its finite-dimensional meaning “direct sum of
simples.” The terminology for radicals gets even more confusing when the radical is named
for the bad property to be removed (such as nil or degenerate) rather than the good property
to be created (nil-freedom or nondegeneracy).
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and is semiprime if it has no self-orthogonal ideals,

UII = 0 =⇒ I = 0 (J semiprime).

This latter is equivalent to the absence of trivial ideals UII = I2 = 0, or
nilpotent ideals In = 0 [where the power In is defined as the span of all homo-
geneous Jordan products of degree ≥ n when expressed in terms of products
x • y (thus Uxy and {x, y, z} have degree 3, {x, y} and x2 have degree 2)], or
solvable ideals I(n) = 0 [where the derived ideal I(n) is defined recursively by
I(0) = I, I(n+1) = UI(n)I(n)].

Prime Radical Definition. The obstacle to semiprimeness is the prime
(or semiprime or Baer) radical Prime(J), the smallest ideal whose quotient
is semiprime, which is the intersection of all ideals whose quotient is prime; J
is semiprime iff Prime(J) = 0 iff J is a subdirect product of prime algebras.

Primitive Radical Definition. A Jordan algebra is semiprimitive if it has
no properly quasi-invertible elements [elements z with 1̂− z invertible in

all homotope hulls
(̂
J(u)

)
]. The obstacle to semiprimitivity is the primitive

(or semiprimitive or Jacobson) radical Rad(J), the smallest ideal whose quo-
tient is semiprimitive; J is semiprimitive iff Rad(J) = 0. [We will see in Part
III that Zel’manov discovered the correct Jordan analogue of primitivity, such
that Rad(J) is the intersection of all ideals whose quotients are primitive, and
J is semiprimitive iff it is a subdirect product of primitive algebras.]

The archetypal example of a prime algebra is a simple algebra, and the
arche-typal example of a non-prime algebra is a direct sum J1 � J2. The
archetypal example of a semiprime algebra is a semisimple algebra (direct
sum of simples), and the archetypal example of a non-semiprime algebra is a
direct sum N�T of a nice algebra and a trivial algebra.

4.10 i-Special and i-Exceptional

It had been known for a long time that while the class of special algebras is
closed under the taking of subalgebras and direct products, it is not closed
under taking homomorphic images: P.M. Cohn had given an example in 1954
showing that the quotient of the free special Jordan algebra on two variables
x, y by the ideal generated by x2 − y2 is no longer special (cf. Example A.5).
By a general result of Garrett Birkhoff, any class C of algebras closed under
subalgebras, direct sums, and homomorphic images forms a variety defined
by a family F of identities (identical relations): A ∈ C ⇐⇒ A satisfies all the
identities in F (f(a1, . . . , an) = 0 for all f(x1, . . . , xn) ∈ F and all elements
a1, . . . , an ∈ A). Thus the class of special algebras was not a variety, but its
“varietal closure,” the slightly larger class of homomorphic images of special
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algebras, could be defined by identities. These identities are called the special-
identities or s-identities: they are precisely all Jordan polynomials which
vanish on all special algebras (hence automatically on their homomorphic
images as well), but not on all Jordan algebras (they are nonzero elements of
the free Jordan algebra).
The first thing to say is that there weren’t supposed to be any s-identities!

Remember that Jordan’s goal was to capture the algebraic behavior of her-
mitian operators in the Jordan axioms. The s-identities are in fact just the
algebraic identities involving the Jordan product satisfied by all hermitian
matrices (of arbitrary size), and in principle all of these were supposed to
have been incorporated into the Jordan axioms! A non-constructive proof of
the existence of s-identities was first given by A.A. Albert and Lowell J. Paige
in 1959 (when it was far too late to change the Jordan axioms), by showing
that there must be nonzero Jordan polynomials f(x, y, z) in three variables
which vanish on all special algebras (become zero in the free special algebra
on three generators). The first explicit s-identities G8 and G9 were discov-
ered by Jacobson’s student Charles M. Glennie in 1963: as we remarked in
the Colloquial Survey, these could not possibly have been discovered without
the newly-minted notions of the Jordan triple product and U -operators, and
indeed even in their U -form no mortal other than Glennie has been able to
remember them for more than 15 minutes.8 It is known that there are no
s-identities of degree ≤ 7, but to this day we do not know exactly what all
the s-identities are, or even whether they are finitely generated.
We call an algebra identity-special or i-special if it satisfies all s-identities,

i.e., belongs to the varietal closure of the special algebras. An algebra is
identity-exceptional or i-exceptional if it is not i-special, i.e., does not sat-
isfy all s-identities. Since the class of i-special algebras is slightly larger than
that of special algebras, the class of i-exceptional algebras is slightly smaller
than that of exceptional algebras. To be i-exceptional means that not only
is the algebra exceptional, it doesn’t even look special as far as its identi-
ties go: we can tell it apart from the special algebras just by examining the
identities it satisfies, not by all its possible imbeddings in associative alge-
bras. The arguments of Albert, Paige, and Glennie showed that the Albert
algebra is in fact i-exceptional. Notice again that according to Jordan’s phi-
losophy the i-exceptional algebras were uninteresting (with respect to the s-
identities they didn’t behave like hermitian operators), only exceptional-but-
i-special algebras could provide an alternative setting for quantum mechanics.

8 At the first Oberwolfach conference on Jordan algebras in 1967 Charles Glennie sat
down and explained to me the procedure he followed to discover G8 and G9. After 15
minutes it was clear to me that he had a systematic rational method for discovering the
identities. On the other hand, 15 minutes after his explanation it was also clear that there
was no systematic procedure for remembering that procedure. Thedy’s identity T10, since it
was so compactly expressed in terms of a fictitious commutator acting as though it belonged
to the (at that time highly fashionable) structure group, fit smoothly into the human brain’s
Jordan receptor cells.
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It was a happy accident that Jordan didn’t know about Glennie’s identities
when he set up his axioms, or else the Albert algebra might never have been
born.

4.11 Artin–Wedderburn–Jacobson Structure Theorem

Inner ideals were first introduced by David M. Topping in his 1965 A.M.S.
Memoir on Jordan algebras of self-adjoint operators; he called them quadratic
ideals, and explicitly motivated them as analogues of one-sided ideals in as-
sociative operator algebras. Jacobson was quick to realize the significance of
this concept, and in 1966 used it to define artinian Jordan algebras in anal-
ogy with artinian associative algebras, and to obtain for them a beautiful
Artin–Wedderburn Structure Theorem. My own interest in quadratic Jordan
algebras began when I read this paper, which showed that an entire structure
theory could be based on the U -operator, thus fulfilling Archimedes’ prophecy
“Give me the Fundamental Formula and I will move the world.”
Later on Jacobson proposed the terms “inner” and “outer ideal,” which

won immediate acceptance.

Artinian Definition. A Jordan algebra J is artinian if it has minimum
condition on inner ideals: every collection {Bi} of inner ideals of J has a
minimal element (a Bk not properly containing any other Bi of the collection).
This is, as usual, equivalent to the descending chain condition (d.c.c.)
on inner ideals: any strictly descending chain B1 > B2 > · · · of inner ideals
must stop after a finite number of terms (there is no infinite such chain).

Artin–Wedderburn–Jacobson Structure Theorem. Consider Jordan al-
gebras J over a ring of scalars Φ containing 1

2 .
• Degeneracy in a Jordan algebra J can be localized in the degener-

ate radical9 Deg(J), the smallest ideal whose quotient is nondegenerate; in
general, this is related to the semiprime and the semiprimitive radicals by
Prime(J) ⊆ Deg(J) ⊆ Rad(J), and when J has minimum condition then
Deg(J) = Rad(J).

• A Jordan algebra is nondegenerate with minimum condition iff it is a
finite direct sum of ideals which are simple nondegenerate with minimum con-
dition; in this case J has a unit, and the decomposition into simple summands
is unique.

• A Jordan algebra is simple nondegenerate with minimum condition iff it
is isomorphic to one of the following :

9 This is sometimes called the McCrimmon radical in the Russian literature; although
Jacobson introduced nondegeneracy as the “correct” notion of semisimplicity, he did not
explicitly collect it into a radical.
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Division Type: a Jordan division algebra;
Quadratic Type: a quadratic factor Jord(Q, c) determined by a nondegen-
erate quadratic form Q with basepoint c over a field Ω, such that Q is not split
of dimension 2 and has no infinite-dimensional totally isotropic subspaces;
Hermitian Type: an algebra H(A, ∗) for a ∗-simple artinian associative
algebra A;
Albert Type: an exceptional Albert algebra Jord(N, c) of dimension 27 over
a field Ω, given by a Jordan cubic form N .

In more detail, there are three algebras of Hermitian Type, the standard Jordan
matrix algebras coming from the three standard types of involutions on simple
artinian algebras:

Exchange Type:Mn(∆)+ for an associative division ring ∆ (when A is
∗-simple but not simple, A = Ex(B) = B�Bop under the exchange involution
for a simple artinian algebra B =Mn(∆));

Orthogonal Type: Hn(∆,Γ) for an associative division ring ∆ with
involution (A =Mn(∆) simple artinian with involution of orthogonal type);

Symplectic Type: Hn(Q,Γ) for a quaternion algebra Q over a field
Ω with standard involution (A = Mn(Q) simple artinian with involution of
symplectic type).

Notice the two caveats in Quadratic Type. First, we must rule out the split
2-dimensional case because it is not simple, merely semisimple: in dimension
2 either the quadratic form is anisotropic, hence the Jordan algebra a division
algebra, or the quadratic form is reduced and the Jordan algebra has two or-
thogonal idempotents, hence J = Φe1 ⊕Φe2 ∼= Φ�Φ splits into a direct sum
of two copies of the ground field, and is not simple. As soon as the dimension
is ≥ 3 the e1, e2 are tied back together by other elements v into one simple
algebra. The second, more annoying, caveat concerns the d.c.c., not central
simplicity: past dimension 2 the nondegenerate Quadratic Types are always
central-simple and have at most two orthogonal idempotents, but in certain
infinite-dimensional situations they might still have an infinite descending
chain of inner ideals: by the Basic Inner Examples any totally-isotropic sub-
space B (where every vector is isotropic, Q(B) = 0) is an inner ideal, and any
subspace of B is also a totally isotropic inner ideal, so if Q has an infinite-
dimensional totally isotropic B with basis v1, v2, . . . , then it will have an
infinite shrinking chain of inner ideals B(k) = Span({vk, vk+1, . . . }). Loos has
shown that such a J always has d.c.c. on principal inner ideals, so it just
barely misses being artinian. These poor Jord(Q, c)’s are left outside while
their siblings party inside with the Artinian simple algebras. The final clas-
sical formulation in the next section will revise the entrance requirements,
allowing these to join the party too.
The question of the structure of Jordan division algebras remained open:

since they had no proper idempotents e  = 0, 1 and no proper inner ideals,
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the classical techniques were powerless to make a dent in their structure. The
nature of the radical also remained open. From the associative theory one
expected Deg(J) to coincide with Prime(J) and be nilpotent in algebras with
minimum condition, but a proof seemed exasperatingly elusive.
At this point a hypertext version of this book would include a melody

from the musical Oklahoma:

Everything’s up to date in Jordan structure theory ;
They’ve gone about as fer as they can go;
They went and proved a structure theorem for rings with d.c.c.,
About as fer as a theorem ought to go. (Yes, sir !)
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The Final Classical Formulation:
Algebras with Capacity

In 1983 Jacobson reformulated his structure theory in terms of algebras with
capacity. This proved serendipitous, for it was precisely the algebras with
capacity, not the (slightly more restrictive) algebras with minimum condition,
that arose naturally in Zel’manov’s study of arbitrary infinite-dimensional
algebras.

5.1 Algebras with Capacity

The key to this approach lies in division idempotents. These also play a star-
ring role in the associative Artin-Wedderburn theory, where they go by the
stage name of completely primitive idempotents.

Division Idempotent Definition. An element e of a Jordan algebra J is
called an idempotent if e2 = e (then all its powers are equal to itself, hence
the name meaning“same-powered”). In this case the principal inner ideal (e]
forms a unital subalgebra UeJ. A division idempotent is one such that this
subalgebra UeJ is a Jordan division algebra.

Orthogonal Idempotent Definition. Two idempotents e, f in J are or-
thogonal, written e ⊥ f, if e • f = 0, in which case their sum e + f is
again idempotent; an orthogonal family {eα} is a family of mutually or-
thogonal idempotents (eα ⊥ eβ for all α  = β). A finite orthogonal family is
supplementary if the idempotents sum to the unit,

∑n
i=1 ei = 1.

Connection Definition. Two orthogonal idempotents ei, ej in a Jordan al-
gebra are connected if there is a connecting element uij ∈ Uei,ej

J which is
invertible in the subalgebra Uei+ejJ. If the element uij can be chosen such that
u2
ij = ei+ ej , then we say that uij is a strongly connecting element and ei, ej
are strongly connected.
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We now examine examples of connected idempotents in our basic examples
of Jordan algebras.

Full and Hermitian Connection Example. If ∆ is an associative divi-
sion algebra with involution, then in the Jordan matrix algebra J =Mn(∆)+

or J = Hn(∆,−) the diagonal idempotents Eii are supplementary orthogo-
nal division idempotents (with UEii(J) = ∆Eii or H(∆,−)Eii, respectively)
strongly connected by the elements uij = Eij + Eji.

Twisted Hermitian Connection Example. In the twisted hermitian ma-
trix algebra J = Hn(∆,Γ), the diagonal idempotents Eii are again orthogonal
division idempotents (with UEii(J) = γiH(∆)Eii) connected by the elements
uij = γiEij + γjEji with u2

ij = γiγj(Eii+Ejj). But in general they cannot be
strongly connected by any element vij = γiaEij + γj āEji, since

v2
ij = (γiaγj ā)Eii + (γj āγia)Ejj ;

for example, if ∆ = the reals, complexes, or quaternions with standard in-
volution and γi = 1, γj = −1, then we never have γiaγj ā = 1 (i.e., never
aā = −1).

Quadratic Factor Connection Example. In a quadratic factor
Jord(Q, c) of dimension > 2 over a field Φ, every proper idempotent e (T (e) =
1, Q(e) = 0) is connected to e′ := 1 − e by every anisotropic u ⊥ 1, e in the
orthogonal space (Q(u)  = 0 = Q(e, u) = T (u)), and is strongly connected by
such u iff Q(u) = −1.

Upper Triangular Connection Example. If J = A+ for A = T n(∆)
the upper-triangular n×n matrices over ∆, then again the Eii are orthogonal
division idempotents, but they are not connected: UEii,Ejj (J) = ∆Eij for i < j
and so consists entirely of nilpotent elements u2

ij = 0.

Capacity Definition. A Jordan algebra has capacity n if it has a unit 1
which can be written as a finite sum of n orthogonal division idempotents:
1 = e1 + · · ·+ en; it has connected capacity if each pair ei, ej for i  = j is
connected. It has finite capacity (or simply capacity) if it has capacity n
for some n.

It is not immediately clear that capacity is an invariant, i.e., that all de-
compositions of 1 into orthogonal sums of division idempotents have the same
length. This is true, but it was proven much later by Holger Petersson.
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5.2 Classification

To analyze an arbitrary algebra of finite capacity, Jacobson broke it into its
simple building blocks, analyzed the simple blocks of capacity 1, 2, n ≥ 3 in
succession, then described the resulting coordinate algebras, finally reaching
the pinnacle of the classical structure theory in his 1983 Arkansas Lecture
Notes.

Classical Structure Theorem. Consider Jordan algebras over a ring of
scalars containing 1

2 .
• A nondegenerate Jordan algebra with minimum condition on inner ideals

has finite capacity.
• A Jordan algebra is nondegenerate with finite capacity iff it is a finite

direct sum of algebras with finite connected capacity.
• A Jordan algebra is nondegenerate with finite connected capacity iff it is

isomorphic to one of the following (in which case it is simple):
Division Type: a Jordan division algebra;
Quadratic Type: a quadratic factor Jord(Q, c) determined by a nondegen-
erate quadratic form Q with basepoint c over a field Ω (not split of dimension
2);
Hermitian Type: an algebra H(A, ∗) for a ∗-simple artinian associative
algebra A;
Albert Type: an exceptional Albert algebra Jord(N, c) of dimension 27 over
a field Ω, determined by a Jordan cubic form N .

In more detail, the algebras of Hermitian Type are twisted Jordan matrix
algebras:

Exchange Type: Mn(∆)+ for an associative division ring ∆ (A is ∗-
simple but not simple, A = Ex(B) with exchange involution for a simple
artinian algebra B =Mn(∆));

Orthogonal Type: Hn(∆,Γ) for an associative division ring ∆ with
involution (A =Mn(∆) simple artinian with involution of orthogonal type);

Symplectic Type: Hn(Q,Γ) for a quaternion algebra Q over a field
Ω with standard involution (A = Mn(Q) simple artinian with involution of
symplectic type).

Note that we have not striven to make the types non-overlapping: the last
three may include division algebras of the first type (our final goal will be to
divide up the Division type and distribute the pieces among the remaining
types).
Finite capacity essentially means “finite-dimensional over a division ring”

∆, which may well be infinite-dimensional over its center, though the quadratic
factors Jord(Q, c) can have arbitrary dimension over Ω right from the start.
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Note that all these simple algebras actually have minimum condition on in-
ner ideals, with the lone exception of Quadratic Type: by the basic examples
of inner ideals in Section 4.7, Jord(Q, c) always has minimum condition on
principal inner ideals [the principal inner ideals are (b] = J and (b] = Ωb], but
has minimum condition on all inner ideals iff it has no infinite-dimensional
totally isotropic subspaces.
Irving Kaplansky has argued that imposing the d.c.c. instead of finite-

dimensionality is an unnatural act, that the minimum condition does not arise
“naturally” in mathematics (in contrast to the maximum condition, which, for
example, arises naturally in rings of functions attached to finite-dimensional
varieties in algebraic geometry, or in A.M. Goldie’s theory of orders in asso-
ciative rings). In Jordan theory the d.c.c. is additionally unnatural in that it
excludes the quadratic factors with infinite-dimensional totally isotropic sub-
spaces. Zel’manov’s structure theory shows that, in contrast, imposing finite
capacity is a natural act: finite capacity grows automatically out of the finite
degree of any non-vanishing s-identity in a prime Jordan algebra.
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The Classical Methods:
Cherchez les Division Idempotents

Those elusive creatures, the division idempotents, are the atoms of structure
theory, held together in a Peirce frame to create the living algebra.

6.1 Peirce Decompositions

We will now give an outline of how one establishes the classical structure the-
ory of nondegenerate algebras with capacity. The method is to find as many
idempotents as possible, preferably as tiny as possible, and use their Peirce1

decompositions to refine the structure. Peirce decompositions were the key
tool in the classical approach to the Artin–Wedderburn theory of associative
rings. In associative rings, a decomposition 1 =

∑n
i=1 ei of the unit into mu-

tually orthogonal idempotents produces a decomposition A =
⊕n

i,j=1Aij of
the algebra into “chunks” (Peirce spaces) with multiplication rules like those
for matrix units, AijAk� ⊆ δjkAi�. We can recover the structure of the entire
algebra by analyzing the structure of the individual pieces and how they are
reassembled (Humpty–Dumpty-wise) to form A.
Jordan algebras have similar Peirce decompositions, the only wrinkle being

that (as in the archetypal example of hermitian matrix algebras) the “off-
diagonal” Peirce spaces Jij (i  = j) behave like the sum Aij + Aji of two
associative Peirce spaces, so that we have symmetry Jij = Jji. When n =
2 the decomposition is determined by a single idempotent e = e1 with its
complement e′ := 1− e, and can be described more simply.

Peirce Decomposition Theorem. An idempotent e in a Jordan algebra J
determines a Peirce decomposition

J = J2 ⊕ J1 ⊕ J0 (Ji := Ji(e) := {x | Vex = ix})
1 Not pronounced “pierce” (as in ear, or the American president Franklin), but “purse”

(as in sow’s ear, or the American mathematician Benjamin).
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of the algebra into the direct sum of Peirce subspaces, where the diagonal
Peirce subalgebras J2 = UeJ,J0 = U1−eJ are principal inner ideals.
More generally, a decomposition 1 = e1 + · · ·+ en of the unit of a Jordan

algebra J into a sum of n supplementary orthogonal idempotents leads to a
Peirce decomposition

J =
⊕

i≤j Jij

of the algebra into the direct sum of Peirce subspaces, where the diagonal
Peirce subalgebras are the inner ideals

Jii := Uei
(J) = {x ∈ J | ei • x = x},

and the off-diagonal Peirce spaces are

Jij = Jji := Uei,ej
(J) = {x ∈ J | ei • x = ej • x = 1

2x} (i  = j).

Because of the symmetry Jij = Jji the multiplication rules for these subspaces
are a bit less uniform to describe, but basically the product of two Peirce spaces
vanishes unless two of the indices can be linked, in which case it falls in the
Peirce space of the remaining indices:

{Jii,Jik} ⊆ Jik,
{Jij ,Jjk} ⊆ Jik (i, j, k  =),
{Jij ,Jij} ⊆ Jii + Jjj (i  = j),
{Jij ,Jk�} = 0 ({i, j} ∩ {k, ?} = ∅).

6.2 Coordinatization

The classical Wedderburn Coordinatization Theorem says that if an associa-
tive algebra has a supplementary family of n × n associative matrix units
eij (

∑
i eii = 1, eijek� = δjkei�), then it is itself a matrix algebra,A ∼=Mn(D)

coordinatized by D = A11.
Jacobson found an important analogue for Jordan algebras: a Jordan al-

gebra with enough Jordan matrix units is a Jordan matrix algebra Hn(D,−)
coordinatized by D = J12. We noted earlier that one needs n ≥ 3 in order
to recover the product in D. Often in mathematics, in situations with low
degrees of freedom we may have many “sporadic” objects, but once we get
enough degrees of freedom to maneuver we reach a very stable situation. A
good example is projective geometry. Projective n-spaces for n = 1, 2 (lines
and planes) are bewilderingly varied; one important projective plane, the Mo-
ufang plane discovered by Ruth Moufang, has points (b, c) coordinatized by
the octonions. But as soon as you get past 2, projective n-spaces for n ≥ 3
automatically satisfy Desargues’s Axiom, and any n-space for n ≥ 2 which
satisfies Desargues’s Axiom is coordinatized by an associative division ring.
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The situation is the same in Jordan algebras: degrees 1 and 2 are com-
plicated (see Osborn’s Degree 2 Theorem below), but once we reach degree
n = 3 things are coordinatized by alternative algebras, and once n ≥ 4 by
associative algebras (recall the Associative and Alternative Coordinate Theo-
rems of Sections 2.6 and 2.7). Here we cannot recover the coordinate algebra
from the diagonal Peirce spaces Jii coordinatized only by hermitian elements
H(D,−), we must use instead the off-diagonal Peirce spaces Jij coordinatized
by all of D. When the idempotents are strongly connected we get a Jordan
matrix algebra, while if they are merely connected we obtain an isotope (a
twisted matrix algebra Hn(D,Γ)). Note that no “niceness” conditions such as
nondegeneracy are needed here: the result is a completely general structural
result.

Jacobson Coordinatization Theorem. (1) If a Jordan algebra J has a
supplementary family of n ≥ 3 Jordan matrix units (1 = e1 + · · ·+ en for or-
thogonal idempotents ei strongly connected to e1 via u1i), then J is isomorphic
to a Jordan matrix algebra Hn(D,−) under an isomorphism

J→ Hn(D,−) via ei �→ Eii, u1j �→ E1j + Ej1.

The coordinate ∗-algebra D with unit and involution is given by
D := J12 = Ue1,e2J,
1 := u12,

x̄ := Uu12(x),
xy := {{x, {u12, u13}}, {u13, y}} (x, y ∈ J12).

Here D must be associative if n ≥ 4, and if n = 3 then D must be alternative
with hermitian elements in the nucleus.
(2) A Jordan algebra whose unit is a sum of n ≥ 3 orthogonal connected

idempotents is isomorphic to a twisted Jordan matrix algebra: if the ei are
merely connected to e1 via the u1i, then there is an isotope J(u) relative to
a diagonal element u = e1 + u22 + · · · + unn which is strongly connected,
J(u) ∼= Hn(D,−), and J = (J(u))(u

−2) ∼= Hn(D,−)(Γ) ∼= Hn(D,Γ).

Notice that the product on the coordinate algebra D is recovered from brace
products {x, y} = 2x•y in the Jordan algebra J, not bullet products. We noted
in discussing Jordan matrix algebras that the brace products {x, y} ≈ xy+yx
interact more naturally with the coordinates, and we also observed the ne-
cessity of associativity and alternativity. The key in the strongly connected
case (1) is to construct the “matrix symmetries,” automorphisms ϕπ per-
muting the idempotents ϕπ(ei) = eπ(1). These are generated by the “trans-
positions” ϕij = Ucij given by cij = 1 − ei − ej + uij . [The u1j ∈ J1j are
given, and from these we construct the other uij = {u1i, u1j} ∈ Jij with
u2
ij = ei + ej , {uij , ujk} = uik for distinct indices i, j, k.] Directly from the
Fundamental Formula we see that any element c with c2 = 1 determines an
automorphism Uc of J of period 2, and here u2

ij = ei+ ej implies that c2ij = 1.
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6.3 The Coordinates

Now we must find what the possible coordinate algebras are for an algebra
with capacity. Here Ue1J ∼= H(D,−)E11 must be a division algebra, and D
must be nondegenerate if J is. These algebras are completely described by
the H-K-O Theorem due to I.N. Herstein, Erwin Kleinfeld, and J. Marshall
Osborn. Note that there are no explicit simplicity or finiteness conditions im-
posed, only nondegeneracy; nevertheless, the only possibilities are associative
division rings and finite-dimensional composition algebras.

Herstein–Kleinfeld–Osborn Theorem. A nondegenerate alternative ∗-
algebra has all its hermitian elements invertible and nuclear iff it is isomorphic
to one of :
Noncommutative Exchange Type: the exchange algebra Ex(∆) of a

noncommutative associative division algebra ∆;
Division Type: an associative division ∗-algebra ∆ with non-central in-

volution;
Composition Type: a composition ∗-algebra of dimension 1, 2, 4, or 8

over a field Ω (with central standard involution): the ground field (unarion), a
quadratic extension (binarion), a quaternion algebra, or an octonion algebra.

In particular, the algebra is automatically ∗-simple, and is associative unless
it is an octonion algebra. We can list the possibilities in another way : the
algebra is either
Exchange Type: the direct sum ∆�∆op of an associative division algebra

∆ and its opposite, under the exchange involution;
Division Type: an associative division algebra ∆ with involution;
Split Quaternion Type: a split quaternion algebra of dimension 4 over

its center Ω with standard involution; equivalently, 2 × 2 matrices M2(Ω)
under the symplectic involution xsp := sxtrs−1 for symplectic s :=

(
0 1−1 0

)
;

Octonion Type: an octonion algebra O of dimension 8 over its center
Ω with standard involution.

6.4 Minimal Inner Ideals

Our next job is to show that the structure theory for artinian algebras can
be subsumed under that for algebras with capacity: a nondegenerate Jordan
algebra with minimum condition on inner ideals automatically has a finite
capacity. To get a capacity, you first need to catch a division idempotent.
Luckily, the nondegeneracy and the minimum condition on inner ideals guar-
antees lots of division idempotents, because minimal inner ideals come from
trivial elements or division idempotents.
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Minimal Inner Ideal Theorem. The minimal inner ideals B in a Jordan
algebra J over Φ are precisely the following :
Trivial Type: Φz for a trivial element z (UzĴ = 0);
Idempotent Type: (e] = UeJ for a division idempotent e;
Nilpotent Type: (b] = UbJ for b2 = 0, in which case B := (b] has

B2 = UBB = 0, and B is paired with a minimal inner ideal E = UeJ of
Idempotent Type (Ub : E → B, Ue : B → E are inverse bijections), and
there is also an isotope J(u) in which B itself becomes of Idempotent Type,
b(2,u) = b.

We now give examples of these three types of minimal inner ideals in the
basic Jordan algebras.

Full and Hermitian Idempotent Example. In the Jordan matrix algebra
Mn(∆)+ or Hn(∆,−) for any associative division ring ∆ with involution, the
diagonal matrix unit e = Eii is a division idempotent, and the principal inner
ideal (e] = ∆Eii or H(∆,−)Eii is a minimal inner ideal of Idempotent Type.

Full and Hermitian Nilpotent Example. In Mn(∆)+ the off-
diagonal matrix unit b = Eij is nilpotent, and its principal inner ideal
(b] = ∆Eij is a minimal inner ideal of Nilpotent Type, paired with (e] for
the division idempotent e = 1

2 (Eii + Eij + Eji + Ejj). In general, a hermi-
tian algebra Hn(∆,−) need not contain inner ideals of Nilpotent Type [for
example, Hn(R) is formally real and has no nilpotent elements at all ], but if
∆ contains an element γ of norm γγ̄ = −1, then in Hn(∆,−) the principal
inner ideal (b] for b = Eii + γEij + γ̄Eji − Ejj is minimal of Nilpotent Type
(paired with (e] for the division idempotent e = Eii).

Triangular Trivial Example. In A+ for A = T n(∆) the upper triangular
n×n matrices over ∆, where Φ is a subfield of ∆, then the off-diagonal matrix
units Eij (i < j) are trivial elements, and the inner ideal ΦEij is a minimal
inner ideal of Trivial Type.

Division Example. If J is a division algebra, then J itself is a minimal inner
ideal of Idempotent Type (e = 1).

Quadratic Factor Example. In the quadratic factor Jord(Q, c) for a nonde-
generate isotropic quadratic form over a field Φ, the minimal inner ideals are
the (b] = Φb determined by nonzero isotropic vectors (Q(b) = 0). If T (b)  = 0
then b is a scalar multiple of a division idempotent, and (b] = Φe = (e] is
of Idempotent Type. If T (b) = 0 then (b] is of Nilpotent Type, paired with
some (e] = Φe. [Imbed b in a hyperbolic pair Q(d) = Q(b) = 0, Q(d, b) = 1; if
T (d) = λ  = 0 then take e = λ−1d, while if T (d) = 0 take e = d+ 1

4b+
1
21.]
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Cubic Factor Example. Similarly, in the cubic factor Jord(N, c) for an
isotropic Jordan cubic form, the minimal inner ideals are the (b] = Φb for
nonzero sharpless vectors b# = 0; again, if T (b)  = 0 then b is a scalar multiple
of a division idempotent, and (b] is of Idempotent Type, while if T (b) = 0 then
(b] is of Nilpotent Type (though it is more complicated to describe an inner
ideal of Idempotent Type paired with it).

6.5 Capacity

Once we have division idempotents, we can assemble them carefully into a
capacity.

Capacity Existence Theorem. A nondegenerate Jordan algebra with min-
imum condition on inner ideals has a finite capacity.

The idea is to find a division idempotent e1 in J, then consider the orthog-
onal Peirce subalgebra J0(e1) = U1̂−e1J. This inherits nondegeneracy and
minimum condition from J (inner ideals or trivial elements in J0(e) are actu-
ally inner or trivial in all of J); as long as this Peirce 0-space is nonzero we
can repeat the process with J replaced by J0 to find e2 in U1̂−e1J, then find e3
in U1̂−(e1+e2)J, etc. This chain J > U1̂−e1J > U1̂−(e1+e2)J > · · · of “pseudo-
principal” inner ideals (remember that we don’t yet know that there is a real
element 1 in J) eventually terminates in U1̂−(e1+···+en)J = 0 by the descend-
ing chain condition, from which one shows by nondegeneracy that e1+ · · ·+en
is a unit for J, and J has capacity n.

6.6 Capacity Classification

Once we have obtained capacity, we can forget about the minimum condition.
First we break the algebra up into connected components.

Connected Capacity Theorem. An algebra with capacity is semi-primitive
iff it is nondegenerate: Rad(J) = Deg(J). A nondegenerate Jordan algebra with
capacity splits into the direct sum J = J1 � · · · � Jn of a finite number of
nondegenerate ideals Jk having connected capacity.

The idea here is that if ei, ej are not connected, then by nondegeneracy we can
show they are “totally disconnected” in the sense that the connecting Peirce
space Jij = 0 vanishes entirely; connectivity is an equivalence relation among
the ei’s, so if we break them into connectivity classes and let the fk be the
class sums, then again Ufj ,fk

J = 0 for j  = k, so that J = �kUfk
J = �kJk is

a direct sum of subalgebras Jk = Ufk
J (which are then automatically ideals)

having unit fk with connected capacity.
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An easy argument using Peirce decompositions shows that nondegeneracy
plus connected capacity yields simplicity.

Simple Capacity Theorem. Any nondegenerate algebra with connected ca-
pacity is simple.

Now we start to analyze the simple pieces according to their capacity.
Straight from the definitions we have the following result.

Capacity 1 Theorem. A Jordan algebra has capacity 1 iff it is a division
algebra.

At this stage the classical approach can’t say anything more about capacity
1: the whole method is to use idempotents to break the algebra down, and
Jordan division algebras have no proper idempotents and cannot be broken
down further.
Capacity 2 turns out, surprisingly, to be the technically most difficult part

of the structure theory.

Osborn’s Capacity Two Theorem.A Jordan algebra is nondegenerate with
connected capacity 2 iff it is of Full 2×2, Hermitian 2×2, or Quadratic
Factor Type, i.e., iff it is isomorphic to one of :

M2(∆)+ ∼= H2(Ex(∆)) for a noncommutative associative
division algebra ∆;

H2(∆,Γ) for an associative division algebra ∆ with non-central
involution;

Jord(Q, c) for a nondegenerate isotropic quadratic form Q with basepoint
over a field Ω.

[Note that the quadratic form Q has to be isotropic in the third case, for if
it were anisotropic then by Quadratic and Cubic Factor Inverse Examples in
Section 4.7, the algebra Jord(Q, c) would be a division algebra of capacity 1.]
Putting the coordinate algebras D of the H–K–O Theorem into the Coor-

dinatization Theorem gives the algebras of Hermitian Type.

Capacity ≥ 3 Theorem. A Jordan algebra is nondegenerate with connected
capacity n ≥ 3 iff it is isomorphic to one of the following algebras of n × n
hermitian matrices:

Hn(Ex(∆)) ∼=Mn(∆)+ for an associative division algebra ∆;
Hn(∆,Γ) for an associative division ∗-algebra ∆;
Hn(Q,Γ) for a quaternion algebra Q over a field ;
H3(O,Γ) for an octonion algebra O over a field.
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Crudely put, the reason that the nice Jordan algebras of degree n ≥ 3 are what
they are is because Jordan algebras are naturally coordinatized by alternative
algebras, and the only nice alternative algebras are associative or octonion
algebras.
With the attainment of the Classical Structure Theory, Jordan algebraists

sang a (slightly) different tune:

Everything’s up to date in Jordan structure theory ;
They’ve gone about as fer as they can go;
They went and proved a structure theorem for rings with capacity,
About as fer as a theorem ought to go. (Yes, sir!)

At the very time this tune was reverberating in nonassociative circles through-
out the West, a whole new song without idempotents was being composed in
far-off Novosibirsk.
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The Russian Revolution: 1977–1983

The storm which broke over Jordan theory in the late 70s and early 80s began
brewing in Novosibirsk, far from Western radar screens.

7.1 The Lull Before the Storm

At the end of the year 1977 the classical theory was essentially complete, but
held little promise for a general structure theory. One indication that infinite-
dimensional simple exceptional algebras are inherently of “degree 3” was the
result that a simple algebra with more than three orthogonal idempotents
is necessarily special. A more startling indication was the Gelfand–Naimark
Theorem for Jordan Algebras obtained by Erik M. Alfsen, Frederic W. Shultz,
and Erling Størmer that a JB-algebra (a Banach space with Jordan product
satisfying ‖x • y‖ ≤ ‖x‖ ‖y‖, ‖x2‖ = ‖x‖2, and a formal reality condition
‖x2‖ ≤ ‖x2+y2‖) is built out of special subalgebras of associative C∗-algebras
and Albert algebras. Here the test whether an algebra is special or Albert
was whether or not it satisfied Glennie’s Identity G8. Few nonassociative
algebraists appreciated the clue this gave — the argument was extremely
long and ingenious, and depended on subtle results from functional analysis.
The idea was to imbed the C∗-algebra in its Arens double dual, which is a
Jordan W ∗-algebra with lots of idempotents; speciality comes easily in the
presence of idempotents.
Tantalizing as these results were, they and the classical methods relied

so unavoidably on finiteness or idempotents that there seemed no point of
attack on the structure of infinite-dimensional algebras: they offered no hope
for a Life After Idempotents. In particular, the following Frequently Asked
Questions on the structure of general Jordan algebras seemed completely in-
tractable:
(FAQ1) Is the degenerate radical nilpotent in the presence of the minimum

condition on inner ideals (so Deg(J) = Prime(J))? Do the trivial elements
generate a locally nilpotent ideal (equivalently, does every finite set of trivial
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elements in a Jordan algebra generate a nilpotent subalgebra)? Is Deg(J) ⊆
Loc(J) for the locally nilpotent or Levitzki radical (the smallest ideal L such
that J/L has no locally nilpotent ideals, an algebra being locally nilpotent if
every finitely-generated subalgebra is nilpotent)?
(FAQ2) Do there exist simple exceptional algebras which are not Albert

algebras of disappointing dimension 27 over their center?
(FAQ3) Do there exist special algebras which are simple or division alge-

bras but are not of the classical types Jord(Q, c) or H(A, ∗)?
(FAQ4) Can one develop a theory of Jordan PI-algebras (those strictly

satisfying a polynomial identity, a free Jordan polynomial which is monic in
the sense that its image in the free special Jordan algebra has a monic term of
highest degree)? Is the universal special envelope of a finitely generated Jordan
PI-algebra an associative PI-algebra? Are the Jordan algebras Jord(Q, c) for
infinite-dimensional Q the only simple PI-algebras whose envelopes are not PI
and not finite-dimensional over their centers?
(FAQ5) Is the free Jordan algebra (cf. Appendix B) on three or more gen-

erators like a free associative or Lie algebra (a domain which can be imbedded
in a division algebra, in which case it would necessarily be exceptional yet
infinite-dimensional), or is it like the free alternative algebra (having zero
divisors and trivial elements)?
(FAQ6)What are the s-identities which separate special algebras and their

homomorphic images from the truly exceptional algebras? Are there infinitely
many essentially different s-identities, or are they all consequences of G8 or
G9?

Yet within the next six years all of these FAQs became settled FAQTs.

7.2 The First Tremors

The first warnings of the imminent eruption reached the West in 1978. Ru-
mors from visitors to Novosibirsk,1 and a brief mention at an Oberwolfach
conference attended only by associative ring theorists, claimed that Arkady
M. Slin’ko and Efim I. Zel’manov had in 1977 settled the first part of FAQ1:
the radical is nilpotent when J has minimum condition. Slin’ko had shown this
for special Jordan algebras, and jointly with Zel’manov he extended this to
arbitrary algebras. A crucial role was played by the concept of the Zel’manov
annihilator of a set X in a linear Jordan algebra J,

1 It is hard for students to believe how difficult mathematical communication was before
the opening up of the Soviet Union. It was difficult for many Soviet mathematicians, or
even their preprints, to get out to the West. The stories of Zel’manov and his wonderful
theorems seemed to belong to the Invisible City of Kitezh, though soon handwritten letters
started appearing with tantalizing hints of the methods used. It was not until 1982 that
Western Jordan algebraists caught a glimpse of Zel’manov in person, at a conference on
(not of) radicals in Eger, Hungary.



7.3 The Main Quake 109

ZannJ(X) = {z ∈ J | {z,X, Ĵ} = 0}.
This annihilator is always inner for any set X, and is an ideal if X is an ideal.
In a special algebra J ⊆ A+ where J generates A as associative algebra, an
element z belongs to ZannJ(X) iff for all x ∈ X the element zx = −xz lies
in the center of A with square zero, so for semiprime A this reduces to the
usual two-sided associative annihilator {z | zX = Xz = 0}.
Annihilation is an order-reversing operation (the bigger a set the smaller

its annihilator), so a decreasing chain of inner ideals has an increasing chain
of annihilator inner ideals, and vice versa. Zel’manov used this to handle both
the minimum and the maximum condition simultaneously. The nil radical
Nil(J) is the largest nil ideal, equivalently the smallest ideal whose quotient
is free of nil ideals, where an ideal is nil if all its elements are nilpotent.

Zel’manov’s Nilpotence Theorem. If J has minimum or maximum con-
dition on inner ideals inside a nil ideal N, then N is nilpotent. In particular,
if J has minimum or maximum condition inside the nil radical Nil(J) then

Nil(J) = Loc(J) = Deg(J) = Prime(J).
He then went on to settle the rest of (FAQ1) for completely general algebras.

Zel’manov’s Local Nilpotence Theorem. In any Jordan algebra, the triv-
ial elements generate a locally nilpotent ideal,

Deg(J) ⊆ Loc(J);
equivalently, any finite set of trivial elements generates a nilpotent subalgebra.

The methods used were extremely involved and “Lie-theoretic,” based on
the notion of “thin sandwiches” (the Lie analogue of trivial elements), devel-
oped originally by A.I. Kostrikin to attack the Burnside Problem and extended
by Zel’manov in his Fields–medal–winning conquest of that problem. At the
same time, Zel’manov was able to characterize the radical for PI-algebras.

PI Radical Theorem. If a Jordan algebra over a field satisfies a polynomial
identity, then Deg(J) = Loc(J) = Nil(J). In particular, if J is nil of bounded
index then it is locally nilpotent: J = Loc(J).

7.3 The Main Quake

In 1979 Zel’manov flabbergasted the Jordan community by proving that there
were no new exceptional algebras in infinite dimensions, settling once and for
all FAQ2 which had motivated the original investigation of Jordan algebras by
physicists in the 1930s, and showing that there is no way to avoid an invisible
associative structure behind quantum mechanics.
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Zel’manov’s Exceptional Theorem. There are no simple exceptional Jor-
dan algebras but the Albert algebras: any simple exceptional Jordan algebra is
an Albert algebra of dimension 27 over its center. Indeed, any prime excep-
tional Jordan algebra is a form of an Albert algebra: its central closure is a
simple Albert algebra.

Equally flabbergasting was his complete classification of Jordan division
algebras: there was nothing new under the sun in this region either, answering
the division algebra part of (FAQ3).

Zel’manov’s Division Theorem. The Jordan division algebras are precisely
those of classical type:
Quadratic Type: Jord(Q, c) for an anisotropic quadratic form Q over a
field ;
Full Associative Type: ∆+ for an associative division algebra ∆;
Hermitian Type: H(∆, ∗) for an associative division algebra ∆ with invo-
lution ∗;
Albert Type: Jord(N, c) for an anisotropic Jordan cubic form N in 27
dimensions.

As a coup de grâce, administered in 1983, he classified all possible simple
Jordan algebras in arbitrary dimensions, settling (FAQ2) and (FAQ3).

Zel’manov’s Simple Theorem. The simple Jordan algebras are precisely
those of classical type:
Quadratic Factor Type: Jord(Q, c) for a nondegenerate quadratic form
Q over a field ;
Hermitian Type: H(B, ∗) for a ∗-simple associative algebra B with invo-
lution ∗, (hence either A+ for a simple A, or H(A, ∗) for a simple A with
involution);
Albert Type: Jord(N, c) for a Jordan cubic form N in 27 dimensions.

As if this weren’t enough, he actually classified the prime algebras (recall
the definition in Section 4.9).

Zel’manov’s Prime Theorem. The prime nondegenerate Jordan algebras
are precisely :
Quadratic Factor Forms: special algebras with central closure a simple
quadratic factor Jord(Q, c) (Q a nondegenerate quadratic form with basepoint
over a field);
Hermitian Forms: special algebras J of hermitian elements squeezed between
two full hermitian algebras, H(A, ∗) J ⊆ H(Q(A), ∗) for a ∗-prime associative
algebra A with involution ∗ and its Martindale ring of symmetric quotients
Q(A);
Albert Forms: exceptional algebras with central closure a simple Albert al-
gebra Jord(N, c) (N a Jordan cubic form in 27 dimensions).
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This can be considered the ne plus ultra, or Mother of All Classification
Theorems. Notice the final tripartite division of the Jordan landscape into
Quadratic, Hermitian, and Albert Types. The original Jordan–von Neumann–
Wigner classification considered the Hermitian and Albert types together be-
cause they were represented by hermitian matrices, but we now know that
this is a misleading feature (due to the “reduced” nature of the Euclidean al-
gebras). The final three types represent genetically different strains of Jordan
algebras. They are distinguished among themselves by the sorts of identities
they do or do not satisfy: Albert fails to satisfy the s-identities (Glennie’s or
Thedy’s), Hermitian satisfies the s-identities but not Zel’manov’s eater iden-
tity, and Quadratic satisfies s-identities as well as Zel’manov’s eater identity.
The restriction to nondegenerate algebras is important; while all simple

algebras are automatically nondegenerate, the same is not true of prime al-
gebras. Sergei Pchelintsev was the first to construct prime special Jordan
algebras which have trivial elements (and therefore cannot be quadratic or
Hermitian forms); in his honor, such algebras are now called Pchelintsev mon-
sters.

7.4 Aftershocks

Once one had such an immensely powerful tool as this theorem, it could be
used to bludgeon most FAQs into submission. We first start with FAQ4.

Zel’manov’s PI Theorem. Each nonzero ideal of a nondegenerate Jordan
PI-algebra has nonzero intersection with the center (so if the center is a field,
the algebra is simple). The central closure of a prime nondegenerate PI-algebra
is central-simple. Any primitive PI-algebra is simple. Each simple PI-algebra
is either finite-dimensional, or a quadratic factor Jord(Q, c) over its center.

Next, Ivan Shestakov settled a question raised by Jacobson in analogy with
the associative PI theory.

Shestakov’s PI Theorem. If J is a special Jordan PI-algebra, then its uni-
versal special envelope is locally finite (so if J is finitely generated, its envelope
is an associative PI-algebra).

The example of an infinite-dimensional simple Jord(Q, c), which as a
degree 2 algebra satisfies lots of polynomial identities yet has the infinite-
dimensional simple Clifford algebra Cliff(Q, c) as its universal special enve-
lope, shows that we cannot expect the envelope to be globally finite.
The structure theory has surprising consequences for the free algebra, set-

tling FAQ5.

Free Consequences Theorem. The free Jordan algebra on three or more
generators has trivial elements.
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Indeed, note that the free Jordan algebra FJ [X] on |X| ≥ 3 generators
(cf. Appendix B) is i-exceptional: if it were i-special, all its homomorphic
images would be too, but instead it has the i-exceptional Albert algebra as
a homomorphic image, since the Albert algebra can be generated by three

elements
(

0 1 0
1 0 0
0 0 0

)
,
(

0 0 0
0 0 1
0 1 0

)
,

(
0 −i j
i 0 −�
j � 0

)
. The free algebra FJ [X] is not itself

an Albert form: the “standard Jordan identity”

SJ4(x, y, z) := S4
(
Vx3,y, Vx2,y, Vx1,y, V1,y

)
(z)

built out of the alternating “standard associative identity”

S4(x1, x2, x3, x4) :=
∑

π(−1)πxπ(1)xπ(2)xπ(3)xπ(4)

summed over all permutations on four letters, vanishes identically on any Al-
bert form J ⊆ H3(O(Ω)) but not on FJ [x, y, z]. [This p(x, y, z) vanishes on
J, indeed any degree 3 algebra where each element x has x3 an Ω-linear com-
bination of x2, x, 1, because the alternating form S4(x1, x2, x3, x4) vanishes
whenever the elements x1, x2, x3, x4 are linearly dependent; p(x, y, z) doesn’t
vanish on FJ [x, y, z] because it doesn’t even vanish on the homomorphic im-
age FA[x, y, z]+ for FA[x, y, z] the free associative algebra on 3 generators (if
we order the generators x > y > z then SJ4(x, y, z) has monic lexicographi-
cally leading term x3yx2yxyyz ∈ FA[x, y, z]).]
Thus by Zel’manov’s Prime Theorem FJ[X] is not prime nondegenerate:

either it is degenerate (has trivial elements), or is not prime (has orthogonal
ideals). In fact, Yuri Medvedev explicitly exhibited trivial elements.
These radical identities are the most degenerate kind of s-identities possi-

ble: they are nonzero Jordan expressions which produce only trivial elements
in any Jordan algebra, and vanish identically in special algebras.
These results also essentially answer FAQ6: just as Alfsen–Shultz–Størmer

indicated, the Glennie Identity G8 is the “only” s-identity, or put another way,
all s-identities which survive the Albert algebra are “equivalent.”

i-Speciality Theorem. All semiprimitive i-special algebras are special, so for
primitive algebras i-speciality is equivalent to speciality. If f is any particular
s-identity which does not vanish on the Albert algebra (such as G8, G9, or
T11), then a semiprimitive algebra will be special as soon as it satisfies the one
particular identity f : all such f do equally well at separating special algebras
from exceptional algebras. As a consequence, the ideal of all s-identities in the
free algebra on an infinite number of variables is quasi-invertible modulo the
endvariant-ideal generated by the single identity f .

An endvariant ideal of A is one invariant under all algebra endomorphisms
ofA. In a free algebra FJ [X], invariance under all homomorphisms FJ [X]→
FJ [X] is equivalent to invariance under all substitutions p(x1, . . . , xn) �→
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p(y1, . . . , yn) for yi = yi(x1, . . . xn) ∈ FJ [X].2 The reason for the equivalence
is that a semiprimitive algebra is a subdirect product of primitive (hence
prime nondegenerate) algebras, which by Zel’manov’s Prime Theorem are
either special or Albert forms; if the semiprimitive algebra is i-special it must
satisfy f, and as soon as it satisfies f all its primitive factors do likewise, so
(by hypothesis on f) none of these factors can be an Albert algebra, and the
original algebra is actually special as a subdirect product of special algebras.
The reason for the consequence is that ifK denotes the quasi-invertible closure
of the endvariant ideal K generated by f in the free Jordan algebra FJ[X] (so
K/K is the Jacobson radical of FJ[X]/K), then by construction the quotient
FJ[X]/K is semiprimitive and satisfies f (here it is crucial that K is the
endvariant ideal, not just the ordinary ideal, generated by f(x1, . . . , xn): this
guarantees not only that f(x1, . . . , xn) is 0 in the quotient, since it lies in K,
but that any substitution f(y1, . . . , yn) also falls in K and hence vanishes in
the quotient). By the first part of the theorem the quotient is special. But
then all s-identities vanish on the special algebra FJ[X]/K, so all their values
on FJ[X] fall into K: K contains all s-identities, so the ideal generated by all
s-identities is contained in K, and hence it too is quasi-invertible mod K.

2 In a free algebra such ideals are usually called T-ideals, for no apparent reason. One
could similarly use autvariant for automorphism-invariant ideals. In group theory autvariant
subgroups are called characteristic, and endvariant subgroups are variously called fully
characteristic, fully invariant, or (in free groups) verbal.
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Zel’manov’s Exceptional Methods

Here we will sketch the methods used by Zel’manov in his proof of his Ex-
ceptional Theorem. This first third of his trilogy was completed in 1979.
Zel’manov in fact classified the primitive i-exceptional algebras, then waved a
few magic wands to obtain the classification of prime and simple i-exceptional
algebras. His methods involved ordinary associative algebra concepts and re-
sults which could be transferred, although seldom in an obvious way, to Jor-
dan algebras. (The second and third parts of his trilogy involved the notion
of tetrad eater, whose origins go back to the theory of alternative algebras).
We warn readers to fasten their seatbelts before entering this chapter,

because the going gets rougher: the arguments are intrinsically more difficult,
and we get closer to these turbulent arguments by giving sketches of how the
main results are proved.

8.1 I-Finiteness

First we characterize abstractly those algebras that are rich, but not too rich,
in idempotents. On the way to showing that simple i-exceptional algebras are
27-dimensional, generation of idempotents comes from algebraicness, while
finiteness of families of orthogonal idempotents comes from the finite-degree
of a non-vanishing s-identity.

I-Genic Definition. An algebra J is I-genic (idempotent-generating) if
every non-nilpotent element b generates a nonzero idempotent e ∈ (b] = UbĴ.

Every non-nilpotent algebraic element in a [not necessarily unital] power-
associative algebra over a field generates an idempotent, providing the most
important source of I-genic algebras. Recall that an element b is algebraic
over Φ if it satisfies a monic polynomial p(λ) = λn + αn−1λ

n−1 + · · ·+ α1λ
1

with zero constant term, i.e., some power bn can be expressed as a Φ-linear
combination of lower powers, so the [non-unital] subalgebra Φ0[b] generated
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by b is a finite-dimensional commutative associative algebra. An algebra is
algebraic if each of its elements is. Algebraicness is thus a condition of “local”
finiteness at each individual element.

Algebraic I Proposition. Every algebraic algebra over a field is I-genic.

Indeed, if b is not nilpotent, the subalgebra Φ0[b] is not nil, and hence by asso-
ciative theory contains an idempotent e ∈ Φ0[b], so e = Ue(e) ∈ Ub(J) ⊆ (b].

I-Finite Proposition. J is said to be I-finite (idempotent-finite) if it has
no infinite orthogonal family e1, e2, . . . of nonzero idempotents. I-finiteness is
equivalent to the a.c.c. on idempotents:
(1) There is no infinite strictly increasing chain of idempotents,

f1 < f2 < · · · ,
where e > f means that f ∈ J2(e) lives in the Peirce subalgebra governed by
e, in which case g := e − f is an idempotent and e = f + g for orthogonal
idempotents f, g ∈ J2(e). The a.c.c. always implies (and for unital algebras,
is equivalent to) the d.c.c. on idempotents:
(2) There is no infinite strictly decreasing chain of idempotents

g1 > g2 > · · · .
In general, the d.c.c. is equivalent to the condition that J have no infinite
orthogonal family {ei} of nonzero idempotents which is bounded above in the
sense that there is an idempotent g with all ei < g. Note that if J is unital
then all families of idempotents are bounded by 1, so the two chain conditions
are equivalent: fi ↑ ⇐⇒ (1− fi) ↓.
Since an element x = α1e1+ · · ·+αnen has α1, . . . , αn as its eigenvalues,

a global bound on the number of eigenvalues an individual element can have
forces a global bound on the number of mutually orthogonal idempotents the
algebra can have. In other words, Eigenvalues Bound Idempotents:
(3) If all elements x ∈ J have at most N eigenvalues in an infinite field,

then J has at most N nonzero mutually orthogonal idempotents,
hence is I-finite.

Proof Sketch: The reason for the a.c.c. is that a strictly ascending chain would give
rise to an orthogonal family of nonzero idempotents ei+1 = fi+1 − fi ∈ J0(fi)∩J2(fi+1) ⊆
J0(ej) for all j < i+ 1, and conversely, any mutually orthogonal family of nonzero idempo-
tents gives rise to a strictly increasing chain f1 < f2 < · · · for f1 = e1, fi+1 = fi + ei+1 =
e1 + · · · + ei+1. For the d.c.c., a decreasing chain g1 > g2 > · · · would give rise to an or-
thogonal family ei+1 = gi − gi+1 ∈ J2(gi)∩ J0(gi+1) ⊆ J0(ej) for all j > i+ 1 bounded by
g = g1; conversely, an orthogonal family of ei bounded by g would give rise to a descending
chain g > g− e1 > g− (e1 + e2) > · · · > g− (e1 + · · ·+ en) > · · · . For eigenvalues bounding
idempotents, if e1, . . . , en are nonzero orthogonal idempotents, then for distinct λi ∈ Φ
(which exist if Φ is infinite) the element x =

∑n
i=1 λiei has eigenvalues λ1, . . . , λn, forcing

n ≤ N . �
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As soon as we have the right number of idempotents we have a capacity.

I-Finite Capacity Theorem. A semiprimitive algebra which is I-genic and
I-finite necessarily has a capacity.

Proof Sketch: It is not hard to guess how the proof goes. From the d.c.c. on idempo-
tents we get minimal idempotents, which (after a struggle) turn out to be division idempo-
tents. Once we get division idempotents, we build an orthogonal family of them reaching up
to 1: from the a.c.c. we get an idempotent maximal among all finite sums of division idem-
potents, and it turns out (after a longer struggle) that this must be 1, so we have reached
our capacity. Indeed, this maximal e has Peirce subalgebra J0(e) containing by maximality
no further division idempotents, hence by d.c.c. no idempotents at all, so by I-generation it
must be entirely nil. We then show that radicality of J0(e) would infect J [J0(e) ⊆ Rad(J)],
so semiprimitivity of J forces J0(e) to be zero, and once J0(e) = 0 mere nondegeneracy
forces J1(e) = 0 too (after another struggle), and e is the unit for J = J2(e). �

8.2 Absorbers

A key new concept having associative roots is that of outer absorber of an
inner ideal, analogous to the right absorber r(L) = {z ∈ L | zA ⊆ L} of a left
ideal L in an associative algebra A. In the associative case the absorber is an
ideal; in the Jordan case the square of the absorber (the quadratic absorber)
is close to an ideal.

Absorbers Theorem. (1) The linear absorber ?a(B) of an inner ideal B
in a Jordan algebra J absorbs linear multiplication by J into B:

?a(B) := {z ∈ B | VJz ⊆ B} = {z ∈ B | VzJ ⊆ B}.
The quadratic absorber qa(B) absorbs quadratic multiplications by J

into B, and coincides with the second linear absorber:

qa(B) := {z ∈ B | VJ,Ĵz + UJz ⊆ B} = ?a(?a(B)).

The linear and quadratic absorbers of an inner ideal B in a Jordan algebra J
are again inner ideals in J, and ideals in B.
(2) The linear absorber also absorbs s-identities, and the quadratic absorber

absorbs cubes of s-identities: we have Specializer Absorption

i-Specializer(B) ⊆ ?a(B), i-Specializer(B)3 ⊆ qa(B).

When J is nondegenerate, an absorberless B is i-special (strictly satisfies all
s-identities):

qa(B) = 0 =⇒ i-Specializer(B) = 0 (J nondegenerate).
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Here i-Specializer(B) denotes the i-specializer of B, the smallest ideal of B
whose quotient is i-special, consisting precisely of all values attained on B
by all s-identities [the Jordan polynomials that were supposed to vanish if B
were special].1 The beautiful idea behind Specializer Absorption is that for an
inner ideal B the Jordan algebra B/?a(B) is manifestly special, since the map
b �→ Vb = 2Lb is a Jordan homomorphism of B into the special Jordan algebra
EndΦ(J/B)+ (note that J/B is merely a Φ-module, without any particular
algebraic structure) with kernel precisely ?a(B), and therefore induces an
imbedding of B/?a(B) in EndΦ(J/B)+, thanks to the Specialization Formulas
Vb2 = V 2

b −2Ub, VUbc = VbVcVb−Ub,cVb−UbVc together with UbJ+Ub,cJ ⊆ B
for b, c ∈ B by definition of innerness.
For example, if B = UeJ = J2(e) is the Peirce inner ideal determined

by an idempotent in a Jordan algebra, the linear and quadratic absorbers are
?a(B) = qa(B) = {z ∈ B|{z,J1(e)} = 0}, which is just the kernel of the Peirce
specialization x �→ Vx of B in EndΦ(J1(e))+, so B/?a(B) ∼= V (J2(e))|J1(e) is a
Jordan algebra of linear transformations on J1(e).
The associative absorber is an ideal, and the Jordan quadratic absorber is

only a few steps removed from being an ideal: the key (and difficult) result is
the following theorem.

Zel’manov’s Absorber Nilness Theorem. The ideal in J generated by the
quadratic absorber qa(B) of an inner ideal B is nil mod qa(B) (hence nil mod
B).

8.3 Modular Inner Ideals

In his work with the radical Zel’manov had already introduced the notion of
modular inner ideal and primitive Jordan algebra. In the associative case a
left ideal L is modular if it has a modulus c, an element which acts like a right
unit (“modulus” in the older literature) for A modulo L: ac ≡ a modulo L
for all a ∈ A, i.e., A(1̂− c) ⊆ L. If A is unital then all left ideals are modular
with modulus c = 1. The concept of modularity was invented for the Jacobson
radical in non-unital algebras: in the unital case Rad(A) is the intersection
of all maximal left ideals, in the non-unital case it is the intersection of all
maximal modular left ideals. Any translate c+ b (b ∈ L) is another modulus,
and as soon as L contains one of its moduli then it must be all of A.
It turns out that the obvious Jordan condition U1̂−cJ ⊆ B for an inner

ideal B isn’t quite enough to get an analogous theory.
1 We denote the set of special identities in variables X by i-Specializer(X). Note that

i-Specializer (J) is not the “i-special part” of J; on the contrary, it is the “anti-i-special
part,” the obstacle whose removal creates i-speciality. To make it clear that we are creating
i-speciality, we call the obstacle the i-specializer.



118 Zel’manov’s Methods

Modular Definition. An inner ideal B in a Jordan algebra J is modular
with modulus c if

(Mod 1) U1̂−cJ ⊆ B, (Mod 2) c− c2 ∈ B, (Mod 3) {1̂− c, Ĵ,B} ⊆ B.

(Mod 3) can be expanded to (Mod 3a) {1̂− c,J,B} ⊆ B and (Mod 3b)
{c,B} ⊆ B); it guarantees that any translate c + b for b ∈ B of a modu-
lus c is again a modulus; (Mod 2) then guarantees that any power cn of a
modulus remains a modulus, since it is merely a translate c − cn ∈ B for all
n ≥ 1.
Modulus Exclusion. The Modulus Exclusion Property states that a
proper inner ideal cannot contain its modulus:

If B has modulus c ∈ B, then B = J.
The Strong Modulus Exclusion Property even forbids the ideal generated
by the quadratic absorber of a proper inner ideal from containing the modu-
lus:

If B has modulus c ∈ IJ(qa(B)), then B = J.
Proof Sketch: The reason for Modulus Exclusion is that then 1J = U(1̂−c)+c =

U1̂−c + U1̂−c,c + Uc maps J into B by (Mod 1), (Mod 3) and innerness. Strong Modulus
Exclusion holds because c ∈ IJ(qa(B)) implies that some power cn is in B by Absorber
Nilness, which remains a modulus for B, so B = J by ordinary Modulus Exclusion. �

8.4 Primitivity

An associative algebra A is primitive if it has a faithful irreducible represen-
tation, or in more concrete terms if there exists a left ideal such that A/L is
a faithful irreducible left A-module. Irreducibility means that L is maximal
modular, while faithfulness means that the core of L (the maximal ideal of A
contained in L, which is just its right absorber {z | zÂ ⊆ L}) vanishes; this
core condition that no nonzero ideal I is contained in L means that I+L > L,
hence in the presence of maximality means that I+L = A, so that L supple-
ments all nonzero ideals. Once a modular L0 has this property, it can always
be enlarged to a maximal modular left ideal L which is even more supplemen-
tary. In the Jordan case A/L is not going to provide a representation anyway,
so there is no need to work hard to get the maximal L (the “irreducible”
representation), any supplementary L0 will do.

Primitive Definition. A Jordan algebra is primitive if it has a primitizer
P, a proper modular inner ideal P  = J which has the Supplementation
Property that it supplements all nonzero ideals:

I+P = J for all nonzero ideals I of J.
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Another way to express this is the Ideal Modulus Property:

Every nonzero ideal I contains a modulus for P.

Absorberless Primitizer Proposition. Although quadratic absorber and
core do not in general coincide for Jordan algebras, besides a zero core the
primitizer has zero absorber, and primitizers are always i-special by the Ab-
sorberless Primitizer Property:

qa(P) = 0, hence i-Specializer(P) = 0.

Proof Sketch: Supplementation implies Ideal because if i + p = c then I contains
the translated modulus i = c − p, and Ideal implies Supplementation since if I contains
a modulus for P then the inner ideal I + P contains its own modulus and must equal J
by Modulus Exclusion. For Absorberless Primitizer, note that P proper implies by Strong
Modulus Exclusion that I = IJ(qa(P)) contains no modulus for P, so by Ideal Modulus it
must be 0, and qa(P) = 0. �

Even for associative algebras there is a subtle difference between the con-
cepts of simplicity and primitivity. A primitive algebra is one that has a faith-
ful representation as linear transformations acting irreducibly on a module.
The archetypal example is the algebra End∆(V ) of all linear transformations
on an infinite-dimensional vector space V over a division ring ∆. This alge-
bra is far from simple; an important proper ideal is the socle, consisting of
all transformations of finite rank. On the other hand, most of the familiar
simple rings are primitive: a simple ring will be primitive as soon as it is
semiprimitive (a subdirect product of primitive quotients Pα = A/Iα, since
in the simple case these nonzero quotients can only be Pα = A itself), and
semiprimitivity is equivalent to vanishing of the Jacobson radical, so a simple
algebra is primitive unless it coincides with its Jacobson radical. But Sasi-
ada’s complicated example of a simple radical ring shows that not all simple
algebras are primitive.

8.5 The Heart

The next concept is a straightforward translation of a very simple associative
notion: the heart of a Jordan algebra is the minimal nonzero ideal, just as in
the associative case.

Heart Definition. The heart of a Jordan algebra is defined to be its smallest
nonzero ideal, if such exists:

0  = ♥(J) = ⋂{I | J O I  = 0}.
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Heart Principles.We have a Unital Heart Principle as well as a Capa-
cious Heart Principle:

• if ♥(J) has a unit element, then J = ♥(J) is simple and all heart,
• if ♥(J) has a capacity, then J = ♥(J) is also simple with capacity.
Proof Sketch: For Unital Heart, by a Peirce argument an ideal I which has a unit e is

automatically a direct summand J = I⊕J0(e), since the glue J1(e) disappears: J1 = e•J1 ⊆ I
(ideal) ⊆ J2 (unit for I) forces J1 = 0, I = J2, J = J2 � J0. But if J2 = I = ♥(J) is the
heart, it must be contained in the ideal J0, forcing J0 = 0 and J = I = ♥(J). Capacious
Heart follows since algebras with capacity are by definition unital. �
Simple algebras are all heart, and Unital Heart shows that unital hearti-

ness leads to simplicity. Examples of heartless algebras are associative matrix
algebras likeMn(Z), Mn(Φ[X]) coordinatized by UFDs which are not fields.
Zel’manov opened up primitive i-exceptional algebras and made the amazing
anatomical discovery that they all have hearts.

Primitive Exceptional Heart Theorem. A primitive i-exceptional Jordan
algebra has heart ♥(J) = i-Specializer(J) consisting of all values on J of all
s-identities.

Proof Sketch: S := i-Specializer(J) is an ideal, and since J is i-exceptional, i.e., not
i-special, i.e., does not satisfy all s-identities, S �= 0 is a nonzero ideal. We need to show
that each nonzero ideal I contains S; but i-Specializer(J) ⊆ I iff i-Specializer(J/I) = 0 in
J/I = (I + P)/I ∼= P/P ∩ I by the Complementation Property of the primitizer and the
Third Homomorphism Theorem; but i-Specializer(P/P ∩ I) = i-Specializer(P)/I vanishes
by the Absorberless Primitizer Principle i-Specializer(P) = 0. �

8.6 Spectra

The key to creating finiteness is (as suggested by Eigenvalues bounding Idem-
potents) to bound spectra. The spectrum of any element z is the set of scalars
λ for which λ1̂−z is not invertible. This depends on the set of allowable scalars
Φ and the algebra J in which we are considering z, so we use the notation
SpecΦ,J(z), though in everyday speech we omit reference to Φ, J when they
are understood by the context.
The ordinary spectrum of an element z is the set of scalars λ ∈ Φ such that

the element λ1̂− z ∈ Ĵ is singular in the everyday sense. Different notions of
“singularity” will lead to different notions of spectrum. We will be interested
in three different spectra, depending on three slightly different notions of
singularity, but for hearty elements all three are almost the same; one of
these spectra is always naturally bounded by the degree N of a non-vanishing
polynomial, and this is where all the finiteness comes in.
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Eigenvalue Definition. Let z be an element of a Jordan algebra J over a
field Φ. We say that a scalar λ ∈ Φ is an eigenvalue for z if λ1̂ − z is
singular in the most flagrant sense that its U -operator kills somebody in J: it
has an eigenvector, an element 0  = x ∈ J with Uλ1̂−zx = 0, equivalently, the
operator Uλ1̂−z is not injective on J. EigΦ,J(z) denotes the set of eigenvalues
in Φ of z considered as an element of J:

EigΦ,J(z) := {λ ∈ Φ | Uλ1̂−z not injective on J}.

In contrast to non-injectivity of the operator Uλ1̂−z, the three notions of
spectra concern non-surjectivity.

Φ–Spectrum Definition. The Φ–spectrum SpecΦ,J(z) of an element z ∈ J
is the set of λ ∈ Φ such that the element λ1̂ − z ∈ Ĵ is singular in the sense
that its operator Uλ1̂−z is not surjective on Ĵ (equivalently, not surjective on
J), and thus the inner ideal Uλ1̂−zJ can be distinguished as a set from J:

SpecΦ,J(z) := {λ ∈ Φ | Uλ1̂−z not invertible on J}
= {λ ∈ Φ | Uλ1̂−z not surjective, Uλ1̂−zJ < J}.

If J is non-unital, this spectrum is the set of all λ such that λ1̂ − z is not
invertible in Ĵ, while if J is unital the spectrum is the set of all λ such that
λ1− z is not invertible in J (since Uλ1̂−z = Uλ1−z on J).

f-Spectrum Definition. If J is i-exceptional and f ∈ i-Specializer(X) an
s-identity which does not vanish strictly on J, the f-spectrum is the set
f-SpecΦ,J(z) of scalars such that λ1̂−z is singular in the sense that it gives rise
to an inner ideal where f does vanish strictly; then Uλ1̂−zJ can be distinguished
from J using f :

f -SpecΦ,J(z) := {λ ∈ Φ | f(Uλ1̂−zJ) ≡ 0} (while f(J)  ≡ 0).

Absorber Spectrum Definition. The absorber spectrum of an element z
is the set AbsSpecΦ,J(z) of scalars such that λ1̂−z is singular in the sense that
it gives rise to an absorberless inner ideal, thus Uλ1̂−zJ can be distinguished
from J using the absorber :

AbsSpecΦ,J(z) := {λ ∈ Φ | qa(Uλ1̂−zJ) = 0} (while qa(J) = J).
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8.7 Comparing Spectra

These various spectra are closely related, especially for elements of the heart.

Hearty Spectral Relations Proposition. If f does not vanish strictly on
an i-exceptional algebra J, where we require f ∈ i-Specializer(X)3 in general
(but only f ∈ i-Specializer(X) when J is nondegenerate), then we have the
Spectral Relations

AbsSpecΦ,J(z) ⊆ f-SpecΦ,J(z) ⊆ SpecΦ,J(z).
If z is an element of the heart ♥(J), then its absorber spectrum almost coin-
cides with its spectrum: we have the Hearty Spectral Relations

SpecΦ,J(z) ⊆ AbsSpecΦ,J(z) ∪ {0} ⊆ SpecΦ,J(z) ∪ {0} for z ∈ ♥(J).
Proof Sketch: If 0 �= λ ∈ Spec(z) for z ∈ ♥(J), then w := λ−1z ∈ ♥ and B :=

U1̂−wJ = Uλ1̂−zJ < J is proper with modulus c := 2w − w2 ∈ ♥; but then qa(B) must
vanish, otherwise IJ(qa(B)) would contain ♥ and hence c, contrary to Strong Modulus
Exclusion. �
Zel’manov gave a beautiful combinatorial argument, mixing polynomial

identities and inner ideals to show that a non-vanishing polynomial f puts
a bound on at least that part of the spectrum where f vanishes strictly,
the f -spectrum. This turns out to be the crucial finiteness condition which
dooms exceptional algebras to a 27-dimensional life: the finite degree of the
polynomial puts a finite bound on this spectrum.

f-Spectral Bound Theorem. If a polynomial f of degree N does not vanish
strictly on a Jordan algebra J, then J can contain at most 2N inner ideals Bk

where f does vanish strictly and which are relatively prime in the sense that

J =
∑

i,j Ci,j for Ci,j =
⋂

k �=i,j Bk.

In particular, in a Jordan algebra over a field there is always a uniform f-
spectral bound 2N on the size of f-spectra,

|f-SpecΦ,J(z)| ≤ 2N.

If f ∈ i-Specializer(X)(or in i-Specializer(X)3 if J is degenerate) and z is an
element of the heart ♥(J), then we have the Hearty Spectral Size Rela-
tions

|SpecΦ,J(z)| ≤ |AbsSpecΦ,J(z) ∪ {0}| ≤ |f-SpecΦ,J(z) ∪ {0}| ≤ 2N + 1.

Proof Sketch: Since f does not vanish strictly on J, some linearization f ′ of f is
nonvanishing. We can assume that f is a homogeneous function of N variables of total
degree N, so its linearizations f ′(x1, . . . , xN ) still have total degree N . By relative primeness
we have

0 �= f ′(J, . . . , J) = f ′(
∑
Cij , . . . ,

∑
Cij) =

∑
f ′′(Ci1j1 , . . . ,CiN jN

)
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summed over further linearizations f ′′ of f ′, so again some f ′′(Ci1j1 , . . . ,CiN jN
) is not

0. Consider such a collection {Ci1j1 , . . . ,CiN jN
}: each Cij avoids at most 2 indices i, j

(hence lies in Bk for all others), so N of the Cij ’s avoid at most 2N indices, so when there
are more than 2N of the Bk’s then at least one index k is unavoided, Ci1j1 , . . . ,CiN jN

lie
in this Bk, and

f ′′(Ci1j1 , . . . ,CiN jN
) ⊆ f ′′(Bk, . . . ,Bk) = 0

by the hypothesis that f vanishes strictly on each individual Bk, which contradicts our
choice of the collection {Ci1j1 , . . . ,CiN jN

}. Thus there cannot be more than 2N of the
Bk’s.

In particular, there are at most 2N distinct λ’s for which the inner ideals Bλ :=
Uλ1̂−z(J) satisfy f strictly, since such a family {Bλk

} is automatically relatively prime:
the scalar polynomials gi(t) =

∏
j �=i(λj − t) are relatively prime, so there are polynomi-

als ki(t) = gi(t)hi(t) with
∑

ki(t) = 1, hence substituting z for t yields J = U1̂(J) =
U∑

i ki(z)(J) =
∑

i,j Jij , where Jii := Uki(z)(J) ⊆ Ugi(z)(J) ⊆
⋂

k �=i Uλk 1̂−z(J) = Cii, and
Jij = Uki(z),kj(z)(J) ⊆

⋂
k �=i,j Uλk 1̂−z(J) = Cij , therefore J =

∑
i,j Jij ⊆ ∑

i,j Cij .
The size inequalities come from the Hearty Spectral Relations and the f -Spectral

Bound. �

8.8 Big Resolvents

The complement of the spectrum is the Φ-resolvent ResΦ,J(z) of z, the set
of λ such that λ1̂−z ∈ Ĵ is invertible on J. In a division algebra the spectrum
of z contains exactly one element λ if z = λ1 ∈ Φ1, otherwise it is empty, so
the resolvent contains all but at most one element of Φ. Good things happen
when the resolvent is big enough. The saying “many scalars make light work”
indicates that some of life’s problems are due to a scalar deficiency, and taking
a scalar supplement may make difficulties go away of their own accord.

Big Definition. If J is a Jordan algebra over a field Φ, a set of scalars Φ0 ⊆ Φ
will be called big (relative to J) if

Φ0 is infinite, and |Φ0| > dimΦ J.

We will be particularly interested in the case where J is a Jordan algebra
over a big field (in the sense that Φ itself is big relative to J). Note that
every algebra over a field Φ can be imbedded in an algebra JΩ over a big field
Ω (take any infinite Ω with | Ω |> dimΦ J, since dimΩ JΩ = dimΦ J).

Bigness isn’t affected by finite modifications, due to the infinitude of Φ0,
so if the resolvent is big in the above sense then we also have |ResΦ,J(z)|−1 >
dimΦ Ĵ, which guarantees that there are too many elements (λ1̂ − z)−1 in
the unital hull Ĵ for nonzero λ in the resolvent for them all to be linearly
independent. But clearing denominators from a linear dependence relation∑

αi(λi1̂ − z)−1 = 0 yields an algebraic dependence relation p(z) = 0 for z,
so z is algebraic over Φ.
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Amitsur’s Big Resolvent Trick. (1) If J is a Jordan algebra over a field
Φ, any element z ∈ J which has a big resolvent (e.g., if Φ is big and z has a
small spectrum |SpecJ(z)| < |Φ|) is automatically algebraic over Φ.2 (2) If J
is a Jordan algebra over a big field, then the Jacobson radical is properly nil
(in the sense that it remains nil in all homotopes), Rad(J) = Pnil(J).
One amazing consequence is that division algebras evaporate in the blazing

heat of a big algebraically closed field.

Division Evaporation Theorem. If J is a Jordan division algebra over a
big algebraically closed field Φ, then J = Φ1.

As Roosevelt said, “We have nothing to fear but Φ itself.”

This leads to the main structural result.

Big Primitive Exceptional Theorem. A primitive i-exceptional Jordan
algebra over a big algebraically closed field Φ is a simple split Albert algebra
Alb(Φ).

Proof Sketch: The heart ♥(J) = i-Specializer(J) �= 0 exists by Primitive Exceptional
Heart, using primitivity and i-exceptionality, so there exists an f ∈ i-Specializer(X) of some
finite degree N which does not vanish strictly on J, hence by the Hearty Spectral Size
Relations there is a uniform bound 2N + 1 on spectra of hearty elements. Once the heart
has a global bound on spectra over a big field Φ, by Amitsur’s Big Resolvent Trick (1) it is
algebraic. Then it is I-genic, and by Eigenvalues Bound Idempotents spectral boundedness
yields I-finiteness, so by I-finite Capacity the heart ♥(J) has capacity. But then by the
Capacious Heart Principle J = ♥(J) is simple with capacity, and by the Classical Structure
Theorem the only i-exceptional simple algebra it can be is an Albert algebra over its center
Ω. Over a big algebraically closed field Φ we must have Ω = Φ by the Division Evaporation
Theorem, and J must be split. �

8.9 Semiprimitive Imbedding

The final step is to analyze the structure of prime algebras. Note that we
will go directly from primitive to prime without passing simple: the ultra-
filter argument works in the setting of prime nondegenerate algebras, going
from nondegenerate to semiprimitive to primitive over big fields. Even if we
started with a simple algebra the simplicity would be destroyed in the fol-
lowing passage from nondegenerate to semiprimitive (even in the associative
theory there are simple radical rings).

2 Though it was not quite like the apple dropping on Newton’s head, Amitsur attributed
the discovery of his Trick to having to teach a course on differential equations, where
he realized that spectra and resolvents make sense in algebraic settings.
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Semiprimitive Imbedding Theorem. Every prime nondegenerate Jordan
algebra can be imbedded in a semiprimitive Jordan algebra PJ =

∏
x∈X J̃x for

primitive algebras J̃x over a big algebraically closed field Ω, in such a way
that J and PJ satisfy exactly the same strict identities (in particular, J is i-
exceptional iff PJ is).

Proof Sketch: As we will see in Section II.1.6, the centroid Γ of a prime algebra J
is always an integral domain acting faithfully on J, so (1) J is imbedded in the algebra of
fractions J1 = Γ−1J over the field of fractions Ω0 = Γ−1Γ. Nondegeneracy of J guarantees
[after some hard work] that there are no elements z �= 0 of J which are either (2) strictly
properly nilpotent of bounded index in the Ω0-algebra J2 = J1[T ] of polynomials in a
countable set of indeterminates T (in the sense that there exists n2 = n2(z) with z(n2,y2) =
0 for all y2 ∈ J2), (3) properly nilpotent in the Ω0-algebra J3 = Seq(J2) of all sequences
from J2, with J2 imbedded as constant sequences (in the sense that for each y3 ∈ J3
there is n3 = n3(z, y3) with z(n3,y3) = 0), (4) properly quasi-invertible in the Ω-algebra
J4 = Ω ⊗Ω0 J3 for Ω a big algebraically closed field with |Ω| > dimΩ0 J3 = dimΩ J4 (in the
sense that z is in Rad(J4) = Pnil(J4) by Amitsur’s Big Resolvent Trick). This guarantees (5)
that J∩Rad(J4) = 0, so J is imbedded in the semiprimitive Ω-algebra J̃ = J4/Rad(J4). (6)
The semiprimitive algebra J̃ is imbedded in the direct product -J =

∏
x∈X J̃x for primitivie

Ω-algebras J̃x = J̃/Kx for Ω-ideals Kx in J̃ with
⋂

x∈X Kx = 0. Moreover, the scalar
extension J1 inherits all strict identities from J and the scalar extension J2 inherits all
strict identities from J1, the direct product J3 inherits all identities from J2, the scalar
extension J4 inherits all strict identities from J3, the quotient J̃ inherits all identities from
J4, the quotients J̃x and their product -J inherits all identities from J̃. Thus -J inherits all
strict identities from J, and conversely the subalgebra J inherits all identities from -J, so they
have exactly the same strict identities. Note that the algebraically closed field Ω remains
big for each J̃x : |Ω| > dimΩ J4 ≥ dimΩ J̃ ≥ dimΩ J̃x. �

8.10 Ultraproducts

We have gone a long way from J up to the direct product
∏

x Jx, and we have
to form an ultraproduct to get back down to something resembling J. This
will require a basic understanding of filters and ultrafilters.

Filter Definition. A nonempty collection F ⊆ P(X) of subsets of a given
set X is called a filter on X if it is:

(Filt1) closed under finite intersections: Yi ∈ F ⇒ Y1 ∩ · · · ∩ Yn ∈ F ;
(Filt2) closed under enlargement: Y ∈ F , Y ⊆ Z ⇒ Z ∈ F ;
(Filt3) proper: ∅  ∈ F .

If F is a filter on a set X, we obtain the restriction filter F|Y of F to any set
Y in the filter :

(RFilt) F|Y := {Z ∈ F | Z ⊆ Y } (Y ∈ F).
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Ultrafilter Definition. An ultrafilter is a maximal filter; maximality is
equivalent to the extremely strong condition

(UFilt) for all Y, either Y or its complement X\Y belongs to F .
By Zorn’s Lemma, any filter can be enlarged to an ultrafilter. If F is an
ultrafilter on X, the restriction filter F|Y is an ultrafilter on Y for any Y ∈ F .
Filters on X can be thought of as systems of neighborhoods of a (perhaps
ideal) “subset” of X, while ultrafilters should be thought of as neighborhoods
of a (perhaps ideal) “point” of X. For example, any nonempty subset Y of
X determines a filter consisting of all subsets which contain Y, and this is an
ultrafilter iff Y consists of a single point.

To tell the truth, the only reason we are interested in ultrafilters is to use
them to tighten direct products.

Ultraproduct Definition. If A =
∏

x∈X Ax is the direct product of algebraic
systems and F is any filter on X, the quotient A/F is the quotient A/ ≡F of
A by the congruence

a ≡F b iff a agrees with b on some Y ∈ F (a(x) = b(x) for all x ∈ Y ).

For any element a in the direct product A =
∏

x∈X Ax of linear algebraic
systems (abelian groups with additional structure), we define the zero and
the support sets of a to be

Zero(a) := {x ∈ X | a(x) = 0}, Supp(a) := {x ∈ X | a(x)  = 0}.
In these terms, a ≡F b ⇔ a − b ≡F 0, so A/F is the quotient of A by the
ideal

I(F) := {a ∈ A | a ≡F 0} = {a ∈ A | Zer(a) ∈ F}.
An ultraproduct is just a quotient A/F of a direct product by an ultrafilter
on X.

It is not hard to check that a congruence ≡F respects all the algebraic oper-
ations on A: if p(x1, . . . , xn) is an n-ary product on all the Ax, and ai = bi
on Yi ∈ F , then p(a1, . . . , an) = p(b1, . . . , bn) on Y1 ∩ · · · ∩ Yn ∈ F .
Intuitively, the ultraproduct consists of “germs” of functions (as in the

theory of varieties or manifolds), where we identify two functions if they agree
“locally” on some “neighborhood” Y belonging to the ultrafilter. While direct
products inherit all identities satisfied by their factors, they fail miserably with
other properties (such as being integral domains, or simple). Unlike direct
products, ultraproducts preserve “most” algebraic properties.
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Basic Ultraproduct Fact. Any elementary property true of almost all fac-
tors Ax is inherited by any ultraproduct (

∏
Ax)/F . Thus:

• Any ultraproduct of division algebras is a division algebra; any ultraprod-
uct of fields (or algebraically closed fields) is a field (or algebraically closed
field).

• Any ultraproduct of special (or i-special algebras) is special (or i-special).
• Any ultraproduct of split Albert algebras over (respectively algebraically

closed) fields is a split Albert algebra over a (respectively algebraically closed)
field.

• For any particular Y ∈ F we can disregard all factors Ax coming from
outside Y : (

∏
x∈X Ax)/F ∼= (∏y∈Y Ay)/(F|Y ).

Elementary is here a technical term from mathematical logic. Roughly, it
means a property which can be described (using universal quantifiers) in terms
of a finite number of elements of the system. For example, algebraic closure
of a field requires that each nonconstant polynomial have a root in the field,
and this is elementary [for each fixed n > 1 and fixed α0, . . . , αn in F there
exists a λ ∈ Φ with∑n

i=0 αiλ
i = 0]. However, simplicity of an algebra makes a

requirement on sets of elements (ideals), or on existence of a finite number n of
elements without any bound on n [for each fixed a  = 0 and b in A there exists
an n and a set c1, . . . , cn; d1, . . . , dn of 2n elements with b =

∑n
i=1 ciadi]. The

trouble with such a condition is that as x ranges over X the numbers n(x)
may tend to infinity, so that there is no finite set of elements ci(x), di(x) in
the direct product with b(x) =

∑n
i=1 ci(x)a(x)di(x) for all x.

Finite Dichotomy Principle. If each factor Ax is one of a finite number
of types {T1, . . . , Tn}, then any ultraproduct (

∏
x∈X Ax)/F is isomorphic to a

homogeneous ultraproduct (
∏

x∈Xi
Ax)/(F|Xi) of factors of type Ti for some

i = 1, 2, . . . , n (where Xi := {x ∈ X | Ax has type Ti}). In particular, if each
Ax is i-special or a split Albert algebra over a field, then any ultraproduct
(
∏

x∈X Ax)/F is either i-special or it is a split Albert algebra over a field.
Proof Sketch: By hypothesis X = X1 ∪ · · · ∪ Xn is a finite union (for any x the

factor Ax has some type Ti, so x ∈ Xi) with complement (X\X1)∩ · · · ∩ (X\Xn) = ∅ �∈ F
by (Filt3), so by the finite intersection property (Filt1) some X\Xi is not in F , hence
by the ultrafilter property (UFilt) Xi ∈ F , and then by a Basic Fact (

∏
x∈X Ax)/F ∼=

(
∏

x∈Xi
Ax)/(F|Xi

). �

8.11 Prime Dichotomy

Prime algebras always have proper support filters, from which we can create
ultrafilters and use these to imbed the original algebra in an ultraproduct.

Prime Example. If a linear algebraic system is prime in the sense that
the product of two nonzero ideals is again nonzero, then every two nonzero
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ideals have nonzero intersection. If A0  = 0 is a prime nonzero subsystem of
A =

∏
x∈X Ax, the support filter of A0 is that generated by the supports of

all the nonzero elements of A0,

F(A0) := {Z ⊆ X|Z ⊇ Supp(a0) for some 0  = a0 ∈ A0}.
A0 remains imbedded in the ultraproduct (

∏
Ax)/F for any ultrafilter F con-

taining F(A0).

Proof Sketch: Here F(A0) is a nonempty collection [since A0 �= 0] of nonempty
subsets [since a0 �= 0 implies that Supp(a0) �= ∅ ] as in (Filt3), which is clearly closed
under enlargement as in (Filt2), and is closed under intersections as in (Filt1), since if
a1, a2 �= 0 in A0 then by primeness of A0 we have that IA0 (a1) ∩ IA0 (a2) �= 0 contains
some a3 �= 0, and Supp(a3) ⊆ Supp(a1) ∩ Supp(a2). A0 remains imbedded since if a0 �= 0
disappears in A/F then Zero(a0) ∈ F as well as Supp(a0) ∈ F(A0) ⊆ F , so by (Filt1)
Zero(a0) ∩ Supp(a0) = ∅ ∈ F , contrary to (Filt3). �
Now we can put all the pieces together, and wave the ultra wand.

Prime Dichotomy Theorem. Every prime nondegenerate Jordan algebra
of characteristic  = 2 is either i-special or a form of a split Albert algebra.
Every simple Jordan algebra of characteristic  = 2 is either i-special or an
Albert algebra Jord(N, c).

Proof Sketch: By Imbedding, a prime nondegenerate J imbeds in a direct product
J̃ =

∏
x Jx for primitive algebras Jx over big algebraically closed fields Ωx, which by

the Big Primitive Exceptional Classification are either i-special or split Albert algebras
Alb(Ωx); then by the Prime Example J imbeds in an ultraproduct (

∏
x∈X Ax)/F , which

by Finite Dichotomy is itself either i-special or a split Albert Alb(Ω) over a field Ω. In
the second case we claim that J1 = ΩJ is all of Alb(Ω), so J is indeed a form of a split
Albert algebra. Otherwise, J1 would have dimension < 27 over Ω, as would the semisimple
algebra J2 = J1/Rad(J1) and all of its simple summands; then by the finite-dimensional
theory these summands must be special, so J2 is too, yet J remains imbedded in J2 since
J ∩ Rad(J1) = 0 [a nondegenerate x ∈ J ∩ Rad(J1) would lead, by the d.c.c. in the finite-
dimensional J1, to a von Neumann regular element y in UxJ1 ⊆ Rad(J1), contrary to the
fact that the radical contains no regular elements], and this would contradict the assumed
i-exceptionality of J.

If J is simple i-exceptional, we will show that it is already 27-dimensional over its cen-
troid Γ, which is a field, and therefore again by the finite-dimensional theory J = Jord(N, c).
Now J is also prime and nondegenerate, so applying the prime case (taking as scalars Φ = Γ)
gives ΩJ = Alb(Ω) with a natural epimorphism JΩ = Ω ⊗Γ J −→ ΩJ = Alb(Ω). In char-
acteristic �= 2 the scalar extension JΩ = Ω ⊗Γ J remains simple over Ω [central simple
linear algebras are strictly simple in the sense that all scalar extensions by a field remain
simple, cf. Strict Simplicity II.1.7], so this epimorphism must be an isomorphism, and
dimΓ(J) = dimΩ(JΩ) = dimΩ(Alb(Ω)) = 27. �
Thus the magical wand has banished forever the possibility of a prime

i-exceptional algebraic setting for quantum mechanics.
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Introduction

In Part II The Classical Theory I give a self-contained treatment of the Classi-
cal Structure Theory for Jordan algebras with capacity, as surveyed in Chap-
ters 5 and 6 of Part I the Historical Survey. I will repeat many of the defini-
tions and results of the Survey, but giving detailed proofs. I give subliminal
references, in footnotes at the beginning of each section, to their previous
incarnation (e.g., I.2.3 means Part I, Chapter 2, Section 3). To confirm a
reader’s sense of déjà vu, I have been careful to use exactly the same name as
in the Survey. All statements (definitions, lemmas, propositions, theorems, ex-
amples) in The Classical Theory are numbered consecutively within sections;
cross-references within Part II omit the Part designation (e.g., 2.3.4 means
current Part, Chapter 2, Section 3, 4th numbered statement).
Throughout this part we will work with linear Jordan algebras over

a fixed (unital, commutative, associative) ring of scalars Φ containing
1
2 . All spaces and algebras will be assumed to be Φ-modules, all ideals and
subalgebras will be assumed to be Φ-submodules, and all maps will be assumed
to be Φ-linear. This ring of scalars will remain rather dormant throughout our
discussion: except for the scalar 1

2 , we almost never care what the scalars are,
and we have few occasions to change scalars (except to aid the discussion of
“strictness” of identities and radicals). Our approach to the structure theory is
“ring-theoretic” and “intrinsic,” rather than “linear” and “formal”: we analyze
the structure of the algebras directly over the given ring of scalars, rather
than first analyzing finite-dimensional algebras over an algebraically closed
field and then analyzing their possible forms over general fields.
We assume that anyone who voluntarily enters The Classical Theory, with

its detailed treatment of results, does so with the intention of learning at
least some of the classical methods and techniques of nonassociative algebra,
perhaps with an eye to conducting their own research in the area. To this
end, we include a series of exercises, problems, and questions. The exercises
are included in the body of the text, and are meant to provide the reader
with routine practice in the concepts and techniques of a particular result
(often involving alternate proofs). The problems are listed at the end of each
chapter, and are of broader scope (often involving results and concepts which
are extensions of those in the text, or which go in a completely different
direction), and are meant to provide general practice in creating proofs. The
questions, at the very end of each chapter, provide even more useful practice
for a budding research mathematician: they involve studying (sometimes even
formulating) a concept or problem without any hint of what sort of an answer
to expect. For some of these exercises, problems, questions (indicated by an
asterisk) there are hints given at the end of the book, but these should be
consulted as a last resort — the point of the problems is the experience of
creating a proof, not the proof itself.



First Phase: Back to Basics

In this phase we review the foundations of our subject, the various categories
of algebraic structures that we will encounter. We assume that the reader
already has a basic acquaintance with associative rings.
In Chapter 1 we introduce linear Jordan algebras and all their categorical

paraphernalia. We establish the important theorem that a linear algebra is
strictly simple (remains simple under all field extensions) iff it is centroid-
simple (the centroid is just the ground field). In Chapter 2 we introduce alter-
native algebras, especially the composition algebras, giving a full treatment of
the Cayley–Dickson doubling process and Hurwitz’s Theorem classifying all
composition algebras.
In Chapter 3 we give the three most important special Jordan algebras:

the full plus-algebras, the hermitian algebras, and the quadratic factors. In
Chapter 4 we construct, more laboriously, the general cubic factors deter-
mined by sharped cubic forms with basepoint. This construction subsumes
the Springer Construction from Jordan cubic forms, the Freudenthal Con-
struction of 3 × 3 hermitian matrices with entries in composition algebras
(including the reduced exceptional Albert algebras), and the Tits Construc-
tions from degree–3 associative algebras. Many of the technical calculations
are swept into Appendix C.
In Chapter 5 we introduce two basic labor-saving devices, the Macdonald

and Shirshov–Cohn Principles, which allow us to prove that certain formulas
will be valid in all Jordan algebras as soon as we verify that they are valid in
all associative algebras. Once more, the laborious combinatorial verification
of these labor-saving devices is banished to Appendices A and B. Making free
use of these powerful devices, we quickly get the five fundamental formulas in-
volving the U -operator, especially the Fundamental Formula UUxy = UxUyUx,
which are the basic tools used in dealing with Jordan algebras.
With these tools it is a breeze to introduce the basic nondegeneracy con-

dition for our algebras (the absence of elements with trivial U -operator), the
crucial concept of inner ideals (spaces closed under inner multiplication by
the whole algebra), and in Chapters 6 and 7 the concepts of invertibility (an
element is invertible iff its U -operator is an invertible operator) and isotopy
(shifting the U -operator from Ux to UxUu). This closes out the first phase of
our theory.



1

The Category of Jordan Algebras

In this chapter we introduce the hero of our story, the Jordan algebra, and
in the next chapter his trusty sidekick, the alternative algebra. As we will see
in Chapter 15, alternative algebras arise naturally as coordinates of Jordan
algebras with three or more connected orthogonal idempotents.

1.1 Categories

We will often state results informally in the language of categories and func-
tors. This is a useful language that you should be fluent in at the colloquial
level. Recall that a category C consists of a collection of objects and a set
Mor (X,Y ) of morphisms for each pair of objects X,Y , such that these
morphisms can be patched together in a monoid-like way: we have a “compo-
sition”Mor(Y,Z)×Mor(X,Y ) ◦→ Mor(X,Z) which is “associative” and has
a “unit” 1X for each object X: (h◦g)◦f = h◦(g◦f) and f ◦1X = 1Y ◦f = f
for all f ∈ Mor(X,Y ), g ∈ Mor(Y,Z), h ∈ Mor(Z,W ).
In distinction to mappings encountered in set-theoretic aspects of calculus

and elsewhere, the choice of the codomain or, more intuitively, target Y for
f ∈ Mor(X,Y ) is just as important as its domain X [and must be carefully
distinguished from the range or image, the set of values assumed if f happens
to be a concrete set-theoretic mapping], so that composition f ◦ g is not
defined unless the domain of f and the codomain of g match up. An analogous
situation occurs in multiplication of an m × n matrix A and p × q matrix
B, which is not defined unless the middle indices n = p coincide, whereas
at a vector-space level the corresponding maps α : W → Z, β : X → Y
can be composed as long as Im(β) ⊆ W . While we seldom need to make
this distinction, it is crucial in algebraic topology and in abstract categorical
settings.
You should always think intuitively of the objects as sets with some sort

of structure, and morphisms as the set-theoretic mappings which preserve that
structure (giving rise to the usual categories of sets, monoids, groups, rings,
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Φ-modules, linear Φ-algebras, etc.). However, it is important that category is
really an abstract notion. A close parallel is the case of projective geometry,
where we think of a line as a set of points, but we adopt an abstract definition
where points and lines are undefined concepts, which makes available the
powerful principle of duality between points and lines.
A functor F : C → C′ from one category to another takes objects to

objects and morphisms to morphisms in an arrow-preserving manner: each

map A
f−→ B of C-objects induces a map F(A) F(f)−→ F(B) of C′-objects in a

“homomorphic” manner, F(1X) = 1F(X), F(g ◦f) = F(g)◦F(f). We will al-
ways think of a functor as a construction of C′-objects out of C-objects, whose
recipe involves only ingredients from C, so that a morphism of C-objects pre-
serves all the ingredients and therefore induces a morphism of the constructed
C′-objects.1
Standard examples of functors are “forgetful functors” which forget part

of the structure (e.g., from algebraic objects to the underlying sets), and
constructions of group algebras, polynomial rings, tensor algebras, homology
groups, etc. We always have a trivial identity functor 1C : C → C, which does
nothing to objects or morphisms, and if we have functors F : C → C′, G :
C′ → C′′, then we can form the obvious composite functor G ◦ F : C → C′′
sending objects X �→ G(F(X)) and morphisms f �→ G(F(f)). Intuitively,
the composite functor constructs new objects in a two-stage process. We will
frequently encounter functors which “commute,” F ◦G = G ◦F , which means
that it doesn’t matter what order we perform the two constructions, the end
result is the same.

1.2 The Category of Linear Algebras

There are certain concepts2 which apply quite generally to all linear algebras,
associative or not, though for algebraic systems with quadratic operations
(such as quadratic Jordan algebras) they must be modified.

1 A reader with a basic functorial literacy will observe that we deal strictly with covariant
functors, never the dual notion of a contravariant functor F∗, which acts in an arrow-

reversing manner on maps A
f−→ B to produce B

F∗(f)←− A in an “anti-homomorphic”
manner, F∗(g ◦ f) = F∗(f) ◦ F∗(g). Important examples of contravariant functors are
the duality functor V −→ V ∗ from vector spaces to vector spaces, and cohomology from
topological spaces to groups (which Hilton and Wylie cogently, but hopelessly, argued should
be called “contra-homology”).

2 Most of these basic categorical notions were introduced in Chapter 2 of the Historical
Survey: in I.2.1 the definition of linear algebra, in I.2.2 the definitions of morphism, ideal,
simple, quotient, direct sum, direct product, subdirect product, and in I.3.1 the definition
of scalar extension.
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Linear Algebra Definition 1.2.1 The category of linear Φ-algebras has
as objects the linear Φ-algebras and as morphisms the Φ-algebra homomor-
phisms. Here a linear Φ-algebra is a Φ-module A equipped with a bilinear
multiplication or product A×A→ A, which we will write as (x, y) �→ x · y.3
Bilinearity is equivalent to the left distributive law (x + y) · z = x · z + y · z,
the right distributive law z · (x + y) = z · x + z · y, plus the scalar condition
α(x · y) = (αx) · y = x · (αy). A particularly important product derived from
the given one is the square x2 := x · x.
Morphism Definition 1.2.2 A homomorphism ϕ : A → A′ between two
such linear algebras is a Φ-linear map of modules which preserves multiplica-
tion,

ϕ(x · y) = ϕ(x) ·′ ϕ(y).
In dealing with commutative algebras in the presence of 1

2 , it suffices if ϕ
preserves squares:

ϕ homomorphism ⇐⇒ ϕ(x2) = ϕ(x)2 (A commutative, 1
2 ∈ Φ),

since then linearization gives 2ϕ(x ·y) = ϕ
(
(x+ y)2 − x2 − y2

)
= ϕ(x+y)2−

ϕ(x)2 − ϕ(y)2 = 2ϕ(x) ·′ ϕ(y). We have the usual notions of monomorphism
and epimorphism. An isomorphism is a homomorphism that has an inverse,
equivalently, that is bijective as a map of sets; an automorphism ϕ : A→ A
is an isomorphism of an algebra with itself. The set of automorphisms ϕ of A
under composition forms the automorphism group Aut(A).
The infinitesimal analogue of an automorphism is a derivation: a deriva-

tion δ of A is a linear transformation δ : A → A satisfying the product
rule

δ(xy) = δ(x)y + xδ(y).

The set of derivations of any linear algebra A is denoted by Der(A).
Exercise 1.2.2 (1) Verify that Aut(A) is indeed a group of linear transformations, and
Der (A) a Lie algebra of transformations (i.e., is closed under the Lie bracket [D,E] =
DE−ED). (2) Show that δ is a derivation of A iff ϕ := 1A+ εδ is an automorphism of the
algebra of dual numbers A[ε] := A⊗Φ Φ[ε] (with defining relation ε2 = 0). Thinking of
ε as an “infinitesimal,” this means that δ is the “infinitesimal part” of an automorphism.
(3) Show that δ is a derivation of A iff exp(δ) :=

∑∞
n=0 tnδn/n! is an automorphism of

the formal power series algebra A[[t]] whenever this makes sense (e.g., for algebras over the
rationals, or over scalars of chacteristic p when δp = 0 is nilpotent of index ≤ p).

3 The product in linear algebras is usually denoted simply by juxtaposition, xy, and we
will use this notation for products in associative algebras, or in alternative algebras we are
using as “coordinates” for a Jordan algebra. The symbol x · y is a generic one-symbol-fits-
all-algebras notation, but has the advantage over juxtaposition that it at least provides a
place to hang a tag labeling the product, such as x ·A y or x ·′ y as below, reminding us that
the second product is different from the first.
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Ideal Definition 1.2.3 A subalgebra B ≤ A of a linear algebra A is a
Φ-submodule4 closed under multiplication: B · B ⊆ B. An ideal K  A is a
Φ-submodule closed under multiplication by A: A · K + K · A ⊆ K. A left
(respectively right) ideal B  � A (respectively B  r A) is closed under left
(respectively right) multiplication by A, A ·B ⊆ B (respectively B ·A ⊆ B).
Simple Definition 1.2.4 A proper ideal is one different from the improper
ideals A,0. A linear algebra is simple if it has no proper ideals and is non-
trivial (i.e., A ·A  = 0).

Quotient Definition 1.2.5 Any ideal determines a quotient algebra A =
A/I and a canonical projection π: A→ A in the usual manner.

Direct Sum Definition 1.2.6 The direct product
∏

i∈I Ai of a family
of algebras Ai is the Cartesian product under the componentwise operations,
and the direct sum �i∈IAi is the subalgebra of all tuples with only a finite
number of nonzero entries. The canonical projection onto the ith compo-
nent Ai is denoted by πi. We will usually deal with finite sums, and write
algebra direct sums as A1 � · · · � An to distinguish them from module direct
sums.
An algebra is a subdirect product A =∼ ∏

i∈I Ai of algebras if it is
imbedded in the direct product in such a way that for each i ∈ I the canonical
projection πi(A) = Ai maps onto all of Ai, equivalently, Ai

∼= A/Ki for ideals
Ki  A with

⋂
i∈I Ki = 0.

There is a standard procedure for extending the set of allowable scalars,
which is frequently used to pass to an algebraically closed field where the
existence of roots of equations simplifies the structure theory.

Scalar Extension Definition 1.2.7 A ring of scalars Φ is a unital, com-
mutative, associative ring. An extension Ω of Φ is a ring of scalars which is
a Φ-algebra; note that it need not contain Φ [the image Φ1 ⊂ Ω need not be a
faithful copy of Φ.]
For any linear Φ-algebra A and extension Ω of Φ, the scalar extension

AΩ is the tensor product AΩ := Ω ⊗Φ A with its natural Ω-linear structure
and with the natural induced product

(α⊗ x) · (β ⊗ y) := αβ ⊗ x · y.
We obtain a scalar extension functor from the category of Φ-algebras to the
category of Ω-algebras, sending objects A to AΩ and Φ-morphisms ϕ : A→ A′

to Ω-morphisms ϕΩ = 1Ω ⊗ ϕ : AΩ → A′Ω by

ϕΩ(α⊗ x) = α⊗ ϕ(x).
4 We have restrained our natural impulse to call these (linear) subspaces, since some

authors reserve the term space for vector spaces over a field.
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Although we have defined the product and the map ϕΩ only for the basic
tensors x⊗y and α⊗x, the fact that the recipes are Φ-bilinear guarantees that
it extends to a well-defined product on all sums by the universal property of
tensor products.5 Intuitively, AΩ consists of all formal Ω-linear combinations
of elements of A, multiplied in the natural way.

Exercise 1.2.7 If Φ = Z, Ω = Zn (integers mod n), A = Q (rationals), show that AΩ = 0,
so Φ �⊆ Ω and A �⊆ AΩ.

If we work in a “variety” of algebras, defined as all algebras satisfying
a collection of identical relations fα(x, y, . . . ) = gα(x, y, . . . ) (such as the
associative law, commutative law, Jacobi identity, Jordan identity, alternative
laws), then a scalar extension will stay within the variety only if the original
algebra satisfies all “linearizations” of the defining identities. Satisfaction is
automatic for homogeneous identities which are linear or quadratic in all
variables, but for higher identities (such as the Jordan identity of degree 3
in x) it is automatic only if the original scalars are “big enough.” (We will
see that existence of 1

2 is enough to guarantee that cubic identities extend.)
For nonlinear identities, such as the Boolean law x2 = x, scalar extensions
almost never inherit the identity; indeed, if we take Ω to be the polynomial
ring Φ[t] in one indeterminate, then replacing x by tx in an identical relation
f(x, y, . . . ) = g(x, y, . . . ) leads to

∑
i t

if (i)(x; y, . . . ) =
∑

i t
ig(i)(x; y, . . . ), and

this relation holds in AΦ[t] for all x, y, . . . ∈ A iff (identifying coefficients of ti
on both sides) f (i)(x; y, . . . ) = g(i)(x; y, . . . ) holds in A for each homogeneous
component f (i), g(i) of f, g of degree i in x.

1.3 The Category of Unital Algebras

The modern fashion is to demand that algebras have unit elements (this re-
quirement is of course waived for Lie algebras!). Once one adopts such a
convention, the unit element is considered part of the structure, so one is
compelled to demand that homomorphisms preserve units, and (somewhat
reluctantly) that all subalgebras B ≤ A contain the unit: 1 ∈ B. In particu-
lar, ideals do not count as subalgebras in this category.

5 Somewhat rashly, we assume that the reader is familiar with the most basic properties
of tensor products over general rings of scalars, in particular that the elements of a tensor
product X⊗Y are finite sums of basic tensors x⊗ y (the latter are called “indecomposable
tensors” because they aren’t broken down into a sum of terms), and that it does not always
suffice to check a property of the tensor product only on these basic generators. The purpose

in life of the tensor product of Φ-modules X⊗Φ Y is to convert bilinear maps X×Y
f−→ Z

into linear maps X ⊗ Y
f̃−→ Z factoring through the canonical bilinear X × Y −→ X ⊗ Y ,

and its Universal Property is that it always succeeds in life: to define a linear map on the
tensor product it does always suffice to define it on the basic generators x⊗ y, as long as
this definition is bilinear as a function of x and y.
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Unital Algebra Definition 1.3.1 A unital algebra is one that has a unit
element 1, an element which is neutral with respect to multiplication:

1 · x = x = x · 1
for all elements x in A. As always, the unit element is unique once it exists. A
unital homomorphism is a homomorphism ϕ : A → A′ of linear algebras
which preserves the unit element,

ϕ(1) = 1′.

The category of unital linear Φ-algebras has as its objects the unital
linear Φ-algebras, and as its morphisms the unital homomorphisms.6

In dealing with unital algebras one must be careful which category one
is working in. If A and A′ are unital linear algebras and ϕ : A → A′ is
a homomorphism in the category of linear algebras, then in the category of
unital algebras it need not be a homomorphism, and its image need not be
a subalgebra. For example, we cannot think of the 2× 2 matrices as a unital
subring of the 3× 3 matrices, nor is the natural imbedding of 2× 2 matrices
as the northwest corner of 3 × 3 matrices a homomorphism from the unital
point of view.

Exercise 1.3.1* (1) Verify that the northwest corner imbedding M2(Φ) ↪→ M3(Φ) is
always a homomorphism of associative algebras. (2) Use traces to show that if Φ is a field,
there is no homomorphism M2(Φ) → M3(Φ) of unital associative algebras.

Notice that in this category an algebraA is simple iff it has no proper ideals
and is nonzero, because nonzero guarantees nontrivial: AA ⊇ A1 = A  = 0.

1.4 Unitalization

A unit element is a nice thing to have around, and by federal law each algebra
is entitled to a unit: as in associative algebras, there is a standard way of
formally adjoining a unit element if you don’t have one already,7 although
this right to a free unit should not be abused by algebras which already have
one.

6 Note that again the notation 1 for the unit is a generic one-term-fits-all-algebras nota-
tion; if we wish to be pedantic, or clear (“Will the real unit please stand up?”), we write 1A
to make clear whose unit it is. Note in the homomorphism condition how 1′ reminds us that
this is not the same as the previous 1. The unit element is often called the identity element.
We will try to avoid this term, since we often talk about an algebra “with an identity” in
the sense of “identical relation” (the Jacobi identity, the Jordan identity, etc.). Of course,
in commutative associative rings the term “unit” also is ambiguous, usually meaning “in-
vertible element” (the group of units, etc.), but already in noncommutative ring theory the
term is not used this way, and we prefer this lesser of two ambiguities. It is a good idea to
think of the unit as a neutral element for multiplication, just as 0 is the neutral element for
addition.

7 cf. the definition of unital hull in Section I.2.1.
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Unital Hull Definition 1.4.1 In general a unital hull of a linear Φ-algebra
A is any extension A1 = Φ1 +A ⊇ A obtained by adjoining a unit element.
Such a hull always contains A as an ideal (hence a non-unital subalgebra).
Any linear algebra is imbedded in its (formal) unital hull, consisting of the
module Φ⊕A with product extending that of A and having (1, 0) act as unit,

Â : (α, x) · (β, y) = (αβ, αy + βx+ x · y).

We call Â the unital hull and denote the elements (1, 0), (0, a) simply by 1̂, a,
so Φ1̂ is a faithful copy of Φ, and we write the product as

(α1̂⊕ x) · (β1̂⊕ y) = αβ1̂⊕ (αy + βx+ x · y).

Notice that this unitalization process depends on what we are counting as
the ring of scalars, so we could denote it by Â

Φ
to explicitly include the

scalars in the notation — it would remind us exactly what we are tacking on
to the original A. If A is also an algebra over a larger Ω, then it would be
natural to form Â

Ω
, so the unital version would also be an Ω-algebra. But we

will usually stick to the one-size-fits-all hat for the unital hull, trusting the
context to make clear which unitalization we are performing.

We obtain a unitalization functor from the category of linear Φ-algebras
to unital Φ-algebras, sending objects A to Â, and morphisms ϕ : A→ A′ to
the unital morphism ϕ̂ : Â → Â′ defined as the natural unital extension
ϕ̂(α1̂⊕ x) = α1̂⊕ ϕ(x). It is easy to verify that this functor commutes8 with

scalar extensions:
(̂
AΩ

)Ω
=

(
Â

Φ)
Ω.

Notice that you can have too much of a good thing: if A already has a unit
1, tacking on a formal unit 1̂ will demote the old unit to a mere idempotent,
and the new algebra will have a copy of Φ attached as an excrescence rather
than an organic outgrowth:

Â = A� Φe (e := 1̂− 1, 1 unit for A).
Indeed, orthogonality eA = 0 = Ae is built in, since 1̂ acts as unit by decree,
and 1 already acted as unit on A, so the two competing claimants for unit
cancel each other out; we have (e)2 = 1̂ − 2 + 12 = 1̂ − 2 + 1 = e, so Φe is
another faithful copy of Φ. See Problem 1.3 for a tighter unitalization.

8 The alert reader — so annoying to an author — will notice that we don’t really have
two functors U ,Ω which commute, but rather a whole family of unitalization functors UΦ

(one for each category of Φ-algebras) and two scalar extension functors ΩΦ,Ω(1)
Φ (one for

linear algebras and one for unital algebras), which intertwine: Ω(1)
Φ ◦ UΦ = UΩ ◦ ΩΦ. By

abuse of language we will continue to talk of these functors or constructions as commuting.
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1.5 The Category of Algebras with Involution

The story of Jordan algebras is to some extent the saga of self-adjoint elements
in algebras with involutions, just as the story of Lie algebras is the story of
skew elements.9

∗-Algebra Definition 1.5.1 A linear ∗-algebra (star-algebra, or algebra
with involution) (A, ∗) consists of a linear algebra A together with an invo-
lution ∗, an anti-automorphism of period 2: a linear mapping of A to itself
satisfying

(x · y)∗ = y∗ · x∗, (x∗)∗ = x.

A ∗-homomorphism (A, ∗)→ (A′, ∗′) of ∗-algebras is an algebra homomor-
phism ϕ which preserves involutions,

ϕ(x∗) = (ϕ(x))∗′.

In any ∗-algebra we denote by H(A, ∗) the space of hermitian elements
x∗ = x, and by Skew(A, ∗) the space of skew elements x∗ = −x. Any ∗-
homomorphism will preserve symmetric or skew elements.
There are two general recipes, norm n(x) and trace t(x), for constructing

a hermitian element out of an arbitrary element x:

n(x) := x · x∗, t(x) := x+ x∗.

Any ∗-homomorphism will preserve norms and traces. In the presence of 1
2 ,

every hermitian element x = x∗ is a trace, x = 1
2 (x + x∗) = t( 1

2x), but
in characteristic 2 situations the traces t(A) may form a proper subset of
H(A, ∗).
The category of Φ-∗-algebras has as objects the ∗-algebras and as mor-

phisms the ∗-homomorphisms. Their kernels are precisely the ∗-ideals (ideals
I  A invariant under the involution, hence satisfying I∗ = I). An algebra is
∗-simple if it is not trivial and has no proper ∗-ideals.
Exercise 1.5.1A Show that if x∗ = εx, y∗ = ηy (ε, η = ±1) for an involution ∗ in a nonas-
sociative algebra A, then {x, y}∗ = εη{x, y} and [x, y]∗ = −εη [x, y], so in particular H(A, ∗)
is always closed under {x, y} and Skew(A, ∗) under [x, y] (though for general nonassociative
A these won’t be Jordan or Lie algebras).

Exercise 1.5.1B (1) Show that a trivial linear algebra (one with trivial multiplication
where all products are zero) has no proper ideals iff it is a 1-dimensional vector space with
trivial multiplication over a field Ω = Φ/M for a maximal ideal M of Φ. (2) Show that
a trivial linear ∗-algebra has no proper ∗-ideals iff it is a 1-dimensional vector space with
trivial multiplication and trivial involution (∗ = ±1A) over a field Ω = Φ/M for a maximal
ideal M of Φ.

9 cf. the definition of ∗-Algebra in Section I.2.2
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Though not written into the constitution, there is a little-known federal
program to endow needy algebras with a ∗, using the useful concept of opposite
algebra.

Opposite Algebra Definition 1.5.2 The opposite algebra Aop of any
linear algebra A is just the module A with the multiplication turned around :

Aop := A under x ·op y := y · x.
In these terms an anti-homomorphism A → A′ is nothing but a homomor-
phism into (or out of ) the opposite algebra A→ A′op (or Aop → A′).

Exercise 1.5.2 Verify the assertion that an anti-homomorphism in nothing but a homo-
morphism into or out of the opposite algebra.

Exchange Involution Proposition 1.5.3 Every linear algebra A can be
imbedded as a subalgebra of a ∗-algebra, its exchange algebra with ex-
change involution

Ex(A) := (A�Aop, ex), where ex(a, b) := (b, a).

The hermitian and skew elements under the exchange involution are isomor-
phic to A as modules, but not as linear algebras:

H(Ex(A)) = {(a, a) | a ∈ A},
Skew(Ex(A)) = {(a,−a) | a ∈ A}.

proof. The map a �→ (a, 0) certainly imbeds A as a non-∗-invariant subal-
gebra of Ex(A), and the hermitian and skew elements are as advertised. The
map a �→ (a, a) is an isomorphism of A+ with H(Ex(A)) under the bullet
products since (a, a) • (b, b) = 1

2 (ab+ ba, ba+ ab) = (a • b, b • a) = (a • b, a • b),
and analogously for the Lie brackets [(a,−a), (b,−b)] = ([a, b], [−b,−a]) =
([a, b],−[a, b]). �
In this category we again have unitalization and scalar extension func-

tors, which commute with the exchange functor from algebras to ∗-algebras
sending objects A �→ Ex(A) and morphisms ϕ �→ Ex(ϕ), where the ∗-
homomorphism is defined by Ex(ϕ)(a, b) := (ϕ(a), ϕ(b)).
The notion of ∗-simplicity is not far removed from ordinary simplicity: the

only ∗-simple algebra which isn’t already simple is an exchange clone of a
simple algebra.

∗-Simple Theorem 1.5.4 If (A, ∗) is a ∗-simple linear algebra, then either
(1) A is simple, or (2) A is the direct sum A = B � B∗ of an ideal B and
its star, in which case (A, ∗) ∼= Ex(B) = (B�Bop, ex) for a simple algebra B
with exchange involution ex(b, c) = (c, b). In the latter case H(A, ∗) ∼= B, so
if the nonzero hermitian elements all associate and have inverses, then B is
an associative division algebra.
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proof. If A is NOT simple it has a proper ideal B; since B ∩ B∗ < A
and B+B∗ > 0 and both are ∗-ideals, by ∗-simplicity they must be 0 and A
respectively: B∩B∗ = 0, B+B∗ = A, so (A, ∗) = (B�B∗, ∗) ∼= (B�Bop, ex)
[since B∗ ∼= Bop for any involution], and ∗ ∼= ex because (x � y∗)∗ = y � x∗.
HereB is simple as an algebra in its own right: ifK B were a proper ideal, then
K�K∗  A would be a proper ∗-ideal, contrary to ∗-simplicity. If the nonzero
hermitian elements (b, b) of (B�Bop, ex) all associate (or are invertible), then
all nonzero b in B associate (or are invertible), i.e., B is associative (or a
division algebra). �

1.6 Nucleus, Center, and Centroid

We recall the concepts of nucleus and center in general,10 which are most
conveniently defined using the concepts of commutator and associator,
defined in any linear algebra by

[x, y] := x · y − y · x, [x, y, z] := (x · y) · z − x · (y · z).
The commutator is a bilinear mapping from A×A to A, measuring how far
the two elements are from commuting with each other; the associator is a
trilinear mapping measuring how far the three elements are from associating
(in the given order) with each other.

Nucleus and Center Definition 1.6.1 The nucleus of a linear algebra
is the gregarious part of the algebra, the part that associates with everyone,
consisting of the elements associating in all possible ways with all other ele-
ments:

Nuc(A) := {n ∈ A | [n,A,A] = [A, n,A] = [A,A, n] = 0}.
The center of any linear algebra is the “scalar” part of the algebra which both
commutes and associates with everyone, i.e., those nuclear elements commut-
ing with all other elements:

Cent(A) := {c ∈ Nuc(A) | [c,A] = 0}.
A unital linear algebra can always be considered as an algebra over its center
Ω := Cent(A) ⊇ Φ1. A unital Φ-algebra is central if its center is precisely the
scalar multiples Φ1. Central-simple algebras (those that are both central and
simple) are the basic building-blocks of finite-dimensional structure theory.
In the category of ∗-algebras, the natural notion of center is the ∗-center,

defined to be the set of central elements fixed by ∗, Cent(A, ∗) := {c ∈ Cent(A) |
c∗ = c}.

10 cf. the definitions of commutator, associator, nucleus, and center in Section I.2.3.
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Exercise 1.6.1A (1) Show that Nuc(A) is always an associative subalgebra of A, and
Cent(A) a commutative associative subalgebra of A; show that both are invariant (as sets,
not necessarily pointwise) under all automorphisms and involutions of A. (2) If A has unit,
show that α1 lies in the center for all α ∈ Φ. (3) Show that if A is unital, then its center
Ω = Cent(A) is a ring of scalars, and A can be considered as a linear algebra over Ω. (4)
Show that if A is a simple unital linear algebra, then its center is a field.

Exercise 1.6.1*B Show that in the definition of center, the condition [A, c,A] = 0 can be
omitted: it follows from the other associator conditions in the presence of commutativity.

Another important concept for arbitrary linear algebras is that of the
centroid, the natural “scalar multiplications” for an algebra.

Centroid Definition 1.6.2 The centroid Γ(A) of a linear Φ-algebra A is
the set of all linear transformations T ∈ EndΦ(A) which act as scalars with
respect to multiplication,

(CT) T (xy) = T (x)y = xT (y) for all x, y ∈ A,
equivalently, which commute with all (left and right) multiplications,

(CT′) TLx = LxT, TRy = RyT for all x, y ∈ A,
or yet again which centralize the multiplication algebra Mult (A) =
〈LA ∪RA〉 generated by all left and right multiplications,
(CT′′) Γ(A) = CentEnd(A)(Mult(A)),

where for any subset S of EndΦ(A) the centralizer or commuting ring
is Cent End(A)(S) := {T ∈ EndΦ(A) | TS = ST for all S ∈ S}. We say that
a Φ-algebra is centroidal if Γ(A) = Φ, i.e., Γ(A) = Φ1A and the natural
homomorphism Φ → Φ1A (via α �→ α1A) is an isomorphism. An algebra is
centroid-simple if it is simple and centroidal.

Notice that if A is trivial (all products vanish) then Lx = Ry = 0, and
Γ(A) = End(A) is highly noncommutative. In order for Γ to form a commu-
tative ring of scalars, we need some mild nondegeneracy conditions on A.

Centroid Theorem 1.6.3 (1) The centroid Γ(A) of a linear Φ-algebra A is
always an inverse-closed unital associative Φ-subalgebra of EndΦ(A). If A2 =
A, or if A⊥ = 0 (e.g., if A is simple or semiprime or unital), then Γ(A) is a
unital commutative ring of scalars Ω, and A is in a natural way an Ω-algebra
via ω · x = ω(x).
(2) If A is unital, the centroid is essentially the same as the center : the

center is just the centroidal action on 1, and the centroid is just the central
multiplications:

Cent(A) = Γ(A)(1), Γ(A) = LCent(A) = RCent(A);
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and the maps T �→ T (1) and c �→ Lc = Rc are inverse isomorphisms between
the unital commutative rings Γ(A) and Cent(A).
(3) If A is simple, then Γ(A) is a field Ω, and A becomes a centroid-simple

algebra over Ω. If A is merely prime (has no nonzero ideals I,J with I·J = 0),
then Γ(A) is an integral domain acting faithfully on A.

proof. (1) The centralizer CentEnd(A)(S) of any set S is an inverse-closed
unital subalgebra of EndΦ(A), i.e., is closed under 1A, αT, T1 + T2, T1T2, and
T−1. [Note that whenever a centralizing T has an inverse T−1 ∈ End(A),
this inverse is also centralizing, T−1S = T−1S(TT−1) = T−1(ST )T−1 =
T−1(TS)T−1 = ST−1 for all S ∈ S.] The centroid Γ(A) is just the particular
case where S is LA ∪RA or Mult(A).
The kernel of [T1, T2] always contains A2 (so if A2 = A then [T1, T2] = 0

and we have commutativity) because of the following Hiding Trick :

T1T2(xy) = T1(T2(x)y) = T2(x)T1(y) = T2(xT1(y)) = T2T1(xy).

The range of [T1, T2] is always contained in A⊥ (so if A⊥ = 0 then
[T1, T2](A) = 0 and again we have commutativity [T1, T2] = 0) because by
the above hiding trick

0 = [T1, T2](AA) = [T1, T2](A) ·A = A · [T1, T2](A) = 0.

(2) If A is unital, we claim that any centroidal T has the form T =
Lc = Rc for a central element c = T (1). It has the form T = Lc because
T (x) = T (1x) = T (1)x = Lcx, and similarly T = Rc because T (x) = T (x1) =
xT (1) = Rcx. The element c = T (1) commutes with any x because [c, x] =
[T (1), x] = T ([1, x]) = 0). It also associates with any x, y because [c, x, y] =
[T (1), x, y] = T ([1, x, y]) = 0 (similarly, [x, c, y] = [x, y, c] = 0). Therefore it
commutes and associates, hence is central.
Conversely, if c ∈ Cent(A) is a central element, then the linear operator

T = Lc = Rc is centroidal by T (xy) = c(xy) = (cx)y = T (x)y and dually
T (xy) = (xy)c = x(yc) = xT (y). These correspondences between centroidal
T and central c are inverses since T �→ T (1) = c �→ Lc = T and c �→ Lc =
T �→ T (1) = Lc(1) = c. These maps are actually homomorphisms of unital
commutative associative rings since T1T2(1) = T1T2(1 · 1) = T1(1)T2(1) and
Lc1c2 = Lc1Lc2 .
(3) If A is simple or prime, then A⊥ = 0, and Γ is commutative by

(1). The kernel Ker(T ) and image Im(T ) of a centroidal T are always ideals
[invariant under any multiplicationM ∈ Mult(A), since T (x) = 0 implies that
T (M(x)) = M(T (x)) = 0 and M(T (A)) = T (M(A)) ⊆ T (A)]. If T  = 0 then
Ker(T )  = A and Im(T )  = 0, so when A is simple Ker(T ) = 0 [T is injective]
and Im(T ) = A [T is surjective], and any nonzero T is bijective. Therefore T
has an inverse T−1 ∈ End(A), which by inverse-closure is also centroidal, so
in a simple algebra the centroid is a field.
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If A is merely prime, then Γ(A) is a domain, since if nonzero cen-
troidal Ti kill each other their nonzero image ideals Im(Ti) are orthogonal,
T1(A)T2(A) = T1T2(AA) = 0, a contradiction. Each nonzero T is faithful
(injective) on A, since its kernel is orthogonal to its nonzero image: T (A)·
Ker(T ) = A · T (Ker(T )) = 0. �
In the unital case centroid and center are pretty indistinguishable, and

especially in the theory of finite-dimensional algebras ones talks of central-
simple algebras, but in general the centroid and centroid-simplicity are the
natural concepts. Unital algebras always have a nonzero center Cent(A) ⊇ Φ1,
but non-unital algebras (even simple ones) often have no center at all. For
example, the algebra M∞(∆) of all ∞ × ∞ matrices having only a finite
number of nonzero entries from an associative division algebra ∆ is simple,
with centroid Ω = Cent (∆)1A, but has no central elements: if the matrix
C =

∑
γijEij were central, then it would be diagonal with all diagonal entries

equal, contrary to finiteness [γijEij = EiiCEjj = EiiEjjC = 0 if i  = j,
γiiEii = EijEjiCEii = EijCEjiEii = Eij(γjjEjj)Eji = γjjEijEjjEji =
γjjEii].

Exercise 1.6.3* Let M be an arbitrary left R-module for an associative Φ-algebra R (not
necessarily unital or commutative). (1) Show that if S ⊆ EndΦ(M) is any set of Φ-linear
transformations on M , then CM (S) = {T ∈ EndΦ(M) | TS = ST for all S ∈ S} is a unital
subalgebra of EndΦ(M) which is inverse-closed and quasi-inverse-closed: if T ∈ CM (S) is
invertible or quasi-invertible, then its inverse or quasi-inverse again belongs to CM (S). (2)
Prove Schur’s Lemma: if M has no proper S-invariant subspaces, then CM (S) is a division
algebra. Deduce the usual version of Schur’s Lemma: if M is an irreducible R-module
(R ·M �= 0 and M has no proper R-submodules), then CM (R) is a division ring. (3) If A is
a linear algebra and R = Mult(A), show that CM (R) = Γ(A), and A is simple iff M = A
is an irreducible R-module.

1.7 Strict Simplicity

A Φ-algebra A is strictly simple over the field Φ if all its scalar extensions
Ω ⊗Φ A remain simple (Ω ⊇ Φ a field extension). This useful invariance
of simplicity under scalar extensions turns out to be equivalent to centroid-
simplicity.

Strict Simplicity Theorem 1.7.1 A simple linear Φ-algebra A is centroid-
simple over a field Φ iff it is strictly simple.

proof. If a simple A is not central, then Γ(A) = Ω > Φ, and the scalar
extension Ã = Ω⊗ΦA is not simple because it has a non-injective homomor-
phism ϕ : Ã→ A of Ω-algebras via ϕ(ω ⊗ a) = ω(a). Indeed, this does define
an map on the tensor product by the universal property, since the expression
is Φ-bilinear [ϕ(αω⊗ a) = αω(a) = ω(αa) = ϕ(ω⊗αa)]. The map is Ω-linear
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since ϕ(ω0 · ω ⊗ a) = ϕ(ω0ω ⊗ a) = (ω0ω)(a) = ω0(ω(a)) = ω0ϕ(ω ⊗ a). It is
an algebra homomorphism since ϕ((ω1 ⊗ a1)(ω2 ⊗ a2)) = ϕ(ω1ω2 ⊗ a1a2) =
(ω1ω2)(a1a2) = (ω1(a1))(ω2(a2)) = ϕ(ω1 ⊗ a1)ϕ(ω2 ⊗ a2). Choosing a ba-
sis {ωi} for Ω as a vector space of dimension > 1 over Φ, we know that
Ω⊗A =⊕

i ωi ⊗A, so by independence ω1 ⊗ ω2(a)− ω2 ⊗ ω1(a) is nonzero
if a  = 0, yet it lies in the kernel of ϕ since ω1(ω2(a))− ω2(ω1(a)) = 0.
More difficult is the converse, that if A is centroid-simple, then Ã is also

simple. Certainly Ã
2
= ΩΩ ⊗ AA  = 0; we must show that that Ã has no

proper ideals. We claim that it will suffices to show that any nonzero ideal
Ĩ  Ã contains an “irreducible tensor,”

(1) 0  = ω ⊗ x ∈ Ĩ (0  = ω ∈ Ω, 0  = x ∈ A).

From such an element ω ⊗ x  = 0 we can create the entire algebra Ã in two
easy steps. First, we use x to create A: Mult (A)(x) is an ideal containing
0  = x = 1A(x), so the ideal must be all of A by simplicity, and we have

(2) x  = 0 in A =⇒ Mult(A)(x) = A.
Second, we use the multiplication promised by (2) and the scalar ω−1 to
create all “monomials” ω̃ ⊗ a: by (2) there is an M with M(x) = a, hence
ω̃ ⊗ a = (ω̃ω−1 ⊗M)(ω ⊗ x) ∈ Mult(Ã)(̃I) ⊆ Ĩ, and we have

(3) 0  = ω ⊗ x ∈ Ĩ =⇒ ω̃ ⊗ a ∈ Ĩ.

Adding these all up shows that Ω̃⊗A ⊆ Ĩ, and thus that Ĩ = Ã.
Thus, in order to prove that the only nonzero ideal Ĩ is Ĩ = Ã, it will suffice

to prove (1). If we are willing to bring in the big gun, the Jacobson Density
Theorem (cf. Appendix D), we can smash the obstacle (1) to smithereens.
By simplicity Mult(A) acts irreducibly on A with centralizer Γ(A) = Φ by
centroid-simplicity, so if {xσ}σ∈S is a basis forA over Φ then by tensor product
facts Ã =

⊕
σ∈S Ω ⊗ xσ. If 0  = ∑n

i=1 ωi ⊗ xi ∈ Ĩ is an element of minimal
length n, then by the Density Theorem there is M ∈ Mult(A) with M(x1) =
x1, M(xi) = 0 for i  = 1, so instantly (1⊗M)(

∑
ωi ⊗ xi) =

∑
ωi ⊗M(xi) =

ω1 ⊗ x1  = 0 lies in Ĩ as desired in (1).
We can also chip away at the obstacle (1) one term at a time using ele-

ments of the centroid. The most efficient method is another minimal length
argument. Let {ωσ}σ∈S be a basis for Ω over Φ, so by tensor product facts
Ã =

⊕
σ ωσ ⊗A. Assume that 0  =∑

ωi ⊗ xi ∈ Ĩ is an expression of minimal
length. This minimality guarantees a domino effect: if N ∈ Mult(A) kills x1 it
kills every xi, since (1⊗N)(

∑
ωi⊗xi) =

∑
ωi⊗N(xi) ∈ Ĩ is of shorter length

if N(x1) = 0, therefore by minimality must be zero, which by independence
of the ωi implies that each N(xi) = 0. By (2) we can write any a ∈ A as
a = M(x1) for some M ∈ Mult(A); we use this M to define centroidal lin-
ear transformations Ti by Ti(a) =M(xi). These are well-defined by dominos:
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a = M(x1) = M ′(x1) =⇒ N = M − M ′ has N(x1) = 0, hence N(xi) = 0
and M(xi) = M ′(xi) is independent of the choice of the M which produces
a. Then clearly the Ti are linear: if M,M ′ produce a, a′, then αM + α′M ′

produces αa+α′a′ and Ti(αa+α′a′) = (αM+α′M ′)(xi) = αTi(a)+α′Ti(a′).
The Ti commute with all multiplications P ∈ Mult(A): PM produces P (a),
so Ti(P (a)) = (PM)(xi) = P (M(xi)) = P (Ti(a)). Thus Ti = γi ∈ Γ = Φ
by centroid-simplicity. Here M = 1A produces a = x1, so Ti(x1) = Ti(a) =
M(xi) = 1A(xi) = xi and γix1 = xi is a scalar multiple of x1. But then our
minimal length expression takes the form 0  =∑

ωi ⊗ γix1 =
∑

ωiγi ⊗ x1 [all
γi lie in Φ and we are tensoring over Φ] = (

∑
ωiγi) ⊗ x1 = ω ⊗ x1 ∈ Ĩ as

desired in (1).
Thus either way we have our irreducible tensor (1), which suffices to show

that Ĩ = Ã and thus the simplicity of the scalar extension Ã = Ω⊗A. �

Exercise 1.7.1* In unital algebras the minimum length argument is usually run through
the center. Let A be central simple over Γ(A) = Φ, and 0 �= ∑

ωi ⊗ xi ∈ Ĩ be an ex-
pression of minimal length ({ωσ} a basis for Ω over Φ). Use (2) of Strict Simplicity to
get a multiplication M ∈ Mult (A) such that M(x1) = 1 (but no assumption about its
effect on the other M(xi)). Apply 1 ⊗ M to the relation to normalize it so that x1 = 1.
Then apply La − Ra, Lab − LaLb, [La, Rb], Rab − RbRa to the relation to conclude that
[a,M(xi)] = [a, b,M(xi)] = [a,M(xi), b] = [M(xi)), a, b] = 0 for all a, b ∈ A and conclude
that each M(xi) = γi1 ∈ Φ1 = Cent(A). Conclude that the relation was 0 �= ω⊗ 1 ∈ Ĩ as in
(1) of the above proof, re-establishing Strict Simplicity.

1.8 The Category of Jordan Algebras

The Jordan axioms are succinctly stated in terms of associators.11

Jordan Algebra Definition 1.8.1 A Jordan algebra over a ring of scalars
Φ containing 1

2 is a linear Φ-algebra J equipped with a commutative bilinear
product, denoted by x • y, which satisfies the Jordan identity :

(JAX1) [x, y] = 0 (Commutative Law),

(JAX2) [x2, y, x] = 0 (Jordan Identity).

A Jordan algebra is unital if it has a unit element 1 in the usual sense.
A homomorphism of Jordan algebras is just an ordinary homomorphism of
linear algebras, ϕ(x • y) = ϕ(x) •′ ϕ(y).
The category of Jordan Φ-algebras consists of all Jordan Φ-algebras

with homomorphisms, while the category of unital Jordan Φ-algebras
consists of all unital Jordan Φ-algebras with unital homomorphisms.

11 The categorical notions of this section have already been introduced in the Historical
Survey: direct sums, direct products, and subdirect sums in Section I.2.2, Jordan algebras
in I.2.4, the auxiliary operators in I.4.1, and inner ideals in I.4.7.
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Exercise 1.8.1A (1) Show that the variety of Jordan algebras is closed under homomor-
phisms: if ϕ : J→ A is a homomorphism of a Jordan algebra J into a linear algebra A, then
the image ϕ(J) is a Jordan subalgebra of A. (2) Show that the variety of Jordan algebras is
closed under quotients: if J is Jordan, so is any of its quotient algebras J/I. (3) Show that
the variety of Jordan algebras is closed under direct products: if Ji are Jordan algebras, so
is their direct product

∏
i Ji.

Exercise 1.8.1B Just as everyone should (as mentioned in the Colloquial Survey) verify
directly, once and only once in their life, anti-commutativity [x, y] = −[y, x] and the Jacobi
identity [x, [y, z]]+[y, [z, x]]+[z, [x, y]] = 0 for [x, y] = xy−yx in associative algebras, showing
that every associative algebra A gives rise to a Lie algebra A− under the commutator
product p(x, y) := [x, y], so should everyone show that A+ under the anti-commutator
product p(x, y) := x • y = 1

2 (xy + yx) gives rise to a Jordan algebra, by verifying directly
commutativity x • y = y • x and the Jordan identity (x2 • y) • x = x2 • (y • x). (No peeking
at Full Example 3.1.1!!)

Exercise 1.8.1C (1) Show that [x, y, z] = 0 holds in any linear algebra whenever x = e is a
left unit (ea = a for all elements a ∈ A). (2) The identity [x, y, x] = 0, i.e., (xy)x = x(yx), is
called the flexible law; show that every commutative linear algebra is automatically flexible,
i.e., that [x, y, z] = 0 holds whenever z = x.

Auxiliary Products Definition 1.8.2 From the basic bullet product we can
construct several important auxiliary products (squares, brace products, U -
products, triple products, and V -products):12

x2 := x • x, {x, z} = 2x • z
Uxy := 2x • (x • y)− x2 • y

{x, y, z} := Ux,zy :=
(
Ux+z − Ux − Uz

)
y

= 2
(
x • (z • y) + z • (x • y)− (x • z) • y)

Vx(z) = {x, z}, Vx,y(z) = {x, y, z}.
In unital Jordan algebras, setting x or y or z equal to 1 in the above shows
that the unit interacts with the auxiliary products by

Ux1 = x2, U1y = y,

{x, 1} = 2x, {x, y, 1} = {x, 1, y} = {x, y}.

Homomorphisms automatically preserve all auxiliary products built out of the
basic product.

12 In the Jordan literature the brace product {x, y}, obtained by linearizing the square, is
often denoted by a circle: x◦y = (x+y)2−x2−y2. Jimmie McShane once remarked that it is
a strange theory where the linearization of the square is a circle ! We use the brace notation
in conformity with our general usage for n-tads {x1, . . . , xn} := x1 · · ·xn + xn · · ·x1, and
also since it resembles the brackets of the Lie product.
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Ideal Definition 1.8.3 We have the usual notions of subalgebra B ≤ J
and ideal I  J as for any linear algebra,

B •B ⊆ B, J • I ⊆ I.
Subalgebras and ideals remain closed under all auxiliary Jordan products

B2 + UB(B) + {B,B}+ {B,B,B} ⊆ B,
I2 + UJ(I) + UI(J) + {J, I}+ {J,J, I}+ {J, I,J} ⊆ I.

Any ideal determines a quotient algebra J = J/I, which is again a Jordan
algebra.
In addition, we have a new concept of “one-sided” ideal : an inner ideal

of a Jordan algebra J is a Φ-submodule B closed under inner multiplication
by Ĵ:

UB(Ĵ) = B2 + UB(J) ⊆ B.
In particular, inner ideals are always subalgebras B • B ⊆ B. In the unital
case a Φ-submodule B is an inner ideal iff it is a Φ-submodule closed under
inner multiplication UB(J) ⊆ B.13

Product Proposition 1.8.4 Jordan algebras are closed under subalgebras
and the usual notions of products: if Ji, i ∈ I is a family of Jordan algebras,
then the direct product

∏
i∈I Ji, the direct sum �i∈IJi, and any subdirect

product J̃ =∼ ∏
i∈I Ji, remains a Jordan algebra.

proof. Subalgebras always inherit all the identical relations satisfied by
the parent algebra, and the direct product inherits all the identical relations
satisfied by each individual factor (since the operations are componentwise).
Since the direct sum and subdirect sum are isomorphic to subalgebras of the
direct product, we see all these linear algebras inherit the commutative law
and the Jordan identity, and therefore remain Jordan algebras. �
We obtain a scalar extension functor from the category of Jordan Φ-

algebras to Jordan Ω-algebras, and a unitalization functor J �→ Ĵ from the
category of linear Jordan Φ-algebras to unital Jordan Φ-algebras, and these
constructions commute as usual.

Linearization Proposition 1.8.5 (1) Because we are assuming a scalar 1
2 , a

Jordan algebra automatically satifies the linearizations of the Jordan identity :

(JAX2′) [x2, y, z] + 2[x • z, y, x] = 0,
(JAX2′′) [x • z, y, w] + [z • w, y, x] + [w • x, y, z] = 0,

for all elements x, y, z, w in J.
13 In the literature inner ideals are often defined as what we would call weak inner ideals

with only UBJ ⊆ B. We prefer to demand that inner ideals be subalgebras as well. Of course,
the two definitions agree for unital algebras.
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(2) Any Jordan algebra strictly satisfies the Jordan identities in the sense
that all scalar extensions continue to satisfy them, and consequently every
scalar extension of a Jordan algebra remains Jordan.
(3) Every Jordan algebra can be imbedded in a unital one: the unital hull

Ĵ of a Jordan algebra J is again a Jordan algebra having J as an ideal.

proof. (1) To linearize the Jordan identity (JAX2) of degree 3 in the
variable x, we replace x by x + λz for an arbitrary scalar λ and subtract off
the constant and λ3 terms: since (JAX2) holds for x = x, z, x+λz individually,
we must have

0 = [(x+ λz)2, y, x+ λz]− [x2, y, x]− λ3[z2, y, z]
= λ

(
[x2, y, z] + 2[x • z, y, x]

)
+ λ2

(
[z2, y, x] + 2[z • x, y, z]

)
= λf(x; y; z) + λ2f(z; y;x)

for f(x; y; z) the left side of (JAX2)′. This relation must hold for all val-
ues of the scalar λ. Setting λ = ±1 gives 0 = ±f(x; y; z) + f(z; y;x), so
that subtracting gives 0 = 2f(x; y; z), and hence the existence of 1

2 (or just
the absence of 2-torsion) guarantees that f(x; y; z) = 0 as in (JAX2)′. The
identity (JAX2)′ is quadratic in x (linear in z, y), therefore automatically
linearizes: replacing x by x = x, w, x + λw and subtracting the pure x
and pure w terms gives 0 = f(x + λw; y; z) − f(x; y; z) − λ2f(w; y; z) =
2λ ([x • w, y, z] + [x • z, y, w] + [w • z, y, x]), so for λ = 1

2 we get (JAX2)
′′.

(2) It is easy to check that any scalar extension JΩ of a Jordan algebra
J remains Jordan; it certainly remains commutative as in (JAX1), and for
general elements x̃ =

∑
i αi ⊗ xi, ỹ =

∑
j βj ⊗ yj of J̃ = JΩ we have

[x̃2, ỹ, x̃] =
∑
j;i

α3
iβj ⊗ [x2

i , yj , xi]

+
∑
j;i �=k

α2
iαkβj ⊗

(
[x2

i , yj , xk] + 2[xi • xk, yj , xi]
)

+
∑

j;i,k,� �=
2αiαkα�βj ⊗

(
[xi • xk, yj , x�]

+ [xk • x�, yj , xi] + [x� • xi, yj , xk]
)
,

which vanishes since each individual term vanishes by (JAX2), (JAX2)′,
(JAX2)′′ applied in J.
(3) Clearly J is an ideal in Ĵ as in Unital Hull Definition 1.1.5, and the

product on Ĵ is commutative with unit; it satisfies the Jordan identity (JAX2)
since for any elements x̂, ŷ ∈ Ĵ we have [x̂2, ŷ, x̂] = [(α1̂⊕ x)2,β1̂⊕ y,α1̂⊕ x] =
[2αx+x2, y, x] [the unit associates with everything] = 2α[x, y, x]+ [x2, y, x] =
0+0 = 0 because the original J satisfies (JAX2) and (JAX1), and any commu-
tative algebra is flexible: [x, y, x] = (x·y)·x−x·(y ·x) = x·(x·y)−x·(x·y) = 0.
�
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Exercise 1.8.5* (1) Let u, v be two elements of a Φ-module M. Show that if λu+λ2v = 0
for all λ ∈ Φ, then u = v = 0 if there is at least one scalar λ in Φ such that µ := λ − λ2

is cancelable from u (in the sense µu = 0 =⇒ u = 0). In particular, conclude that this
happens if Φ is a field with at least three elements, or any ring containing 1

2 . (2) Letting
a = f(x; y; z), b = f(z; y;x) as in the above proof of Linearization, conclude that (JAX2)
automatically implies (JAX2)′. (3) Trivially, if a map g from one abelian groupM to another
N vanishes on M, so does its polarization g(u, v) := g(u+ v)− g(u)− g(v), since it is a sum
of values of g. Use this to verify that (JAX2)′ always implies (JAX2)′′ over any Φ.

1.9 Problems for Chapter 1

Problem 1.1* I.L. Kantor could have said (but didn’t), “There are no
objects, there are only morphisms.” A category theorist could say (and has)
“There are no objects, there are only arrows.” Show that we can define a
category to be a classM of “abstract morphisms” or “arrows,” together with
a partial binary operation from a subclass of M × M to M satisfying the
four axioms: (1) (partial associativity) if either of (fg)h or f(gh) is defined,
then so is the other and they are equal; (2) (identities) for each arrow f there
are identities eL, eR such that eLf = f = feR [where e ∈ M is an identity
if whenever ef is defined it equals f , and whenever ge is defined it equals g];
(3) (composition) if e is an identity and both fe, eg are defined, then so is fg;
(4) (smallness) if e, e′ are identities then the class eMe′ (the class of all f =
(ef)e′ = e(fe′) having e as left unit and e′ as right unit) is actually a set. To
make composition more aesthetic, consider the morphisms to be arrows ←f ,
so that the left (or head) identity represents 1X for the codomain X, and the
right (or tail) identity represents 1Y for the domain Y , and the arrow belongs
to Mor(X,Y ) =Mor(X ← Y ). Show that categories in this arrow-theoretic
sense are equivalent to categories in the object–morphism sense. Note that
using left arrows makes composition more aesthetic: Mor(X,Y )Mor(Y,Z) ⊆
Mor(X,Z).

Problem 1.2 (1) Show that any variety of linear algebras, defined by a set of
identities, is closed under homomorphisms, subalgebras, and direct products.
(2) A celebrated theorem of G. Birkhoff says, conversely, that every class C of
linear algebras (actually, algebraic systems in general) which is closed under
homomorphisms, subalgebras, and direct products is a variety. Try your hand
at proving this; the keys are the existence of free algebras FC[X] in the class
for any set X, and that the class consists precisely of the homomorphic images
of free algebras, so the class is defined by identities (the kernel of the canonical
map FA[X]→ FC[x] for any countably infinite set X).
Problem 1.3* We noticed that if the algebra is already unital, unitalization
introduces a supernumerary unit. In most applications any unital hull Φ1+A
would do equally well, we need the convenience of a unit element only to
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express things in the original algebra more concisely. But in structural studies
it is important to be more careful in the choice of hull; philosophically the
tight hulls are the “correct” ones to choose. An extension Ã ⊇ A is a tight
extension if all the nonzero ideals of the extension have nonzero intersection
with the original algebra, i.e., there are no disjoint ideals 0  = Ĩ  Ã, Ĩ ∩A =
0. (Of course, two subspaces can never be disjoint, they always share the
zero element 0; nevertheless, by abuse of language we call them disjoint if
they are nonzero and have nothing but this one lowly element in common.)
(1) Show that the formal unital hull has the universal property that every
homomorphism of A into a unital algebra B extends uniquely to a unital
homomorphism Â → A. Show that the unital hulls A1 = Φ1 + A of A are,
up to isomorphism, precisely all quotients Â/I′ for disjoint ideals I′. (2) Show
that there is a handy tightening process to remedy any looseness in a given
extension, namely, dividing out a maximal disjoint ideal: show that Â/I′ is a
tight extension iff I′ is a maximal disjoint ideal. (3) A linear algebra is robust
if it has zero annihilator AnnA(A) := {z ∈ A | zA = Az = 0}. Show that any
unital algebra, simple algebra, prime algebra, or semiprime algebra is robust.
[An algebra is prime if it has no orthogonal ideals (0  = I,K A with IK = 0),
and semiprime if it has no self-orthogonal ideals (0  = I  A with II = 0).] (4)
Show that in a robust algebra there is a unique maximal disjoint ideal of the
formal unital hull, namely M′ := AnnÂ(A) := {ẑ ∈ Â | ẑA = Aẑ = 0}, and
hence there is a unique tightening Ã. Thus in the robust case we may speak
without ambiguity of the tight unital hull.

Problem 1.4* (1) IfA already has unit 1, it is robust; show that the maximal
disjoint ideal isM′ = Φ(1̂−1), and find its tight unital hull Ã. (2) The algebra
A = 2Z of even integers is robust (even a domain). Find its tight unital hull.

Problem 1.5* The tight unital hull is algebraically “closer” to the original
algebra: it inherits many important properties. (1) Show that the formal unital
hull Â of a simple algebra is never simple, and the tight unital hull Ã is simple
only if the original algebra is already simple and unital. (2) Show that the
tight unital hull of a prime algebra is prime, but the formal unital hull is
prime iff M′ = 0 and Â = Ã. Give a prime example of infinite matrices
where this fails: A =M∞(Φ) + Ω1∞ for Ω an ideal in an integral domain Φ,
with M′ = Ω(1̂ ⊕ −1∞). (3) Show that the tight unital hull of a semiprime
algebra is always semiprime. Show that if Φ acts faithfully on A (AnnΦ(A) :=
{β ∈ Φ | βA = 0} vanishes, so nonzero scalars act nontrivially) and A is
semiprime, then its formal hull remains semiprime. Show this needn’t hold if
the action of Φ on A is unfaithful. (4) Show that if A is robust and Φ a field,
then M′ = 0 and the tight unitalization coincides with the formal one. (5)
Show that tightening a robust algebra always induces faithful scalar action: if
α ∈ AnnΦ(A) then Φα⊕ 0 is an ideal of Â contained in all maximal M’s, so
αÃ = 0, so both A and its tight hull Ã are algebras over the faithful ring of
scalars Φ′ := Φ/AnnΦ(A).
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Problem 1.6* (1) Show that Mnp(Φ) ∼= Mn(Φ) ⊗ Mp(Φ) as associative
algebras, so there is always a homomorphism Mn(Φ) → Mnm(Φ) of unital
associative algebras for any Φ. (2) Show that if Φ is a field there is a homo-
morphismMn(Φ)→ Mm(Φ) of associative algebras iff n ≤ m, and there is a
homomorphism Mn(Φ)→ Mm(Φ) of unital associative algebras iff n divides
m. (3) Show that the construction of the tight unital hull is not functorial:
if ϕ : A → A′ is a non-unital homomorphism, there need not be any unital
homomorphism Ã→ Ã

′
(much less one extending ϕ).

Problem 1.7 (1) By “universal nonsense,” in any linear algebra an automor-
phism takes nucleus into nucleus and center into center. Show directly from
the definition that the same is true of any derivation: δ(Nuc(A)) ⊆ Nuc(A)
and δ(Cent(A)) ⊆ Cent(A). (2) Show the same using “infinitesimal nonsense”:
show that in the algebra of dual numbers we have Nuc(A[ε]) = Nuc(A)[ε] and
ϕ = 1A+εδ is an automorphism, and use these to show again that δ preserves
the nucleus and center.

Question 1.1* Define the unital hull to be A itself if A is already unital,
and the formal unital hull Â otherwise. Does this yield a functor from algebras
to unital algebras? Can you see any advantages or disadvantages to adopting
this intermediate definition (between the formal and the tight extension)?

Question 1.2* Under what conditions is the scalar extension BΩ of a
Boolean algebra (one with x2 = x for all x) again Boolean?

Question 1.3* In the Ideal Definition 8.3 we defined the concept of an inner
ideal in a Jordan algebra. What would an outer ideal be? Why didn’t we at
least mention this concept? Give interesting examples of outer ideals in the
quadratic Jordan algebras Hn(Z) and Hn(Ω) for an imperfect field Ω2 < Ω
of characteristic 2. These are precisely the new “wrinkles” which create some
modifications of the usual simple algebras for quadratic Jordan algebras. Since
we are sticking to the linear theory, we won’t mention outer ideals again.



2

The Category of Alternative Algebras

The natural coordinates for Jordan algebras are alternative algebras with a
nuclear involution. We will develop the basic facts about the variety of alter-
native algebras in general, and will construct in detail the most important
example: the 8-dimensional octonion algebra, a composition algebra obtained
by gluing together two copies of a quaternion algebra in a twisted way by the
Cayley–Dickson Construction. Octonion algebras with their standard involu-
tion coordinatize the simple exceptional Albert algebras. We will prove the
celebrated Hurwitz Theorem, that composition algebras exist only in dimen-
sions 1, 2, 4, or 8.

2.1 The Category of Alternative Algebras

Since alternative algebras are second cousins to associative algebras, we write
the product by mere juxtaposition.1

Alternative Algebra Definition 2.1.1 A linear algebra D is alternative
if it satisfies the left and right alternative laws

(AltAX1) x2y = x(xy) (Left Alternative Law),

(AltAX2) yx2 = (yx)x (Right Alternative Law)

for all x, y in D. An alternative algebra is automatically flexible,

(AltAX3) (xy)x = x(yx) (Flexible Law).

In terms of associators or operators, these identities become

[x, x, y] = [y, x, x] = [x, y, x] = 0, or

Lx2 = (Lx)2, Rx2 = (Rx)2, LxRx = RxLx.
1 cf. the definition of alternative algebra in Section I.2.7.
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The category of alternative algebras consists of all alternative algebras
and ordinary homomorphisms. The defining identities are quadratic in x, so
they automatically linearize and all scalar extensions of alternative algebras
are again alternative: the scalar extension functor stays within the category
of alternative algebras.
We have a corresponding category of unital alternative algebras, and a

unitalization functor: any extension D̃ = Φ1 + D of an alternative algebra
D will again be alternative, since for any two of its elements x̃, ỹ we have
[x̃, x̃, ỹ] = [α1 + x, α1 + x, β1 + y] = [x, x, y] (1 is nuclear) = 0 (D is alterna-
tive), dually [ỹ, x̃, x̃] = [y, x, x] = 0.

We will often write D for alternative algebras to distinguish them from
mere linear algebras A. Associative algebras are obviously alternative, and
rather surprisingly, it turns out that nice alternative algebras come in only
two basic flavors: associative and octonion.2

Exercise 2.1.1 Linearize the alternative laws in x to see that [x1, x2, x3] is skew in its
first and last two variables; since the transpositions (12) and (23) generate the symmetric
group S3, conclude that [xπ(1), xπ(2), xπ(3)] = (−1)π [x1, x2, x3] for any permutation π of
{1, 2, 3}. Show that the associator is an alternating function of its variables (vanishes if any
two of its arguments are equal), in particular is flexible.

2.2 Nuclear Involutions

Properties of the nucleus and center in simple alternative algebras are the
main key to their classification.

Nucleus and Center Definition 2.2.1 Because of the skew-symmetry of
the associator in alternative algebras, the Nucleus and Center Definition 1.6.1
for linear algebras simplifies to

Nuc(D) = {n ∈ D | [n,D,D] = 0} (D alternative),

Cent(D) = {c ∈ D | [c,D] = [c,D,D] = 0} (D alternative).

A unital alternative algebra can always be considered as an alternative algebra
over its center Ω := Cent(A) ⊇ Φ1.
For alternative ∗-algebras, the natural notion of center is the ∗-center,

the set of central elements fixed by ∗.
2 The celebrated Bruck–Kleinfeld Theorem of 1950 proved that the only alternative

division algebras that are not associative are octonion algebras, and in 1953 Erwin Kleinfeld
proved that all simple alternative algebras are associative or octonion. This was the second
algebraic structure theorem which required no finiteness conditions (the first was Hurwitz’s
Theorem); much later Efim Zel’manov would provide Jordan algebras with such a theory,
but even today there is no general classification of all simple associative algebras.



2.3 Composition Algebras 155

We have seen that quaternion and octonion algebras are central: their
center is just Φ1, so center and ∗-center coincide.
We will return in Chapter 21 for more detailed information about the al-

ternative nucleus, in order to pin down in the Herstein–Kleinfeld–Osborn The-
orem the particular alternative algebras which coordinatize Jordan algebras
with capacity. To coordinatize Jordan algebras in general we need alternative
algebras with involutions that are suitably “associative,” namely nuclear.

Nuclear Involution Definition 2.2.2 A nuclear or central or scalar
involution on A is an involution ∗ whose self-adjoint elements lie in the
nucleus or center or scalar multiples of 1, respectively :

H(A, ∗) ⊆ Nuc(A) (∗ nuclear),
H(A, ∗) ⊆ Cent(A) (∗ central),
H(A, ∗) ⊆ Φ1 (∗ scalar).

For example, all involutions of an associative algebra are nuclear, and the
standard involution on a quaternion or octonion algebra is scalar.
As we noted in the ∗-Algebra Definition 1.5.1, when 1

2 ∈ Φ, then all her-
mitian elements are traces, H(A, ∗) = t(A), and when A is unital, then all
traces are built from norms, t(x) = n(x+1)−n(x)−n(1). The only coordinate
algebras we deign to consort with in this book are unital and contain 1

2 , and
for these algebras nice norms are enough: if all norms xx∗ fall in the nucleus,
center, or scalar multiples of 1, respectively, then all the hermitian elements
do too, and the involution is nuclear, central, or scalar, respectively.

2.3 Composition Algebras

The path leading up to the octonions had a long history.3 The final stage in
our modern understanding of the structure of octonions was Jacobson’s 1958
proof of the Hurwitz Theorem, showing how the Cayley–Dickson doubling
process is genetically programmed into composition algebras, providing an in-
ternal bootstrap operation which inexorably builds up from the 1-dimensional
scalars, to a 2-dimensional quadratic extension, to a 4-dimensional quaternion
algebra, and finally to an 8-dimensional octonion algebra, at which point the
process stops: the construction cannot go beyond the octonions and still per-
mit composition.
We begin by formalizing, over an arbitrary ring of scalars, the concept of

composition algebra.
3 Sketched in the Historical Survey, Sections 2.8-2.12.
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Forms Permitting Composition 2.3.1 (1) A quadratic form Q : C → Φ
with basepoint c is unital if Q(c) = 1. Then the trace T is defined by T (x) :=
Q(x, c), and the standard trace involution is the linear map

x := T (x)c− x.

The standard involution is involutory and preserves traces and norms: we
have the Trace Involution Properties

c = c, T (x) = T (x), Q(x) = Q(x), x = x

since T (c) = Q(c, c) = 2Q(c) = 2, c = T (c)c − c = c, T (x) = T (x)T (c) −
T (x) = T (x), Q(x) = T (x)2Q(c)− T (x)Q(x, c) +Q(x) = Q(x), x = T (x)c−
x = T (x)c− x = x.
(2) A quadratic form Q is nondegenerate if it has zero radical Rad(Q) :=

{z | Q(z) = Q(z,C) = 0}; here we can omit the condition that Q(z) = 0
since Q(z) = 1

2Q(z, z) by our assumption that
1
2 ∈ Φ, so nondegeneracy

of Q amounts to nondegeneracy of the linearized bilinear form Q(x, y) :=
Q(x+ y)−Q(x)−Q(y),

Q(z,C) = 0 =⇒ z = 0.

(3) A composition algebra is a unital linear algebra C which carries
a nondegenerate quadratic form Q permitting composition, in the sense
that it is Unital and satisfies the Composition Law

Q(1) = 1, Q(xy) = Q(x)Q(y)

for all elements x, y ∈ C. We refer to Q as the norm.
In the presence of nondegeneracy, the Composition Law has serious alge-

braic consequences.

Composition Consequences 2.3.2 (1) Any composition algebra C satisfies
the Left and Right Adjoint Formulas

Q(xy, z) = Q(y, xz), Q(yx, z) = Q(y, zx).

In the language of adjoints with respect to a bilinear form, these say that
L∗x = Lx, R

∗
x = Rx. A composition algebra also satisfies the Left and Right

Kirmse Identities

x(xy) = x(xy) = Q(x)y, (yx)x = (yx)x = Q(x)y;

in operator terms, these say that LxLx = LxLx = Q(x)1C = RxRx = RxRx.
(2) A composition algebra is always an alternative algebra satisfying the

Degree–2 Identity
x2 − T (x)x+Q(x)1 = 0

for all elements x, and its standard trace involution is a scalar algebra invo-
lution which is isometric with respect to the norm form:

x = x, xy = y x, T (x)1 = x+ x, Q(x)1 = xx = xx,

1 = 1, T (x) = T (x), Q(x) = Q(x), Q(x, y) = T (xy) = T (xy).
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proof. (1) We linearize y �→ y, z and x �→ x, 1 in the Composition Law
Q(xy) = Q(x)Q(y) to obtain first Q(xy, xz) = Q(x)Q(y, z) then Q(xy, z)
+Q(y, xz) = T (x)Q(y, z), so Q(xy, z) = Q(y, T (x)z − xz) = Q(y, xz), giving
the Left Adjoint Formula. Right Adjoint follows by duality (or from the in-
volution, once we know that it is an algebra anti-automorphism in (2)). The
first part of Left Kirmse follows from nondegeneracy and the fact that for
all z we have Q(z,

(
x(xy)−Q(x)y

)
) = Q(xz, xy)−Q(x)Q(z, y) = 0 for all z

by Left Adjoint and the linearized Composition Law; the second follows by
replacing x by x [since the standard involution is involutory and isometric by
the above], and dually for Right Kirmse.
(2) Applying either Kirmse Identity to y = 1 yields xx = xx = Q(x)1,

which is equivalent to the Degree–2 Identity since x2 − T (x)x + Q(x)1 =
[x − T (x)1]x + Q(x)1 = −xx + Q(x)1. Then in operator form Left Kirmse
is equivalent to left alternativity, LxLx −Q(x)1C = LT (x)1−xLx −Q(x)L1 =
LT (x)x−Q(x)1 − L2

x = Lx2 − L2
x. Dually for right alternativity.

(3) The Adjoint Formulas and nondegeneracy imply that the trace invo-
lution is an algebra involution, since for all z we use a Hiding Trick to see
that Q(z, [xy − y x]) = Q((xy)z, 1) − Q(zx, y) [by Left Adjoint for xy and
Right Adjoint for x] = Q(xy, z)−Q(x, z y) [by Right and Left Adjoint for z]
= 0 [by Right Adjoint for y]. The remaining properties follow from the Trace
Involution Properties 2.3.1(1). �

2.4 Split Composition Algebras

The easiest composition algebras to understand are the “split” ones.4 As the
Barbie doll said, “Gee, octonion algebra is hard!,” so we will go into some
detail about a concrete and elementary approach to the split octonion algebra,
representing it as the Zorn vector–matrix algebra 2×2 matrices whose diagonal
entries are scalars in Φ and whose off-diagonal entries are row vectors in Φ3

(note that the dimensions add up: 1 + 3 + 3 + 1 = 8).

Split Composition Definition 2.4.1 The split composition algebras of
dimensions 1, 2, 4, 8 over a ring of scalars Φ are the following algebras with
norm, trace, and involution:

• Split Unarions U(Φ) := Φ, the scalars Φ with trivial involution ᾱ := α,
trace T (α) := 2α, and norm N(α) := α2;

• Split Binarions B(Φ) := Φ�Φ, a direct sum of two copies of the scalars
with the exchange involution (α⊕ β) := (β, α), trace T (α⊕ β) := α+ β, and
norm N(α⊕ β) := αβ;

• Split Quaternions Q(Φ) := M2(Φ), the algebra of 2 × 2 matrices
with the symplectic involution a := satrstr =

(
β −γ
−δ α

)
for a =

( α γ
δ β

)
and

4 cf. the treatment of split algebras in Section I.2.12.
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s =
(

0 1−1 0
)
, the matrix trace T (a) := tr(a) = α + β, and the determinant

norm N(a) := det(a) = αβ − γδ;
• Split Octonions O(Φ) := Q(Φ) ⊕ Q(Φ)? with standard involution

a⊕ b? = a−b?, trace T (a⊕b) = tr(a), and norm N(a⊕b?) := det(a)−det(b).
This description of the split octonion algebra is based on its construction

from two copies of 2×2 scalar matrices (the split quaternions) via the Cayley–
Dickson process. An alternate description represents the octonions as one copy
of 2× 2 matrices, but with more complicated entries.
Zorn Vector-Matrix Example 2.4.2 The Zorn vector–matrix algebra
consists of all 2× 2 matrices with scalar entries α, β ∈ Φ on the diagonal and
vector entries x = (α1, α2, α3),y = (β1, β2, β3) ∈ Φ3 off the diagonal :

Zorn(Φ) := {A =
(
α x
y β

)
| α, β ∈ Φ, x,y ∈ Φ3},

with norm, involution, and product

N(A) := αβ − x · y, A∗ :=
(

β −x
−y α

)
,

A1A2 :=
(

α1α2 + x1 · y2 α1x2 + x1β2 − y1 × y2
y1α2 + β1y2 + x1 × x2 β1β2 + y1 · x2

)
given in terms of the usual dot and cross products

x · y := α1β1 + α2β2 + α3β3,

x× y := (α2β3 − α3β2, α3β1 − α1β3, α1β2 − α2β1).

Most of the Zorn vector–matrix product is just what one would expect
from formally multiplying such matrices, keeping in mind that the diagonal
entries must be scalars (hence the dot product x1 · y2 in the 11-entry). We
somewhat artificially allow scalar multiplication from the right and left, γx :=
(γα1, γα2, γα3) = xγ, to show more clearly the products with terms from A1
on the left, A2 on the right). What is not expected is the cross-product term
x1 × x2 in the 21-entry. From the usual associative matrix product we would
expect

(
0 x1
0 0

) (
0 x2
0 0

)
to vanish, but instead up pops

(
0 0

x1×x2 0
)
in the opposite

corner (and the 12-entry in the product of their transposes has a minus sign, to
make things even more complicated!) Recall that the cross product is defined
only on 3-dimensional space, which explains why this construction works only
in dimension 8: the restriction of cross products to dimension 3 parallels the
restriction of nonassociative composition algebras to dimension 8.
It is clear in Split Unarion, Binarion, and Quaternion Examples that the

split algebra is associative and N permits composition. In the concrete rep-
resentation of the Split Octonion Example as a Zorn vector–matrix algebra,
it is easy to verify the alternative laws using nothing more than freshman
vector analysis: using the rules x · y = y · x, x× y = −y × x, x× (y × z) =
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(x · z)y − (x · y)z the associator of three elements Ai =
( αi xi

yi βi

)
turns out to

be

[A1, A2, A3] =
(
α x
y β

)
for

α(A1, A2, A3) := −x1 · (x2 × x3)− y3 · (y1 × y2),

x(A1, A2, A3) :=
∑

cyclic(xi · yj − yi · xj)xk +
∑

cyclic(αi − βi)yj × xk.

Alternativity of the algebra reduces to alternativity of these four coordinate
functions. Here α is an alternating function of A1, A2, A3, since the vector
triple product

z · (z′ × z′′) = det

 z
z′

z′′

 = det
 γ1 γ2 γ3

γ′1 γ′2 γ′3
γ′′1 γ′′2 γ′′3


is certainly an alternating function of its rows, and x is an alternating function
of A1, A2, A3, since its two sums are of the following forms:

(1)
∑

cyclic(zi ·wj − zj ·wi)zk = (z1 ·w2 − z2 ·w1)z3

+(z2 ·w3 − z3 ·w2)z1 + (z3 ·w1 − z1 ·w3)z2,

(2)
∑

cyclic γizj × zk = γ1z2 × z3 + γ2z3 × z1 + γ3z1 × z2,

which are alternating functions of the pairs (z,w) and (γ, z) respectively,
because, for example, if (z1,w1) = (z2,w2) then the sum (1) becomes
(z1 ·w1 − z1 ·w1)z3+(z1 ·w3 − z3 ·w1)z1+(z3 ·w1 − z1 ·w3)z1 = 0, while if
(γ1, z1) = (γ2, z2) then (2) becomes γ1(z1 × z3 + z3 × z1) + γ3(z1 × z1) = 0
because z×w is alternating.
An analogous computation shows that β,y are alternating functions of

A1, A2, A3, so [A1, A2, A3] alternates. We can also show this using “symmetry”
in the indices 1, 2: we have two algebra involutions on Zorn(Φ), the usual
transpose involution given by the diagonal flip and the standard involution
given by an anti-diagonal flip, Atr :=

( α y
x β

)
, A :=

(
β −x
−y α

)
. The former

interchanges the 12 and 21 entries, the latter the 11 and 22 entries, and any
involution σ has σ([A1, A2, A3]) = −[σ(A3), σ(A2), σ(A1)], so

β(A1, A2, A3) = −α(A3, A2, A1), y(A1, A2, A3) = −x(Atr
3 , Atr

2 , Atr
1 )

are also alternating.
Thus Zorn(Φ) is alternative, but it is not associative since the associator[

( 0 x
0 0 ) , ( 1 0

0 0 ) ,
( 0 y

0 0

) ]
= − ( 0 0

x×y 0
)
doesn’t vanish identically (for x = e1,y =

e2 we get x× y = e3).
The Cayley–Dickson construction in the next section builds an octonion

algebra from a distinguished quaternion subalgebra; in the Zorn matrix rep-
resentation there are three separate split quaternion algebras Hi =

( Φ Φei

Φei Φ

)
,
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sharing a common diagonal. Notice that in this representation the norm and
trace are the “natural” ones for these 2× 2 matrices,

AA = (αβ − x · y)
(
1 0
0 1

)
= N(A)1,

A+A = (α+ β)
(
1 0
0 1

)
= T (A)1.

We can also prove the composition propertyN(AB) = N(A)N(B) of the norm
directly from vector analysis facts, or we can deduce it from alternativity and
N(A)1 = AA (see the exercises below).

Exercise 2.4.2A Establish the vector formula (x1 · y2)(y1 · x2) + (x1 · x2) · (y1 · y2) =
(x1 · y1)(x2 · y2) for any four vectors in Φ3, and use this to compute norm composition
N(A1A2) = N(A1)N(A2) in the Zorn vector–matrix algebra.

Exercise 2.4.2B In the Zorn vector–matrix algebra, (1) show directly that A = T (A)1−A,
(2) A2 − T (A)A + N(A)1 = 0, (3) AA = N(A)1; (4) deduce (3) directly from (1)
and (2). (5) Use (1) and alternativity of the Zorn algebra to show that (AB)B =
A(BB), (AB)(BA) = (A(BB))A, (AB)(BA) = (A(BB))A; then use (3) and (2) to deduce
N(AB)1 = N(A)N(B)1.

Over a field, a composition algebra whose norm splits the slightest bit (ad-
mits at least one nontrivial isotropic vector) splits completely into one of the
above algebras, yielding a unique split composition algebra of each dimension
over a given Φ. The constructions Φ → B(Φ),Q(Φ),O(Φ) are functors from
the category of scalar rings to the category of composition algebras.

2.5 The Cayley–Dickson Construction

The Cayley–Dickson construction starts with an arbitrary unital algebra A
with involution, and doubles it to get a larger and more complicated unital
algebra with involution.5 We will see in the next section that all composition
algebras can be obtained by iterating this doubling process.

Cayley–Dickson Construction 2.5.1 Starting from a unital linear algebra
A with involution over an arbitrary ring of scalars Φ, and an invertible scalar
µ ∈ Φ, we form the direct sum of two copies of A and define a product and
involution by

(a1, b1) · (a2, b2) := (a1a2 + µb2b1, b2a1 + b1a2), (a, b)∗ := (a,−b).

If we set m := (0, 1), we can identify (a, 0) with the original element a in A,
and (0, b) = (b, 0)·(0, 1) with bm ∈ Am, so (a, b) = a+bm. In this formulation
we have an algebra

5 cf. the discussion of the Cayley–Dickson process in Section II.2.10.
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KD(A, µ) := A⊕Am,

(a1 ⊕ b1m) · (a2 ⊕ b2m) :=
(
a1a2 + µb2b1

)⊕ (
b2a1 + b1a2

)
m,

(a⊕ bm)∗ := a− bm.

The Cayley–Dickson product is less than memorable, but we can break it down
into bite-sized pieces which are more easily digested. Besides the fact that A
is imbedded as a subalgebra with its usual multiplication and involution, we
have the Cayley–Dickson Product Rules:

(KD0) am = ma,

(KD1) ab = ab,

(KD2) a(bm) = (ba)m,

(KD3) (am)b = (ab)m,

(KD4) (am)(bm) = µba.

proof. The new algebra is clearly unital with new unit 1 = (1, 0), and
clearly ∗ is a linear map of period 2; it is an anti-homomorphism of algebras
since (

(a1, b1) · (a2, b2)
)∗ = (a1a2 + µb2b1,−(b2a1 + b1a2))

= (a2 a1 + µb1b2,−b1a2 − b2a1)

= (a2,−b2) · (a1,−b1) = (a2, b2)∗ · (a1, b1)∗.

The Cayley–Dickson Product Rules follow by examining the products of “ho-
mogeneous” elements from A and Am. �

Exercise 2.5.1* (1) Show that shifting the scalar µ in the Cayley–Dickson construction by
a square produces an isomorphic algebra: KD(A, µ)∼=KD(A, α2µ) for any invertible α ∈ Φ.

We call the resulting algebra the Cayley–Dickson algebra KD(A, µ)6 ob-
tained from the unital ∗-algebraA and the invertible scalar µ via theCayley–
Dickson construction or doubling process. The eminently-forgetable
product formula is best remembered through the individual Cayley–Dickson
Product Rules. Notice the following helpful mnemonic devices: whenever you
move an element b ∈ A past m it gets conjugated, and when you multiply bm
from the left by a or am you slip the a (unconjugated) in behind the b.
Let us observe how much algebraic structure gets inherited and how much

gets lost each time we perform the Cayley–Dickson process.
6 Pronounced “Kay-Dee,” not “See-Dee.”
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KD Inheritance Theorem 2.5.2 If A is a unital linear ∗-algebra, we have
the following conditions in order that the Cayley–Dickson algebra inherit a
property from its parent :

• Scalar Involution: KD(A, µ) always has a nontrivial involution,
which is scalar iff the original was: If the original involution on A is a scalar
involution with aa = n(a)1, a + a = t(a) for a quadratic norm form n and
linear trace t, then the algebra KD(A, µ) will again have a scalar involution
with new norm and trace

N(a⊕ bm) := n(a)− µn(b), T (a⊕ bm) := t(a).

• Commutative: KD(A, µ) is commutative iff A is commutative with
trivial involution;

• Associative: KD(A, µ) is associative iff A is commutative and asso-
ciative;

• Alternative: KD(A, µ) is alternative only if A is associative with
central involution.

proof. Clearly KD(A, µ) always has a nontrivial involution, since the
doubling process adjoins a skew part. If A has a scalar involution with a+a =
t(a)1, then a = t(a)1 − a commutes with a, and we have aa = aa = n(a)1.
Then the new trace is (a ⊕ bm) + (a⊕ bm) = (a ⊕ bm) + (a ⊕ −bm) =
(a+a)⊕0 = t(a)1, and using the Cayley–Dickson multiplication rule the new
norm is (a⊕bm)(a⊕ bm) = (a⊕bm)(a⊕(−b)m) =

(
aa−µbb

)⊕(−ba+ba
)
m =(

n(a)− µn(b)
)
1.

For commutativity of KD(A, µ), commutativity of the subalgebra A is
clearly necessary, as is triviality of the involution by am − ma = (a − a)m;
these also suffice to make the Cayley–Dickson product

(
a1a2+µb1b2

)⊕(
a1b2+

b1a2
)
m symmetric in the indices 1 and 2.

For associativity of KD(A, µ), associativity of the subalgebra A is clearly
necessary, as is commutativity by [a, b,m] = (ab)m − a(bm) = (ab − ba)m.
To see that these conditions suffice to make the Cayley–Dickson associator
vanish, we use them to compute an arbitrary associator in KD:

[a1 + b1m, a2 + b2m, a3 + b3m]

=
(
(a1a2 + µb2b1)a3 + µb3(b1a2 + b2a1)

− a1(a2a3 + µb3b2)− µ(b2a3 + b3a2)b1
)

+
(
(b1a2 + b2a1)a3 + b3(a1a2 + µb2b1)

− (b2a3 + b3a2)a1 − b1(a2a3 + µb3b2)
)
m,

which by commutativity and associativity becomes
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a1a2a3 + µb1b2a3 + µa1b2 b3 + µb1a2 b3

− a1a2a3 − µa1b2b3 − µb1a2 b3 − µb1b2a3
)

+
(
b1a2 a3 + a1b2a3 + a1a2b3 + µb1b2b3

− a1b2a3 − a1a2b3 − b1a2 a3 − µb1b2b3
)
m

= 0.

Finally, for alternativity of KD(A, µ), to see that associativity of A is neces-
sary we compute [c, am, b] + [am, c, b] =

(
(ac)b − (ab)c + (ac)b − a(cb)

)
m =(

(a t(c)1)b− [a, b, c]−a(b t(c)1)
)
m = −[a, b, c]m; from this, if linearized left al-

ternativity holds in KD, then all associators in A vanish, and A is associative.
A central involution is also necessary: [am, am, bm] =

(
µb(aa)− a(µba)

)
m =

µ
(
b(aa) − (aa)b)m vanishes iff aa = aa [setting b = 1] commutes with all b,

and once all norms are central, so are all traces and (thanks to 1
2 ) all self-

adjoint elements. We will leave it as an exercise to show that associativity
plus central involution are sufficient to guarantee alternativity. �

Exercise 2.5.2 Show in full detail that KD(A, µ) is alternative if A is associative with
central involution.

One-Sided Simplicity Theorem 2.5.3 When a simple associative non-
commutative algebra A with central involution undergoes the Cayley–Dickson
process, it loses its associativity and all of its one-sided ideals: KD(A, µ) has
no proper one-sided ideals whatsoever. In particular, an octonion algebra over
a field has no proper one-sided ideals, hence is always simple.

proof. When A is not commutative, we know that KD(A, µ) = A⊕Am
is not associative by KD Inheritance 2.5.2 of associativity, and we claim
that it has no proper left ideals (then, thanks to the involution ∗, it has
no proper right ideals either) when A is simple. So suppose B is a nonzero
left ideal of KD. Then it contains a nonzero element x = a + bm, and we
can arrange it so that a  = 0 [if a = 0 then x = bm for b  = 0, and B
contains x′ = mx = m(bm) = a′ with a′ = −µb  = 0]. By noncommuta-
tivity we can choose a nonzero commutator [u, v] in A; then B also con-
tains LALAmLm(LuLv − Lvu)LA(a + bm) = LALAmLm(LuLv − Lvu)(Aa +
bAm) = LALAmLm([u, v]Aa + bA(vu − vu)m) = LALAm([u, v]Aam) =
LA(µ[u, v]AaA) = µA[u, v]AaA = A [by simplicity of A and µ, [u, v], a
 = 0]. Therefore B contains A, hence also LmA = Am = Am, and there-
fore B = A+Am = KD(A, µ). Thus as soon as B is nonzero it must be the
entire algebra. �
This is an amazing result, because the only unital associative algebras

having no proper one-sided ideals are the division algebras, but split octonion
algebras are far removed from division algebras. It turns out that one-sided
ideals are not very useful in the theory of alternative algebras: they are hard
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to construct, and when they do appear they often turn out to be two-sided. As
in Jordan algebras, in alternative algebras the proper analogue of one-sided
ideals are the inner ideals B ⊆ A with UBÂ ⊆ B, i.e., b2, bab ∈ B for all
b ∈ B, a ∈ A: an alternative algebra is a division algebra iff it has no proper
inner ideals (see Problem 2.2 at the end of this Chapter).

2.6 The Hurwitz Theorem

We will show why the Cayley–Dickson doubling process with its twisted mul-
tiplication takes place naturally inside a composition algebra, and continues
until it exhausts the entire algebra.

Jacobson Necessity Theorem 2.6.1 If A is a proper finite-dimensional
unital subalgebra of a composition algebra C over a field Φ, such that the
norm form N is nondegenerate on A, then there exist elements m ∈ A⊥ with
N(m) = −µ  = 0, and for any such element A + Am is a subalgebra of C
which is necessarily isomorphic and isometric to KD(A, µ).
proof. Because N(·, ·) is a nondegenerate bilinear form on the finite-

dimensional space A, we have a decomposition C = A ⊕A⊥.7 Here A⊥  = 0
since A is proper, so by nondegeneracy 0  = N(A⊥,C) = N(A⊥,A +A⊥) =
N(A⊥,A⊥), and N is not identically zero on A⊥.
Thus we may find an anisotropic vector orthogonal to A,

(1) m ∈ A⊥, N(m) =: −µ  = 0.
The amazing thing is that we can choose any vector we like, and then the
doubling process starts automatically. We claim that the space K := A+Am
has the structure of KD(A, µ).
The first thing is to establish directness

K := A⊕Am,

i.e., A∩Am = 0, which will follow from the assumed nondegeneracy A∩A⊥ =
0 of A because

(2) Am ⊆ A⊥

from N(am,A) = N(m, aA) [by Left Adjoint 2.3.2(1)] ⊆ N(m,A) = 0 since
A is assumed to be a subalgebra which by construction is orthogonal to m.
In particular (2) implies that N(a+bm) = N(a)+N(a, bm)+N(b)N(m) =

N(a) − µN(b) [recalling the definition (1) of µ] and T (am) = N(1, am) ⊆
7 Recall this basic linear algebra fact: each vector a ∈ A determines a linear functional

N(a, ·) on A, and by nonsingularity this map is injective into the dual space of A, hence
by finite-dimensionality onto the dual space; then every c ∈ C likewise produces a linear
functional N(c, ·) on A, but this must have already been claimed by some a ∈ A, so c′ = c−a
has N(c′, ·) = 0 and c′ ∈ A⊥, yielding the decomposition c = a + c′.
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N(A,Am) = 0 (it is crucial that A be unital), so the involution and norm
are the same in K and KD(A, µ):
(3) N(a+ bm) = N(a)− µN(b), a+ bm = a− bm.

It remains to prove that the products are the same. But the Cayley–
Dickson Product Rules (KD0)–(KD4) in 2.5.1 are forced upon us, and the
blame rests squarely on Left and Right Kirmse 2.3.2(1). Notice first the role
of the scalar µ: it represents the square, not the norm, of the element m:

(4) m2 = µ1,

since m2 = −mm [by involution (3)] = −N(m)1 [by either Kirmse on
y = 1] = +µ1 [by the definition (1)]. Then (KD4) follows from µba −
(am)(bm) = b((am)m) + (am)(bm) [by (4), right alternativity, and invo-
lution (3)] = N(b, am)m = 0 [by linearized Left Kirmse and (2)]; (KD3)
follows from (ab)m − (am)b = (ab)m + (am)b [using the involution (3)]
= aN(b,m) = 0 [by linearized Right Kirmse and (2)]; and (KD2) follows from
a(bm)−(ba)m = −a(bm)+(ba)m [from (3)] = −(1a)bm−(1(bm))a+(bm)a+
(ba)m = −1N(a, bm) + bN(a,m) = 0 [by linearized Right Kirmse and (2)].
(KD0) follows directly from the involution (3), ma = −ma = −(am) = am,
and (KD1) is trivial.
Thus there is no escape from the strange Cayley–Dickson Product Rules,

and K ∼= KD(A, µ). �

Jacobson Necessity can start at any level, not just at the 1-dimensional
level Φ1: from any proper nondegenerate composition subalgebra B1 = B of
C we can apply the KD process to form B2 = KD(B1, µ2) and continue till
we exhaust C.

Exercise 2.6.1A* (1) Show that the quaternion subalgebra Q in an 8-dimensional octonion
algebra O = KD(Q, µ) over a field Φ is not uniquely determined: if Q′ is any 4-dimensional
quaternion subalgebra of O then O = KD(Q′, µ′) for some µ′. (2) Show that the quaternion
subalgebras of O need not all be isomorphic: the real split octonion algebra can be built
both from the non-split Hamilton’s quaternion algebra H and from the split quaternion
algebra M2(R).

Exercise 2.6.1B* Show that shifting the scalar µ in the Cayley–Dickson construction by
an invertible square (cf. Exercise 2.5.1) not only produces an isomorphic algebra, inside C =
KD(A, µ) it produces the same subalgebra: if C = A+Am = KD(A, µ) for a nondegenerate
composition subalgebra A, then for any invertible α ∈ Φ we also have C = A + Am′ =
KD(A, α2µ) for a suitable m′.

Now we are equipped to prove Hurwitz’s Theorem, completely describing
all composition algebras.
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Hurwitz’s Theorem 2.6.2 Any composition algebra C over a field Φ of
characteristic  = 2 has finite dimension 2n for n = 0, 1, 2, 3, and is one of the
following :

(C0) The ground field C0 = Φ1 of dimension 1,
commutative associative with trivial involution;

(C1) A binarion algebra C1 = KD(C0, µ1) of dimension 2,
commutative associative with nontrivial involution;

(C2) A quaternion algebra C2 = KD(C1, µ2) of dimension 4,
noncommutative associative;

(C3) An octonion algebra C3 = KD(C2, µ3) of dimension 8,
noncommutative nonassociative but alternative.

proof. Start with the subalgebra C0 = Φ1 of dimension 1; this is a unital
subalgebra, with nondegenerate norm because the characteristic isn’t 2 (in
characteristic 2 the norm N(α1, β1) = αβT (1) = 2αβ vanishes identically).
If C0 is the whole algebra, we are done. C0 is commutative associative with
trivial involution.
If C0 < C, by Jacobson Necessity we can choose i ⊥ C0 with N(i) =

−µ1  = 0, and obtain a subalgebra C1 = KD(C0, µ1) of dimension 2. If C1 is
the whole algebra, we are done. C1 is still commutative and associative, but
with nontrivial involution, by KD Inheritance 2.5.2, and is called a (general-
ized) binarion algebra.
If C1 < C, by Jacobson Necessity we can choose j ⊥ C1 with N(j) =

−µ2  = 0, and obtain a subalgebra C2 = KD(C1, µ2) of dimension 4. If C2 is
the whole algebra, we are done. C2 is noncommutative associative by the KD
Inheritance Theorem, and is called a (generalized) quaternion algebra.
If C2 < C, by Jacobson Necessity we can choose ? ⊥ C2 with N(?) =

−µ3  = 0, and obtain a subalgebra C3 = KD(C2, µ3) of dimension 8. If C3 is
the whole algebra, we are done. C3 is nonassociative by KD Inheritance [but
of course is still alternative by the Composition Consequences 2.3.2(2)], and
is called a (generalized) octonion algebra.
If C3 < C, by Jacobson Necessity we can choose m ⊥ C3 with N(m) =

−µ4  = 0, and obtain a subalgebra C4 = KD(C3, µ4) of dimension 16. But this
is no longer alternative byKD Inheritance, and no longer permits composition.
Thus C3 cannot be proper, it must be the entire algebra, and we stop at

dimension 8. �
Notice that we never assumed that the composition algebra was finite-

dimensional: finiteness (with bound 8) is a fact of nature for nonassociative
composition algebras. Similarly, finiteness (with bound 27) is a fact of nature
for exceptional Jordan algebras.
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2.7 Problems for Chapter 2

Problem 2.1 Alternative algebras have a smooth notion of inverses. An
element x in a unital alternative algebra is invertible if it has an inverse y,
an element satisfying the usual inverse condition xy = yx = 1. An alternative
algebra is a division algebra if all its nonzero elements are invertible. Show that
y = x−1 is uniquely determined, and left and right multiplication operators
Lx, Rx are invertible operators: L−1

x = Lx−1 , R−1
x = Rx−1 . We will return to

this in Problem 21.2.

Problem 2.2 (1) Show that in any alternative algebra A, an element x
determines principal inner ideals Ax and xA (which are seldom one-sided
ideals), and any two elements determine an inner ideal xAy. (2) Show that
a unital alternative algebra is a division algebra iff it has no proper inner
ideals. (3) Extend this result to non-unital algebras (as usual, you will have
to explicitly exclude a “one-dimensional” trivial algebra).



3

Three Special Examples

We repeat, in more detail, the discussion in the Historical Survey of the 3
most important examples of special Jordan algebras.

3.1 Full Type

In any linear algebra we can always introduce a “Jordan product,” though the
resulting structure is usually not a Jordan algebra. The progenitor of all spe-
cial examples is the Jordan algebra obtained by “Jordanifying” an associative
algebra. We can take any associative algebra A, pin a + to it, and utter the
words “I hereby dub thee Jordan”.1

Full Example 3.1.1 (1) If A is any linear algebra with product xy, A+

denotes the linear space A under the Jordan product

A+: x • y := 1
2 (xy + yx).

This will be unital if A is unital, and Jordan if A is associative:any associa-
tive Φ-algebra A may be turned into a Jordan Φ-algebra A+ by replacing its
associative product by the Jordan product.

(2) When A is associative, the auxiliary Jordan products are given by

x2 = xx, {x, z} = xz + zx, Uxy = xyx, {x, y, z} = xyz + zyx.

(3) In the associative case, any associative homomorphism or anti-homo-
morphism A→ A′ is at the same time a Jordan homomorphism A+ → (A′)+;
any associative subalgebra or ideal of A is a Jordan subalgebra or ideal of A+.
If A is unital, the analogous homomorphism and subalgebra results hold in the
categories of unital associative and Jordan algebras.

1 cf. the treatment of the Full Example and the definition of speciality in Section I.2.5,
its U -operator in I.4.1, and its inner ideals in I.4.7.
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(4) A+ is unital iff A is unital (in which case the units coincide):

e Jordan unit for A+ ⇐⇒ e associative unit for A.

(5) Any left ideal L or right ideal R of A is an inner ideal of A+, as is any
intersection L ∩R; for any elements x, y ∈ A the submodules xA, Ay, xAy
are inner ideals of A+.

(6) A+ is simple as a Jordan algebra iff A is simple as an associative
algebra. If A is semiprime, every nonzero Jordan ideal I  A+ contains a
nonzero associative ideal B  A.

proof. Throughout it will be easier to work with the brace {x, y} = 2x•y
and avoid all the fractions 1

2 in the bullet.
(1) A+ satisfies the Jordan axioms, since commutativity (JAX1) is clear,

and the Jordan identity (JAX2) holds because

{{x2, y}, x} = (xxy + yxx)x+ x(xxy + yxx)
= x2yx+ yx3 + x3y + xyx2

= x3y + x2yx+ xyx2 + yx3

= x2(xy + yx) + (xy + yx)x2

= {x2, {y, x}}.
A “better proof” is to interpret the Jordan identity as the operator identity
[Vx2 , Vx] = 0 for Vx = Lx+Rx in terms of the left and right multiplications in
the associative algebra A. The associative law [x, y, z] = 0 can be interpreted
three ways as operator identities (acting on z, x, y, respectively) Lxy−LxLy =
0 (i.e., the left regular representation x �→ Lx is a homomorphism), RzRy −
Ryz = 0 (the right regular representation x �→ Rx is an anti-homomorphism),
RzLx − LxRz = 0 (all L’s commute with all R’s), so [Vx2 , Vx] = [Lx2 +
Rx2 , Lx +Rx] = [Lx2 , Lx] + [Rx2 , Rx] = L[x2,x] +R[x,x2] = 0.
(2) The description of the auxiliary products is a straightforward veri-

fication, the first two being trivial, the fourth a linearization of the third,
and the (crucial) third formula follows from 2Uxy = {x, {x, y}} − {x2, y} =
x(xy + yx) + (xy + yx)x− (xxy + yxx) = 2xyx.
(3) Maps preserving or reversing the associative product xy certainly

preserve the symmetric Jordan brace {x, y}: an anti-homomorphisms has
ϕ({x, y}) = ϕ(xy) + ϕ(yx) = ϕ(y)ϕ(x) + ϕ(x)ϕ(y) = ϕ(x)ϕ(y) + ϕ(y)ϕ(x) =
{ϕ(x), ϕ(y)}. Subspaces closed under associative products clearly remain
closed under Jordan products built out of the associative ones. (4) Any as-
sociative unit certainly also acts as unit for the derived Jordan product;
conversely, if e is a Jordan unit, then in particular it is an idempotent
e2 = e, with eye = y by (2) above, so multiplying on the left by e gives
e(y) = e(eye) = eye = y, and dually y = ye, so e is an associative unit.
(5) One-sided ideals and submodules B = xAy are closed under BÂB

(which is even stronger than being inner).
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(6) For A+ to be simple, it is certainly necessary that A be simple: any
proper associative ideal would be a proper Jordan ideal. The converse is true,
but not so obvious, since Jordan ideals need not be associative ideals. It will
be enough to prove the containment assertion: if A is simple it is certainly
semiprime, and then any proper Jordan 0 < I < A+ would contain a proper
associative ideal 0 < B ⊆ I < A+, contrary to simplicity. But for any nonzero
element b ∈ I we have bÂb  = 0 by semiprimeness of A, and the associative
ideal B := ÂbÂbÂ  = 0 is contained entirely within I because it is spanned by
elements xbybz for x, y, z ∈ Â, which can all be expressed in terms of Jordan
products involving I: ÂbÂb ⊆ I since xbyb = (xb)yb + by(xb) − b(yx)b =
{xb, y, b} − Ub(yx) ∈ {Â, Â, I} − UIÂ ⊆ I, therefore xbybz = {xbyb, z} −
(zx)byb ∈ {I,A} − I ⊆ I. �

Exercise 3.1.1A Extend the “better” proof of the Jordan identity in (1) above to show
that if C is a commutative subset of A+ (i.e., [c1, c2] = 0 for all c1, c2 ∈ C), then the
elements of C Jordan-operator commute: [VC, VC] = 0.

Exercise 3.1.1B Repeat the argument of (4) above to show that if J ⊆ A+ is a special
Jordan algebra with unit e, then ex = xe = x for all x ∈ J, so that J lives in the Peirce
subalgebra eAe of A where e reigns as unit.

Exercise 3.1.1C If A is an associative algebra on which the Jordan product vanishes
entirely, all x • y = 0, show that the associative product is “alternating” (x2 = 0, xy = −yx

for all x, y), and hence 2A3 = 0 (2xyz = 0 for all x, y, z).

Exercise 3.1.1D* Show that A+ is a Jordan algebra if A is merely a left alternative
algebra (satisfying the left alternative law Lx2 = L2

x, but not necessarily flexibility or right
alternativity), indeed show that it is even a special Jordan algebra by showing that the left
regular representation x �→ Lx imbeds A+ in E+ for E, the associative algebra EndΦ(Â) of
endomorphisms of the unital hull of A.

This construction gives us plus functors from the categories of asso-
ciative [respectively unital associative] Φ-algebras to the category of Jordan
[respectively unital Jordan] Φ-algebras; it is easy to see that these intertwine
with the formal unitalization functor [(Â)+ = (Â+] and both commute with
scalar extension functors [(AΩ)

+ = (A+)Ω].
The offspring of the full algebras A+ are all the special algebras, those

that result from associative algebras under “Jordan multiplication”; these
were precisely the Jordan algebras the physicists originally sought to copy yet
avoid.

Special Definition 3.1.2 A Jordan algebra is special if it can be imbedded
in (i.e., is isomorphic to a subalgebra of ) an algebra A+ for some associative
A, otherwise it is exceptional. A specialization of a Jordan algebra J in
an associative algebra A is a homomorphism σ : J→ A+ of Jordan algebras.
Thus a Jordan algebra is special iff it has an injective specialization.
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By means of some set-theoretic sleight of hand, every special algebra ac-
tually is a subset of an algebra A+, so we usually think of a special algebra
as living inside an associative algebra, which is then called an associative
envelope.2

The full algebra A+ is “too nice” (too close to being associative); more
important roles in the theory are played by certain of its subalgebras (the her-
mitian and spin types), together with the Albert algebra, in just the same way
that the brothers Zeus and Poseidon play more of a role in Greek mythology
than their father Kronos. We now turn, in the next two sections, to consider
these two offspring. (DNA testing reveals that the third brother, Hades, is
exceptional and not a son of Kronos at all; we examine his cubic origins in
the next chapter.)

3.2 Hermitian Type

The second important class, indeed the archetypal example for all of Jordan
theory, is the class of algebras of hermitian type.3 Here the Jordan subalgebra
is selected from the full associative algebra by means of an involution as in
∗-Algebra Definition 1.5.1.
Hermitian Definition 3.2.1 If (A, ∗) is a ∗-algebra then H(A, ∗) denotes
the set of hermitian elements x ∈ A with x∗ = x, and Skew(A, ∗) denotes the
set of skew-hermitian elements x∗ = −x. If C is a composition algebra with
its standard involution, we just write H(C) or Skew(C).
In the case of complex matrices (or operators on complex Hilbert space)

with the usual conjugate-transpose (or adjoint) involution, these are just the
usual hermitian matrices or operators. In the case of real matrices or operators,
we get just the symmetric matrices or operators. For complex matrices there
is a big difference between hermitian and symmetric: the Jordan R-algebra of
hermitian matrices is formally real, X2

1 + · · · +X2
r = 0 for X

∗
i = Xi implies

that X1 = · · · = Xr = 0 (in particular, there are no nilpotent elements),
whereas the Jordan C-algebra of symmetric complex matrices has nilpotent
elements X2 = 0, X = Xtr  = 0: witness the matrix (

1 i
i −1

)
.

2 The set-theoretic operation cuts out the image ϕ(J) with a scalpel and replaces it by
the set J, then sews a new product into the envelope using the old recipe. A Jordan algebra
can have lots of envelopes, some better than others.

3 The Hermitian algebras were introduced in Section I.2.5 and I.2.6, and their inner
ideals described in I.4.7.
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The term “hermitian”4 is more correctly used for involutions “of the second
kind,” which are “conjugate-linear,” (αx)∗ = ᾱ x∗ for a nontrivial involution
α �→ ᾱ on the underlying scalars, while the term symmetric is usually used
for involutions “of the first kind,” which are linear with respect to the scalars,
(αx)∗ = αx∗. We will allow the trivial involution, so that “hermitian” includes
“symmetric,” and WE WILL HENCEFORTH SPEAK OF HERMITIAN EL-
EMENTS AND NEVER AGAIN MENTION SYMMETRIC ELEMENTS! At
the same time, we work entirely in the category of modules over a fixed ring
of scalars Φ, so all involutions are Φ-linear. This just means that we must
restrict the allowable scalars. For example, the hermitian complex matrices
are a real vector space, but not a complex one (even though the matrix entries
themselves are complex).

Hermitian Example 3.2.2 (1) If (A, ∗) is an associative ∗-algebra, then
H(A, ∗) forms a Jordan subalgebra of A+ (which is unital if A is), and any ∗-
homomorphism or anti-homomorphism (A, ∗)→ (A′, ∗′) restricts to a Jordan
homomorphism H(A, ∗)→ H(A′, ∗′).
(2) If B is any subalgebra and I any ideal of A, then H(B, ∗) is a Jordan

subalgebra and H(I, ∗) a Jordan ideal of H(A, ∗). For any element x ∈ A the
module xH(A, ∗)x∗ is an inner ideal of H(A, ∗).
(3) If A is a ∗-simple associative algebra and 1

2 ∈ Φ, then H(A, ∗) is a
simple Jordan algebra; every nonzero Jordan ideal I H(A, ∗) contains H(B, ∗)
for a ∗-ideal B  A. Conversely, if A is unital and semiprime, then H(A, ∗)
simple implies that A must be ∗-simple.
proof. (1) The anti-automorphism ∗ is a Jordan automorphism of A+

by Full Example 3.1.1, so the set H of fixedpoints forms a Jordan subalgebra
(unital if A is), since this is true of the set of elements fixed under any Jor-
dan automorphism. Any ∗-homomorphism or anti-homomorphism gives, as
noted in 3.1.1(3), a homomorphism A+ → (A′)+ which preserves hermitian
elements: x∗ = x ∈ H → ϕ(x)∗

′
= ϕ(x∗) = ϕ(x) ∈ H′.

(2) H(C, ∗) = C ∩ H(A, ∗) remains a subalgebra or ideal in H(A, ∗), and
xHx∗ satisfies (xhx∗)Ĥ(xhx∗) = x

(
hx∗Ĥxh

)
x∗ ⊆ xHx∗.

(3) To see that ∗-simplicity is sufficient, note that it implies semiprimeness,
which in turns implies that Jordan ideals I can’t be trivial:

0  = b ∈ I =⇒ UbH  = 0 =⇒ UbI  = 0.

For the first implication, b  = 0 implies bab  = 0 for some a ∈ A by
semiprimeness, then again some 0  = (bab)a′(bab) = b[t(aba′)− (a′)∗ba∗]bab =
Ubt(aba′) · ab − b(a′)∗ · Ub(a∗ba), so b′ = Ubh  = 0 for either h = t(aba′) or

4 Not named in honor of some mathematical hermit, but in honor of the French mathe-
matician Charles Hermite. Thus the adjective is pronounced more properly “hair-meet-tee-
un” rather than the “hurr-mish-un,” but Jacobson is the only mathematician I have ever
heard give it this more correct pronunciation. Of course, the most correct pronunciation
would be “air-meet-tee-un,” but no American goes that far.
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h = a∗ba. For the second implication, we apply this to b′ ∈ I to get some
0  = Ub′h′ = (bhb)h′(bhb) = Ub{h, b, h′} ·hb− bh′ ·UbUhb, so 0  = Ubc for either
c = {h, b, h′} ∈ {H, I,H} ⊆ I or c = Uhb ∈ UHI ⊆ I.
To conclude that H is simple, it is enough to prove the containment as-

sertion, since then a proper I would lead to a ∗-ideal B which is neither 0
nor A because 0 < H(B, ∗) ⊆ I < H(A, ∗). Starting from bcb  = 0 for some
b, c ∈ I we generate an associative ∗-ideal B := ÂbcbÂ  = 0; we claim that
H(B, ∗) ⊆ I. Because of 1

2 , H(B, ∗) = t(B) is spanned by all traces t(xbcby∗)
for x, y ∈ Â; by linearization, it suffices if all xbcbx∗ fall in I. But if we set
h := xb+ bx∗, k = cx+ x∗c ∈ H, we have

xbcbx∗ = (h− bx∗)c(h− xb) = hch+ b(x∗cx)b− t(hcxb)

where hch = Uhc ∈ UHI ⊆ I, b(x∗cx)b = Ub(x∗cx) ∈ UIH ⊆ I, and t(hcxb) =
t(h[k − x∗c]b) = t(hkb) − t(hx∗cb) for t(hkb) = {h, k, b} ∈ {H,H, I} ⊆ I and
t(hx∗cb) = t(xbx∗cb) + t(bx∗x∗cb) = {xbx∗, c, b} + Ubt(x∗x∗c) ∈ {H, I, I} +
UIH ⊆ I. Thus all the pieces fall into I, and we have containment.
To see that ∗-simplicity is necessary, note that if B were a proper ∗-ideal

then H(B, ∗) would be a proper ideal of H = H(A, ∗): it is certainly an ideal,
and by unitality it can’t be all of H [1 ∈ H = H(B, ∗) ⊆ B would imply
B = A], and by semiprimeness it can’t be zero [else b + b∗ = b∗b = 0 =⇒
bab = (ba + a∗b∗)b − a∗b∗b =

(
(ba) + (ba)∗

)
b − a∗

(
b∗b

)
= 0 for all a ∈ A,

contrary to semiprimeness]. �

Exercise 3.2.2A* Let Φ be an arbitrary ring of scalars. (1) Show that if I is a skew ∗-ideal
of an associative ∗-algebra A, in the sense that H(I, ∗) = 0, then all z ∈ I are skew with
z2 = 0 and zx = −x∗z for all x ∈ A; conclude that each Z := ÂzÂ is a trivial ∗-ideal
Z2 = 0. (2) Conclude that if A is semiprime then I �= 0 =⇒ H(I, ∗) �= 0. (3) Show that
from any ∗-algebra A we can construct a standard counterexample, a larger ∗-algebra A′

with an ideal N having nothing to do with H : N ∩ H(A′, ∗) = 0. Use this to exhibit a
nonzero ∗-ideal in (the non-semiprime!) A′ with H(I, ∗) = 0.

Exercise 3.2.2B Under certain conditions, a unit for H(A, ∗) must serve as unit for all of
the associative algebra A. (1) Show that if A has involution and h ∈ Ĥ(A, ∗), x, a ∈ A, we
have xahx = t(xa)hx − t(a∗x∗hx) + (xhx∗)a ∈ HA in terms of the trace t(x) = x + x∗;
conclude that hH = 0 =⇒ hxAhx = 0. If A is semiprime, conclude that hH = 0 =⇒ hA = 0
(and even h = 0 if h lies in H instead of just in Ĥ). (2) Show that if A is semiprime and
H(A, ∗) has Jordan unit e, then e must be the associative unit of A [use the result of
Exercise 3.1.1B to see that ek = k for all k ∈ H, then apply (1) to h = 1̂ − e ∈ Ĥ]. (3) Use
the standard counterexample of the previous Exercise 3.2.2A to show that this can fail if
A is not semiprime.

We can describe the situation by saying that we have a hermitian func-
tor from the category of associative ∗-algebras (with morphisms the ∗-homo-
morphisms) to the category of Jordan algebras, sending (A, ∗) �→ H(A, ∗) and
∗-morphisms ϕ �→ ϕ|H. This functor commutes with unitalization and scalar
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extensions. Somewhat surprisingly, the Exchange Involution Proposition 1.5.3
shows that the hermitian functor gobbles up its parent, the full functor.

Full is Hermitian Proposition 3.2.3 A+ is isomorphic to the algebra of
hermitian elements of its exchange algebra under the exchange involution:

A+ ∼= H(Ex(A), ex). �

While H(A, ∗) initially seems to arise as a particular Jordan subalgebra
of A+, at the same A+ arises as a particular instance of H. You should
always keep H(A, ∗) in mind as the “very model of a modern Jordan algebra”;
historically it provided the motivation for Jordan algebras, and it still serves
as the archetype for all Jordan algebras.
The most important hermitian algebras with finiteness conditions are the

hermitian matrix algebras. For n = 3 (but for no larger matrix algebras) we
can even allow the coordinates to be alternative and still get a Jordan algebra.
To see this we have to get “down and dirty” inside the matrices themselves,
examining in detail how the Jordan matrix products are built from coordinate
building blocks.

Hermitian Matrix Example 3.2.4 (1) For an arbitrary linear ∗-algebra
D, the standard conjugate-transpose involution X∗ := X

tr
is an involution

on the linear algebraMn(D) of all n×n matrices with entries from D under
the usual matrix product XY . The hermitian matrix algebra Hn(D,−) :=
H(Mn(D), ∗) consists of the module Hn(D,−) of all hermitian matrices X∗ =
X under the Jordan bullet or brace product X•Y = 1

2 (XY +Y X) or {X,Y } =
XY +Y X = 2X •Y . In Jacobson box notation in terms of the usual n× n
matrix units Eij (1 ≤ i, j ≤ n), the space Hn(D,−) is spanned by the basic
hermitian elements

δ[ii] := δEii (δ = δ̄ ∈ H(D,−) hermitian),
d[ij] := dEij + d̄Eji (d ∈ D arbitrary ),
d[ij] = d̄[ji] (symmetry relation).

(2) For the square X2 = XX and brace product {X,Y } = XY + Y X we
have the multiplication rules (for distinct indices i, j, k) consisting of Four
Basic Brace Products

δ[ii]2 = δ2[ii], {δ[ii], γ[ii]} = (δγ + γδ)[ii],
d[ij]2 = dd̄[ii] + d̄d[jj], {d[ij], b[ij]} = (db̄+bd̄)[ii]+(d̄b+b̄d)[jj],

{δ[ii], d[ij]} = δd[ij], {d[ij], δ[jj]} = dδ[ij],
{d[ij], b[jk]} = db[ik],

and a Basic Brace Orthogonality rule

{d[ij], b[k?]} = 0 if {i, j} ∩ {k, ?} = ∅.
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(3) When the coordinate algebra D is associative, or alternative with
hermitian elements in the nucleus (so that any two elements and their
bars lie in an associative subalgebra), the Three Basic U-Products for
Uxy = 1

2 ({x, {x, y}} − {x2, y}) are
Uδ[ii]β[ii] = δβδ[ii],
Ud[ij]b[ij] = db̄d[ij] (i  = j),
Ud[ij]β[jj] = dβd̄[ii] (i  = j),

with Basic U-Orthogonality

Ud[ij]b[k?] = 0 if {k, ?}  ⊆ {i, j}
together with their linearizations in d.
(4) If D is associative, for Jordan triple products with the outer factors

from distinct spaces we have Three Basic Triple Products

{d[ij], b[ji], γ[ii]} = (dbγ + γb̄d̄)[ii] (i  = j),
{d[ij], b[ji], c[ik]} = dbc[ik] (k  = i, j),
{d[ij], b[jk], c[k?]} = dbc[i?] (i, j, k, ? distinct),

with Basic Triple Orthogonality

{d[ij], b[k?], c[pq]} = 0 (if the indices can’t be connected). �
Throughout the book we will continually encounter these same Basic

Products.5 Notice how braces work more smoothly than bullets: the bullet
products {ii, ij}, {ij, jk} would involve a messy factor 1

2 . When D is an as-
sociative ∗-algebra then (Mn(D), ∗) is again an associative ∗-algebra, and
Hn(D,−) is a special Jordan algebra of hermitian type. We will see in the
Jordan Coordinates Theorem 14.1.1 that D must be associative when n ≥ 4
in order to produce a Jordan algebra, but when n = 3 it suffices if D is alter-
native with nuclear involution. This will not be special if D is not associative;
from an octonion algebra with standard involution we obtain a reduced ex-
ceptional Albert algebra by this hermitian matrix recipe.
Exercise 3.2.4A (1) For general linear algebras, show that the U -products (3) above
become unmanageable,

Uc[ii]b[ii] = 1
2 ((cb)c + c(bc) + [b, c, c] − [c, c, b]) [ii],

Ud[ij]b[ij] = 1
2

(
(db̄)d + d(b̄d) + [b, d̄, d] − [d, d̄, b]

)
[ij],

Ud[ij]b[jj] = 1
2

(
(db)d̄ + d(bd̄)

)
[ii] + 1

2

(
[b, d̄, d] − [d̄, d, b]

)
[jj],

and the triple products (4) with distinct indices become

{d[ij], b[jk], c[k>]} = 1
2 (d(bc) + (db)c) [i>],

5 To keep the mnemonics simple, we think of these as four basic brace products, though
they are actually two squares and two braces (plus two braces which are linearizations of a
square).
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while those with repeated indices become

{d[ij], b[ji], c[ik]} = 1
2

(
d(bc) + (db)c + [b̄, d̄, c]

)
[ik],

{d[ij], b[jk], c[ki]} = 1
2

(
d(bc)+(db)c + (c̄b̄)d̄ + c̄(b̄d̄)

)
[ii]

+ 1
2

(
[b, c, d] − [d̄, c̄, b̄]

)
[jj] + 1

2

(
[b̄, d̄, c̄] − [c, d, b]

)
[kk],

{d[ij], b[ji], c[ii]} = 1
2

(
d(bc) + (db)c + (cb̄)d̄ + c(b̄d̄) + [b̄, d̄, c] − [c, d, b]

)
[ii]

+ 1
2

(
[b, c, d] − [d̄, c, b̄]

)
[jj].

(Yes, Virginia, there are jj, kk-components!) (2) If D is alternative with nuclear involution
(all hermitian elements in the nucleus), show that the U -products and triple products
become manageable again:

Uc[ii]b[ii] = cbc[ii], {d[ij], b[jk], c[k>]} = 1
2 (d(bc) + (db)c) [i>],

Ud[ij]b[ij] = db̄d[ij], {d[ij], b[ji], c[ik]} = d(bc)[ik],

Ud[ij]b[jj] = dbd̄[ii], {d[ij], b[jk], c[ki]} = tr(dbc)[ii],

{d[ij], b[ji], c[ii]} = tr(dbc)[ii].

using tr([D,D,D]) = 0 for tr(b) := b + b̄ (this trace is usually denoted by t(b), cf. 1.5.1).

Exercise 3.2.4B Show that the correspondences D �→ Hn(D,−), ϕ �→ Hn(ϕ) (given
by d[ij] �→ ϕ(d)[ij]) is a functor from the category of unital associative ∗-algebras to the
category of unital Jordan algebras.

3.3 Quadratic Form Type
The other great class of special Jordan algebras is the class of algebras coming
from quadratic forms with basepoint.6 If we think of a quadratic form as a
norm, a basepoint is just an element with norm 1.

Quadratic Factor Example 3.3.1 If Q :M → Φ is a unital quadratic form
on a Φ-module M with basepoint c, then we can define a Jordan Φ-algebra
structure on Jord(Q, c) on M by

x • y := 1
2

(
T (x)y + T (y)x−Q(x, y)c

)
.

Here the unit is 1 = c, and every element satisfies the Degree–2 Identity

x2 − T (x)x+Q(x)c = 0.

The standard trace involution is an algebra involution,

x • y = x̄ • ȳ.
The auxiliary U -product is given in terms of the trace involution by

Uxy = Q(x, ȳ)x−Q(x)ȳ,

and the norm form Q permits Jordan composition with U ,

Q(c) = 1, Q(Uxy) = Q(x)Q(y)Q(x).
6 Spin factors were introduced in Section I.2.6 and I.3.6, quadratic factors in I.3.7, and

their U -operators in I.4.1.
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If Q is a nondegenerate quadratic form over a field, then Jord(Q, c) is a
simple Jordan algebra unless Q is isotropic of dimension 2.

proof. The element c acts as unit by setting y = c in the definition of the
product, since T (c) = 2, Q(x, c) = T (x) by the Trace Involution Properties
2.3.1(1), and the Degree–2 Identity follows by setting y = x in the definition
of the product since Q(x, x) = 2Q(x). The fact that Jord(Q, c) is Jordan then
follows from a very general lemma:

Degree–2 Lemma 3.3.2 Any unital commutative linear algebra in which
every element x satisfies a degree–2 equation,

x2 − αx+ β1 = 0 (for some α, β ∈ Φ depending on x),

is a Jordan algebra.

proof. Commutativity (JAX1) is assumed, and the Jordan identity
(JAX2) holds since the degree–2 equation implies that we have [x2, y, x] =
[αx− β1, y, x] = α[x, y, x] (1 is always nuclear) = 0 [since commutative alge-
bras are always flexible, (xy)x = x(xy) = x(yx)]. �

Since the standard involution preserves traces T and norms Q and fixes c
by the Trace Involution Properties, it preserves the product x • y built out of
those ingredients.
To obtain the expression for the U -operator we use the fact that c is the

unit to compute

Uxy = 2x • (x • y)− x2 • y
= x •

(
T (x)y + T (y)x−Q(x, y)c

)
−

(
T (x)x−Q(x)c

)
• y

=
(
T (x)x • y + T (y)x2 −Q(x, y)x

)
−

(
T (x)x • y −Q(x)y

)
= T (y)

(
T (x)x−Q(x)c

)
−Q(x, y)x+Q(x)y

=
(
T (x)T (y)−Q(x, y)

)
x−Q(x)

(
T (y)c− y

)
= Q(x, ȳ)x−Q(x)ȳ

[by Q(x, c) = T (x) and the definition of ȳ]. For Q permitting composition
with U , we use our newly-hatched formula for the U -operator to compute

Q(Uxy) = Q (Q(x, ȳ)x−Q(x)ȳ)

= Q(x, ȳ)2Q(x)−Q(x, ȳ)Q(x)Q(x, ȳ) +Q(x)2Q(ȳ)

= Q(x)2Q(y).

[by Trace Involution again].
To see the simplicity assertion, note that a proper ideal I can never contain

the unit, over a field it can’t contain a nonzero scalar multiple of the unit, so
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it must be totally isotropic: if b ∈ I then from the definition of the product
we see Q(b)1 = T (b)b − b2 ∈ I forces Q(b) = 0. Similarly, I can never have
traceless elements: if T (b) = 0, by nondegeneracy some x has Q(x, b) = 1
and therefore 1 = Q(x, b)1 = T (x)b + T (b)x − {x, b} = T (x)b − {x, b} ∈ I, a
contradiction. Thus T must be an injective linear transformation from I to the
field Φ, showing immediately that I can only be one-dimensional. Normalizing
b so that T (b) = 1, from x−Q(x, b)1 = T (b)x−Q(x, b)1 = {x, b}− T (x)b ∈ I
we see all x lie in Φ1+ I = Φ1+Φb and J is 2-dimensional and isotropic.7 �
We can form a category of quadratic forms with basepoint by taking as

objects all (Q, c) and as morphisms (Q, c)→ (Q′, c′) the Φ-linear isometries ϕ
which preserve basepoint, Q′(ϕ(x)) = Q(x) and ϕ(c) = c′. Since such a ϕ pre-
serves the traces T ′(ϕ(x)) = Q′(ϕ(x), c′) = Q′(ϕ(x), ϕ(c)) = Q(x, c) = T (x)
and hence all the ingredients of the Jordan product, it is a homomorphism
of Jordan algebras. In these terms we can formulate our result by saying
that we have a quadratic Jordanification functor from the category of Φ-
quadratic forms with basepoint to unital Jordan Φ-algebras, given on objects
by (Q, c) → Jord(Q, c) and trivially on morphisms by ϕ → ϕ. This functor
commutes with scalar extensions.

Exercise 3.3.2* (1) Show that over a field Φ the category of quadratic factors (with mor-
phisms the isomorphisms) is equivalent to the category of quadratic forms with basepoint
(with morphisms the isometries preserving basepoints), by proving that a linear map ϕ is
an isomorphism of unital Jordan algebras Jord(Q, c) → Jord(Q′, c′) iff it is an isometry
of quadratic forms-with-basepoint (Q, c) → (Q′, c′). (2) Prove that any homomorphism ϕ

whose image is not entirely contained in Φc′ is a (not necessarily bijective) isometry of
forms, and in this case Ker(ϕ) ⊆ Rad(Q). (3) Show that a linear map ϕ with ϕ(c) = 1 is a
homomorphism of Jord(Q, c) into the 1-dimensional quadratic factor Φ+ iff the quadratic
form Q takes the form Q(αc + x0) = α2 − ϕ(x0)2 relative the decomposition J = Φc ⊕ J0
for J0 = {x0 | T (x0) = 0} the subspace of trace zero elements.

Spin Factor Example 3.3.3 Another construction starts from a “unit-less”
Φ-module M with symmetric bilinear form σ, first forms J := Φ1 ⊕ M by
externally adjoining a unit, and then defines a product on J by having 1 act
as unit element and having the product of “vectors” v, w ∈ M be a scalar
multiple of 1 determined by the bilinear form:

JSpin(M,σ): J = Φ1⊕M, 1 • x = x, v • w = σ(v, w)1.

It is easy to verify directly that the resulting algebra is a unital Jordan algebra,
but this also follows because

JSpin(M,σ) = Jord(Q, c)

for c := 1⊕ 0, Q(α1⊕ v) := α2 − σ(v, v), T (α1⊕ v) := 2α.
7 We will see later that in the non-simple case we have I = Φe, J = Φe � Φ(1 − e) for

an idempotent e, and Jord(Q, c) is precisely a split binarion algebra.
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In fact, since we are dealing entirely with rings of scalars containing 1
2 , this

construction is perfectly general : every quadratic factor Jord(Q, c) is natu-
rally isomorphic to the spin factor JSpin(M,σ) for σ(v, w) = − 1

2Q(v, w) the
negative of the restriction of 1

2Q(·, ·) to M = c⊥, since we have the natural
decomposition J = Φc⊕M .

The special case where σ is the ordinary dot product onM = Φn is denoted
by JSpinn(Φ) := JSpin(Φn, ·). �

BEWARE: The restriction of the global Q to M is the NEGATIVE of the
quadratic form q(v) = σ(v, v). The scalar q(v) comes from the coefficient of 1
in v2 = q(v)1, and the Q (the generic norm) comes from the coefficient of 1
in the degree–2 equation, which you should think of as

Q(x) ∼ xx̄,

so that for the skew elements v ∈ M it reduces to the negative of the square.
This is the same situation as in the composition algebras of the last chapter,
where the skew elements x = i, j, k, ? with square x2 = −1 have norm Q(x) =
+1. The bilinear form version in terms of σ on M is more useful in dealing
with bullet products, and the global quadratic version in terms of Q on J is
more useful in dealing with U -operators; one needs to be ambidextrous in this
regard.

We can form a category of symmetric Φ-bilinear forms by taking as objects
all σ and as morphisms σ → σ′ all Φ-linear isometries. In these terms we can
formulate 3.3.3 by saying that we have a spin functor from symmetric Φ-
bilinear forms to unital Jordan Φ-algebras given by σ �→ JSpin(M,σ) and
ϕ �→ JSpin(ϕ), where the Jordan homomorphism is defined by extending ϕ
unitally to J, JSpin(ϕ)(α1 ⊕ v) := α1 ⊕ ϕ(v). This functor again commutes
with scalar extensions.

Since 1
2 ∈ Φ we have a category equivalence between the category of

symmetric Φ-bilinear forms and the category of Φ-quadratic forms with
basepoint, given by the pointing correspondence P sending σ �→ (Q, 1) on
J := Φ1⊕M, ϕ �→ JSpin(ϕ) as above, with inverse T sending (Q, c) �→ σ :=
− 1

2Q(·, ·)|c⊥ , ϕ �→ ϕ|c⊥ . [Warning: while TP is the identity functor, PT is
only naturally isomorphic to the identity: PT (Q, c) = (Q, 1) has had its base-
point surgically removed and replaced by a formal unit 1.] The Spin Factor
Example says that under this equivalence it doesn’t matter which you start
with, a symmetric bilinear form σ or a quadratic form with basepoint (Q, c),
the resulting Jordan algebra will be the same.
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Exercise 3.3.3 (1) Show directly that we can create a Jordan algebra
Jord(σ′, c) out of any global bilinear symmetric form σ′ and choice of basepoint c(σ′(c, c) =
1) on a module M ′ over Φ, by taking as unit element 1 = c and as product x • y :=
−σ(x, c)y +−σ(c, y)x+ σ(x, y)c (cf. Quadratic Factor Example 3.3.1). (2) Show that every
spin factor JSpin(M,σ) of a bilinear form arises in this way: JSpin(M,σ) = Jord(σ′, c)
for M ′ the unital hull M̂ = Φ1̂ ⊕M with basepoint c = 1̂ the formal unit adjoined to M ,
and with global bilinear form σ′(x, y) := αβ + σ(v, w) for x = α1̂ ⊕ v, y = β1̂ ⊕ w. (3)
Conversely, show that every Jord(σ′, c) is isomorphic to JSpin(M,σ) for the bilinear form
σ which is the negative of σ′ restricted to the orthogonal complement of the basepoint:
Jord(σ′, c) ∼= JSpin(M,σ) for M = {x ∈ M ′ | σ′(x, c) = 0}, σ = −σ′|M . Thus both
constructions produce the same Jordan algebras. (4) Show that bilinear forms with base-
point and quadratic forms with basepoint produce exactly the same algebras: Jord(σ′, c) =
Jord(Q, c) for Q(x) := σ′(x, x), and Jord(Q, c) = Jord(σ′, c) for σ′(x, y) := 1

2Q(x, y).

3.4 Reduced Spin Factors

There is a way to build a more specialized sort of Jordan algebra out of a
quadratic or bilinear form, an algebra which has idempotents and is thus
“reduced,” the first step towards being “split.” These will be the degree–2
algebras which occur in the final classical structure theory of this Classical
Part in Chapter 23, and thus are now for us the most important members of
the quadratic factor family.
We will see in Chapter 8, when we discuss idempotents and Peirce decom-

positions, that JSpin(M,σ) has a proper idempotent e  = 0, 1 iff the quadratic
form is “unit-valued”: q(v) := σ(v, v) = 1 for some v. In our “reduced” con-
struction, instead of just adjoining a unit we externally adjoin two idempotents
e1, e2; in effect, we are adjoining a unit 1 = e1 + e2 together with an element
v = e1 − e2 where q(v) will automatically be 1. We define the product by
having ei act as half-unit element on M and having the product of vectors
w, z in M be a scalar multiple of 1 determined by the bilinear form as usual:

J := Φe1 ⊕M ⊕ Φe2, 1 := e1 + e2,

ei • ej := δijei, ei • w := 1
2w, w • z := σ(w, z)1.

By making identifications e1 = (1, 0, 0), e2 = (0, 0, 1), w = (0, w, 0) we can
describe this more formally in terms of ordered triples. At the same time, be-
cause of the primary role played by q, in our reduced construction we hence-
forth depose the bilinear form σ and replace it everywhere by the quadratic
form q(x) = σ(x, x).
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Reduced Spin Example 3.4.1 The reduced spin factor of a quadratic
form q on a Φ-moduleM consists of the direct product module8 RedSpin(q) :=
Φ×M × Φ with square

(α,w, β)2 := (α2 + q(w), (α+ β)w, β2 + q(w)),

hence bullet products

(α,w, β) • (γ, z, δ) := 1
2 (2αγ+ q(w, z), (α+β)z+(γ+ δ)w, 2βδ+ q(w, z)).

It is again easy to verify directly from the Degree–2 Lemma 3.3.2 that this is
a unital Jordan algebra, but this also follows since it is a spin construction:

JSpin(M,σ) = Φ1⊕M ⊆ JSpin(M ′, σ′) = Φ1⊕ Φv ⊕M
= RedSpin(q) = Φe1 ⊕ Φe2 ⊕M

for
1 := (1, 0, 1), v := (1, 0,−1), e1 := (1, 0, 0), e2 := (0, 0, 1),

σ′(αv ⊕ w, βv ⊕ z) := αβ + σ(w, z) onM ′ := Φv ⊕M, σ(w, z) = 1
2q(w, z).

Like any spin factor, it can also be described as in Quadratic Factor 3.3.1 in
terms of a global quadratic form:

RedSpin(q) = Jord(Q, c)

for
Q((α,w, β)) := αβ − q(w), c := (1, 0, 1),
T (α,w, β) := α+ β, (α,w, β) := (β,−w,α).

Thus the quadratic form is obtained by adjoining a “hyperbolic plane” Q(αe1 ⊕ βe2)
= αβ to the negative of q on M . Here the U -operator is given explicitly by

U(α,w,β)(γ, z, δ) := (ε, y, η)

for
ε := [α2γ + αq(w, z) + q(w)δ],

η := [β2δ + βq(w, z) + q(w)γ],

y := [αγ + βδ + q(w, z)]w + [αβ − q(w)]z.

proof. That the ordinary construction for σ is contained in the reduced
construction for q, and that this coincides with the ordinary construction for
σ′, follow since (1) everyone has 1 as unit and product on M determined by
σ, and (2) in the latter two the element v behaves the same [the same product

8 The reader might ask why we are not “up front” about the two external copies of
Φ we adjoin, parameterizing the module as Φ × Φ × M ; the answer is that we have an
ulterior motive — we are softening you up for the Peirce decomposition in Chapter 8 with
respect to e = (1, 0, 0), which has (Φ, 0, 0), (0,M, 0), (0, 0,Φ) as the Peirce spaces J2, J1, J0,
respectively.
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v • v = (1, 0,−1)2 = (1, 0, 1) = σ′(v, v)1 with itself, and the same products
v • w = (1, 0,−1) • (0, w, 0) = (0, 0, 0) = σ′(v, w)1 with elements w ∈ M ].
The Quadratic Factor Example 3.3.2 has quadratic form given by Q(x) =

α̃2−σ′(ṽ, ṽ) = α̃2−β̃2−q(w) when ṽ = β̃v⊕w. Here in our case x = (α,w, β) =
α̃1⊕ β̃v⊕w, where the scalars α̃, β̃ are determined by α̃(1, 0, 1)+ β̃(1, 0,−1) =
α(1, 0, 0)+β(0, 0, 1), i.e., α̃+β̃ = α, α̃−β̃ = β with solution α̃ = 1

2 (α+β), β̃ =
1
2 (α−β). Therefore α̃2−β̃2 = 1

4 [(α
2+2αβ+β2)−(α2−2αβ+β2)] = 1

4 [4αβ] =
αβ and σ(w,w) = q(w) as required.
The U -operator in the Quadratic Factor Example is Uxy = Q(x, ȳ)x −

Q(x)ȳ, which becomes

[αγ + βδ + q(w, z)](α,w, β)− [αβ − q(w)](δ,−z, γ)
for x = (α,w, β), Q(x) = [αβ − q(w)], y = (γ, z, δ), ȳ = (δ,−z, γ), Q(x, ȳ) =
Q
(
(α,w, β), (δ,−z, γ)

)
= [αγ + δβ − q(w,−z)] = [αγ + βδ + q(w, z)], where

the three coordinates reduce to
(1) [αγ + βδ + q(w, z)]α− [αβ − q(w)]δ = [α2γ + αq(w, z) + q(w)δ],

(2) [αγ + βδ + q(w, z)]w − [αβ − q(w)](−z)

= [αγ + βδ + q(w, z)]w + [αβ − q(w)]z,

(3) [αγ + βδ + q(w, z)]β − [αβ − q(w)]γ = [β2δ + βq(w, z) + q(w)γ],
which are just ε, y, η, as required. �
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3.5 Problems for Chapter 3

Problem 3.1 IfA+ is simple thenAmust certainly be simple too (associative
ideals being Jordan ideals). A famous result of I.N. Herstein (cf. the Full
Example 3.1.1(6)) says that the converse is true: if A is simple, then so is A+.
Here the ring of scalars Φ can be arbitrary, we don’t need 1

2 (as long as we treat
A+ as a quadratic Jordan algebra). Associative rings are equal-characteristic
employers; except for Lie or involution results, they are completely oblivious
to characteristic.
(1) Verify the following Jordan expressions for associative products: (1)

zbza = {z, b, za}−z(ab)z, (2) azzb = {a, z, zb}−zbza, (3) 2zaz = {z, {z, a}}−
{z2, z}, (4) zazbz = {zazb, z} − z2azb. (2) Use these to show that if I  A+ is
a Jordan ideal, then for any z ∈ I we have zÂzÂ+ Âz2Â ⊆ I. Conclude that
if some z2  = 0 then Âz2Â is a nonzero associative ideal of A contained in I,
while if z2 = 0 for all z ∈ I then 2zÂz = zÂzÂz = 0 and any Z := ÂzÂ is an
associative ideal (not necessarily contained in I) with 2Z2 = Z3 = 0. (3) Show
from these that if A is semiprime then every nonzero Jordan ideal contains a
nonzero associative ideal as in the Full Example 3.1.1(6). (4) An associative
algebra is prime if it has no orthogonal ideals, i.e., BC = 0 for ideals B,C A
implies B = 0 or C = 0. A Jordan algebra is prime if it has no U -orthogonal
ideals, i.e., UIK = 0 for I,K  J implies I = 0 or K = 0. Show that in a
semiprime A, two associative ideals are associatively orthogonal, BC = 0, iff
they are Jordan orthogonal, UB(C) = 0. Use this and (3) to prove that A+

is prime as a Jordan algebra iff A is prime as an associative algebra. (5) Use
the results and techniques of Hermitian Example 3.2.2(3) to show that if A is
a ∗-prime associative algebra (no orthogonal ∗-ideals), and we have a scalar
1
2 ∈ Φ, then H(A, ∗) is a prime Jordan algebra.
Problem 3.2* A famous theorem of L.K. Hua (with origins in projective
geometry) asserts that any additive inverse-preserving map D → D′ of as-
sociative division rings must be a Jordan homomorphism, and then that ev-
ery Jordan homomorphism is either an associative homomorphism or anti-
homomorphism. Again, this result (phrased in terms of quadratic Jordan al-
gebras) holds for an arbitrary ring of scalars. This was generalized by Jacobson
and Rickart to domains: if ϕ : A+ → D+ is a Jordan homomorphism into an
associative domainD which is a Jordan homomorphism, then ϕmust be either
an associative homomorphism or anti-homomorphism.
(1) Let ∆(x, y) := ϕ(xy) − ϕ(x)ϕ(y) measure deviation from associative

homomorphicity, and ∆∗(x, y) := ϕ(xy) − ϕ(y)ϕ(x) measure deviation from
associative anti-homomorphicity; show that ∆(x, y)∆∗(x, y) = 0 for all x, y
when ϕ is a Jordan homomorphism. (Before the advent of Jordan triple prod-
ucts this was more cumbersome to prove!) Conclude that if D is a domain
then for each pair x, y ∈ A either ∆(x, y) = 0 or ∆∗(x, y) = 0. (2) For any
x define ∆x := {y ∈ A | ∆(x, y) = 0} and ∆∗x := {y ∈ A | ∆∗(x, y) = 0}.



184 Three Special Examples

Conclude that A = ∆x ∪∆∗x. (3) Using the fact that an additive group can-
not be the union of two proper subgroups, conclude that for any x we have
∆x = A or ∆∗x = A. (4) Define ∆ := {x ∈ A | ∆x = A, i.e., ∆(x,A) = 0}
to consist of the “homomorphic elements,” and ∆∗ := {x ∈ A | ∆∗x = A, i.e.,
∆∗(x,A) = 0} to consist of the “anti-homomorphic elements.” Conclude that
A = ∆ ∪∆∗, and conclude again that ∆ = A or ∆∗ = A, i.e., ∆(A,A) = 0
or ∆∗(A,A) = 0; conclude that ϕ is either an associative homomorphism or
anti-homomorphism.

Problem 3.3 A symmetric bilinear form σ on an n-dimensional vector
space V is given, relative to any basis v1, . . . , vn, by a symmetric matrix
S: σ(v, w) =

∑n
i,j=1 αiβjsij (v =

∑
i αivi, w =

∑
j βjvj , sij = sji), and this

matrix can always be diagonalized: there is a basis u1, . . . , un with respect
to which S = diag(λ1, λ2, . . . , λn). (1) Show that the λi’s can be adjusted by
squares in Φ (the matrix of σ with respect to the scaled basis α1u1, . . . , αnun
is diag(α2

1λ1, α
2
2λ2, . . . , α

2
nλn)), so if every element in Φ has a square root in Φ

then the matrix can be reduced to a diagonal matrix of 1’s and 0’s. Conclude
that over an algebraically closed field Φ all nondegenerate symmetric bilinear
forms on V are isometrically isomorphic, so up to isomorphism there is only
one nondegenerate algebra J = JSpin(V, σ) ∼= JSpinn(Φ) of dimension n+ 1
(V of dimension n). (2) Use your knowledge of Inertia to show that over the
real numbers R we can replace the λ’s by ±1 or 0, and the number of 1s,
−1s, and 0s form a complete set of invariants for the bilinear form. Conclude
that there are exactly n + 1 inequivalent nondegenerate symmetric bilinear
forms on an n-dimensional real vector space, and exactly n + 1 nonisomor-
phic spin factors J = JSpin(V, σ) of dimension n + 1, but all of these have
JC

∼= JSpinn(C) over the complex numbers.
Problem 3.4* The J-vN-W classification of simple Euclidean Jordan alge-
bras includes JSpinn(R) = R1 ⊕ Rn under the positive definite inner (dot)
product 〈·, ·〉 on Rn. The standard hermitian inner product 〈x,y〉 =∑n

i=1 ξiηi
[x = (ξ1, . . . , ξn), y = (η1, . . . , ηn)] on Cn is also a positive definite hermitian
form, 〈x,x〉 > 0 if x  = 0. Show nevertheless that JSpinn(C) = C1⊕ Cn with
x•y = 〈x,y〉1 is not Euclidean: even when n = 1, there are nonzero elements
u, v of JSpinn(C) with u2 + v2 = 0.

Problem 3.5 A derivation of a linear algebra A is a linear transformation
which satisfies the product rule. (1) Show that δ(1) = 0 if A is unital, and
δ(x2) = xδ(x)+δ(x)x; show that this latter suffices for δ to be a derivation ifA
is commutative and 1

2 ∈ Φ. (2) Show that δ is a derivation iff it normalizes the
left multiplication operators [δ, Lx] = Lδ(x) (dually iff [δ,Ry] = Rδ(y)). Show
that T (1) = 0, [T,Lx] = Ly for some y in a unital A implies that y = T (x).
(3) Show that the normalizer {T | [T,S] ⊆ S} of any set S of operators forms
a Lie algebra of linear transformations; conclude anew that Der(A) is a Lie
algebra. (4) In an associative algebra show that δ(z) := [x, z] := xz − zx is a
derivation for each x (called the inner or adjoint derivation ad(x)).
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Problem 3.6 (1) Show that any automorphism or derivation of an associative
algebra A remains an automorphism or derivation of the Jordan algebra A+.
(2) If J ⊆ A+ is special, show that any associative automorphism or derivation
which leaves J invariant is a Jordan automorphism or derivation. In particular,
though the ad(x) for x ∈ J need not leave J invariant, the maps Dx,y =
ad([x, y]) = [Vx, Vy] must, and hence form inner derivations. If J = H(A, ∗) is
hermitian, show that any ad(z) for skew z∗ = −z ∈ A induces a derivation of
J. (3) Show that in any Jordan algebra the map Dx,y = 4[Lx, Ly] = [Vx, Vy]
is an “inner” derivation for each pair of elements x, y.

Problem 3.7* (1) Show that any D ∈ End(J) which satisfies D(c) = 0,
Q(D(x), x) = 0 for all x is a derivation of Jord(Q, c). If Φ is a field, or
has no nilpotent elements, show that these two conditions are necessary as
well as sufficient for D to be a derivation. (2) Deduce the derivation result
from the corresponding automorphism result over the ring of dual numbers:
show that D is a derivation of J iff T = 1J + εD is an automorphism of
J[ε] = J⊗Φ Φ[ε] (ε2 = 0).

Question 3.1 Decide on a definition of derivations and inner derivations
of unital quadratic Jordan algebras which reduces to the previous one for
linear Jordan algebras. Show that derivations can be defined operator-wise
in terms of their interactions with multiplication operators (find formulas
for [D,Vx], [D,Ux], [D,Vx,y]). Show that derivations form a Lie algebra of
endomorphisms, i.e., is closed under the Lie bracket [D,E] := DE − ED,
with the inner derivations as an ideal.
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Jordan Algebras of Cubic Forms

In this chapter we describe in detail the Jordan algebras that result from
cubic forms with basepoint.1 Unlike the case of quadratic forms, which always
spawn Jordan algebras, only certain very special cubic forms with basepoint
give rise to Jordan algebras. Not all algebras resulting from a cubic form
are exceptional, but the special ones can be obtained by the previous special
constructions, so we are most interested in the 27-dimensional exceptional
Albert algebras. These are forms of the reduced algebra of 3 × 3 hermitian
matrices H3(O) with octonion entries, but are not themselves always reduced
(they may not have any proper idempotents), indeed they may be division
algebras. Clearly, reduced Albert matrix algebras are not enough – we must
handle algebras which do not come packaged as matrices. But even for H3(O)
it has gradually become clear that we must use the cubic norm form and the
adjoint to understand inverses, isotopes, and inner ideals.
Unlike Jordan algebras coming from quadratic forms, those born of cu-

bic forms have a painful delivery. Establishing the Jordan identity and the
properties of the Jordan norm requires many intermediate identities, and we
will banish most of these technical details to Appendix C, proving only the
important case of a nondegenerate form on a finite-dimensional vector space
over a field. However, unlike the other inmate of the Appendix, Macdonald’s
Theorem (whose details are primarily combinatorial), the cubic form details
are important features of the cubic landscape for those who intend to work
with cubic factors (either for their own sake, or for their relations with alge-
braic groups, Lie algebras, or geometry). But for general students at this stage
in their training, the mass of details would obscure rather than illuminate the
development.

1 These algebras were introduced in the Historical Survey in Section I.3.8, but we
sketched only the finite-dimensional Springer and Jordan Cubic Constructions over a field,
where the norm was nondegenerate (so the sharp mapping was already determined by the
norm). In this section we consider the general case over arbitrary scalars.
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4.1 Cubic Maps

Although quadratic maps are intrinsically defined by their values (and quad-
ratic relations can always be linearized), cubic and higher degree maps require
a “scheme-theoretic” treatment: to truly understand the map, especially its
internal workings, we need to know the values of the linearizations on the
original module, equivalently we need to know the values of the map over all
extensions. To extend a cubic map f : X → Y of Φ-modules from the scalars
from Φ to the polynomial ring Φ[t1, . . . , tn] we need to form values

f(
∑

i tixi) =
∑

i t
3
i f(xi)+

∑
i �=j t

2
i tjf(xi;xj)+

∑
i<j<k titjtkf(xi, xj , xk).

Here the first linearization f(x; y) is quadratic in x and linear in y; it appears
as the coefficient of t in the expansion

f(x+ ty) = f(x) + tf(x; y) + t2f(y;x) + t3f(y)

(setting x1 = x, x2 = y, t1 = 1, t2 = t in the general expansion), and is nothing
more than the directional derivative f(x; y) = ∂yf |x of f in the direction y,
evaluated at x. For cubic maps, since f(x; y) is quadratic in x, it automatically
linearizes to a trilinear map

f(x, y, z) := f(x+ z; y)− f(x; y)− f(z; y)

which is the full linearization of the general map. Indeed, it is the coefficient of
s in f(x+sz; y), so is the coefficient of st in f([x+sz]+ ty) = f(1x+ ty+sz),
which by the general expansion (setting x1 = x, x2 = y, x3 = z, t1 = 1, t2 =
t, t3 = s) is f(x, y, z). It is important that this map is symmetric in all 3
variables (not just x, z): the coefficient f(xi, xj , xk) of titjtk for distinct indices
i, j, k does not depend on the particular ordering of the indices.2

When 1
3 ∈ Φ we can recover f from its linearization since f(x;x) = 3f(x),

and if 1
6 ∈ Φ we can recover it from its complete linearization since f(x, x, x) =

6f(x), using Euler’s Equation for homogeneous maps:

∂xF |x = nF (x) (F homogeneous of degree n).

In our cubic case, f(x;x) is the coefficient of t in f(x + tx) = f((1 + t)x) =
(1 + t)3f(x) [by definition of f being homogenous of degree 3] = (1 + 3t +
3t2 + t3)f(x), so f(x;x) = 3f(x).
Over general rings of scalars we require these “implicitly” defined lin-

earizations (which appear only over the polynomial extension) to be given
as part of the definition of f . When there are suitably many scalars these

2 There is a well-developed functional calculus, featuring most of your favorite theorems
from calculus, and even logarithmic derivatives (but no logarithms, please!), valid for poly-
nomial maps between modules over an arbitrary ring of scalars. The complete linearization
can be described as f(x, y, z) = ∂x∂y∂zf |c (for any c, even c = 0, since the third derivative
of a cubic is a constant), and it is symmetric by the equality of mixed partials.
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linearizations are completely determined by the values of f on X itself, with-
out need of passing to a scalar extension. For example, just as the existence
of 1

2 guaranteed in the Linearization Proposition 1.8.5 that the Jordan iden-
tity of degree 3 in x automatically linearizes, so it guarantees now that cu-
bic maps linearize: f(x; y) = 2[f(x; y) + f(y;x)] − 1

2 [2f(x; y) + 4f(y;x)] =
2[f(x+ y)− f(x)− f(y)]− 1

2 [f(x+2y)− f(x)− 8f(y)] is expressible in terms
of values of f on X.
In general, for a homogeneous map of degree n it suffices if Φ contains

n − 1 invertible elements λ1, . . . , λn−1 whose differences λi − λj are also in-
vertible (for example, a field with at least n distinct elements). In that case
the linearizations fi(x; y) in f(x+ty) =

∑n
i=0 t

ifi(x; y) can be recovered from
the explicit values f(x+λjy) by solving a system of n−1 equations involving
λj (for j = 1, . . . , n − 1) in n − 1 unknowns fi(x; y) (for i = 1, . . . , n − 1,
noting that f0(x; y) = f(x) and fn(x; y) = f(y) are already known):∑n−1

i=1 λijfi(x; y) = f(x+ λjy)− f(x)− λnj f(y),

and this system can be solved (even though the unknowns fi(x; y) are not
scalars, but lie in a general module Y ) since the matrix of scalar coefficients

λ1 λ2
1 . . . λn−1

1
λ2 λ2

2 . . . λn−1
2

...
... . . .

...
λn−1 λ2

n−1 . . . λn−1
n−1


has invertible Vandermonde determinant λ1λ2 . . . λn−1

∏
i<j(λi − λj) by our

hypothesis about the scalars. In particular, for n = 3 we need two invertible
scalars with invertible difference, and we can take λ1 = 1, λ2 = −1, λ1−λ2 = 2
as long as 2 is invertible, i.e., 1

2 ∈ Φ as before.
Exercise 4.1.0* (1) Show directly, without Vandermonde, that the linearizations N(x; y),
N(y;x) of a cubic form N are intrinsically determined by its values on the original X when
we have an invertible scalar λ with λ, 1 − λ also invertible: find expressions for them as
combinations of N(x), N(y), N(x + y), N(x + λy). (2) Conclude that the linearizations of
a cubic form are determined by its intrinsic values whenever Φ is any field with at least 3
elements, i.e., anyone except Z2.

4.2 The General Construction

Here we describe in detail the general construction of Jordan algebras over a
general ring of scalars from a suitable triple (N,#, c), consisting of a cubic
norm form with a basepoint and a sharp mapping. This construction was not
discussed in the Historical Survey. In the next three sections we give particular
examples of this construction.
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In this section we will usually use the term formula for scalar equalities,
and the term identity for vector equalities (identical relations among elements
of an algebra).

Sharped Cubic Definition 4.2.1 As with quadratic forms, a basepoint
for a cubic form on a Φ-module X is just a point where the form assumes the
value 1,

N(c) = 1.

(1) Given a basepoint, we can introduce the trace linear and bilinear
forms,3 and the spur quadratic and bilinear forms S4 of the cubic form N
as follows:

T (x) := N(c;x) (Linear Trace Form),
T (x, y) := T (x)T (y)−N(c, x, y) (Bilinear Trace Form),

S(x) := N(x; c) (Quadratic Spur Form),
S(x, y) := N(x, y, c) (Bilinear Spur Form),
N(c) = 1, T (c) = S(c) = 3 (Unit Values).

By symmetry T (c, y) = T (c)T (y)−N(c, c, y) = 3T (y)−2N(c; y) and S(x, y) =
N(x, y, c) = N(c, x, y), so the linear trace, bilinear trace, and bilinear spur
forms are related by

T (c, y) = T (y) (c–Trace Formula),
S(x, y) = T (x)T (y)− T (x, y) (Spur–Trace Formula).

(2) A sharp mapping for a cubic form N with basepoint c is a quadratic
map # : X → X strictly satisfying three relations:

T (x#, y) = N(x; y) (Trace–Sharp Formula),

x## = N(x)x (Adjoint Identity),
c#y = T (y)c− y (c–Sharp Identity)

in terms of the symmetric bilinear sharp product

x#y := (x+ y)# − x# − y#

3 This can be suggestively written in Hessian form as T (x, y) = −∂x∂y log(N)|c. Such
bilinear forms play a great role in symmetric spaces, and in the approach to Jordan algebras
of Hel Braun and Max Koecher in their book Jordan Algebren.

4 In the characteristic polynomial for n× n matrices, only the first and last coefficients
have standard names (trace and determinant, respectively); in our cubic case the second
coefficient, the term S(x), plays an important-enough role to justify giving it a name of
its own. I have already apologized once for the choice of name (in footnote 5 in Historical
Survey Section I.8).
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obtained by linearizing the sharp mapping. In this case the spur S can be
reduced (setting y = c in Trace–Sharp) to the trace of the sharp,

S(x) = T (x#), S(x, y) = T (x#y) (Spur Formulas).
(3) A sharped cubic form (N,#, c) consists of a sharp mapping # for

a cubic form N with basepoint c.
We are now ready to describe the general construction. Note how the U -

operator arises naturally from the trace and the sharp.

Sharped Cubic Construction 4.2.2 (1) Any sharped cubic form
(N,#, c) gives rise to a unital Jordan algebra Jord(N,#, c) with unit element
1 = c and bullet product

x • y := 1
2

(
x#y + T (x)y + T (y)x− S(x, y)c

)
.

Here the square and bilinear product can be expressed in terms of the sharp
map and sharp product, and vice versa, by the Sharp Expressions:

x2 =x# + T (x)x− S(x)c,
x# =x2 − T (x)x+ S(x)c,
x#y = {x, y} − T (x)y − T (y)x+ S(x, y)c.

(2) All elements satisfy the Degree–3 Identity

x3 − T (x)x2 + S(x)x−N(x)c = 0,

and the auxiliary products (the U -operator and the triple product) are given
by

Uxy = T (x, y)x− x##y, {x, y, z} = T (x, y)z + T (z, y)x− (x#z)#y.

As always, the square and bilinear product can be recovered from U :

x2 = Uxc, {x, y} := Ux,yc, x • y := 1
2Ux,yc.

(3) The sharp mapping always permits composition with the U -operator :
we have the Sharp Composition Law

(Uxy)# = Ux#y#.

If Φ is a faithful ring of scalars [αJ = 0 =⇒ α = 0 in Φ, e.g., if Φ is a field
or has no 3-torsion], then N is a Jordan norm permitting composition with
the U -operator and the sharp: we have the Norm Composition Laws

N(c) = 1, N(Uxy) = N(x)2N(y), N(x#) = N(x)2. �

(Remember that the gory verifications have been cast into the outer darkness
of Appendix C!) The only fly in this particular ointment is the necessity of
requiring faithful scalars in order to get composition. Problem 4.5 at the end
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of the chapter gives an unfaithful characteristic 3 example of a sharped cubic
whose norm doesn’t permit composition. Nevertheless, these results will suffice
to give us the basic properties of inverses in cubic factors in Chapter 6.

4.3 The Jordan Cubic Construction

One important case of the Sharped Cubic Construction (which will actually
suffice for our structure theory) is the case when we have a finite-dimensional
vector space over a field Φ.5

Jordan Cubic Definition 4.3.1 A cubic form N with basepoint c on a finite-
dimensional vector space over a field Φ is nondegenerate if the bilinear trace
T is nondegenerate bilinear form. Nondegeneracy and finite-dimensionality
mean that we may identify linear functionals with vectors, so in particular for
fixed x the linear functional y �→ N(x; y) is given by a unique vector x#, and
in this context we automatically obtain a quadratic adjoint map satisfying
the Trace–Sharp Formula

T (x#, y) := N(x; y).

A Jordan cubic form is a nondegenerate cubic form with basepoint whose
induced sharp strictly satisfies the Adjoint Identity

x## = N(x)x.

Springer Construction 4.3.2 Every Jordan cubic form produces a Jordan
algebra Jord(N, c) with unit c and U -operator Uxy = T (x, y)x−x##y for the
adjoint # defined by T (x#, y) = N(x; y). �
The reason for this is that Jordan cubics are always sharped.

Jordan Cubic Construction 4.3.3 Every Jordan cubic form is a sharped
cubic form, and hence produces a Jordan algebra Jord(N,#, c) = Jord(N, c).
proof. We verify the three sharp axioms 4.2.1(2) of the general Cubic

Construction: the Trace–Sharp Formula is satisfied by definition, the Adjoint
Identity holds strictly by hypothesis, and all that is left is the c–Sharp Identity.
We have

(1) T (x#y, z) = T (x, y#z) = N(x, y, z) (Sharp Symmetry)

since linearizing Trace–Sharp gives the symmetric function T (x#y, z) =
N(x, y, z). From this the c–Sharp Identity c#y = T (y)c−y follows using non-
degeneracy of the trace bilinear form, since for all z we have T (T (y)c−y, z) =

5 This case was discussed in the Historical Survey in Section I.3.8. In Jordan structure
theory this construction suffices to give the Albert algebras in all characteristics. It does
not uniformly give all the degree 3 algebras: in characteristic 2 the little 6-dimensional
degree 3 algebra H3(Φ) has degenerate trace form (the radical consists of all matrices with
zeroes down their main diagonal). The general construction is really needed just for this
one special case.
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T (y)T (z) − T (y, z) [by c–Trace Formula 4.2.1(1)] = N(c, y, z) [by definition
of the bilinear trace] = T (c#y, z) [by Sharp Symmetry (1)]. Thus (N,#, c) is
a sharped cubic. �
A Little Reassuring Argument. For those who do not want to plow through Appendix
C, but nevertheless want reassurance that these cubic constructions do indeed produce
degree–3 Jordan algebras, we will give a brute-force direct proof that Jord(N, c) is Jordan
(depending heavily on nondegeneracy and our trusty 1

2 ).
We begin by proving the Degree–3 Identity 4.2.2(1). We have seen that the Sharp

Expressions 4.2.2(1) hold by definition of the bullet, and, using these, the Degree–3 Identity
0 = x • [x2 − T (x)x + S(x)c] −N(x)c = x • x# −N(x)c becomes

(2) x# • x = N(x)c.

To prove this we will heavily use “associativity” in the trace bilinear form:

(3) T (x • y, z) = T (x, y • z) (Bullet Symmetry),

since 2T (x • y, z) = T (x#y + T (x)y + T (y)x − S(x, y)c, z) = T (x#y, z) + T (x)T (y, z) +
T (y)T (x, z) − [T (x)T (y) − T (x, y)]T (z) [by c-Trace and Spur–Trace 4.2.1(1)] is symmetric
in x, y, z by Sharp Symmetry (1). We also use

(4) x##(x#y) = N(x)y + T (x#, y)x (Adjoint′ Identity),

obtained by linearizing the Adjoint Identity 4.2.1(2). From these we compute 2T (x# •x, y),
using Bullet Symmetry (3) above to move x to the other side to avoid having to deal with
S(x#, x):

2T (x# • x, y) = 2T (x#, x • y)
= T (x#, [x#y + T (x)y + T (y)x− S(x, y)c]) [by definition of bullet]
= [T (x#)T (x#y) − T (x##(x#y))] + T (x)T (x#, y) + T (y)T (x#, x)

−S(x, y)S(x) [by Spur–Trace and Spur Formula 4.2.1(2)]
= [S(x)S(x, y) −N(x)T (y) − T (x#, y)T (x)] + T (x)T (x#, y)

+T (y)3N(x) − S(x)S(x, y) [by Spur, Adjoint′ (4) above, Spur–Trace, Euler]
= 2N(x)T (y) = 2T (N(x)c, y)

for all vectors y, so by half and nondegeneracy we obtain The Degree–3 Identity (2) above.
Finally, we verify the Jordan identity. By nondegeneracy it can be written as T (

(
x •

(x2 •y)−x2 • (x•y)), z) = 0 for all x, y, z, hence (using Bullet Symmetry twice) T (x• (x2 •
y), z) − T (y, x • (x2 • z)) = 0, which is just the condition that

T (x • (x2 • y), z) is symmetric in y and z.

But linearizing the Degree–3 Identity yields x2 • y = −2(x • y) • x+ 2T (x)x • y + T (y)x2 −
S(x, y)x − S(x)y + T (x#, y)c [using Trace–Sharp], so multiplying by x and using Spur–
Trace and the Sharp Expression gives x • (x2 • y) =

[ − 2L3
x + 2T (x)L2

x − S(x)Lx
]
y +

T (y)x3 +
[
T (x, y) − T (x)T (y)

]
x2 + T ([x2 − T (x)x + S(x)c], y)x = f(Lx)y + T (y)

[
x3 −

T (x)x2 +S(x)x
]
+T (x, y)x2 +T (x2, y)x−T (x)T (x, y)x. Taking traces against z and using

the Degree–3 Identity and c–Trace, we get

T (x • (x2 • y), z) = T (f(Lx)y, z) + T (y)N(x)T (z)
+

(
T (x, y)T (x2, z) + T (x2, y)T (x, z)

) − T (x)T (x, y)T (x, z),

which is symmetric in y, z [using Bullet Symmetry to see that any operator polynomial
f(Lx) can be moved from one side of T (y, z) to the other]. Thus we have a degree–3 Jordan
algebra Jord(N, c) (though it still takes some work to get the expression 4.2.2(2) for the
U -operator). �
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Exercise 4.3.3A* (1) Derive c# = c for any sharped cubic when 1
2 ∈ Φ. (2) Derive it

without assuming 1
2 , using nondegeneracy instead (showing that both sides have the same

trace against any z).

Exercise 4.3.3B* In a Jordan cubic Jord(N, c), show that the adjoint of the operator Vx,y

with respect to the trace bilinear form is V ∗
x,y = Vy,x, i.e., T (Vx,yz, w) = T (z, Vy,xw).

Exercise 4.3.3C Establish the following relations between an element x and its sharp
in Jord(N, c): (1) x#x# = [T (x)S(x) − N(x)]c − T (x)x# − S(x)x, (2) T (x#x#, y) =
S(x)S(x, y) − N(x)T (y) − T (x)T (x#, y), (3) S(x, x#) = T (x#x#) = S(x)T (x) − 3N(x),
(4) x#(x##y) = N(x)y + T (x, y)x# (Dual Adjoint′ Identity).

Exercise 4.3.3D* Don’t assume any longer that the trace is nondegenerate, but assume
that the sharp cubic N satisfies the above Dual Adjoint′ Identity. (1) Show that this implies
that x#Uxy = T (x, y)x# − N(x)y. (2) By Exercise 4.3.3.B above we have T (Vx,yz, w) =
T (z, Vy,xw); use this and (1) to prove the UV -Commuting Formula {Uxy, z, x} = Ux{y, x, z}.

4.4 The Freudenthal Construction
Our first, and most important, example of a sharped cubic form comes from
the algebra of 3×3 hermitian matrices over an alternative algebra with central
involution.6

Freudenthal Construction 4.4.1 If D is a unital alternative algebra over
Φ with nuclear involution, then the hermitian matrix algebra H3(D,−) is a
unital Jordan algebra; if the involution is scalar, then H3(D,−) is a cubic
factor Jord(N,#, c) whose Jordan structure is determined by the basepoint c,
cubic form N , trace T , and sharp # defined as follows:

c := 1 = e1 + e2 + e3,

N(x) :=α1α2α3 −
∑
k

αkn(ak) + t(a1a2a3),

T (x) =
∑
k

αk, T (x, y) =
∑
k

αkβk +
∑
k

t(akbk),

x# :=
∑
k

(
αiαj − n(ak)

)
ek +

∑
k

(
aiaj − αkak

)
[ij],

x#y :=
∑
k

(
αiβj + βiαj − n(ak, bk)

)
ek

+
∑
k

(
(aibj + biaj)− αkbk − βkak

)
[ij].

for elements x =
∑3

i=1 αiei +
∑3

i=1 ai[jk], y =
∑3

i=1 βiei +
∑3

i=1 bi[jk] with
αi, βi ∈ Φ, ai, bi ∈ D in Jacobson box notation (ei := Eii, d[jk] := dEjk +
d̄Ekj), where (ijk) is always a cyclic permutation of (123). �

6 The Freudenthal Construction was introduced briefly in I.3.9.
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We will relegate this proof to Appendix C as well; it is an exercise in al-
ternative algebras. Once we have established the Sharped Cubic Construction
4.2.2 and verified that the above Freudenthal norm is a Jordan cubic, we will
know that the module H3(D,−) carries the structure of a Jordan algebra
Jord(N,#, c). It remains to verify that this Jordan structure determined by
the sharped cubic form coincides with that of the Hermitian Matrix Exam-
ple 3.2.4. We just have to check the Four Basic Brace Products and Basic
Orthogonality 3.2.4(2) for distinct i, j, k:

(1) α[ii]2 = α2[ii],

(2) a[ij]2 = aā[ii] + āa[jj] = n(a)(ei + ej),

(3) {α[ii], b[ij]} = αb[ij],

(4) {a[ij], b[jk]} = ab[ik] = ab[ki],

(5) {α[ii], β[jj]} = 0,
(6) {α[ii], b[jk]} = 0.

But from x2 = x# + T (x)x− S(x)c we see that (1), (2) hold since

α[ii]# = 0, T (α[ii]) = α, S(α[ii]) = 0,

a[ij]# = −n(a)ek, T (a[ij]) = 0, S(a[ij]) = −n(a),

for c = ei + ej + ek. From {x, y} = x#y + T (x)y + T (y)x − S(x, y)c we see
that (3), (4), (5), (6) hold since

α[ii]#b[ij] = 0, T (b[ij]) = 0, S(α[ii], b[ij]) = 0,

a[ij]#b[jk] = ab[ki], T (b[jk]) = 0, S(a[ij], b[jk]) = 0,
α[ii]#β[jj] = αβek, T (β[jj]) = β, S(α[ii], β[jj]) = αβ,

α[ii]#b[jk] = −αb[jk], T (α[ii]) = α, S(α[ii], b[jk]) = 0. �

For the octonions with standard involution this produces reduced Albert al-
gebras. The result we really need in this book is the fact that these algebras
(hence any of their forms) are Jordan.

Reduced Albert Algebra Theorem 4.4.2 If O is an octonion algebra
over a field Φ, the reduced Albert algebra H3(O) is a 27-dimensional Jordan
algebra over Φ. If O(Φ) is the split octonion algebra over an arbitrary ring of
scalars, the split Albert algebra Alb(Φ) = H3(O(Φ)) is a Jordan algebra free
of rank 27 as a Φ-module. �
We will verify later that an Albert algebra is exceptional, and over a field

is simple.
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4.5 The Tits Constructions

Two more examples of sharped norm forms are provided by constructions,
due to Jacques Tits, of degree–3 Jordan algebras out of certain degree–3
associative algebras (including all separable associative algebras of degree 3
over a field).7 These algebras need not be reduced, and when we discuss
inverses in Chapter 6 we will give an example where this construction produces
a 27-dimensional Albert division algebra.

Associative Degree–3 Definition 4.5.1 Let A be a unital associative al-
gebra with a cubic norm form n with basepoint 1; as in the Sharped Cubic
Definition 4.2.1(1) we introduce

t(a) := n(1; a),
t(a, b) := t(a)t(b)− n(1, a, b),
s(a) := n(a; 1),
n(1) = 1, t(1) = s(1) = 3,

and we can define an associative adjoint map as in 4.2.2(1) by

a# := a2 − t(a)a+ s(a)1.

using the pre-existing multiplication on A. We say that A is of degree 3 over
Φ if it satisfies the following three axioms (corresponding to those in 4.2.1(2)
and 4.2.2(2)). First, the algebra strictly satisfies the associative Degree–3
Identity:

(A1) a3 − t(a)a2 + s(a)a− n(a)1 = 0,

equivalently,

(A1′) aa# = a#a = n(a)1.

Secondly, the adjoint satisfies the associative Trace–Sharp Formula:

(A2) t(a#, b) = n(a; b).

Finally, the trace bilinear form comes from the associative product by the
Trace-Product Formula:

(A3) t(a, b) = t(ab).

These algebras automatically (see below) satisfy the Adjoint Identity:

(A4) a## = n(a)a.
7 These constructions were not discussed in the Historical Survey. They provide an

elegant and insightful construction of all degree–3 Jordan algebras over fields.
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Exercise 4.5.1 Show that an algebra of degree 3 satisfies (1) c–Trace 4.2.1(1) t(a, 1) = t(a),
(2) Spur Formula 4.2.1(2) s(a) = t(a#). (3) From (2) and the definition of the adjoint,
compute directly that (a#)# = n(a)a+(s(a#)− t(a)n(a))1. (4) Show that twice the Spur–
Trace Formula 4.2.1(1) holds, 2t(a, b) = 2(t(a)t(b) − s(a, b)). (5) Use (2),(4),(A1′),(A3) to
show that 4s(a#) = 2s(a#, a#) = 4t(a)n(a), and deduce that if 1

2 ∈ Φ then a degree–3
algebra satisfies the Adjoint Identity a## = n(a)a.

First Tits Construction 4.5.2 Let n be the cubic norm form on a degree–3
associative algebra A over Φ, and let µ ∈ Φ be an invertible scalar. From these
ingredients we define a module J = A−1 ⊕ A0 ⊕ A1 to be the direct sum of
three copies8 of A, and define a basepoint c, norm N , trace T , and sharp #
on J by

c := 0⊕ 1⊕ 0 = (0, 1, 0),
N(x) := µ−1n(a−1) + n(a0) + µn(a1)− t(a−1a0a1),

=
1∑

i=−1

µin(ai)− t(a−1a0a1),

T (x) := t(a0),

T (x, y) :=
1∑

i=−1

t(a−i, bi),

[x#]−i := µia#
i − a[i+1]a[i−1],

for elements x = (a−1, a0, a1), y = (b−1, b0, b1), where the indices [j] are read
modulo 3, using standard representatives −1, 0, 1 only. Then (N,#, c) is a
sharped cubic form, and the algebra Jord(A, µ) := Jord(N,#, c) is a Jordan
algebra. �
For the second construction, let A be an associative algebra of degree 3

over Ω, and let ∗ be an involution of second kind on A, meaning that it is not
Ω-linear, only semi-linear (ωa)∗ = ω∗a∗ for a nontrivial involution on Ω with
fixed ring Φ := H(Ω, ∗) < Ω. (For example, the conjugate-transpose involution
on complex matrices is only real-linear). The involution is semi-isometric with
respect to a norm form if n(a∗) = n(a)∗.

Second Tits Construction 4.5.3 Let n be the cubic norm of a degree–3
associative algebra A over Ω, with a semi-isometric involution of second kind
over Φ. Let u = u∗ ∈ A be a hermitian element with norm n(u) = µµ∗

for an invertible scalar µ ∈ Ω. From these ingredients we define a module
J = H(A, ∗)⊕A to be the direct sum of a copy of the hermitian elements and
a copy of the whole algebra, and define a basepoint c, norm N , trace T , and
sharp # on J by

8 The copies are usually labeled 0, 1, 2, but the symmetry is more clearly seen if we take
as labels (mod 3) the powers 0, 1,−1 of µ.
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c := 1⊕ 0 = (1, 0),
N(x) := n(a0) + µn(a) + µ∗n(a∗)− t(a0aua

∗),
T (x) := t(a0),

T (x, y) := t(a0, b0) + t(ua∗, b) + t(au, b∗),

x# = (a#
0 − aua∗, µ∗(a∗)#u−1 − a0a)

for elements
x = (a0, a), y = (b0, b) (a0, b0 ∈ H(A, ∗), a, b ∈ A).

Then (N,#, c) is a sharped cubic form, and the algebra Jord(A, u, µ, ∗) :=
Jord(N,#, c) is a Jordan algebra. Indeed, it is precisely the fixed points of the
algebra Jord(A, µ) over Ω obtained by the First Construction relative to the
semi-linear involution (ua−1, a0, a1) �→ (ua∗−1, a

∗
0, a

∗
1), and is always a form

of the first : Jord(A, u, µ, ∗)Ω ∼= Jord(A, µ). �
The proofs are entirely associative, but require many of the same detailed

properties of the cubic norm form n that were needed for N in the proof of
the General Construction, so once more we defer them to Appendix C.

4.6 Problems for Chapter 4

Problem 4.1* Establish the V U -Commuting Theorem: Let X be a mod-
ule over Φ containing 1

2 which carries a quadratic map U : X → EndΦ(X)
with unit 1 ∈ X, U1 = 1X , and satisfying the V U -Commuting Iden-
tity Vx,yUx = UxVy,x where, as usual, Vx,y(z) := {x, y, z} := Ux,zy :=(
Ux+z −Ux−Uz

)
y. Then the U -operator gives birth to a unital Jordan prod-

uct x • y := 1
2{x, 1, y} (x2 = Ux1) whose associated U -operator is just the

given one: 2L2
x − Lx2 = Ux. In particular, x3 = Uxx.

(1) First establish alternate formulations of the L-operator: 2Lx = Vx :=
Vx,1 = V1,x = Ux,1. (2) Show that UxVx = VxUx. Thus Vx commutes with
the operator Ux, and we will have the Jordan condition that Vx commutes
with Vx2 if we can show that Ux is the usual U -operator. (3) Show that
2Ux = V 2

x − Vx2 .

Problem 4.2* To complete the proof that Jord(N,#, c) is Jordan in the
Cubic Construction 4.2.2, verify that the operator Uxy = T (x, y)x− x##y of
the Cubic Construction satisfies the Unit Condition and the V U -Commuting
Identity. (1) Show that c# = c, Ucy = y. (2) Establish the Adjoint′ Iden-
tity 4.3.3(4) x##(x#y) = N(x)y + T (x#, y)x and the U -x-Sharp Identity
Ux(x#y) = T (x#, y)x − N(x)y. (3) Take the Adjoint′ Identity to the other
side of the trace bilinear form to turn it into the Dual Adjoint′ Identity (see
Ex. 4.3.3C(4)) x#(x##z) = N(x)z+T (x, z)x#. (4) Use these to establish the
V U -Commuting Identity.
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Problem 4.3 A derivation of a quadratic Jordan algebra is a linear transfor-
mation D which satisfies (D1) D(1) = 0, (D2) D(Uxy) = UD(x),xy + UxD(y)
for all x, y. (1) Show that (D2) implies (D1) if 1

2 ∈ Φ. (2) Show that D
is a derivation of a cubic factor Jord(N,#, c) if it (C1) kills the basepoint
D(c) = 0, (C2) is trace-skew T (D(x), y) + T (x,D(y)) = 0, and (C3) is a
sharp-derivation D(x#) = x#D(x). Here skewness (C2) follows from trace-
alternation (C2′) T (D(x), x) = 0, and is equivalent to it when 1

2 ∈ Φ. (2) Show
that if 1

3 ∈ Φ then (C2′), (C3) ⇒ (C4): T (x#, D(x)) = 0 and (C3) ⇒ (C5):
T (D(x)) = 0. (4) Show that (C4) implies (C5), (C2′), so that (C1), (C3), (C4)
suffice to guarantee that D is a derivation (and if the trace is nondegenerate,
(C1), (C4) alone suffice).

Problem 4.4* (1) Show that an invertible linear transformation ϕ on
Jord(N,#, c) is an automorphism if it (A1) fixes the basepoint, ϕ(c) = c,
(A2) is a trace isometry T (ϕ(x), ϕ(y)) = T (x, y), and (A3) is a sharp-
homomorphism ϕ(x#) =

(
ϕ(x)

)#. (2) Use the Adjoint Identity to show that
(A1)–(A3) imply that ϕ is a norm isometry (A4) N(ϕ(x)) = N(x) if Φ acts
faithfully on J (i.e., αJ = 0 ⇒ α = 0 in Φ, e.g., if 1 ∈ T (J), as when 1

3 ∈ Φ
by T (c) = 3). (3) Apply this to 1J + εD to deduce that D is a derivation
of Jord(N, c) if (in the notation of Problem 4.3) it satisfies (C1), (C2), (C3)
(and if Φ acts faithfully then (C1), (C4) alone suffice).

Problem 4.5* Show that in the Cubic Construction 4.2.2 the norm form
need not admit Jordan composition N(Uxy) = N(x)2N(y) or N(x#) = N(x)2

if Φ is faithless of characteristic 3 [3Φ = 0, αJ = 0 for some α  = 0]. (1) Show
that such a faithless Φ contains a “dual number” ε with εJ = 0, ε2 = 0. (2) Let
J = H3(C) for a simple composition algebra over a field Φ of characteristic
3, so it results by the Cubic Construction from the norm (N,#, c) of the
Freudenthal Construction 4.4.1. Then J remains a simple Jordan algebra over
the ring of dual numbers Φ′ := Φ[ε] via εJ = 0. Show that (N ′,#, c) for
N ′(x) = N(x) + εT (x)3 remains a sharped cubic for J over Φ′. (3) Exhibit
elements x, y in Φe1+Φe2+Φe3 ⊆ J such that N ′(x#)  = N ′(x)2, N ′(Uyc)  =
N ′(y)2N ′(c).

Question 4.1 Is c# = c for any sharped cubic form (N,#, c) (not assuming
nondegeneracy or 1

2 )?

Question 4.2 Develop an alternate “U -theoretic” proof that Jord(N, c) is
a degree–3 Jordan algebra. In these algebras of cubic forms, frequently there
are clear relations among U -products which correspond to messy relations
among bilinear products, and it is useful to have a U -theoretic formulation of
Jordanity.
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Two Basic Principles

Here we gather the basic identities we need, and more importantly, we state
the Two Basic Principles for proving operator identities and making calcula-
tions involving only two elements. First the general principles.

5.1 The Macdonald and Shirshov–Cohn Principles

These two principles say that life in a Jordan algebra is pretty much like life
in an associative algebra, as long as things don’t get too crowded. As soon as
four or more elements get together, or three elements behaving non-linearly,
nonassociativity breaks out.

Macdonald Principle 5.1.1 Any Jordan polynomial in three variables which
has degree ≤ 1 in one variable and vanishes in all associative algebras neces-
sarily vanishes on all Jordan algebras, i.e., is an identity for Jordan algebras.
�
The proof is an unilluminating combinatorial argument in the free algebra,

and we relegate it to Appendix B. The condition that the polynomial be linear
in at least one variable is necessary — recall that Glennie’s Identities G8, G9,
which are of degree ≥ 2 in all variables, vanish on all special algebras but not
on the Albert algebra.
Since an operator identity M = 0 is equivalent to the element identity

M(z) = 0 for all z, which is linear in z, the Macdonald Principle for ele-
mental identities leads to a general principle for verifying operator identities
M(x, y) = 0 for multiplication operators built out of two variables.

Macdonald Multiplication Principle 5.1.2 Any Jordan multiplication op-
erator in two variables which vanishes on all associative algebras necessarily
vanishes on all Jordan algebras, i.e., is an operator identity for Jordan alge-
bras. �
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The proof of the next theorem will also be relegated to an appendix,
Appendix A. It does involve a few ideas of interest outside the narrow range
of the theorem itself, but these ideas revolve around speciality of quotient
algebras, and will not concern us in our work.

Shirshov–Cohn Theorem 5.1.3 Any linear Jordan algebra generated by
two elements is special, indeed, is isomorphic to H(A, ∗) for an associative
∗-algebra A generated by two elements. �
When we are working with expressions involving only two elements x, y in

a Jordan algebra J, we are working in the subalgebra Φ[x, y]; by the Shirshov–
Cohn Theorem this algebra is isomorphic to H(A, ∗), and we can carry out
our calculations inside A. As we will see, this can be very convenient — it
allows us to work with asymmetric expressions such as xy, instead of always
having to formulate things in terms of symmetric (Jordan) expressions.

Shirshov–Cohn Principle 5.1.4 In order to verify that certain relations
between elements x, y in Jordan algebras always imply certain other relations
among elements f1(x, y), . . . , fn(x, y) in the subalgebra Φ[x, y], it is sufficient
to establish the implication for x, y in H(A, ∗) for all associative ∗-algebras
A. �

5.2 Fundamental Formulas

We now gather an initial harvest of results from these principles. The first
tells us that micro-locally, inside a subalgebra generated by a single element,
the Jordan landscape looks completely associative.

Power Definition 5.2.1 The powers of an element x in a Jordan algebra
J are defined recursively by

x0 := 1 ∈ Ĵ, x1 := x, xn+1 := x • xn.
We say that e is idempotent (“same-powered”) if it equals its square,

e2 = e (idempotent),

and nilpotent (“zero-powered”) if some power vanishes,

zn = 0 (nilpotent).

We say that J is nil if all its elements are nilpotent. A linear algebra is
power-associative if the subalgebra Φ[x] generated by a single element is
commutative and associative,

xn • xm = xn+m (n,m ≥ 0).
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It is easy to check by induction that in special algebras these Jordan powers
reduce to the usual associative ones, from which Macdonald’s Principle allows
us to conclude that powers behave like associative ones in all Jordan algebras.

Power-Associativity Theorem 5.2.2 (1) Jordan algebras are always power-
associative. If J ⊆ A+ is special, the Jordan powers of x in J coincide with
its associative powers in A. Jordan powers always obey the Element Power-
Associativity Rules

(xn)m = xnm, Uxnxm = x2n+m,

{xn, xm} = 2xn+m, {xn, xm, xp} = 2xn+m+p.

If e is idempotent, e2 = e, then all powers coincide: en = e for all n ≥ 1. If z
is nilpotent, then eventually all powers vanish: zn = 0 guarantees that zm = 0
for all m ≥ n.

(2) The Jordan multiplication operators with powers are

Uxn = Un
x , Vxn,xm = Vxn+m , VxnUxm = Uxn+m,xm .

Indeed, in general we have the Operator Power-Associativity Rules

Uf(x)Ug(x) = U(f ·g)(x), Vf(x),g(x) = V(f ·g)(x), Vf(x)Ug(x) = U(f ·g)(x),g(x)

for any polynomials f(x), g(x) in Φ[x]. �

Exercise 5.2.2A (1) Use the linearized Jordan identity (JAX2)′′ (but not power-associativity!)
to show that Lxn+2 can be expressed in terms of Lx, Lx2 , Lxn , Lxn+1 , hence by induction
that each left multiplication Lxn by a power of x in a Jordan algebra J can be expressed as
a polynomial in the (commuting) operators Lx and Lx2 . (2) Conclude that any two powers
of x operator-commute, i.e., the commutator [Lxn , Lxm ] vanishes; use this to show that a
Jordan algebra is power-associative.

Exercise 5.2.2B Find a recursive formula xn = Tn(x)x + Qn(x)1 in terms of scalar-
valued functions (polynomials in T (x), Q(x)) for powers in Jord(Q, c) of Quadratic Factor
Example 3.3.1.

Exercise 5.2.2C (1) Show directly (without invoking Macdonald) that if e is idempotent,
then all its powers coincide: en = e for n ≥ 1. (2) Show directly that if z is nilpotent,
zn = 0, then zm = 0 for all m ≥ n.

Next we gather together the five most important identities for our future
work, expressed in terms of the multiplication operators Vx := 2Lx, 2Ux :=
V 2
x − Vx2 , Ux,y := Ux+y − Ux − Uy, Vx,y(z) := Ux,z(y).



202 Two Basic Principles

Five Fundamental Formulas 5.2.3 Every Jordan algebra satisfies the fol-
lowing element and operator identities, Firstly, in unital algebras we have:

Ux,1 = Vx,1 = V1,x = Vx, Ux(1) = x2.

Secondly, we have five fundamental operator identities:

(FFI) Fundamental Formula: UUxy = UxUyUx,

(FFII) Commuting Formula: Vx,yUx = UxVy,x = UUxy,x,

so for y = 1 we have VxUx = UxVx = Ux2,x,

(FFIII) Triple Shift Formula: VUxy,y = Vx,Uyx,

so for y = 1 Vx2 = Vx,x,

(FFIV) Triple Switch Formula: Vx,y = VxVy − Ux,y,

(FFV) Fundamental Lie Formula: Vx,yUz + UzVy,x = UVx,y(z),z.

The corresponding element identities are:

(FFIe) Fundamental Identity: UUxyz = UxUyUxz,

(FFIIe) Commuting Identity: {x, y, Uxz} = Ux{y, x, z} = {Uxy, z, x},
so for x = 1 {1, y, z} = {y, 1, z} = {y, z, 1}
and hence Uz,1 = Vz,1 = V1,z = Vz,

(FFIIIe) Triple Shift Identity: {Uxy, y, z} = {x, Uyx, z},
so for y = 1 {x2, z} = {x, x, z}

(FFIVe) Triple Switch Identity: {x, y, z}+ {x, z, y} = {x, {y, z}},
(FFVe)′ 5-Linear Identity: {x, y, {z, w, u}} = {{x, y, z}, w, u}

−{z, {y, x, w}, u}+ {z, w, {x, y, u}}.
We can derive an alternate linearized version of Fundamental (FFI); from
(FFIII) we get Zel’manov’s specialization formulas; and linearization of (FFV)
produces the 5-linear formula:

(FFI)′ Alternate Fundamental Formula:

U{x,y,z} + UUxUy(z),z = UxUyUz + UzUyUx + Vx,yUzVy,x,

(FFIII)′ Specialization Formulas: V 2
x − Vx2 = 2Ux,

VxVyVx − VUxy = Ux,yVx + UxVy = VxUx,y + VyUx,

(FFV)′ 5-Linear Formula: [Vx,y, Vz,w] = VVx,y(z),w − Vz,Vy,x(w).

proof. In associative algebras the operators on both sides of (FFI),
(FFII), (FFIII), (FFIII)′, (FFIV) applied to z produce xyxzxyx, xyxzx +
xzxyx, xyxyz+zyxyx, xyzx+xzyx+x2zy+yzx2+xzxy+yxzx, xyz+zyx
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respectively. Since they are operator identities in 2 variables, they hold in
all algebras by Macdonald. [Note that (FFIVe) is just a linearization of the
version y = 1 of (FFIIIe), so (FFIV) is a consequence of (FFIII).]
The Fundamental Lie Formula (FFV) is not amenable to Macdonald

directly, since it involves 4 variables, but it follows from linearizations of
(FFII),(FFIII):

(
Vx,yUz+UzVy,x

)
(w) = {Uzw, y, x}+Uz{y, x, w} [using sym-

metry of the triple product] =
( − {Uzy, w, x} + {z, {w, z, y}, x}) + ( −

Uz,x{y, z, w} + {Uzy, w, x} + {{z, y, x}, w, z}) [replacing x, y, z �→ z, y, x in
the linearized Triple Shift Identity and then linearizing y �→ y, w for the first,
and replacing x, y, z �→ z, y, w in the Commuting Identity and then linearizing
z �→ z, z, x for the second] = {{x, y, z}, w, z} = U{x,y,z},z(w).
The more useful elemental version of (FFV) is the 5-Linear Identity

(FFV′e); it follows by letting (FFV) act on w and then linearizing z �→ z, u.
If we interpret (FFV′e) as an operator acting on u we get (FFV)′.
Likewise, Alternate Fundamental (FFI)′ involves four variables and doesn’t

follow from Macdonald. Since linearization of Fundamental (FFI) (replace x
by x+ λz and take coefficients of λ2) yields

U{x,y,z} + UUxy,Uzy = UxUyUz + UzUyUx + Ux,zUyUx,z,

Alternate Fundamental is equivalent to

UUxUy(z),z − Vx,yUzVy,x = UUxy,Uzy − Ux,zUyUx,z.

By acting on a, in special algebras both sides reduce to the 7-tad {x, y, z, a,
x, y, z}, but Macdonald can only lend moral support. To carry on alone we
make repeated use of Fundamental Lie [for Vz,aUx on the first term, Vx,aUz

on the second term, VUzy,aUx (also Triple Shift (FFIII)) on the third term],
and by linearized Triple Shift (FFIII) on the fourth term, to see that on the
left side we have

{z, a, UxUy(z)} =
α︷ ︸︸ ︷

{x, Uyz, {z, a, x}}−
β︷ ︸︸ ︷

Ux{a, z, Uyz},

−Vx,yUz{a, x, y} = −Vx,y
(− γ︷ ︸︸ ︷

{x, a, Uzy}+
δ︷ ︸︸ ︷

{{x, a, z}, y, z} ),
while on the right side we have

{Uzy, a, Uxy} = {x, y, {Uzy, a, x}} − Ux{a, Uzy, y},

= Vx,y
( γ︷ ︸︸ ︷
{x, a, Uzy}

)− β︷ ︸︸ ︷
Ux{Uyz, z, a},

−{x, Uy{x, a, z}, z} = {x, Uyz, {x, a, z}} − {x, y, {{x, a, z}, y, z}},

=

α︷ ︸︸ ︷
{x, Uyz, {x, a, z}}−Vx,y

δ︷ ︸︸ ︷
{{x, a, z}, y, z} .

Thus both sides sum to the same result α− β + Vx,y(γ)− Vx,y(δ). �
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Exercise 5.2.3 (1) The first part of (FFIII)′ is the definition of the U -operator; deduce
the second part by setting z = 1̂ in (FFIIIe); then linearize y �→ y, z; the equality of the
two negative expressions follows by linearizing Commuting UxVx = VxUx. (2) Show that
(FFIII) =⇒ 2(FFIV) by identifying coefficients of λµ when replacing x, y �→ x+λ1̂, y+µ1̂ in
(FFIII). (3) Show that (FFIII) =⇒ (FFIV) by replacing y �→ 1̂ in (FFIII), then linearizing
x �→ x, y.

We have included the Fundamental Lie and 5-Linear Identities primarily
because of their historical role in bonding Lie and Jordan algebras through
the structure Lie algebra and TKK-construction. We are exclusively concerned
with the structure theory of Jordan algebras in this Part and the next, and
will have only a few occasions to use these two identities.
The first four identities are “working tools” that we will use constantly in

the rest of the book. As one immediate application, which will be of future
use, let us rephrase the condition for a unit in terms of U -operators instead
of L-operators.

Idempotent Unit Proposition 5.2.4 An element e is the unit element of
J iff it is an idempotent with identity U -operator,

e2 = e, Ue = 1J.

proof. These certainly are necessary conditions; they are sufficient since
they imply Le = Le1J = LeUe = 1

2Ue2,e [by Commuting Formula (FFII)]
= 1

2Ue,e [by e2 = e] = Ue = 1J. (We could also use the Shirshov–Cohn
Principle 5.1.4 directly: in the associative algebra Φ{e, x} we have ex = e(exe)
[by Ue = 1J] = e2xe = exe [by e2 = e] = x, dually xe = e, so also e • x = x.)
�
It is impossible to overstress the importance of the Fundamental Formula.

Historically, it was the instigation for Macdonald’s theorem. We will use it
twice a day (thrice on Sundays). The entire theory of quadratic Jordan alge-
bras (over general scalar rings where 1

2 may not be available) is based on this
formula. The Commuting Formula (FFII) is needed together with (FFI) to
axiomatize unital quadratic Jordan algebras; its special case y = 1 is equiva-
lent to the Jordan identity (commutativity of Vx and Vx2). The Triple Shift
Formula (FFIII) is needed (with (FFI) and (FFII)) to axiomatize quadratic
triple systems (to make up for the lack of a unit). We will use the Triple
Switch Formula (FFIV) very frequently to switch factors in a triple product
(modulo bilinear products); Jordan triple systems sorely lack this handy tool.
Rather surprisingly, we need almost no further identities in the rest of

the book, and those few follow from Macdonald’s principle, so we will intro-
duce them only when needed. The one exception is the structurality of the
Bergmann operator (see Exercise 5.3.1 below).
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5.3 Nondegeneracy

An immediate consequence of the Fundamental Formula is the creation of
principal inner ideals, which play an important role as Jordan analogues of
left ideals. The trivial elements are those whose principal inner ideal collapses;
these are pathological, and our entire structure theory will assume that the
algebras are nondegenerate in the sense of having no nonzero trivial elements.1

Principal Inner Proposition 5.3.1 (1) The open, half-open, closed
principal inner ideals determined by an element x of a Jordan algebra are

(x) := UxJ ⊆ (x] := UxĴ = Φx2 + UxJ ⊆ [x] := Φx+ UxĴ.

We will use (x] as our standard, and simply call it the principal inner ideal
determined by x. Certainly (x) = (x] in unital algebras, and all three coincide
if x is regular (x ∈ UxJ). It is usually not crucial which one we use, because
they are closely related :

U(x)Ĵ ⊆ U(x]Ĵ ⊆ (x), U[x]J ⊆ (x), U[x]Ĵ ⊆ (x].

proof. These containments and innernesses are immediate consequences
of the Fundamental and Commuting Formulas (FFI), (FFII) since the formula
Uαx+Uxa = α2Ux+αUx,Uxa+UUxa = α2Ux+αVx,aUx+UxUaUx and its dual
show that

Uαx+Uxa = Bα,x,−aUx = UxBα,−a,x (Bα,x,y := α21J − αVx,y + UxUy)

in terms of the useful generalized Bergmann operators Bα,x,y. This im-
plies that U[x]Ĵ = UxBΦ,Ĵ,xĴ ⊆ UxĴ = (x], and also that U[x]J + U(x]Ĵ ⊆
UxBΦ,Ĵ,xJ+ UxUĴUxĴ ⊆ UxJ = (x) [since J is an ideal in its unital hull]. �

In general (b] needn’t contain the element b, and the inner ideal generated
by b (i.e., the smallest inner ideal of J containing b) is the slightly larger [b].
As with intervals on the real line, we can start from the “open principal” inner
ideal (b) and adjoining the “endpoint” b2 to get the “principal” inner ideal (b],
then adjoin the other endpoint b to get the “closed principal” inner ideal [b].2

In unital algebras we always have (b) = (b], but not necessarily (b) = [b]. An
element is called von Neumann regular if b ∈ UbJ, equivalently (b) = (b] = [b];
these elements will play a starring role in Chapter 18.

1 Nondegeneracy and the Full, Hermitian, Quadratic and Cubic Factor Nondegeneracy
Examples were discussed in I.2.8, and principal inner ideals were introduced in I.4.7–8.

2 We could also call these the weak, ordinary, and strong principal inner ideals. As
explained in the Historical Survey Section I.4, we take the ordinary principal (x] as our
basic inner ideal. As Goldilocks says, it’s not to little, not too big, its just right.
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The Bergmann operators Bx,y := B1,x,y play an important role in dif-
ferential geometry, determining the Bergmann metric for the bounded sym-
metric domains built out of Jordan triples.

Exercise 5.3.1 Prove the fundamental formula UBα,x,y(z) = Bα,y,xUzBα,x,y for the gener-
alized Bergmann operators Bα,x,y := α21J−αVx,y +UxUy . Note that this can’t be derived
immediately from Macdonald’s Principle. We will return to this in Bergmann Structurality
Proposition III.1.2.2.

Triviality Definition 5.3.2 An element z of a Jordan algebra J is trivial
if its principal inner ideal vanishes, (z] = 0. This just means UzĴ = 0 (i.e.,
Uz(J) = 0 and z2 = 0). An element w is weakly trivial if its weak principal
inner ideal vanishes, (w) = Uw(J) = 0. Thus an element z is trivial iff it is
weakly trivial and remains weakly trivial in the unital hull.3

A Jordan algebra is nondegenerate if it contains no nonzero trivial ele-
ments, Uz = 0 on Ĵ implies z = 0. At the opposite extreme, a Jordan algebra
is trivial if all its elements are trivial, equivalently, all Jordan products are
zero: J•J = 0. [Since our convention requires z2 = 0 for a trivial (as opposed
to a weakly trivial) element, the condition that all x are trivial implies that
all x • x = 0 and so by linearization 2x • y = 0, and by appealing to 1

2 we see
that all x • y = 0.]
It will be useful to us to note that as soon as we rid an algebra of trivial

elements the weakly trivial elements leave as well, as if called by the Pied
Piper.

Weak Riddance Proposition 5.3.3 A Jordan algebra J is nondegenerate
iff it has no nonzero weakly trivial elements, Uz = 0 on J implies z = 0,
because if an element is weakly trivial then either it or its square is trivial.

proof. If w is weakly trivial, Uw(J) = 0, then either it is already trivial,
Uw(Ĵ) = Uw(J) + Φw2 = 0, or else its square w2 is nonzero. But this square
(whether zero or not) is always trivial, Uw2(Ĵ) = UwUw(Ĵ) [by Operator
Power-Associativity 5.2.2(2) ⊆ Uw(J) = 0 [by UwĴ ⊆ J and weak triviality of
w]. �

Exercise 5.3.3* (1) Show that the image of a trivial (respectively, weakly trivial) element
under structural (respectively, weakly structural) transformation UT (x) = TUxT ∗ on Ĵ
(respectively, on J) (see Problem 7.2), is again trivial (respectively weakly trivial).

3 Trivial elements are also called absolute zero divisors, though absolute outer zero di-
visor would be a better term [An outer zero divisor would be an element z which kills
some nonzero a from the “outside,” Uza = 0; the term “absolute” refers to the fact that it
kills absolutely everybody.] Many authors do not demand triviality on the unital hull, using
weak triviality. Strong triviality is often more natural; for example, elements of a trivial
associative ideal B of A are always strongly trivial.



5.3 Nondegeneracy 207

In the structure theory we will be entirely concerned with nondegenerate
algebras. We will often abuse language and say that a nondegenerate algebra
is one that has no trivial elements, where of course we really mean no nonzero
trivial elements.
We now describe what nondegeneracy amounts to in our basic examples.

Full and Hermitian Trivial Example 5.3.4 (1) An element z of A+ is
trivial iff it generates a trivial two-sided ideal B = ÂzÂ. In particular, the full
Jordan algebra A+ is nondegenerate iff the associative algebra A is semiprime.
(2) If z is trivial in H(A, ∗), then either z or some zâz is trivial in A. In

particular, if A is semiprime with involution, then H(A, ∗) is nondegenerate.
proof. (1) holds because UzÂ+ = 0 ⇔ zÂz = 0 ⇔ (ÂzÂ)(ÂzÂ) = 0 ⇔

the ideal B := ÂzÂ generated by z is a trivial associative ideal, BB = 0.
(2) If z ∈ H has zHz = 0, then for all c ∈ A we have z(c + c∗)z =

0 ⇒ zcz = −zc∗z. If z is not itself trivial in A, then w = zâz  = 0 for some
â ∈ Â; but then w is trivial in A, since for any b̂ ∈ Â we have wb̂w =
(zâz)b̂(zâz) = z(âzb̂)zâz = −z

(
âzb̂

)∗
zâz [note that thanks to z, the element

c = âzb̂ lies in A, despite the fictitious elements â, b̂ ∈ Â] = −z
(
b̂∗zâ∗

)
zaz =

−zb̂∗z
(
â∗zâ

)
z = 0 [since â∗zâ ∈ H is also an actual element]. This shows that

w is trivial. �
In general, if H is nondegenerate, A needn’t itself be semiprime unless it

is a “tight cover” of H (see Problems 5.4, 5.5 at the end of the chapter).
Nondegeneracy of Jordan Matrix Algebras 3.2.4 reduces to nondegeneracy

of their coordinate algebras. For these particular hermitian algebras for n = 3
we can even allow non-special algebras with alternative coordinates (cf. the
3× 3 Coordinatization Theorem C.1.3 in Appendix C).

Jordan Matrix Nondegeneracy Example 5.3.5 For D a unital alternative
algebra with nuclear involution and n ≥ 2, Hn(D,−) is nondegenerate iff D
and H(D,−) are semiprime in the sense that they have no D- or H-trivial
elements, i.e., dDd = 0 =⇒ d = 0 in D and δHδ = 0 =⇒ δ = 0 in H.
proof. For unital alternative D with nuclear involution we noted in the

Hermitian Matrix Example 3.2.4(3) that the Three Basic U -Products and
Basic U -Orthogonality are

Uδ[ii]β[ii] = (δβδ)[ii], Ud[ij]b[ij] = (db̄d)[ij],
Ud[ij]β[jj] = (dβd̄)[ii], Ud[ij]b[k?] = 0 if {k, ?}  ⊆ {i, j}

(parentheses are unnecessary since δ, η are nuclear and D is flexible).
If there are no trivial coordinates, there are no trivial matrices z =∑

i δii[ii]+
∑

i<j dij [ij]: by the Fundamental Formula any Uxz would be again
trivial, so U1[ii]z = δii[ii] trivial implies δiiHδii[ii] = Uδ[ii](H[ii]) = 0 and δii
is H-trivial, so all diagonal entries δii are 0, in which case U1[ii]+1[jj]z = dij [ij]
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trivial implies all dij c̄dij [ij] = Udij [ij]
(
c[ij]

)
= 0 and each dij is D-trivial, so

all off-diagonal entries dij are 0 too.
Conversely, if there are no trivial matrices there can be no trivial coor-

dinates: if δ is H-trivial then z = δ[11] is trivial, since by the above Basic
U -Orthogonality we have Uz(J) = UzH[11] = δHδ[11] = 0; if d is D-trivial
then all dηd̄, d̄ηd ∈ H are H-trivial [note that dηd̄ = dη(d + d̄) − dηd = dητ ,
where the trace τ := d + d̄ is in H, and (dητ)H(dητ) = (

d(ητH)d)ητ = 0
by nuclearity of η, τ,H] and so as above produce trivial z = δ[11]; if dHd̄ =
d̄Hd = 0 then z = d[12] itself is trivial, since by Basic U -Orthogonality again
Uz(J) = Ud[12](H[11]+D[12]+H[22]) = (d̄Hd)[22]+(dDd)[12]+(dHd̄)[11] = 0.
�

Exercise 5.3.5 Show that the hypothesis that D is unital can be removed in the above
example, though the surgical operation is painful enough to require an anesthetic. (1) If
z is a trivial matrix, use Basic Triple Product Rules 3.2.4(4) in addition to the rules of
U -products to examine the ii-entry of UzH[ii] = 0 to see δii is H-trivial. (2) Once all the
diagonal δii are removed, examine the ij-entry of UzD[ij] = 0.

Nondegeneracy in Jordan algebras built out of quadratic and cubic forms
is closely related to nondegeneracy of the forms themselves.

Quadratic and Cubic Factor Nondegeneracy Example 5.3.6 Triviality
in a quadratic or cubic factor is located in the radical of the norm form, so
the algebra is nondegenerate when its norm is a nondegenerate form.

Quadratic: In a quadratic factor Jord(Q, c) over a field, an element z is
trivial iff z ∈ Rad(Q). Thus Jord(Q, c) is nondegenerate iff Q is nondegenerate
as quadratic form.

Spin: A Spin Factor JSpin(M,σ) over a field is nondegenerate iff the
bilinear form σ is nondegenerate.

Reduced Spin: A Reduced Spin Factor RedSpin(q) over a field is nonde-
generate iff the quadratic form q is nondegenerate.

Cubic: A cubic factor Jord(N,#, c) over a field is nondegenerate iff there
are no nonzero trace- and sharp-trivial elements T (z,J) = z# = 0. A cubic
factor Jord(N, c) determined by a Jordan cubic form with basepoint over a
field is always nondegenerate.

proof. In a quadratic factor over an arbitrary ring of scalars, recall from
Forms Permitting Composition 2.3.1(2) that Q is nondegenerate iff it has
zero radical Rad(Q) = {z | Q(z) = Q(z,J) = 0}. If z is radical then Q(z) =
Q(z,J) = 0, hence by Quadratic Factor Example 3.3.1 Uz(J) = Q(z,J)z −
Q(z)J = 0 and z is trivial. Conversely, if z is trivial over a field then Uz z̄ =
Q(z, z)z−Q(z)z = Q(z)z vanishes, so [because J is torsion-free as a Φ-module
when Φ is a field] the scalar Q(z) is equal to 0; then Uzx̄ = Q(z, x)z vanishes,
which in turn implies Q(z, x) = 0 for any x, and z is radical.
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The spin and reduced spin examples then follow, since JSpin(M,σ) =
Jord(Q, 1) for Q = 1 ⊕ (−q), and Q is nondegenerate iff q is, i.e., iff σ is
[since 1

2 ∈ Φ]. Similarly, RedSpin(q) = Jord(Q, c) for Q = QH ⊕ (−q) (H a
hyperbolic plane Φe1+Φe2, c = e1+e2), which is again nondegenerate iff q is.
For cubic factors, the Cubic Construction shows that a trace- and sharp-

trivial element T (z,J) = z# = 0 is trivial in the U -sense, Uzx = T (z, x)z −
z##x = 0, no matter what the ring of scalars is. Conversely, over a field if
z  = 0 is trivial then z3 = Uzz, z

2 = Uzc vanish. Then the Degree–3 Identity
4.2.2(2) says that N(z)c = z3−T (z)z2+S(z)z = S(z)z; over a field a nonzero
trivial z is certainly not a scalar multiple of the unit c, so we must have
S(z) = 0. Taking traces of the Sharp Expression 4.2.2(1) z# = z2 − T (z)z +
S(z)c = −T (z)z yields −T (z)2 = T (z#) = S(z) = 0, so T (z) = 0 too, whence
the Sharp Expression itself gives sharp-triviality z# = 0. Then U -triviality
0 = UzJ = T (z,J)z − z##J = T (z,J)z implies trace-triviality. Since by
definition a Jordan cubic form always has a nondegenerate trace, there are no
nonzero trace-trivial elements, so Jord(N, c) is always nondegenerate. �

Exercise 5.3.6A Extend the above nondegeneracy criterion for quadratic factors from
fields to arbitrary rings of scalars without nilpotent elements, by showing that Q(z)z =
0 ⇒ Q(z)3 = 0 and Q(z, x)z = 0 ⇒ Q(z, x)2 = 0.

Exercise 5.3.6B Extend the above nondegeneracy criterion for cubic factors from fields
to arbitrary rings of scalars without nilpotent elements. (1) If z ∈ Jord(N,#, c) is trivial,
multiply the Degree–3 Identity by z to get N(z)z = 0; conclude that N(z) = 0. (2) Use the
Degree–3 Identity and (1) to get S(z)z = 0, hence S(z) = 0. (3) Take traces of the Sharp
Expression to conclude that T (z) = 0, hence z# = 0. (4) In the presence of sharp-triviality,
show that z is trivial iff it is trace-trivial. (5) Show by example that all bets are off if there
are nilpotent scalars: for any nondegenerate cubic factor J, the algebra of dual numbers
J[ε] = J⊗Φ Φ[ε] (ε2 = 0) has all elements εJ trivial, yet T may be a nondegenerate bilinear
form.

5.4 Problems for Chapter 5

Problem 5.1 Macdonald’s Theorem still holds for quadratic Jordan algebras,
but not the Shirshov–Cohn Theorem: there exist elements with z2 = 0 but
z3  = 0, so even the subalgebra Φ[z] generated by a single element need not be
special. Zounds! Use only quadratic products, and the rule Uxnxm = x2n+m,
to show that in quadratic Jordan algebras we at least have zn = 0⇒ zm = 0
for all m ≥ 2n.
Problem 5.2* (1) Show that ideals inherit nondegeneracy: if a Jordan al-
gebra J is nondegenerate, so is any ideal I in J. (2) Show that any nonzero
trivial ideal K (UKK̂ = 0) contains trivial elements. Conclude that nondegen-
eracy always implies semiprimeness in Jordan algebras. The converse doesn’t
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seem to hold. Indeed, a major step in Zel’manov’s infinite-dimensional theory
is the proof that the trivial elements in any Jordan algebra live in an ideal
which need not be globally nilpotent, but is at least locally nilpotent in the
sense that every finitely-generated subalgebra is nilpotent.

Problem 5.3* Establish a formula D(xn) =Mn,x(D(x)) for the derivative
of a power as a multiple of D(x) for any derivation D of a Jordan algebra.

Problem 5.4* Let J ⊆ A+ be any special Jordan algebra. (1) If B is
a trivial associative ideal in A, show that all elements of B ∩ J are trivial
in J. Conclude that if J is nondegenerate, and A is a tight cover of J in
the sense that there are no nonzero associative ideal of A which are disjoint
from (have zero intersection with) J, then A is semiprime. (2) We can easily
remedy non-tightness by removing a maximal disjoint ideal K, replacing the
envelopeA by the equally-good envelopeA = A/K: show that J still faithfully
imbeds inA and intersects all its nonzero ideals. (3) The associative direct sum
A = A1 �A2 is about as far as possible from being a tight cover of its direct
summand J = A+

1 . Give an example to show that nondegeneracy of J cannot
force semiprimeness of A, since J has no influence on A2. Give an example to
show that nondegeneracy of J = H(A, ∗) cannot force nondegeneracy of A.
Problem 5.5* (1) An associative ∗-algebra is called ∗-semiprime if it has
no trivial ∗-ideals BB = 0. Show that this is the same as having no nilpotent
∗-ideals Bn = 0. Show that A is ∗-semiprime as ∗-algebra iff it is semiprime
as an ordinary algebra. (2) An associative algebra is called a ∗-tight cover of
J ⊆ H(A, ∗) if there are no disjoint ∗-ideals: every nonzero ∗-ideal of A has
nonzero intersection with J. Show that any ∗-tight cover of a nondegenerate
Jordan algebra is ∗-semiprime. (3) If 1

2 ∈ Φ show that a ∗-ideal is disjoint
from J = H(A, ∗) iff it is skew (contained in Skew(A)). Conclude that A
is ∗-tight iff it has no nonzero skew ideals. (4) Show that any cover can be
∗-tightened. If J = H(A, ∗) show that there is a unique tightening A and still
J = H(A, ∗).
Question 5.1 (1) Is it true that e is idempotent iff Ve is idempotent? Iff Ue

is idempotent? (2) Is it true that z is nilpotent iff Vz is nilpotent? Iff Uz is
nilpotent?

Question 5.2 What can you say about an element z that is strongly trivial
in the sense that its strong or closed principal inner ideal [z] vanishes?

Question 5.3* The black sheep of the principal inner ideal family is the
right-open [x) := Φx + UxJ. We will never mention him again, and all glory
goes to his illustrious half brother (x]. Decide whether [x) genetically belongs
to the inner ideal family, and decide where it fits in the family lattice (the
chain of inclusions in Principal Inner Proposition 5.3.1).

Question 5.4* Is every tight cover of a simple Jordan algebra a simple asso-
ciative algebra? Is every ∗-tight cover of a simple Jordan algebra ∗-simple?
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Inverses

The Classical Theory of algebras with capacity depends crucially on the prop-
erties of inverses: the diagonal building blocks Jii will be division subalgebras,
and they will be connected by off-diagonal invertible elements in the subalge-
bra Jii + Jij + Jjj . In general there is no one definition of invertibility that
works well for all unital nonassociative algebras.
For associative and alternative algebras the condition xy = yx = 1 is suf-

ficient for x to be invertible with a “reasonable” inverse y. But this condition
is not restrictive enough for a general notion of inverse in all algebras: in a
Jordan algebra JSpin(M,σ) = Φ1⊕M (v • w = σ(v, w)1) of a bilinear form
σ with dim(M) > 1, every v  = 0 has promiscuously many “inverses” w with
σ(v, w) = 1, even if v has σ(v, v) = 0 and hence squares to 0!
At the other extreme, for coordinatizing a projective plane one needs a

coordinate ring which is a “division algebra” in the strong sense that for each
x  = 0 the operators Lx and Rx should be invertible transformations (so the
equations xy = a, zx = b have unique solutions y, z for any given a, b). This
is overly restrictive, for A+ fails this test even for the well-behaved associative
division algebra A = H of real quaternions (think of i•j = 0 for the eminently
invertible complex number i).

6.1 Jordan Inverses

Jacobson discovered the correct elemental definition of inverse at the same
time he discovered U -operators, and these have been inextricably linked ever
since their birth.1

Inverse Definition 6.1.1 An element x of a unital Jordan algebra is in-
vertible if it has an inverse y (denoted by x−1) satisfying the Quadratic
Jordan Inverse Conditions

1 In the Historical Survey, the Linear Inverse Conditions were introduced in I.3.2,
Quadratic Inverse Conditions were introduced in I.4.5; the Jordan Inverse Recipe, U–Inverse
Formula, Special and Factor Invertibility were discussed in I.3.7–8 and I.4.5.
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(QJInv1) Uxy = x, (QJInv2) Uxy
2 = 1.

An algebra in which every nonzero element is invertible is called a Jordan
division algebra.

In associative algebras invertibility is reflected in the left and right multi-
plication operators: an element x in a unital associative algebra is invertible
iff Lx is invertible, in which case Lx−1 =

(
Lx

)−1 (and dually for Rx). Analo-
gously, invertibility in Jordan algebras is reflected in the U -operator.

Invertibility Criterion 6.1.2 The following are equivalent for an element
x of a unital Jordan algebra:
(1) the element x is invertible in J;
(2) the operator Ux is invertible on J;
(3) the operator Ux is surjective on J;
(4) the unit 1 lies in the range of the operator Ux.

proof. Clearly (2) =⇒ (3) =⇒ (4), and (4) =⇒ (2) since Uxa = 1 =⇒
1J = U1 = UxUaUx =⇒ Ux has left and right inverses =⇒ Ux is invertible.
Clearly (1) =⇒ (4) by (QJInv2). Finally, (2) =⇒ (1) for y =

(
Ux

)−1
x: we

have (QJInv1) Uxy = x by definition, and if we write 1 = Uxa then Uxy
2 =

UxUy1 = UxUyUxa = UUxya [by the Fundamental Formula (FFI)] = Uxa = 1,
so (QJInv2) holds as well. �

Inverse Formulas 6.1.3 If x is invertible in a unital Jordan algebra, then
its inverse is uniquely determined by the Jordan Inverse Recipe

x−1 = U−1
x x.

The U–Inverse Formula states that the U -operator of the inverse is the
inverse of the original U -operator,

Ux−1 = U−1
x ,

and the L–Inverse Formula states that L-multiplication by the inverse is
given by a shift of original L-multiplication,

Lx−1 = U−1
x Lx, which therefore commutes with Lx.

proof. The Inverse Recipe holds by (QJInv1) and the fact that Ux is in-
vertible by Invertibility Criterion (2). The U–Inverse Formula holds by multi-
plying the relation UxUx−1Ux = UUxx−1 = Ux [by the Inverse Recipe and the
Fundamental Formula] on both sides by U−1

x . The L–Inverse Formula holds
since the right side commutes with Lx (since Ux does), and is seen to equal the
left side by canceling Ux from UxVx−1Ux = Ux(Ux−1,1)Ux = UUxx−1,Ux1 [by
the Fundamental Formula] = Ux,x2 = VxUx [by Commuting Formula (FFII)].
�
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Exercise 6.1.3 Assume that x is invertible. (1) Use the L-Inverse Formula UxLx−1 = Lx

to show that Lx−1Lx = 1J iff Lx2 = L2
x iff x satisfies the associativity condition [x, x, y] = 0

for all y.

A unital associative algebra is a division algebra iff it has no proper one-
sided ideals, which is equivalent to having no proper inner ideals. The situation
for Jordan algebras is completely analogous.

Division Algebra Criterion 6.1.4 The following are equivalent for a unital
Jordan algebra:
(1) J is a division algebra;
(2) J has no trivial elements or proper principal inner ideals;
(3) J has no proper closed principal inner ideals;
(4) J has no proper inner ideals.

proof. Notice that since J is unital, hats are unnecessary, and the prin-
cipal inner ideal is (x] = (x) = Ux(J). J is a division algebra [as in (1)] ⇐⇒
all x  = 0 are invertible ⇐⇒ if x  = 0 then (x] = J [by Invertibility Criterion
6.1.2(3)] ⇐⇒ if x  = 0 then (x]  = 0 and (x]  = 0 implies (x] = J ⇐⇒ no
trivial elements and no proper principal inner ideals [as in (2)] ⇐⇒ if x  = 0
then [x] = J [as in (3)] (note in the unital case that (x) = J ⇐⇒ [x] = J
since =⇒ is clear, and ⇐= holds by J = U1J ⊆ U[x]J ⊆ (x) from Principal
Inner Proposition 5.3.1).
Clearly (4) =⇒ (3), and (3) =⇒ (4) since any nonzero inner ideal B

contains a nonzero x, so [x]  = 0 implies [x] = J and hence B must be all of
J. �

We will see later (in the Surjective Unit Theorem 18.1.4) that this remains
true even if J is not unital.

Exercise 6.1.4* (1) Show that the ban on trivial elements in (2) is necessary: if J = Φ[ε]
for a field Φ and ε2 = 0, show that every element x is either invertible or trivial, so (x) = (x]
is either J or 0, yet J is not a division algebra. (2) Show directly that an associative algebra
A (not necessarily unital) is a division algebra iff it is not trivial and has no proper inner
ideals B (Φ-submodules with bÂb ⊆ B for all b ∈ B).

Now we describe inversion in our basic Jordan algebras, beginning with
Full and Hermitian algebras.

Special Inverse Example 6.1.5 (1) If J ⊆ A+ is a unital Jordan subalgebra
of a unital associative algebra A, then two elements x, y in J are Jordan
inverses iff they are associative inverses.

(AInv1) xy = 1, (AInv2) yx = 1.

Thus x is invertible in J iff it is invertible in A and its inverse belongs to J.
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(2) Full Invertibility: If A is a unital associative algebra, an element
x has inverse y in the Jordan algebra A+ if and only if it has inverse y in the
associative algebra A, and its Jordan and associative inverses coincide; A+

is a Jordan division algebra iff A is an associative division algebra.
(3) Hermitian Invertibility: If A is a unital associative algebra with

involution ∗, an element in the Jordan algebra H(A, ∗) of symmetric elements
is invertible if and only if it is invertible in A, and H(A, ∗) is a Jordan division
algebra if A is an associative division algebra.

proof. (1) The associative inverse conditions (AInv1)–(AInv2) for x, y
in A certainly imply the Jordan inverse conditions (QJInv1)–(QJInv2) in
A+; conversely, (QJInv2) xy2x = 1 implies that x has a left and a right
inverse, hence an inverse, and canceling x from (QJInv1) xyx = x shows that
xy = yx = 1. (2) for J = A+ follows immediately, and in (3) for J = H(A, ∗),
the inverse y = x−1 is hermitian if x is. �

Factor Invertibility Example 6.1.6 An element x of a quadratic factor
Jord(Q, c) or cubic factor Jord(N,#, c) determined by a quadratic form Q
or cubic form N with basepoint, is invertible if and only if its norm Q(x)
or N(x) is invertible in the ring of scalars Φ [assuming that the scalars act
faithfully in the cubic case], in which case the inverse is

x−1 = Q(x)−1x̄, Q(x−1) = Q(x)−1,

x−1 = N(x)−1x#, N(x−1) = N(x)−1.

Over a field Jord(Q, c) or Jord(N,#, c) is a Jordan division algebra if and
only if Q or N is an anisotropic quadratic or cubic form.

proof. Let n stand for the norm (either Q or N). If x has inverse y, then
1 = n(c) = n(Uxy

2) = n(x)2n(y)2 since the norm permits composition with U
by Quadratic Factor Example 3.3.1 or the Cubic Construction 4.2.2(3) [here’s
where we need the annoying faithfulness hypothesis on the scalars], showing
that n(x) is an invertible scalar; then canceling n(x) from n(x) = n(Uxy) =
n(x)n(y)n(x) shows that n(x), n(y) are inverses as in the last assertion.
Conversely, if n(x) is invertible we can use it to construct the inverse in

the usual way: from the Degree–2 Identity 3.3.1 or Degree–3 Identity 4.2.2(2),
xd − T (x)xd−1 + · · · + (−1)dn(x)c = 0 (d = 2, 3), which as usual implies
that x • y = 1 for y = (−1)d+1n(x)−1[xd−1 − T (x)xd−2 + · · · ] ∈ Φ[x]. But
by Power-Associativity Theorem 5.2.2 this implies that Uxy = x • (x • y) =
x, Uxy

2 = (x • y)2 = 1, so y = x−1 as in the Inverse Definition 6.1. The
inverse reduces to −Q(x)−1(x − T (x)1) = Q(x)−1x̄ in quadratic factors and
to N(x)−1(x2 − T (x)x+ S(x)1) = N(x)−1x# [by Sharp Expression 4.2.2(2)]
in cubic factors. �
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Exercise 6.1.6 (1) A “norm” on a Jordan algebra is a polynomial function from J to Φ
satisfying N(1) = 1, N(Uxy) = N(x)2N(y) (but seldom N(x • y) = N(x)N(y), another
good reason for using the U -operators instead of the L-operators). Use this to show that if
x is invertible so is its norm N(x), and N(x−1) = N(x)−1. (2) An “adjoint” is a vector-
valued polynomial map on J such that x# satisfies Uxx# = N(x)x, UxUx# = N(x)21J.
Show from this that, conversely, if N(x) is invertible then x is invertible, x−1 = N(x)−1x#

(just as with the adjoint of a matrix).

We now verify that the quadratic definition we have given agrees with the
original linear definition II.I.3.2 given by Jacobson.

Linear Inverse Lemma 6.1.7 An element of an arbitrary unital Jordan
algebra has inverse y iff it satisfies the Linear Jordan Inverse Conditions

(LJInv1) x • y = 1, (LJInv2) x2 • y = x.

proof. The quadratic and linear invertibility conditions (Q) and (L) are
strictly between x and y, so all take place in Φ[x, y], and by the Shirshov–
Cohn Principle 5.1.4 we may assume that we are in some associative A+. The
reason that (Q) and (L) are equivalent is that they are both equivalent to
the associative invertibility conditions (A): we have already seen this in Full
Invertibility 6.1.5 for (Q); (A) certainly implies (LJInv1)–(LJInv2), 1

2 (xy +
yx) = 1, 1

2 (x
2y+ yx2) = x, and conversely, multiplying (LJInv1) xy+ yx = 2

on the left and right by x yields x2y + xyx = 2x = xyx+ yx2, so x2y = yx2;
hence both equal x by (LJInv2) x2y + yx2 = 2x; therefore xy = (yx2)y =
y(x2y) = yx, so both equal 1 by (LJInv1), and we have (A). �

Exercise 6.1.7* Show that the quadratic inverse conditions (Q1)–(Q2) are equivalent to
the old-fashioned linear conditions (L1)–(L2) by direct calculation, without invoking any
speciality principle. (1) Show that (Q1)–(Q2) =⇒ Ux invertible. (2) Show that Ux invertible
=⇒ (L1)–(L2) for y = U−1

x (x) [by canceling Ux from Ux(xn • y) = Ux(xn−1) for n = 1, 2
to obtain (Ln)]. (3) Show that Ux invertible ⇐= (L1)–(L2) [get (Q1) by definition of the
U -operator, and (Q2) from x2 •y2 = 1 using the linearized Jordan identity (JAX2)′), hence
x • y2 = y].

In associative algebras, the product xy of two invertible elements is again
invertible, as is xyx, but not xy + yx (as we already noted, the invertible
x = i, y = j in the quaternion division algebra H have xy+yx = 0!). Similarly,
in Jordan algebras, the product Uxy of invertible elements remains invertible,
but x • y need not be. Indeed, in a quadratic factor two traceless orthogonal
units, Q(x) = Q(y) = 1, T (x) = T (y) = Q(x, y) = 0, will be invertible but
will have x • y = 0.
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Invertible Products Proposition 6.1.8 (1) Invertibility of a U -product
amounts to invertibility of each factor, by the Product Invertibility Cri-
terion:

Uxy is invertible ⇐⇒ x, y is invertible,

in which case (Uxy)−1 = Ux−1y−1.

(2) Invertibility of a power amounts to invertibility of the root, by the
Power Invertibility Criterion:

xn is invertible (n ≥ 1) ⇐⇒ x is invertible, in which case

(xn)−1 = (x−1)n =: x−n has Ux−n = (Ux)−n.

(3) Invertibility of a direct product amounts to invertibility of each compo-
nent : if J =

∏
Ji is a direct product of unital Jordan algebras, then we have

the Direct Product Invertibility Criterion:

x =
∏

xi is invertible in J ⇐⇒ each xi is invertible in Ji,

in which case (
∏

xi)−1 =
∏

x−1
i .

proof. (1) Uxy invertible ⇐⇒ UUxy = UxUyUx invertible [by the Invert-
ibility Criterion 6.1.2(1)–(3)] ⇐⇒ Ux, Uy are invertible [=⇒ since Ux has left
and right inverses, hence is invertible, so Uy is too, ⇐= is clear]; then by the
Inverse Recipe 6.1.3 (Uxy)−1 = (UUxy)

−1 (Uxy) = (UxUyUx)−1(Uxy) [by the
Fundamental Formula] = Ux−1Uy−1y = Ux−1y−1. (2) follows by an easy induc-
tion using (1) [n = 0, 1 being trivial]. The second part of (2) also follows imme-
diately from the first without any induction: Ux−n := U(xn)−1 = (Uxn)−1 [by
the U–Inverse Formula 6.1.3] =

(
Un
x

)−1 [by Power-Associativity 5.2.2] = U−n
x .

The first part can also be established immediately from the Shirshov–Cohn
Principle: since this is a matter strictly between x and x−1, it takes place
in Φ[x, x−1], so we may assume an associative ambience; but in A+ Jordan
invertibility reduces to associative invertibility by Special Inverse 6.1.5, where
the first part is well known. (3) This is clear from the componentwise opera-
tions in the direct product and the elemental definition. �

Exercise 6.1.8A Carry out the “easy induction” mentioned in the proof of (2) above.

Exercise 6.1.8B Define negative powers of an invertible element x by x−n := (x−1)n.
(1) Show that we have power-associativity xn • xm = xn+m, (xn)m = xnm, {xn, xm} =
2xn+m, Uxnxm = x2n+m, {xn, xm, xp} = 2xn+m+p and operator identities Uxn = Un

x ,
Vxn,xm = Vxn+m , Vxn,xmUxp = Uxn+m+p,xp for all integers n, m, p. (2) Show that
Uf(x,x−1)Ug(x,x−1) = U(f.g)(x,x−1), Vf(x,x−1)Ug(x,x−1) = U(f.g)(x,x−1),g(x,x−1) for any
polynomials f , g in the commutative polynomial ring Φ[t, t−1].
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In the Jacobson Coordinatization a crucial role will be played by “sym-
metry automorphisms” which permute the rows and columns of a matrix
algebra. These are generated by a very important kind of “inner” automor-
phism. Notice that the usual associative inner automorphism x �→ uxu−1 will
be expressible in Jordan terms as x �→ uxu = Uux if u = u−1, i.e., if u2 = 1.

Involution Definition 6.1.9 An element u of order 2 in a Jordan algebra
J, u2 = 1, will be called an involution in J. The corresponding operator Uu

will be called the involution on J determined by u.

Involution Lemma 6.1.10 If u is an involution in a unital Jordan algebra
J, then the involution Uu is an involutory automorphism of J, U2

u = 1J.

proof. Notice that an involution is certainly invertible: by the Fundamen-
tal Formula U2

u = Uu2 = U1 = 1J shows [by the Invertibility Criterion, 6.1.2
or Power Invertibility Criterion 6.1.8(2)] that Uu, and hence u, is invertible.
In Morphism 1.2.2 we noted that ϕ = Uu will be an automorphism as soon
as it preserves squares, and Uu(x2) = UuUx(1) = UuUx(u2) = (Uux)2 by the
Fundamental Formula applied to z = 1. [Alternately, since this is a matter
strictly between the elements u, x we can invoke the Shirshov–Cohn Principle
to work in an associative algebra A, and here Uua = uau−1 is just the usual
inner associative automorphism determined by the element u = u−1 and so
certainly preserves Jordan products.] �

6.2 von Neumann and Nuclear Inverses

In considering “twistings” of Jordan matrix algebras by isotopy, we will en-
counter nonassociative algebras A =M3(D) for certain alternative ∗-algebras
D where the hermitian part H3(D,−) forms a Jordan subalgebra of A+ even
though the entire A+ is not itself Jordan. We can understand the isotopic
twistings much better from the broad perspective of M3 than from the re-
stricted perspective of H3, so it will be worth our while to gather some ob-
servations about inverses (and later isotopes) by very tame (namely nuclear)
elements. There is a very general notion of inverses pioneered by von Neu-
mann.2

von Neumann Inverse Definition 6.2.1 An element x of an arbitrary
unital linear algebra A is vonvertible (von Neumann invertible) if it has a
vonverse (von Neumann inverse) y satisfying the Vonverse Condition

xy = 1 = yx where x, y operator-commute,

i.e., their operators Lx, Ly, Rx, Ry all commute.
2 Nuclear inverses were introduced in I.3.2.
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Such a vonverse y is unique: if y′ is another vonverse for x then y′ = Ly′(1) =
Ly′Lx(y) = LxLy′(y) [by operator-commutativity of x, y′] = LxRy(y′) =
RyLx(y′) [by operator-commutativity of x, y] = Ry(1) = y.
It is easy to see that for commutative Jordan algebras, x, y are vonverses

iff they are Jordan inverses. The element x and its Jordan inverse y = x−1

certainly satisfy the vonverse condition by the U–Inverse Formula 6.1.3; con-
versely, if x • y = 1 and Lx, Ly commute then also x2 • y = LyLx(x) =
LxLy(x) = Lx(1) = x, so x, y satisfy (LJInv1)–(LJInv2) and by the Linear
Inverse Lemma 6.1.7 are Jordan inverses.
When we pass beyond Jordan algebras, as long as we stick to nuclear

elements the notion of inverse works as smoothly as it does for associative
algebras.

Nuclear Inverse Proposition 6.2.2 If a nuclear element u of a unital linear
algebra A satisfies uv = 1 = vu for some element v ∈ A, then necessarily
v is nuclear too, and we say that u has a nuclear inverse. In this case
the operators Lu, Lv are inverses and Ru, Rv are inverses, and v := u−1

is uniquely determined as u−1 = L−1
u 1 or as u−1 = R−1

u 1. The operators
Lu, Ru, Uu := LuRu, Vu := Lu+Ru, Lu−1 , Ru−1 , Uu−1 := Lu−1Ru−1 , Vu−1 :=
Lu−1+Ru−1 all commute (though the Jordan operators Vu, Vu−1 are no longer
inverses). In particular, u, v are vonverses.

proof. First we verify that any such v is nuclear, [v, a, b] = [b, v, a] =
[a, b, v] = 0 for all a, b ∈ A. The trick for the first two is to write a = ua′ [note
that a = 1a = (uv)a = u(va) by nuclearity, so we may take a′ = va]; then
[v, ua′, b] = (vua′)b−v(ua′b) [by nuclearity of u] = a′b−(vu)a′b = 0 [by vu = 1
and nuclearity of u], similarly [b, v, ua′] = (bv)ua′−b(vua′) = (bvu)a′−ba′ = 0;
dually, for the third write b = b′u, so that [a, b′u, v] = (ab′u)v − a(b′uv) =
(ab′)uv − ab′ = 0 by uv = 1 and nuclearity of u.
Now Lu commutes with Rx and satisfies LuLx = Lux for all elements

x ∈ A by nuclearity [u,A, x] = [u, x,A] = 0, so it commutes with Rv and
LuLv = Luv = L1 = 1A; dually for v since it is nuclear too, so Lu, Lv are
inverse operators. Then Lu(v) = 1 implies that v is uniquely determined as
v = L−1

u (1), and dually for the right multiplications. Then the left and right
multiplications and the Jordan operators live in the subalgebra of operators
generated by the commuting Lu, Lu−1 , Ru, Ru−1 , where everyone commutes.
�
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6.3 Problems for Chapter 6

Problem 6.1* Let J be a unital Jordan algebra. (1) Show that u is an
involution in the sense of the Involution Lemma 6.1.10 iff u = e − e′ for
supplementary orthogonal idempotents e, e′, equivalently iff u = 2e − 1 for
an idempotent e. [We will see later that Uu = E2 − E1 + E0 has a nice
description as a “Peirce reflection” in terms of the Peirce projections Ei(e).]
(2) Show that u ←→ e is a bijection between the set of involutions of J and
the set of idempotents of J. (3) Show that a bijective linear transformation T
on a unital J is an automorphism iff it satisfies T (1) = 1 and is “structural,”
UT (x) = TUxT

∗ for some operator T ∗ and all x, in which case T ∗ = T−1.
(4) If J = J1 � J2 is a direct sum of unital Jordan algebras Ji with units
ei, and v1 ∈ J1 has v2

1 = −e1, show that T := Uv1+e2 is structural with
T = T ∗ = T−1, yet T (1) = −e1 + e2  = 1, so T is not an automorphism.

Problem 6.2* A derivation of a quadratic Jordan algebra is an endomor-
phism D of J such that D(1) = 0, D(Uxy) = UD(x),xy + UxD(y). Show that
D(x−1) = −U−1

x D(x) if x is invertible.

Problem 6.3* Recall that a derivation of a linear algebra A is an endo-
morphism D satisfying the “product rule” D(xy) = D(x)y + xD(y) for all
x, y. (1) Show that if x, y are vonverses, then D(y) = −UyD(x) where the
operator Uy is defined to be Ly(Ly+Ry)−Ly2 (this is the correct U -operator
for noncommutative Jordan algebras). (2) Show that a derivation necessarily
maps the nucleus into the nucleus, D(Nuc(A)) ⊆ Nuc(A); show that if x, y
are nuclear inverses, then D(y) = −yD(x)y. (3) Show that if x, y satisfy the
vonverse conditions in a unital Jordan algebra, then D(y) = −UyD(x).

Problem 6.4 Show that if x, y are ordinary inverses xy = yx = 1 in a unital
alternative algebra, then they are von Neumann inverses.

Question 6.1 A noncommutative Jordan algebra is a linear algebra A which
if flexible [x, y, x] = 0 and satisfies the Jordan identity [x2, y, x] = 0 for all
elements x, y. It can be shown that the algebra is power-associative, so all pow-
ers of x lie in the commutative associative algebra Φ[x] ⊆ A, also all powers
Lxn , Rxm lie in the commutative associative Φ[Lx, Lx2 , Rx, Rx2 ] ⊆ End(A), so
x operator-commutes with any polynomial p(x). (1) If an element of a unital
noncommutative Jordan algebra is algebraic over a field with minimum poly-
nomial having nonzero constant term, is the element necessarily vonvertible?
In general, does xy = yx = 1 in a noncommutative Jordan algebra imply that
x, y are vonverses?
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Isotopes

In this chapter we will establish in detail the results on homotopy and isotopy
mentioned without proof in the Historical Survey.

7.1 Nuclear Isotopes

If u is an invertible element of an associative algebra, or more generally, a
nuclear element of an arbitrary linear algebra A having a nuclear inverse as in
6.2.2, then we can form a new linear algebra by translating the unit from 1 to
u−1. We can also translate an involution ∗ to its conjugate by a ∗-hermitian
element.1

Nuclear Isotope Definition 7.1.1 If u is a nuclear element with nuclear
inverse in a unital linear algebra A, then we obtain a new linear algebra, the
nuclear u-isotope Au, by taking the same Φ-module structure but defining
a new product

Au : xuy := xuy (= (xu)y = x(uy)) for u ∈ Nuc(A)).

Nuclear Isotope Proposition 7.1.2 If u is an invertible nuclear element
in A, then the isotopic algebra Au is just an isomorphic copy of the original
algebra:

ϕ : Au → A is an isomorphism for ϕ = Lu or Ru.

In particular, it has unit 1u = u−1, and is associative iff A is. Nuclear isotopy
is an equivalence relation,

A1 = A, (Au)v = Auvu, (Au)u−2 = A (u, v ∈ Nuc(A)).

1 Nuclear isotopes were introduced in I.3.3, twisted hermitian algebras in I.3.4.
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proof. (1) That ϕ = Lu (dually Ru) is an isomorphism follows since
ϕ = Lu is a linear bijection with inverse ϕ−1 = Lu−1 by the Nuclear In-
verse Proposition 6.2.2, and ϕ is an algebra homomorphism since ϕ(xuy) =
u(x(uy)) = (ux)(uy) [by nuclearity of u] = ϕ(x)ϕ(y). In particular, the nu-
clear isotope has unit ϕ−1(1) = L−1

u (1) = u−1, which is also easy to verify
directly: u−1

uy := u−1uy = 1y = y from nuclearity and u−1u = 1, and dually,
yuu

−1 = y from uu−1 = 1.
The equivalence relations hold because the algebras have the same un-

derlying Φ-module structure and the same products, x1y = xy, xuvuy =
xuvuy, uu−2u = 1 (parentheses unnecessary by nuclearity of u, v). �

Exercise 7.1.2A If u is any element of a commutative linear algebra A, define the linear
u-homotope A(u) to be the linear algebra having the same underlying Φ-module as A, but
with new product x ·(u) y := (x · u) · y + x · (u · y) − (x · y) · u. (If A is Jordan, this is just
the usual Jordan homotope, cf. 7.2.1 below.) (1) Show that the linear homotope is again
commutative. If A is unital and u is vonvertible (cf. 6.2.1), show that the homotope has
new unit u−1, using operator-commutativity of the vonverse. In this case we speak of the
linear u-isotope. (2) If u is nuclear, show that the linear homotope reduces to the nuclear
homotope defined as in 7.1.1 by x ·u y := x · u · y).

Exercise 7.1.2B Let A be any (not necessarily commutative) linear algebra. (1) Show
that the associator [x, y, z]+ := (x • y) • z − x • (y • z) in A+ reduces to associators and
commutators 1

4

(
[x, y, z]+[x, z, y]+[y, x, z]−[z, y, x]−[y, z, x]−[z, x, y]+[y, [x, z]]

)
in A itself.

(2) Use this to show that if u is a nuclear element of A then [u, y, z]+ = 0 ⇔ [y, [u, z]] =
0, [x, u, z]+ = 0 ⇔ [u, [x, z]] = 0, and show that x• (u•y) = 1

2 (xuy+yux) ⇔ [x, [y, u]] = 0.
(3) Conclude that a nuclear u remains nuclear in A+ iff [u, [A,A]] = [A, [u,A]] = 0, in
which case the linear homotope (as in Exercise 7.1.2A above) of the commutative algebra
A+ is the same as the plus algebra of the nuclear homotope of A:

(
A+)(u) =

(
Au

)+.

Twisted Hermitian Proposition 7.1.3 If u is an invertible nuclear element
of a linear algebra A which is hermitian with respect to an involution ∗, then ∗
remains an involution on the isotope Au. We also obtain a new “involution,”
the nuclear u-isotope ∗u, by

∗u : x∗u := ux∗u−1.

This isotopic involution ∗u is an involution on the original algebra A,
(xuy)∗ = (y∗)u(x∗), (x∗u)∗u = x, (xy)∗u = y∗ux∗u ,

and the two algebras are ∗-isomorphic:
ϕ = Lu : (Au,

∗ )→ (A, ∗u) is an isomorphism.

In particular, the translated involution has translated space of hermitian ele-
ments

H(A, ∗u) = uH(A, ∗).
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proof. The map ∗ remains an involution on Au because it is still linear
of period 2 and is an anti-automorphism of the isotope because (xuy)∗ =
((xu)y))∗ = y∗(u∗x∗) [since ∗ is an involution on A] = y∗(ux∗) [since u∗ =
u] = y∗ux

∗. That ∗u is an involution on A follows from direct calculation:
x∗u∗u = u

(
ux∗u−1

)∗
u−1 = u

(
(u∗)−1(x∗)∗u∗

)
u−1 =

(
u(u)−1

)
x
(
uu−1

)
= x

[by nuclearity, u∗ = u, and x∗∗ = x] and (xy)∗u = u(xy)∗u−1 = uy∗x∗u−1 =
(uy∗)u−1u(x∗u−1) [by nuclearity] =

(
uy∗u−1

) (
ux∗u−1

)
[by nuclearity] =

y∗ux∗u .

We saw that the map ϕ : (Au, ∗)→ (A, ∗u) is an isomorphism of algebras,
and it preserves involutions since ϕ(x∗) = ux∗ = (ux∗)(u∗u−1) [since u∗ = u is
invertible] = u

(
x∗(u∗u−1)

)
[since u is nuclear] = u (x∗u∗)u−1 [since u∗ = u is

nuclear too!] = u(ux)∗u−1 [since ∗ is an involution onA] = (ux)∗u = (ϕ(x))∗u .
This gives another proof that ∗u is an involution on A.
The final translation property follows immediately, because a ∗-isomorphism

takes hermitian elements to hermitian elements. �

Exercise 7.1.3 (1) Go through the dual argument that for nuclear u the map ϕ = Ru is
an algebra isomorphism Au → A and that if u∗ = u then, just as Lu is a ∗-isomorphism
of ∗ with the left u-translate x∗u := ux∗u−1, so is Ru with the right u-translate u−1x∗u =
x∗

u−1 : Ru is an isomorphism (Au, ∗) → (A, ∗u−1 ) of ∗-algebras. (2) If u∗ = −u is skew,
show that Lu : (Au,−∗) → (A, ∗u) is an isomorphism of ∗-algebras, where the negative −∗
is an involution on Au (but not on the original A!).

Because it just reproduces the original algebra, the concept of nuclear
isotopy plays no direct role in nonassociative theory. However, even in the
associative case isotopy is nontrivial for algebras with involution and thus in
Jordan algebras isotopy can lead to new algebras.

7.2 Jordan Isotopes

For Jordan algebras we have a useful notion of isotope for all invertible ele-
ments, not just the nuclear ones. Just as with nuclear isotopes, the isotope
of a Jordan product consists in sticking a factor u in “the middle” of the
Jordan product x • y. However, it is not so simple to decide where the “mid-
dle” is! In the (usually non-Jordan) linear algebra Au

+, the Jordan product is
x •(u) y := 1

2 (xuy+ yux) = 1
2 (xuy+ yux), which suggests that we should stick

the u in the middle of the triple product 1
2{x, u, y}. As in associative algebras,

this process produces a new Jordan algebra even if u is not invertible, leading
to the following definition for homotopes of Jordan algebras.2

2 Linear Jordan homotopes were discussed in I.3.2, quadratic homotopes in I.4.6.
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Jordan Homotope Proposition 7.2.1 (1) If u is an arbitrary element of
a Jordan algebra, we obtain a new Jordan algebra, the u-homotope J(u),
defined to have the same underlying Φ-module as J but new bullet product

x •(u) y := 1
2{x, u, y}.

The auxiliary products are then given by

x(2,u) = Uxu, U (u)
x = UxUu, V (u)

x = Vx,u,

U (u)
x,z = Ux,zUu, V (u)

x,y = Vx,Uuy,

{x, y}(u) = {x, u, y}, {x, y, z}(u) = {x, Uuy, z}.

(2) If J is unital, the homotope will be again unital iff the element u is
invertible, in which case the new unit is

1(u) = u−1.

In this case we call J(u) the u-isotope (roughly corresponding to the distinc-
tion between isomorphism and homomorphism).
(3) An isotope has exactly the same trivial and invertible elements as the

original algebra:

x is trivial in J(u) ⇐⇒ x is trivial in J;
x is invertible in J(u) ⇐⇒ x is invertible in J,

with x(−1,u) = U−1
u x−1.

In particular,

J(u) is a division algebra ⇐⇒ J is a division algebra.

(4) We say that two unital Jordan algebras J,J′ are isotopic if one is
isomorphic to an isotope of the other. Isotopy is an equivalence relation among
unital Jordan algebras: we have Isotope Reflexivity, Transitivity, and
Symmetry

J(1) = J, (J(u))(v) = J(Uuv), (J(u))(u
−2) = J.

proof. (1) We first check the auxiliary products: all follow from Macdon-
ald’s Principle and linearization, or they can all be established by direct cal-
culation: x(2,u) = 1

2{x, u, x} = Uxu, V
(u)
x (y) = {x, y}(u) = {x, u, y} = Vx,u(y)

by linearization or twice the bullet, and 2U (u)
x :=

(
V

(u)
x

)2 − V
(u)
x(2,u) =(

Vx,uVx,u − VUxu,u

)
[using the above form of the square and V ] = UxUu,u

[by Macdonald’s Principle] = 2UxUu, hence {x, y, z}(u) = U
(u)
x,z = Ux,zUu too

by linearization.
The new bullet is clearly commutative as in (JAX1). To show that V (u)

x

commutes with Vx(2,u) as in the Jordan identity (JAX2), it suffices to show
that it commutes with 2U (u)

x =
(
V

(u)
x

)2−Vx(2,u) , and V
(u)
x U

(u)
x = Vx,uUxUu =

UxVu,xUu = UxUuVx,u using the Commuting Formula (FFII) twice. Thus the
homotope is again a Jordan algebra.
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(2) If J is unital and the homotope has a unit v, then 1J = U
(u)
v = UvUu

implies that Uv is surjective, hence by the Invertibility Criterion 6.1.2 is
invertible, so Uu = U−1

v is also invertible, and u is invertible by the In-
vertibility Criterion again. In this case we can see directly that u−1 is the
unit for J(u): by definition of the Jordan triple product 1

2{u−1, u, y} =
(u−1 • u) • y + u−1 • (u • y) − u • (u−1 • y) = 1 • y = y by operator com-
mutativity in the L–Inverse Formula 6.1.3.
(3) follows from the fact that triviality and invertibility of x is measured

by its U -operator, and Uu invertible guarantees that U
(u)
x = UxUu vanishes

or is invertible iff Ux is, where in the latter case x(−1,u) =
(
U

(u)
x

)−1
x =(

UxUu

)−1
x = U−1

u U−1
x x = U−1

u x−1 by the Inverse Recipe 6.1.3.
Just as in the nuclear case 7.1.2, the equivalence relations (4) follow

easily: 1
2{x, 1, y} = x • y, 1

2{x, v, y}(u) = 1
2{x, Uuv, y} [using (1)]; hence

1
2{x, u−2, y}(u) = {x, Uu(u−2), y} = 1

2{x, 1, y} [by Quadratic Inverse Con-
dition (QJInv2)] = x • y. From these relations for elemental isotopy it is easy
to see that general isotopy is an equivalence relation. �

Exercise 7.2.1A* Show that the specific form of the inverse in J(u) is x(−1,u) = U−1
u x−1

by verifying that this satisfies the Quadratic Inverse Conditions (QJInv1)–(QJInv2) in J(u).
Verify that it satisfies the Linear Inverse Conditions, and decide which verification is easier!

Exercise 7.2.1B (1) Show that for any linear algebra A and any u ∈ A, in A+ the Jordan
product satisfies 4[(x • u) • y + x • (u • y) − (x • y) • u] = 2 (x(uy) + y(ux)) + [y, u, x] +
[x, u, y] − [y, x, u] − [x, y, u] + [u, y, x] + [u, x, y]. (2) Define nuclear and Jordan homotopes
as in 7.1.2, 7.2.1 (omitting unitality and the requirement that u be invertible), and use (1)
to prove

(
A+)(u) =

(
Au

)+ : x •(u) y = 1
2 (xuy + yux) for any nuclear u ∈ A.

Exercise 7.2.1C Show that in the rare case that u ∈ J is nuclear, the Jordan homotope
reduces to the nuclear homotope: J(u) = Ju.

To get an idea of what life was like in pioneer days, before we had a clear
understanding of the Jordan triple product, you should go back and try to
prove the Homotope Proposition without mentioning triple products, using
only the bullet product and the definition

x •u y := (x • u) • y + x • (u • y)− (x • y) • u.
You will quickly come to appreciate the concept and notation of triple prod-
ucts!

7.3 Quadratic Factor Isotopes

Our first example of Jordan isotopy is for Jordan algebras of quadratic forms.3

Here the description is easy: the u-isotope simply replaces the original unit
3 cf. I.3.7.
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c by u−1, and then performs a cosmetic change of quadratic form from Q to
Q(u)Q to insure that the new ruler has norm 1.

Quadratic Factor Isotopes Example 7.3.1 (1) The isotopes of the
quadratic factor Jord(Q, c) are again quadratic factors, obtained by scaling
the quadratic form and shifting the basepoint :

Jord(Q, c)(u) = Jord(Q(u), c(u)) for

Q(u)(x) := Q(x)Q(u), c(u) :=u−1 = Q(u)−1ū,

T (u)(x) = Q(x, ū), (x̄)∗(u) =Q(u)−1Uux.

(2) The diagonal isotopes of the reduced spin factor RedSpin(q) are again
reduced spin factors, obtained by scaling the quadratic form:

RedSpin(q)(µ,0,ν) ∼= RedSpin(µνq) via (α,w, β) �→ (αµ,w, βν).

proof. For (1), recall the definition of Jord(Q, c) in the Quadratic Fac-
tor Example 3.3.1. Note that (Q(u), c(u)) is a quadratic form with basepoint:
Q(u)(c(u)) := Q(u−1)Q(u) = 1 by Factor Invertibility 6.1.6. The trace associ-
ated with (Q(u), c(u)) is T (u)(x) := Q(u)(x, c(u)) = Q(x, u−1)Q(u) = Q(x, ū)
[by Factor Invertibility]. The involution is given by x(u) := T (u)(x)c(u) −
x = Q(x, ū)Q(u)−1ū − x = Q(u)−1

(
Q(ū, x̄)ū − Q(u)x̄

)
[since the in-

volution is isometric on Q by Trace Involution Properties 2.3.1(1)] =
Q(u)−1(Q(u, x̄)u−Q(u)x̄) = Q(u)−1Uux.
By Jordan Homotope 7.2.1, the square in Jord(Q, c)(u) is x(2,u) = Uxu =

Q(x, ū)x−Q(x)ū = T (u)(x)x−Q(x)Q(u)Q(u)−1ū = T (u)(x)x−Q(u)(x)c(u),
which is the square in Jord(Q(u), c(u)), so these two algebras have the same
product and thus coincide.
For (2), recall the definition of RedSpin(q) in Reduced Spin Example 3.4.1.

The isotope J(u) by a diagonal element u = (µ, 0, ν) ∈ RedSpin(q) = (Φ,M,Φ)
has squares given by

(α,w, β)(2,(µ,0,ν)) =([α2µ+ q(w)ν], [αµ+ βν]w, [β2ν + q(w)µ]),

while similarly squares in RedSpin(µνq) are given by

(α̃, w, β̃)2 =([α̃2 + µνq(w)], [α̃+ β̃]w, [β̃2 + µνq(w)]).

Thus the mapping (α,w, β) �→ (αµ,w, βν) =: (α̃, w, β̃) preserves squares and
hence is an isomorphism: [α̃2 + µνq(w)] = [α2µ+ q(w)ν]µ, [β̃2 + µνq(w)] =
[β2ν + q(w)µ]ν, [α̃+ β̃]w = [αµ+ βν]w. �
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7.4 Cubic Factor Isotopes

Just as the quadratic isotopes are again quadratic factors, so the cubic iso-
topes are again cubic factors, though the verification takes longer because the
requirements for a Jordan cubic are so stringent.4

Cubic Factor Isotopes Example 7.4.1 (1) For each sharped cubic form
(N,#, c) and element u with invertible norm N(u) ∈ Φ, we obtain an isotopic
sharped cubic form (N (u),#(u), c(u)) by scaling the cubic form and shifting the
sharp and basepoint :

N (u)(x) := N(x)N(u),

c(u) := u−1 = N(u)−1u#,

x#(u) := N(u)−1Uu#x# = N(u)−1(Uux
)#

,

x#(u)y = N(u)−1Uu#(x#y) = N(u)−1Uux#Uuy,

T (u)(x, y) := T (x, Uuy),

T (u)(y) := T (u, y),

S(u)(x) = T (u#, x#).

If (N, c) is a Jordan cubic, so is its isotope (N (u), c(u)).
(2) Moreover, the Jordan algebras constructed from these cubic form iso-

topes are just the Jordan isotopes of the Jordan algebras constructed from the
original forms,

Jord(N (u),#(u), c(u)) =Jord(N,#, c)(u),

Jord(N (u), c(u)) =Jord(N, c)(u).

Hence isotopes of cubic factors Jord(N,#, c) and Jord(N, c) are again cubic
factors.

proof. We have u−1 = N(u)−1u# by Factor Invertibility 6.1.6, Uu#x# =
(Uux)# by Sharp Composition 4.2.2(3). The triple (N (u),#(u), c(u)) cer-
tainly is a cubic form with quadratic map and basepoint: N (u)(c(u)) =
N(u−1)N(u) = 1 by Factor Invertibility.
The forms associated with the isotope are

N (u)(x; y) = N(u)T (x#, y), N (u)(x, y, c(u)) = T (u##x, y),

T (u)(y) = T (y, u), T (u)(x, y) = T (x, Uuy),

S(u)(x) = T (x#, u#). S(u)(x, y) = T (x, y#u#).

4 cf. I.3.8.
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To see these, we compute N (u)(x; y) = N(u)N(x; y) = N(u)T (x#, y)
[by Trace–Sharp Formula 4.2.1(2)], the quadratic spur form is S(u)(x) :=
N (u)(x; c(u)) = N(u)T (x#, N(u)−1u#) = T (x#, u#), so by linearization
S(u)(x, y) = N (u)(x, y, c(u)) = T (x#y, u#) = T (y, x#u#) [by Sharp Sym-
metry 4.2.4(1)].
The linear trace is T (u)(y) := N (u)(c(u); y) = N(u)N(N(u)−1u#; y) =

N(u)−1T ((u#)#, y) [by Trace–Sharp] = N(u)−1T (N(u)u, y) [by Adjoint Iden-
tity 4.2.1(2)] = T (u, y).
Combining these, we see the bilinear trace is given by T (u)(x, y) :=

T (u)(x)T (u)(y) − S(u)(x, y) [by Spur–Trace 4.2.1(1)] = T (x, u)T (y, u) −
T (x, y#u#) = T (x, T (u, y)u − u##y) = T (x, Uuy) by definition 4.2.2(2) of
the U -operator in Jord(N,#, c).
We now verify the three axioms 4.2.1(2) for a sharp mapping. We first

establish U-Symmetry

T (Uzx, y) = T (x, Uzy),

which holds because T (Uzx, y) = T
(
(T (z, x)z − z##x), y

)
= T (z, x)T (z, y)−

T (z#, x#y) [by Sharp-Symmetry] is symmetric in x and y.
For the Trace–Sharp Formula for #(u),

N (u)(x; y) = T (u)(x#(u), y),

we compute N (u)(x; y) = N(u)T (x#, y) [by Trace–Sharp for #]
= N(u)T (UuUu−1x#, y) = N(u)T (N(u)−2UuUu#x#, y) [since u−1 =
N(u)−1u#] = T (N(u)−1Uu#x#, Uuy) [using the above U–Symmetry] =
T (u)(N(u)−1Uu#x#, y) = T (u)(x#(u), y).
For the Adjoint Identity

x#(u)#(u) = N (u)(x)x for #(u),

we compute

x#(u)#(u) = N(u)−1
(
Uu

(
N(u)−1Uu#x#

))#

= N(u)−1N(u)−2
(
UuUu#x#

)#

= N(u)−3
(
N(u)2x#

)# [since u# = N(u)u−1]
= N(u)−3N(u)4

(
x##

)
= N(u)

(
N(x)x

)
[by Adjoint for #]

= N (u)(x)x.

Finally, the c–Sharp Identity for #(u),

c(u)#(u)y = T (u)(y)c(u) − y,

follows by canceling Uu from
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Uu

[
c(u)#(u)y − T (u)(y)c(u) + y

]
= Uu

[
N(u)−1Uu#

(
N(u)−1u##y

)− T (u, y)u−1 + y
]

= N(u)−2UuUu#(u##y)− T (u, y)u+ Uuy

= u##y − T (u, y)u+ Uuy = 0

using u# = N(u)u−1 and the definition of the U -operator in Jord(N, c).
Thus the isotope (N (u), #(u), c(u)) is again a sharped cubic form, and

therefore by Cubic Construction 4.2.2 it produces another Jordan algebra
Jord(N (u),#(u), c(u)) whose U -operator is

T (u)(x, y)x− x#(u)#(u)y

= T (x, Uuy)x−N(u)−1Uu

(
N(u)−1Uu#x#

)
#Uuy

= T (x, Uuy)x−N(u)−2UuUu#x##Uuy

= T (x, Uuy)x− x##Uuy [since u# = N(u)u−1]

= Ux(Uuy) = U
(u)
x y,

which is the usual U -operator of the Jordan isotope. Since both algebras have
the same unit c(u) = 1(u) = u−1 and the same U -operators, they also have
the same squares x2 = Ux1 and hence the same bullet products, so the two
algebras coincide.
If (N, c) is a Jordan cubic as in 4.2.4, i.e., the bilinear form T is non-

degenerate, then invertibility of Uu guarantees nondegeneracy of T (u), and
N (u)(x; y) = T (u)(x#(u), y) [by the above] for all y shows by nondegeneracy
that the adjoint induced by (N (u), c(u)) is just x#(u). �

7.5 Matrix Isotopes

As we noted in Nuclear Isotopy Proposition 7.1.2, nothing much happens
when we take isotopes of a full plus-algebra.5

Full Isotope Example 7.5.1 If u is an invertible element of an associative
algebra, then the u-isotope of the Jordan algebra A+ is isomorphic to A+

again: A+(u) = Au
+ ∼= A+.

proof. The first equality follows from x •(u) y = 1
2{x, u, y} [by Jordan

Homotope Proposition 7.2.1] = 1
2 (xuy+yux) [by speciality] = 1

2 (x u y+y u x)
[by Nuclear Isotope Definition 7.1.1], and the second isomorphism follows from
Nuclear Isotope Proposition 7.1.2, since any isomorphism A → B is also an
isomorphism A+ → B+ of the associated plus-algebras. �

5 cf. Historical Survey I.3.4–5 for hermitian and matrix isotopes.
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Amore substantial change occurs when we take isotopes of Jordan algebras
of hermitian type, because we change the nature of the underlying involution:
as we have remarked before, H2(R) is formally real, but H2(R)(u) for u =
E12 + E21 has nilpotent elements (E11)

(2,u) = 0, so isotopy is in general a
broader concept than isomorphism.

Hermitian Isotope Example 7.5.2 The Jordan isotopes of H(A, ∗) for
an associative ∗-algebra (A, ∗) are obtained either by changing the algebra
structure but keeping the involution, or equivalently by keeping the algebra
structure but changing the involution: for invertible u = u∗, H(A, ∗)(u) =
H(Au, ∗) ∼= H(A, ∗u) = uH(A, ∗) under ϕ = Lu.
proof. The first equality follows since both are precisely the Jordan sub-

algebra of ∗-hermitian elements of A+(u) = Au
+ by Full Isotope above, and

the second isomorphism and equality follow from Twisted Hermitian Propo-
sition 7.1.3. �
The isotopes of H(Mn(D), ∗) which we will need are nuclear isotopes

coming from diagonal matrices Γ.

Twisted Matrix Example 7.5.3 (1) Let Mn(D) be the linear algebra of
n×n matrices over a unital linear ∗-algebra D under the standard conjugate-
transpose involution X∗ = (X)tr. Let Γ = diag{γ1, . . . , γn} (γi = γi in-
vertible in H(D,−) ∩ Nuc(D)) be an invertible hermitian nuclear diagonal
matrix. Then the twisted matrix algebra Hn(D,Γ) := H(Mn(D), ∗Γ)
consisting of all hermitian matrices of Mn(D) under the shifted involution
X∗Γ := ΓX∗Γ−1, is linearly spanned by the elements in Jacobson Γ-box
notation (where Eij (1 ≤ i, j ≤ n) are the usual n× n matrix units):

δ[ii]Γ := γiδEii (δ ∈ H(D,−)),
d[ij]Γ := γidEij + γj d̄Eji = d̄[ji]Γ (d ∈ D).

(2) The multiplication rules for distinct indices in the isotope consist of
Four Basic Twisted Brace Products and Brace Orthogonality:

δ[ii]2Γ = δγiδ[ii]Γ,
d[ij]2Γ = dγj d̄[ii]Γ + d̄γid[jj]Γ,

{δ[ii]Γ, d[ik]Γ} = δγid[ik]Γ, {d[ik]Γ, δ[kk]Γ} = dγkδ[ik]Γ,
{d[ij]Γ, b[jk]Γ} = dγjb[ik]Γ,
{d[ij]Γ, b[k?]Γ} = 0 (if {i, j} ∩ {k, ?} = ∅).

(3) We have an isomorphism of this twisted algebra with the Γ-isotope of
the untwisted algebra:

Hn(D,−)(Γ) → Hn(D,Γ) via LΓ : d[ij]→ d[ij]Γ.

proof. Since it is easy to verify that Γ is nuclear in Mn(D), (3) follows
from Hermitian Isotope Example 7.5.2. That Hn(D,Γ) is spanned by the
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elements (1) is easily verified directly, using that (γidEij)∗Γ = Γ(d̄γiEji)Γ−1 =
γjj d̄γiiγ

−1
ii Eji = γj d̄Eji; it also follows from the isomorphism (3) and Γ ·

d[k?] = Γ(dEk� + d̄E�k) = γkdEk� + γ�d̄E�k = d[k?]Γ. The Brace Product
Rules follow immediately from the definitions (remembering that we need
only check that the ik-entries of two hermitian elements a[ik] coincide, since
then their ki-entries will automatically coincide too). �
We will almost never work directly from the multiplication table of a

twisted matrix algebra: we will do any necessary calculations in our coordi-
nation theorems in Chapters 12 and 17 in the untwisted matrix algebra, then
hop over unpleasant twisted calculations with the help of the magic wand of
isotopy.

Exercise 7.5.3A Show that Nuc(Mn(D)) = Mn(Nuc(D)) for any linear algebra D.

Exercise 7.5.3B Show that Hn(D,Γ) can also be coordinatized another way: it is spanned
by δ[ii]Γ := δEii (δ ∈ γiH(D)), d[ij]Γ := dEij + γj d̄γ

−1
i Eji (d ∈ D). This coordinatization

has the advantage that the parameter in d[ij]Γ precisely labels the ij-entry of the matrix,
the coefficient of Eij , but it has the drawback that Hn(D,Γ) is spanned by the a[ij]Γ for
all a ∈ D (as expected), but by the α[ii]Γ for α in the γi-translate γiH(D) (so the diagonal
entries are coordinatized by different submodules). Verify these assertions, show we have
the index-reversing relation d[ij]Γ = γj d̄γ

−1
i [ji]Γ, work out the multiplication rules (Basic

Products and Basic Orthogonality), and give an isomorphism Hn(D,−)(Γ) → Hn(D,Γ) in
these terms.

Exercise 7.5.3C Work out the formulas for the 3 Basic U -Products, U -orthogonality, 3
Basic Triple Products, and Basic Triple Orthogonality in a twisted matrix algebra Hn(D,Γ)
corresponding to those in the untwisted Hermitian Matrix Example 3.2.4.

For the case n = 3 we obtain a twisting of the Freudenthal Construction
4.3.1.

Freudenthal Isotope Theorem 7.5.4 If D is a unital alternative algebra
with scalar involution over Φ, and Γ = diag(γ1, γ2, γ3) a diagonal matrix for
invertible elements γi of Φ, then the twisted Jordan matrix algebra H3(D,Γ)
is a cubic factor determined by the twisted sharped cubic form with basepoint
c, cubic norm form N , trace T , and sharp # defined as follows for elements
x =

∑3
i=1 αiei +

∑3
i=1 ai[jk]Γ, y =

∑3
i=1 βiei +

∑3
i=1 bi[jk]Γ with αi, βi ∈

Φ, ai, bi ∈ D in Jacobson Γ-box notation (ei := Eii = γ−1
i [ii]Γ, d[jk]Γ :=

γjdEjk + γkd̄Ekj, where (ijk) is always a cyclic permutation of (123)):

c := e1 + e2 + e3,

N(x) := α1α2α3 −
∑
i

γiγjαkn(ak) + γ1γ2γ3t(a1a2a3),

T (x, y) :=
∑
i

(
αiβi + γjγkt(āibi)

)
, T (x) :=

∑
i

αi,
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x# :=
∑
i

(
αjαk − γjγkn(ai)

)
ei +

∑
i

(
γiajak − αiai

)
[jk]Γ.

proof.We could repeat the proof of the Freudenthal Construction, throw-
ing in gammas at appropriate places, to show that the indicated cubic form is
sharped and the resulting Jordan algebra has the structure of a Jordan matrix
algebra. But we have already been there, done that, so we will instead use iso-
topy. This has the added advantage of giving us insight into why the norm form
takes the particular form (with the particular distribution of gammas). We
know that ϕ = LΓ is an isomorphism J(Γ) := H3(D,−)(Γ) → H3(D,Γ) =: J′,
and by Cubic Factor Isotope 7.4.1 the isotope J(Γ) is a cubic factor with
norm N(Γ)N(X), so the isomorphic copy J′ is also a cubic factor with
sharped cubic form N ′(ϕ(X)) := N (Γ)(X) = N(Γ)N(X), trace bilinear form
T ′(ϕ(X), ϕ(Y )) := T (Γ)(X,Y ) = T (UΓX,Y ), and sharp mapping ϕ(X)#

′

:= ϕ(X#(Γ)) = N(Γ)−1ϕ(UΓ#X#).
The crucial thing to note is that x =

∑
i αiei+

∑
i ai[jk]Γ ∈ H3(D,Γ) is not

quite in Gamma-box notation: since ei = γ−1
i [ii]Γ, its Gamma-box expression

is x =
∑

i(αiγ
−1
i )[ii]Γ +

∑
i ai[jk]Γ, and thus is the image x = ϕ(X) for

X =
∑

i(αiγ
−1
i )[ii] +

∑
i ai[jk] ∈ H3(D,−); the presence of these γ−1

i down
the diagonal is what causes the norm, trace, and sharp to change form. For
the norm we have

N ′(x) = N(Γ)N(X) = γ1γ2γ3N(X)

= γ1γ2γ3
[
(α1γ

−1
1 )(α2γ

−1
2 )(α3γ

−1
3 )−∑

i(αkγ
−1
k )n(ak) + t(a1a2a3)

]
= α1α2α3 −

∑
i γiγjαkn(ak) + γ1γ2γ3t(a1a2a3).

For the trace we use U∑
i δiei

a[jk] = δjδka[jk] to see that

T ′(x, y) = T (Γ)(X,Y ) = T (UΓX,Y )

=
∑

i

[
(γ2

i αiγ
−1
i )(βiγ−1

i ) + t
(
(γjγkai)bi

)]
=

∑
i

[
αiβi + γjγkt(aibi)

]
.

Finally, for the sharp we use Γ# =
∑

i γjγkei, UΓ#a[jk] = (γkγi)(γiγj)a[jk]
to see that

x#′
= ϕ

[
X#(Γ)

]
= N(Γ)−1ϕ

[
UΓ#X#

]
= (γ1γ2γ3)−1ϕ

[∑
i(γjγk)

2
(
(αjγ

−1
j )(αkγ

−1
k )− n(ai)

)
[ii]

+
∑

i(γkγjγ
2
i )
(
ajak − (αiγ

−1
i )ai

)
[jk]

]
=

∑
i γjγk

(
γ−1
j γ−1

k αjαk − n(ai)
)
γ−1
i [ii]Γ +

∑
i γi

(
ajak − γ−1

i αiai
)
[jk]Γ

=
∑

i

(
αjαk − γjγkn(ai)

)
ei +

∑
i

(
γiajak − αiai

)
[jk]Γ.

Thus the norm, trace, and sharp naturally take the form given in the theorem.
�
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Exercise 7.5.4 Even though we have already been there, done that, do it again: repeat
the proof of the Freudenthal Construction 4.3.1, throwing in gammas at appropriate places,
to show directly that the indicated cubic form is sharped and the resulting Jordan algebra
has the structure of a Jordan matrix algebra.

7.6 Problems for Chapter 7

Problem 7.1 For an invertible element u of a unital associative algebra A,
let û denote the inner automorphism or conjugation by u, x �→ uxu−1 . (1)
Show that the inner automorphisms form a subgroup of the automorphism
group of A, with û ◦ v̂ = ûv, and that û = 1A is the identity iff u lies
in the center of A. If A has an involution, show that ∗ ◦ û ◦ ∗ = (û∗)−1.
(2) Show from these that ∗u := û ◦ ∗ is an anti-automorphism of A, which
has period 2 iff u∗ = λu for some element λ of the center of A (in which
case λ is necessarily unitary, λλ∗ = 1). In particular, conclude that if u is
hermitian or skew (u∗ = ±u), then the (nuclear) u-isotope ∗u is again an
involution of A. (3) Verify that when u is hermitian the map Lu is a ∗-
isomorphism (Au, ∗u) → (A, ∗), and the ∗u-hermitian elements are precisely
all uh for ∗-hermitian elements h. (4) If u is skew, show that the ∗u-hermitian
elements are precisely all us for ∗-skew elements s. [The fact that isotopes can
switch skew elements of one involution into hermitian elements of another is
crucial to understanding the “symplectic involution” on 2n×2n matrices (the
adjoint with respect to a nondegenerate skew-hermitian bilinear form on a
2n-dimensional space, equivalently, the conjugate-transpose map on n × n
matrices over a split quaternion algebra). ]

Problem 7.2* (1) Define an invertible linear transformation on a uni-
tal Jordan algebra J to be structural if there exists an invertible “adjoint”
transformation T ∗ on J satisfying UT (x) = TUxT

∗ for all x ∈ J. Show that
the adjoint is uniquely determined by T ∗ = T−1UT (1). Show that the set of
all structural transformations forms a group, the structure group Strg(J) of
J, containing all invertible scalar multiplications α1J (for α invertible in Φ)
and all invertible operators Ux (for x invertible in J). Show that the struc-
ture group contains the automorphism group as precisely the transformations
which do not shift the unit [T (1) = 1, hence T is “orthogonal”: T ∗ = T−1].
Give an easy example to show that this inclusion is strict: there exist orthog-
onal T which are not automorphisms. (2) Show that any invertible structural
T induces an isomorphism J(u) → J(v) for v = (T ∗)−1(u) on any isotope
J(u). (3) Show conversely that if T : J(u) → J(v) is an isomorphism on some
isotope, then T is structural with T ∗ = UuT

−1U−1
v and T ∗(v) = u [note that

T (u−1) = v−1]. (4) Conclude that the group of all structural transformations
is precisely the “autotopy group” of J (the isotopies of J with itself), and that
two isotopes J(u),J(v) are isomorphic iff the elements u, v are conjugate under
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the structure group, so that the isomorphism classes of isotopes correspond
to the conjugacy classes of invertible elements under the structure group. (5)
Show that if u has an invertible square root in J (u = v2 for some invertible
v) then J(u) ∼= J. (6) Conclude that if J is finite-dimensional over an alge-
braically closed field, then every isotope of J is isomorphic to J. (7) If every
invertible element has a square root, show that the structure group consists of
all T = UxA for an invertible x and automorphism A, so in a sense the struc-
ture group “essentially” just contains the automorphisms and U -operators.
We will return to structural transformations in II.18.2.1 and III.1.2.1.

Problem 7.3* Define the left-u-isotope uA of a linear algebra A by an
invertible nuclear element u to be the same space but new product xuy := uxy.
Of course, when u is central the left isotope coincides with the middle isotope,
and therefore is perfectly associative. In general, the factor u acts on the left
as a formal symbol akin to a parenthesis, and the left isotope is close to being
a “free” nonassociative algebra. What a difference the placement of u makes!
Can you necessary and sufficient, or at least useful, conditions on u for uA to
be associative? To have a unit?

Question 7.1* In infinite-dimensional situations it is often unnatural to
assume a unit, yet useful to have isotopes. We can introduce a notion of
generalized Jordan isotope J(ũ), where ũ is invertible in some larger algebra
J̃ ⊇ J, as long as this induces a product back on J : {J, ũ,J} ⊆ J (e.g., if
J̃ is the unital hull of J, or more generally as long as J  J̃). How much of
the Jordan Homotope Proposition 7.2.1 holds true in this general context?
Can you give an example of a generalized isotope which is not a standard
isotope?



Second Phase: The Tale of Two Idempotents

It was the best of times, it was the worst of times;
the spring of hope, the winter of despair;
we had everything before us, we had nothing before us;
idempotents in the pot, but only two to go around.

In this phase we will investigate the structure of Jordan algebras having
two supplementary orthogonal idempotents. The key tool is the Peirce de-
composition of a Jordan algebra with respect to a single idempotent detailed
in Chapter 8. The resulting Peirce spaces Ji (i = 2, 1, 0) are eigenspaces for
the multiplication operators of the idempotent, equivalently, root spaces for
the Peircer torus. They have a multiplication table closely resembling that for
matrix multiplication (featuring Peirce Brace Rules, U -Rules, Triple Rules,
and Orthogonality Rules), and the Peirce Identity Principle says that multi-
plication rules involving distinct Peirce spaces will hold in all Jordan algebras
as soon as they hold in all associative algebras.
Chapter 9 describes two crucial aspects of the Peirce decomposition: the

Peirce specializations σ2, σ0 of the diagonal spaces J2, J0 on the off-diagonal
space J1 (which commute by Peirce Associativity), and the diagonal-valued
Peirce quadratic forms q2, q0 (the diagonal projections of the square of an
off-diagonal element, satisfying q-properties concerning the interaction of q
with products).
Chapter 10 discusses connection involutions, symmetries determined by

strong connecting elements which interchange the diagonal spaces. Any invert-
ible off-diagonal element becomes a strong connector (an involutory v2

1 = 1) in
some diagonal isotope, which allows us to prove coordinatization theorems for
strongly connected Peirce frames only, then deduce the theorems for general
connected Peirce frames via the magic wand of isotopy.
Jordan algebras with Peirce frames of length 2 come in two basic flavors:

the reduced spin factors determined by a quadratic form, and the hermi-
tian algebras of 2 × 2 matrices with entries from a symmetrically generated
associative ∗-algebra. Our main results in this phase are two general coordi-
natization theorems: in Chapter 11 we establish that Jordan algebras with
Peirce 2-frames satisfying the Spin Peirce relation (that q2(x), q0(x) both act
the same on J1) are reduced spin factors RedSpin(q), and in Chapter 12 that
those with cyclic 2-frames (where the off-diagonal space is generated from a
single v1 by the action of σ2(J2)) are hermitian algebras H2(D,Γ). In both
cases the proof for general connected frames is reduced to the strong case
(where the argument is easiest and clearest) by passing to an isotope.
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Peirce Decomposition

In our analysis of Jordan algebras with capacity we are, by the very nature
of capacity, forced to deal with sums of orthogonal idempotents and their as-
sociated Peirce decompositions. For a while we can get by with the simplest
possible case, that of a single idempotent. The fact that the unit element 1
decomposes into two orthogonal idempotents e, e′ makes the identity operator
decompose into the sum of three orthogonal idempotents (projections), and de-
compositions of the identity into orthogonal projections precisely correspond
to decompositions of the underlying module into a direct sum of submodules.
In associative algebras, the decomposition 1A = L1 = Le+e′ = Le + Le′

of the left multiplication operator leads to a one-sided Peirce decomposition
A = eA⊕e′A into two subspaces, and the decomposition 1A = L1R1 = LeRe+
LeRe′ + Le′Re + Le′Re′ leads to a two-sided Peirce decomposition into four
subspaces A = A11 ⊕A10 ⊕A01 ⊕A00. In Jordan algebras the decomposition
of the quadratic U -operator 1J = U1 = Ue+e′ = Ue + Ue,e′ + Ue′ leads to a
decomposition into three spaces J = J2 ⊕ J1 ⊕ J0 (where J2 corresponds to
A11, J0 corresponds to A00, but J1 corresponds to the sum A10 ⊕A01).

8.1 Peirce Decompositions

We recall the most basic properties of idempotent elements.1

Idempotent Definition 8.1.1 An element e of a Jordan algebra J is an
idempotent if e2 = e. A proper idempotent is an idempotent e  = 1, 0; an
algebra is reduced if it contains a proper idempotent. Two idempotents e, f
are orthogonal if e • f = 0.

1 Idempotents were introduced in the Historical Survey I.5.1 (and formally in II.5.2.1),
and the multiplication rules for Peirce spaces were described in I.6.1 as being at the heart
of the classical methods.
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The reason for the terminology is that an idempotent e is “same-potent,”
all its powers are itself:

en = e for all n ≥ 1.
This is trivially true for n = 1, and if true for n then it is also true for n+ 1
since, by the Power Definition 5.2.1, en+1 = e•en = e•e [induction hypothesis]
= e [idempotence].
The complementary idempotent e′ := 1̂−e lives only in the unital hull

Ĵ. It is again an idempotent, and orthogonal to e in Ĵ : (e′)2 = (1̂ − e)2 =
1̂ − 2e + e2 = 1̂ − 2e + e = 1̂ − e = e′, and e • e′ = e • (1̂ − e) = e − e2 = 0.
Clearly e and its complement are supplementary in the sense that they
sum to 1̂: e + e′ = 1̂ ∈ Ĵ. (If J itself is unital, we replace Ĵ by J and take
e′ := 1− e ∈ J as the complement.)
Peirce Decomposition Theorem 8.1.2 (1) The Peirce projections Ei =
Ei(e) determined by e are the multiplication operators

E2 = Ue, E1 = Ue,e′ , E0 = Ue′ .

They form a supplementary family of projection operators on J,
∑

iEi =
1J, EiEj = δijEi, and therefore the space J breaks up as the direct sum of the
ranges: we have the Peirce Decomposition of J into Peirce subspaces

J = J2 ⊕ J1 ⊕ J0 for Ji := Ei(J).

(2) Peirce decompositions are inherited by ideals or by subalgebras contain-
ing e: we have Peirce Inheritance

K = K2 ⊕K1 ⊕K0 for Ki = Ei(K) = K ∩ Ji
(K  J or e ∈ K ≤ J).

proof. (1) Since the Ei are multiplication operators they leave the ideal
J Ĵ invariant; therefore, if they are supplementary orthogonal projections on
the unital hull, they will restrict to such on the original algebra. Because of
this, it suffices to work in the unital hull, so we assume from the start that
J is unital. Trivially the Ei are supplementary operators since e, e′ are sup-
plementary elements: E2 + E1 + E0 = Ue + Ue,e′ + Ue′ = Ue+e′ = U1 = 1J
by the basic property of the unit element. Now e, e′ ∈ Φ[e] = Φ1 + Φe,
and by the Operator Power-Associativity Theorem 5.2.2(2) we know that
UpUq = Up•q, hence by linearization UpUq,r = Up•q,p•r for any p, q, r ∈ Φ[e].
In particular, UpUq = UpUq,r = Uq,rUp = 0 whenever p • q = 0, which imme-
diately yields orthogonality of E2 = Ue, E1 = Ue,e′ , E0 = Ue′ by orthogonality
e • e′ = 0. It also implies that E2, E0 are projections since idempotent ele-
ments p • p = p always produce idempotent U -operators, UpUp = Up•p = Up

by the Fundamental Formula (or Operator Power-Associativity again). The
complement E1 = 1J − (E2 + E0) must then be a projection too. [We could
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also check this directly: further linearization of Operator Power-Associativity shows that
Up,qUz,w = Up•z,q•w + Up•w,q•z , so Ue,e′Ue,e′ = Ue•e,e′•e′ + Ue•e′,e′•e = Ue,e′ + 0.]
Thus we have decomposed the identity operator into supplementary or-

thogonal projections, and this immediately decomposes the underlying Φ-
submodule into the Peirce subspaces Ji = Ei(J).2

(2) Since the Peirce projections Ei are built out of multiplications by 1 and
e, they map K into itself: an ideal is invariant under any multiplications from
J, and a subalgebra is invariant under multiplications from itself. Thus the
Peirce projections induce by restriction a decomposition 1K = E2|K+E1|K+
E0|K of the identity operator on K and so a decomposition K = K2⊕K1⊕K0
for Ki := Ei(K) ⊆ K∩Ei(J) = K∩Ji, and we have equality since if x ∈ K∩Ji
then x = Ei(x) ∈ Ei(K). �

Exercise 8.1.2* Write an expression for the Peirce projections in terms of the operator
Le, and see once more why the U -formulation is preferable.

We will usually denote the Peirce projections by Ei; if there is any danger
of confusion (e.g., if there are two different idempotents running around), then
we will use the more explicit notation Ei(e) to indicate which idempotent gives
rise to the Peirce decomposition.
Historically, the Peirce decomposition in Jordan algebras was introduced

by A.A. Albert as the decomposition of the space into eigenspaces for the left-
multiplication operator Le, which satisfies the equation (t− 1)(t− 1

2 )(t− 0)
= 0. This approach breaks down over rings without 1

2 , and in any event is
messy: the projections have a simple expression in terms of U -operators, but
a complicated one in terms of Le. The most elegant description of the Peirce
spaces is due to Loos (it works in all characteristics, and for Jordan triples
and pairs as well), using the important concept of Peircer (pronounced purser,
not piercer!).

Peircer Definition 8.1.3 For each α ∈ Φ we set e(α) := e′ + αe ∈ Ĵ and
define the Peircer E(α) to be its U -operator,

E(α) := Ue(α) = E0 + αE1 + α2E2 =
∑2

i=0 α
iEi.

Here e(1) = e′ + e = 1̂ and e(α) • e(β) = e(αβ) in the special subalgebra
Φ[e] = Φe � Φe′ of Ĵ, so from Operator Power-Associativity 5.2.2(2) the
Peircer determines a homomorphism α �→ E(α) of multiplicative monoids
from Φ into EndΦ(Ĵ): we have a 1-dimensional Peircer torus of operators
on Ĵ,

E(1) = E0 + E1 + E2 = 1J′ , E(αβ) = E(α)E(β).

2 Despite our earlier promise to reserve the term space for vector spaces, and speak
instead of submodules, in this case we cannot resist the ubiquitous usage Peirce subspace.
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Exercise 8.1.3* (1) Show that the Peircer E(−1) is the Peirce Reflection around the
diagonal Peirce spaces, Te = 1 on the diagonal J2 + J0 and T = −1 on the off-diagonal J1,
and is an involutory map. (2) Show that the element u(e) = e(−1) = e′ − e = 1̂ − 2e is an
involution (u(e)2 = 1̂) and hence the operator Te = Uu(e) is an involutory automorphism
(cf. the Involution Lemma 6.1.10). (3) In Problem 6.1 you showed (we hope) that there
is a 1-to-1 correspondence between involutions u2 = 1 in a unital Jordan algebra, and
idempotents e2 = e, given by u(e) := 1−2e, e(u) = 1

2 (u+1). Show that e, e′ determine the
same Peirce Reflection, Uu(e) = Uu(e′); explain why this does not contradict the bijection
between idempotents and involutions.

We really want to make use of the Peircer for indeterminates. Let Ω :=
Φ[t] be the algebra of polynomials in the indeterminate t, with the natural
operations. In particular, Ω is a free Φ-module with basis of all monomials
ti (i ≥ 0 in I), so J ⊆ J′ := ĴΩ ∼= Ĵ[t], which consists of all formal polynomials∑n

i=0 t
ixi in t with coefficients xi from Ĵ with the natural operations.

Peirce Eigenspace Laws 8.1.4 The Peirce subspace Ji relative to an idem-
potent e is the intersection of J with the eigenspace in J[t] of the Peircer E(t)
with eigenvalue ti for the indeterminate t ∈ Φ[t], and also the eigenspace of
the left multiplications Ve (respectively Le) with eigenvalues i (respectively 1

2 i):
we have the Peircer, V -, and L-Eigenspace Laws

Ji = {x ∈ J | E(t)x = tix} = {x ∈ J | Vex = ix} = {x ∈ J | Lex = i
2x}.

proof. For the Peircer Eigenspace Law, the characterization of Ji = Ei(J)
as eigenspace of E(t) =

∑2
i=0 t

iEi with eigenvalue ti, follows immediately
from the fact that t is an indeterminate: if x = x2 ⊕ x1 ⊕ x0 ∈ J, xi = Ei(x),
then in J′ = Ĵ[t] we have E(t)(x) = t2x2 + tx1 + x0, which coincides with tix
iff xi = x, xj = 0 for j  = i by identifying coefficients of like powers of t on
both sides. The second Eigenspace Law, characterizing Ji as the i-eigenspace
of Ve = Ue,1 = Ue,1−e + Ue,e = E1 + 2E2 =

∑2
i=0 iEi for eigenvalue i, follows

from the fact that distinct values i, j ∈ {2, 1, 0} have j − i invertible when
1
2 ∈ Φ: Ve(x) = 2x2 + x1 + 0x0 coincides with ix iff

∑
j(j − i)xj = 0, which

by directness of the Peirce decomposition means that (j − i)xj = 0 for j  = i,
i.e., xj = 0 for j  = i, i.e., x = xi. Multiplying by 1

2 gives the third Eigenvalue
Law for Le = 1

2Ve. �
The final formulation above in terms of Le explains why, in the older lit-

erature (back in the L-ish days), the Peirce spaces were denoted by J1,J 1
2
,J0

instead of by J2,J1,J0. Note that the Peircer has the advantage that the
eigenvalues ti = t2, t, 1 are independent over any scalar ring Φ, whereas in-
dependence of the eigenvalues i = 2, 1, 0 for Ve (even more, for Le) requires
injectivity of all j − i, equivalently injectivity of 2.
The Peircers also lead quickly and elegantly to the Peirce decomposition

itself. As with a single variable, for Ω := Φ[s, t] the algebra of polynomials in
two independent indeterminates, we have J ⊆ J′ := ĴΩ ∼= Ĵ[s, t] consisting of
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all formal polynomials in s, t with coefficients from Ĵ. The Peircer Torus yields∑
i,j s

itjEiEj = E(s)E(t) = E(st) =
∑

i(st)
iEi, so identifying coefficients of

sitj on both sides beautifully reveals the Peirce projection condition EiEj =
δijEi.

8.2 Peirce Multiplication Rules

The underlying philosophy of Peirce decompositions is that they are just
big overgrown matrix decompositions, behaving like the decomposition of an
associative matrix algebra M2(D) into Φ-submodules DEij which multiply
like the matrix units Eij themselves. The only point to be carefully kept in
mind is that in the Jordan case, as in hermitian matrices, the off-diagonal
spaces DE12,DE21 cannot be separated, they are lumped into a single space
J1 = D[12] = {dE12 + d̄E21 | d ∈ D}. This symmetry in indices is impor-
tant to keep in mind when talking about spaces whose indices are “linked” or
“connected.”
The Peircer is even more effective in establishing the multiplicative prop-

erties of Peirce spaces, because it is itself a U -operator and hence interacts
smoothly with its fellow U -operators by the Fundamental Formula. In con-
trast, the L-operator does not interact smoothly with U - or L-operators: there
is no pithy formula for Ue•x or Le•x.
We will need an indeterminate t and its inverse t−1, requiring us to extend

our horizons from polynomials to Laurent polynomials. Recall that Laurent
polynomials in t are just polynomials in t and its inverse: Ω := Φ[t, t−1] consists
of all finite sums

∑M
i=−N αit

i, with the natural operations. In particular, Ω
is a free Φ-module with basis of all monomials tj (j ∈ Z) over Φ, so J ⊆
J′ := ĴΩ ∼= Ĵ[t, t−1], which consists of all finite formal Laurent polynomials∑M

i=−N tixi in t with coefficients xi from Ĵ, with the natural operations.

Peirce Multiplication Theorem 8.2.1 Let e be an idempotent in a Jordan
algebra J. We have the following rules for products of Peirce spaces Jk :=
Jk(e). We let k, ?,m represent general indices, and i a diagonal index i = 2, 0
with complementary diagonal index j = 2 − i. We agree that Jk = 0 if k  =
0, 1, 2. For the bilinear, quadratic, and triple products we have the following
rules:

Three Peirce Brace Rules: J2
i ⊆ Ji, {Ji,J1} ⊆ J1, J2

1 ⊆ J2+J0,

Peirce U-Product Rule: UJk
J� ⊆ J2k−�,

Peirce Triple Product Rule: {Jk,J�,Jm} ⊆ Jk−�+m,

Peirce Orthogonality Rules: {Ji,Jj} = {Ji,Jj ,J} = UJi
(Jk) = 0 (k  = i).

In particular, the diagonal Peirce spaces J2,J0 are inner ideals which an-
nihilate each other whenever they get the chance.
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proof. These formulas come easily from the fact that we had the foresight
to include a scalar t−1 in Ω. Since E(t) = Ue(t) we can use the Fundamental
Formula to see that E(t) (Uxi

yj) = E(t)Uxi
E(t)E(t−1)yj [by Peircer Torus

8.3, since t and t−1 cancel each other] = UE(t)xi
E(t−1)yj = Utixi

t−jyj =
t2i−jUxi

yj , and Uxi
yj lies in the eigenspace J2i−j . In particular, we have

the U -Orthogonality: Ux2y0 ∈ J4 = 0, Ux2y1 ∈ J3 = 0, Ux0y1 ∈ J−1 =
0, Ux0y2 ∈ J−2 = 0. Similarly, the linearized Fundamental Formula shows that
E(t){xi, yj , zk} =

(
E(t)Uxi,zk

E(t)
)
E(t−1)yj = {E(t)xi, E(t−1)yj , E(t)zk} =

{tixi, t−jyj , tkzk} = ti−j+k {xi, yj , zk}, and {xi, yj , zk} lies in the eigenspace
Ji−j+k. In particular, we have most of Triple Orthogonality: {J2,J0,Ji} ⊆
J2−0+i = 0 if i  = 0, dually {J0,J2,Jj} ⊆ J0−2+j = 0 if j  = 2.
But we do not spontaneously obtain the triple orthogonality relations that

the products {J2,J0,J0} ⊆ J2, {J0,J2,J2} ⊆ J0 actually vanish. By symme-
try Ji(e) = Jj(e′) in Ĵ it suffices to prove {J2,J0,J0} = 0. We first turn this
into a brace, {J2,J0,J0} = −{J0,J2,J0}+ {{J2,J0},J0} ⊆ −0+{{J2,J0},J}
using the Triple Switching Formula (FFIV), then we finish it off using Brace
Orthogonality

{J2,J0} = 0,

which follows because {J2,J0} = {J2,J0, 1} = {J2,J0, e + e′} = {J2,J0, e
′}

⊆ J2, and at the same time {J2,J0} = {e+ e′,J2,J0} = {e,J2,J0} ⊆ J0.
The brace rules follow by applying the triple product results in Ĵ where

the unit is 1 = e2+e0, e2 = e ∈ J2, e0 = e′ = 1̂−e ∈ J0 : J2
i = UJi(ei+ej) ⊆

Ji + 0 = Ji, {Ji,J1} = {Ji, ei + ej ,J1} ⊆ {Ji,Ji,J1} + 0 ⊆ J1, J2
1 =

UJ1(e2 + e0) ⊆ J0 + J2. �

Exercise 8.2.1 Give an alternate proof of the difficult Peirce relation {Ji,Jj ,J} = 0 for
complementary diagonal indices. Use {x, x, y} = {x2, y} to show that {ei, ei, ej} = 0, then
use a linearization of the Triple Shift Formula (FFIII) to show that Vei,ej = Vei,{ei,ei,ej} =
0, Vyj ,ei = Vej ,{yj ,ej ,ei} = 0, Vxi,yj = Vei,{yj ,ei,xi} = 0, {xi, yj , z} = Vxi,yj (z) = 0.

8.3 Basic Examples of Peirce Decompositions

We now give examples of idempotents and their Peirce decompositions, be-
ginning with Jordan algebras obtained from an associative algebra A. A full
algebra J = A+ has exactly the same Peirce decompositions as the associa-
tive algebra A. In particular, the Peirce space J1 breaks up into two pieces
A10,A01. This is atypical for Jordan algebras; the archetypal example is her-
mitian matrices, where the space A10 is inextricably tied to the space A01
through the involution.3

3 Associative Peirce decompositions were described in I.6.1 to motivate Jordan Peirce
decompositions.
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Associative Peirce Decomposition 8.3.1 If e is an idempotent in an
associative algebra A, it is well known that if we set e′ = 1̂ − e ∈ Â, then
any element x ∈ A has a decomposition x = 1̂x1̂ = (e + e′)x(e + e′) =
exe+ exe′+ e′xe+ e′xe′ = exe+(ex− exe)+(xe− exe)+(x− ex−xe+ exe).
If we set e1 = e, e0 = e′, this becomes x = e1xe1+ e1xe0+ e0xe1+ e0xe0, and
we obtain an associative Peirce decomposition

A = A11 ⊕A10 ⊕A01 ⊕A00 (Aij := eiAej)

relative to e. Since

(eiAej)(ekAe�) = δjkeiAejAe� ⊆ δjkeiAe�,

these satisfy the associative Peirce multiplication rules

AijAk� ⊆ δjkAi�. �

Every associative algebra can be turned into a Jordan algebra by the plus
functor, but in the process information is lost. The fact that we can recover
only the product xy + yx, not xy itself, causes the off-diagonal Peirce spaces
A10,A01 to get confused and join together.

Full Peirce Decomposition 8.3.2 If e is an idempotent in an associative
algebra A, the associated full Jordan algebra J = A+ has Jordan Peirce de-
composition

A+ = A+
2 ⊕A+

1 ⊕A+
0

for
A+

2 = A11, A+
1 = A10 ⊕A01, A+

0 = A00. �

Thus the Jordan 1-eigenspace is a mixture of the associative “left” eigenspace
A10 and “right” eigenspace A01. The Peirce Multiplication Rules 8.2.1 are
precisely the rules for multiplying matrices, and one should always think of
Peirce rules as matrix decompositions and multiplications. If A = M2(D)
is the algebra of 2 × 2 matrices over an associative algebra D and e = E11
the first matrix unit, the Peirce spaces Aij relative to e are just the matrices
having all entries 0 except for the ij-entry:

A11 = (D 0
0 0 ) , A10 = ( 0 D

0 0 ) , A01 = ( 0 0
D 0 ) , A00 = ( 0 0

0 D ) .

When the associative algebra has an involution, we can reach inside the
full algebra and single out the Jordan subalgebra of hermitian elements. Again
the off-diagonal Peirce subspace is a mixture of associative ones, but here
there are no regrets – there is no longing for J1 to split into A10 and A01,
since these spaces do not contribute to the symmetric part. Instead, we have
J1 = {x10 + x∗10 | x10 ∈ A10} consisting precisely of the symmetric traces of
elements of A10 (or dually A01 = (A10)∗).
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Hermitian Peirce Decomposition 8.3.3 If the associative algebra A has
an involution ∗, and e∗ = e is a symmetric idempotent, then the associa-
tive Peirce spaces satisfy A∗ij = Aji, the Jordan algebra H(A, ∗) contains the
idempotent e, and the Peirce decomposition is precisely that induced from the
Full Decomposition 8.3.2:

for

H(A, ∗) = J2 ⊕ J1 ⊕ J0

J2 = H(A11, ∗), J0 = H(A00, ∗),
J1 = H(A10 ⊕A01, ∗) = {x10 ⊕ x∗10 | x10 ∈ A10}. �

Our final examples of idempotents and Peirce decompositions concerns
Jordan algebras of quadratic and cubic forms.

Quadratic Factor Reduction Criterion 8.3.4 In the Jordan algebra
Jord(Q, c) = JSpin(M,σ) of the Quadratic Factor and Spin Examples 3.3.1,
3.3.3, we say that an element e has Trace 1 Type if

T (e) = 1, Q(e) = 0 (hence ē = 1− e).

This is equivalent to

e = 1
2 (1 + v) for v ∈ M with Q(v) = −1 (σ(v, v) = 1).

Over any ring of scalars Φ such an element is a proper idempotent.4 When Φ
is a field, these are the only proper idempotents,

e ∈ Jord(Q, c) proper ⇐⇒ e has Trace 1 Type (Φ a field),

and such proper idempotents exist iff Q is isotropic,

Jord(Q, c) is reduced for nondegenerate Q over a field Φ

⇐⇒ Q is isotropic, Q(x) = 0 for some  = 0.
proof. An e of Trace 1 Type is clearly idempotent by the Degree–2 Iden-

tity in the Quadratic Factor Example 3.3.1, e2 = T (e)e−Q(e)1 = e, and differs
from 1, 0 since T (1) = 2, T (0) = 0. Here T (e) = 1 iff e = 1

2 (1+v) where T (v) =
0, i.e., v ∈ M , in which case Q(e) = 0 iff 0 = Q(2e) = Q(1 + v) = 1 + Q(v),
i.e., iff Q(v) = −σ(v, v) = −1.
To see that these are the only proper idempotents when Φ is a field, an

idempotent e is proper ⇐⇒ e  = 1, 0 ⇐⇒ e  ∈ Φ1 [because 0, 1 are the only
idempotents in a field], so from the Degree–2 Identity 0 = e2−T (e)e+Q(e)1 =
[1− T (e)]e+Q(e)1 =⇒ 1− T (e) = 0, Q(e) = 0.
If a proper e exists then Q is certainly isotropic, Q(e) = 0 for e  = 0. The

surprising thing is that the annihilation by a nondegenerateQ of some nonzero
4 Notice that we could also characterize the improper idempotents e = 1 as Trace 2

Type (T (e) = 2, Q(e) = 1, ē = e) and e = 0 as Trace 0 Type (T (e) = Q(e) = 0, ē = e), but
we will refrain from doing so.
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element automatically creates an idempotent! If Q(x) = 0, T (x) = λ  = 0, then
e = λ−1x has Q(e) = 0, T (e) = 1 and hence is a proper idempotent of Trace
1 Type. If T (x) = 0, we claim that there must exist a element x′ = Uyx
with nonzero trace: otherwise T (Uyx) = 0 for all y, so linearizing y �→ y, 1
would give 0 = T ({y, x}) = T

(
T (y)x + T (x)y − Q(x, y)1

)
[by the formula

for the bullet in the Quadratic Factor Example] = 2T (x)T (y) − Q(x, y)2 =
0 − 2Q(x, y), and Q(x, y) = 0 = Q(x) for x  = 0 and all y would contradict
nondegeneracy of Q. Such an element x′ is necessarily nonzero and isotropic
by Jordan Composition in the Quadratic Factor Example, Q(x′) = Q(Uyx) =
Q(y)2Q(x) = 0. Thus in either case, isotropy spawns an idempotent. �

Exercise 8.3.4 The improper idempotents in Jord(Q, c) can’t be characterized solely in
terms of their trace and norm: show that T (x) = 2, Q(x) = 1 iff x is unipotent (x = 1+z for
nilpotent z), and T (x) = Q(x) = 0 iff x is nilpotent, and a perfectly respectable Jord(Q, c)
(e.g., Q nondegenerate over a field) may well have nilpotent elements.

We saw in Reduced Spin 3.4.1 a way to build a reduced quadratic factor
out of a quadratic form q by adjoining a pair of supplementary orthogonal
idempotents e1, e2.

Reduced Spin Peirce Decomposition 8.3.5 The Peirce decomposition of
the reduced spin factor RedSpin(q) = Φe1 ⊕ M ⊕ Φe2 of a quadratic form,
with respect to the created idempotents e = ei, e

′ = e3−i is just the natural
decomposition

RedSpin(q) = J2 ⊕ J1 ⊕ J0 for J2 = Φe, J1 =M, J0 = Φe′.�

The situation for idempotents in Cubic Factors is more complicated; the
proper idempotents come in two types, Trace 1 and Trace 2.

Cubic Reduction Criterion 8.3.6 In the cubic factor Jord(N,#, c) we say
that an element e has Trace 1 Type or Trace 2 Type if

Trace 1: T (e) = 1, e# = 0 (hence S(e) = N(e) = 0);

Trace 2: T (e) = 2, e# = e′ (hence S(e) = 1, N(e) = 0, (e′)# = 0).

Over any ring of scalars Φ such elements are proper idempotents. An idem-
potent is of Trace 1 Type iff its complement is of Trace 2 Type. When Φ is a
field, these are the only proper idempotents,

e ∈ Jord(N,#, c) proper ⇐⇒ e has Trace 1 or 2 Type (Φ a field),

and proper idempotents exist iff N is isotropic,

Jord(N,#, c) is reduced for nondegenerate N over a field Φ

⇐⇒ N is isotropic, N(x) = 0 for some x  = 0.
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proof. Recall from the Sharped Cubic Definition 4.2.1 and Sharped Cubic
Construction 4.2.2 the basic Adjoint Identity, c–Sharp Identity, Spur Formula,
Sharp Expression, and Degree–3 Identity:

(1) x## = N(x)x (Adjoint Identity),
(2) 1#x = T (x)1− x (c–Sharp Identity),

(3) S(x) = T (x#) (Spur Formula),

(4) x# = x2 − T (x)x+ S(x)1 (Sharp Expression),

(5) x3 − T (x)x2 + S(x)x−N(x)1 = 0 (Degree–3 Identity).

From the Sharp Expression (4) we see that x2 −x = x#+[T (x)−1]x−S(x)1
will vanish (and x will be idempotent) if either x# = 0, T (x) = 1, S(x) = 0
(as in Trace 1) or x# = 1−x, T (x) = 2, S(x) = 1 (as in Trace 2), so e of Trace
1 or 2 Type is idempotent over any ring of scalars. It will be proper, differing
from 1, 0, since T (1) = 3, T (0) = 0  = 1, 2 as long as the characteristic isn’t 2.
Notice that in Trace 1 Type the first two conditions imply the last two,

since S(e) = T (e#) = 0 [by the Spur Formula (3)] and N(e) = N(e)T (e) =
T (N(e)e) = T (e##) = 0 [by the Adjoint Identity (1)]. Similarly, in Trace 2
Type the first two conditions imply the final three, S(e) = T (e#) = T (1−e) =
3 − 2 = 1, (e′)# = (1 − e)# = 1# − 1#e + e# = 1 − (T (e)1 − e) + e′ [by the
c–Sharp Identity (2)] = 1 − (2 − e) + (1 − e) = 0, so 2N(e) = N(e)T (e) =
T (N(e)e) = T (e##) = T ((e′)#) = 0. Thus in all cases it is the trace and
sharp conditions which are basic.
If e has Trace 1 Type then its complement e′ = 1 − e has Trace 2 Type

(and vice versa). For the trace this follows from T (1− e) = 3− T (e). For the
sharp, e of Trace 2 Type has (e′)# = 0 by assumption, and e of Trace 1 Type
has (e′)# = (1− e)# = 1# − 1#e+ e# = 1− (T (e)1− e) + 0 [by the c–Sharp
Identity (2)] = 1− (1− e) = e = (e′)′.
To see that these are the only proper idempotents when Φ is a field, for

idempotent e the Degree–3 Identity (5) becomes 0 = e − T (e)e + S(e)e −
N(e)1 = [1 − T (e) + S(e)]e − N(e)1, and e  = 1, 0 ⇐⇒ e  ∈ Φ1 =⇒ 1 −
T (e) + S(e) = N(e) = 0, in which case the Sharp Expression (4) says that
e# = e− T (e)e+ S(e)1 = [1− T (e)]e+ S(e)1 = [−S(e)]e+ S(e)1 = S(e)e′. If
S(e) = 0 then 1 − T (e) = 0, e# = 0, and we have Trace 1 Type; if S(e)  = 0
then S(e) = T (e#) [by the Spur Formula (3)] = S(e)T (e′) = S(e)[3 − T (e)],
so S(e)[T (e) − 2] = 0 implies that T (e) = 2 by canceling S(e), then S(e) =
T (e)− 1 = 1, e# = e′ as in Trace 2 Type. �

Exercise 8.3.6A Show that some restriction on the scalars is necessary in the Quadratic
and Cubic Reduction Examples to be able to conclude that proper idempotents have Trace
1 or 2 type: if ε ∈ Φ is a proper idempotent, then e = ε1 is a proper idempotent in Jord(Q, c)
with T (e) = 2ε,Q(e) = ε, ē = e, and similarly, a proper idempotent in Jord(N,#, c) with
T (e) = 3ε, S(e) = ε,N(e) = ε, e# = ε1.
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Exercise 8.3.6B Characterize the improper idempotents in Jord(N,#, c) as Trace 3 Type
(T (e) = 3, S(e) = 3, N(e) = 1, e# = e) and Trace 0 Type (T (e) = S(e) = N(e) = 0, e# =
e). (1) Show that an element x has T (x) = 3, S(x) = 3, N(x) = 1, x# = x iff x = 1 + z

for nilpotent z with T (z) = S(z) = N(z) = 0, z# = 2z, then use the Adjoint Identity
N(z)z = z## to conclude that z = 0, x = 1, and hence that e is of Trace 3 Type iff e = 1.
(2) Use the Adjoint Identity again to show that N(x) = 0, x# = x iff x = 0, and hence
that e is of Trace 0 Type iff e = 0.

To see explicitly what the Peirce decompositions look like, we examine the
reduced case of 3× 3 hermitian matrices over a composition algebra.
3× 3 Cubic Peirce Decomposition 8.3.7 In a cubic factor J = H3(C) for
a composition algebra of dimension 2n (n = 0, 1, 2, 3) over a general ring of
scalars Φ (with norm form n(x)1 = xx̄ = x̄x ∈ Φ1) the idempotent e = 1[11]
is of Trace 1 Type, its complement e′ = 1[22] + 1[33] is of Trace 2 Type, and
the Peirce decomposition relative to e is

J2 = Φe = {all
(
α 0 0
0 0 0
0 0 0

)
for α ∈ Φ},

J1 = C[12]⊕C[13] = {all
(

0 a b
ā 0 0
b̄ 0 0

)
for a, b ∈ C},

J0 = Φ[22]⊕C[23]⊕ Φ[33] = {all
( 0 0 0

0 α c
0 c̄ β

)
for α, β ∈ Φ, c ∈ C}.

Thus J2 is just a copy of the scalars of dimension 1, J1 has dimension 2n+1,
and J0 ∼= H2(C) ∼= RedSpin(q) has dimension 2n + 2 for the quadratic form
q ( 0 c

c̄ 0 ) = n(c). �

8.4 Peirce Identity Principle

We can use the Shirshov–Cohn Principle to provide a powerful method for
verifying facts about Peirce decompositions in general Jordan algebras.

Peirce Principle 8.4.1 Any Peirce elements x2, x1, x0 from distinct Peirce
spaces Ji(e) relative to an idempotent e lie in a special subalgebra B of J
containing e. Therefore, all Jordan behavior of distinct Peirce spaces in asso-
ciative algebras persists in all Jordan algebras: if fα, f are Jordan polynomials,
a set of relations fα(e, x2, x1, x0) = 0 will imply a relation f(e, x2, x1, x0) = 0
among Peirce elements xi in all Jordan algebras if it does in all asso-
ciative algebras, i.e., if the relations fα(e, a11, a10 + a01, a00) = 0 imply
f(e, a11, a10 + a01, a00) = 0 for all Peirce elements aij ∈ Aij relative to
idempotents e in all unital associative algebras A. In particular, we have the
Peirce Identity Principle: any Peirce identity f(e, x2, x1, x0) = 0 for a
Jordan polynomial f will hold for all Peirce elements xi in all Jordan alge-
bras if f(e, a11, a10 + a01, a00) = 0 holds for all Peirce elements aij ∈ Aij in
all associative algebras A.
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proof. It suffices to establish this in the unital hull, so we may assume
from the start that J is unital. Then everything takes place in the unital
subalgebra B = Φ[e, x] of J for x = x2 + x1 + x0, since each xi can be
recovered from x by the Peirce projections (x2 = E2(x) = Uex, x1 = E1(x) =
Ue,1−ex, x0 = E0(x) = U1−ex). By the Shirshov–Cohn Theorem B ∼= H(A, ∗)
is special, so if a Jordan polynomial f(e, x2, x1, x0) vanishes in the special
algebra B, it will vanish in J. By the Hermitian Peirce Decomposition 8.3.3
of B, we can write x2 = a11, x1 = a10+ a01, x0 = a00, therefore f(e, a11, a10+
a01, a00) = 0 in A implies that f(e, x2, x1, x0) = 0 in B and hence J. �

Let us see how powerful the Principle is by rederiving the Peirce identities. The asso-
ciative Peirce decomposition 8.3.1 has AijAk! = δjkAi! with orthogonal Peirce projections
Cij(a) = eiaej , so the Jordan Peirce projections E2 = C11, E1 = C10 + C01, E0 = C00
are also supplementary orthogonal projections as in 8.1.2. We can recover all Peirce
Brace Rules 8.2.1. For squares: x2

2 ∈ A11A11 ⊆ A11 = J2; dually x2
0 ∈ J0; and

x2
1 ∈ (A10 + A01)2 = A10A01 + A01A10 ⊆ A11 + A00 = J2 + J0. For braces: {x2, x1} ∈
A11(A10 + A01) + (A10 + A01)A11 ⊆ A10 + A01 = J1; dually x0 • x1 ∈ J1; and
x2 • x0 ∈ A11A00 +A00A11 = 0.

In Peirce Orthogonality 8.2.1 we get Ux2 (y0 + z1) ⊆ A11(A00 + A10 + A01)A11 =
0, {x2, y0, z1} ⊆ A11A00A+AA00A11 = 0 [but not {J2, J0, J0} = 0 directly]. For the non-
orthogonal U -products in 8.2.1 we get Ux1y2 ∈ (A10 + A01)A11(A10 + A01) ⊆ A00 = J0,
but we do not get Uxkyk ∈ Jk directly since two factors come from the same Peirce space
(however, we do get Uxkxk ∈ Jk, so by linearizing Uxkyk ≡ −{x2

k, yk} ≡ 0 mod Jk from
our bilinear knowledge); for trilinear products we can use Triple Switch to reduce to Uxkyj

if one index is repeated, otherwise to {x2, y0, z1} = 0 if all three indices are distinct.

We will see an Indistinct Example 13.5.2 where the restriction to distinct
Peirce spaces is important (though it seems hard to give an example with only
a single idempotent).

8.5 Problems for Chapter 8

Problem 8.1 Find the Peirce decompositions of M2(D)+ and H2(D,−)
determined by the hermitian idempotent e = 1

2

(
1 d
d̄ 1

)
where d ∈ D is unitary,

i.e., dd̄ = d̄d = 1.

Problem 8.2 We have hyped the Peircer U -operators as a tool for Peirce
decomposition. Part of our bias in their favor is due to the fact that Peircers
work well over arbitrary scalars, so in quadratic Jordan algebras, but also in
Jordan triples where there is no Ve. Now we will confess, in this out-of-the-way
corner, that we can actually get along perfectly well in our linear situation
with the L or V operators. (1) Derive the Peirce U -Product and Triple Rules
8.2.1 (from which the Brace Rules follow) for the Peirce spaces Ji(e) as the i-
eigenspaces for the operator Ve: use the Fundamental Lie Formula (FFV) and
the 5-Linear (FFVe)′ to show that UJi(Jj) ⊆ J2i−j , {Ji,Jj ,Jk} ⊆ Ji−j+k.
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In this chapter we fix a Peirce decomposition J = J2⊕J1⊕J0 with respect to
an idempotent e, and gather detailed information about the product on the
Peirce space J1. From this point on, the behavior of the spaces J2,J0 begins to
diverge from that of the Peirce space J1. Motivated by the archetypal example
of e = E11 in hermitian 2 × 2 matrices, where by Hermitian Example 8.8
J2 = H(D)[11],J0 = H(D)[22] are represented by diagonal matrices, and J1 =
D[12] by off-diagonal matrices, we will call Ji (i = 2, 0) the diagonal Peirce
spaces, and J1 the off-diagonal Peirce space. The diagonal Peirce spaces
are more “scalar-like” subalgebras, and act nimbly on the more lumbering,
vector-like off-diagonal space. To make the distinction between the two species
visually clearer, we will henceforth use letters ai, bi, ci and subscripts i =
2, 0, j = 2− i to denote diagonal elements, while we use letters x1, y1, z1 and
subscript 1 to denote off-diagonal elements.

9.1 Peirce Specializations

By Special Definition 3.1.2, a specialization of a Jordan algebra J is a homo-
morphism J→ A+ for some associative algebra A; this represents J (perhaps
not faithfully) as a special algebra. In the important case A = EndΦ(M) of
the algebra of all linear transformations on a Φ-module M , we speak of a
specialization of J on M ; this represents J as a Φ-submodule of linear trans-
formations on M , with the product on J represented by the Jordan product
1
2 (T1T2 + T2T1) of operators.
A Peirce decomposition provides an important example of a specializa-

tion.1

1 This was mentioned in I.8.2 as motivation for Zel’manov’s general specialization B −→
End(J/B)+ for arbitrary inner ideals B.
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Peirce Specialization Proposition 9.1.1 If J = J2 ⊕ J1 ⊕ J0 is the Peirce
decomposition of a Jordan algebra with respect to an idempotent e, the V -
operators provide Peirce Specializations of the diagonal Peirce subalgebras
Ji (i = 2, 0) on the off-diagonal space J1 via

σi(ai) := Vai
|J1 (ai ∈ Ji).

These satisfy the Peirce Specialization Rules:

σi(a2
i ) = σi(ai)2, σi(Uai

bi) = σi(ai)σi(bi)σi(ai),
σ2(e) = 1J1(e), σi(ai)σi(bi) = Vai,bi |J1 .

proof. The Peirce Multiplication Rules 8.2.1 show that the diagonal
spaces act on the off-diagonal space: J1 is closed under brace multiplica-
tion by diagonal elements, {Ji,J1} ⊆ J1 for i = 2, 0. Thus we may de-
fine linear maps σi of Ji into EndΦ(J1) by restricting the action of brace
multiplication. These satisfy the specialization rules since the differences
Vai,bi −VaiVbi = −Uai,bi [using Triple Switch (FFIV)], Va2

i
−V 2

ai
= −2Uai , and

VUai
bi − VaiVbi,ai = −VbiUai [by Specialization Formulas (FFIII)

′] all vanish
on J1 by Peirce Orthogonality 8.2.1 UJiJ1 = 0. The subalgebra J2 is unital
with unit e, and the Peirce specialization σ2 is unital since Ve = 1J1 on J1 by
the Eigenspace Laws 8.1.4. �
Notice that it is the V -operators that provide the correct action, not the

L-operators. When the element ai clearly indicates its affiliation with Ji, we
will omit the redundant second index and simply write σ(ai). We can consider
σ to be a linear map from J2+J0 into EndΦ(J1), but note that σ is no longer
a homomorphism when considered on the direct sum J2 � J0: we will see in
Peirce Associativity 9.1.3 that the images σ(J2), σ(J0) commute rather than
annihilate each other.
In certain important situations the Peirce specializations will be faithful

(i.e., injective), so that the diagonal subalgebras Ji will be special Jordan
algebras.

Peirce Injectivity Lemma 9.1.2 (1) We have a Peirce Injectivity Prin-
ciple: both Peirce specializations will be injective if there exists an injective
element in the off-diagonal Peirce space,

if Uy1 is injective on J for some y1 ∈ J1(e),

then already σ(ai)y1 = 0 =⇒ ai = 0 (i = 2, 0).

In particular, this will hold if there exists an invertible element y1.
(2) We have a Simple Injectivity Principle: the Peirce specializations

will be injective if J is simple: Ker(σi)  J is an ideal in J, so if J is simple
and e  = 1, 0 is proper, then the Peirce specializations σ2, σ0 are injective.
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(3) We have a Peirce Speciality Principle: In a simple Jordan algebra
all proper idempotents are special, in the sense that the Peirce subalgebras
Ji(e) (i = 2, 0, e  = 1, 0) are special.
proof. (1) If {ai, y1} = 0 then 2Uy1(ai) = {y1, {y1, ai}} − {y2

1 , ai} ∈
0 − {J2 + J0, ai} ⊆ Ji by the Peirce Brace Rules 8.2.1, yet it also falls in
J2−i by the Peirce U -Products, so 2Uy1(ai) is zero, hence ai = 0 by the
hypothesized injectivity of Uy1 and the existence of 1

2 ∈ Φ.
(2) Since σi is a homomorphism, its kernel Ki := Ker(σi) is an ideal of

Ji, {Ki,Ji} ⊆ Ki; this ideal has {Ki,J1} = 0 by definition, and {Ki,Jj} = 0
by Peirce Orthogonality Rules 8.2.1, so {Ki,J} ⊆ Ki and Ki is an ideal in J.
If J were simple but Ki  = 0 then Ki = J would imply Ji = J; but J = J2
would imply e = 1, and J = J0 would imply e = 0, contrary to our properness
hypothesis.
(3) The Ji are special since they have an injective specialization σi. �
At this point it is worth stopping to note a philosophical consequence

of this basic fact about Peirce specializations: we have a Peirce limit to ex-
ceptionality. Namely, if J is exceptional with unit 1 then simplicity cannot
continue past 1:

If J ⊆ J̃ for simple algebras with units 1 < 1̃, then J must be special.
The reason is that 1̃ > 1 implies that e = 1  = 0, 1̃ is proper, so J ⊆ J̃2(e)
is special. This reminds us of the Hurwitz limit to nonassociativity : if C is a
nonassociative composition algebra, then composition cannot continue past
C.
Recall that the original investigation by Jordan, von Neumann, and

Wigner sought a sequence of simple exceptional finite-dimensional (hence uni-
tal) algebras J(1) ⊆ J(2) ⊆ · · ·J(n) ⊆ · · · such that the “limit” might provide
a simple exceptional setting for quantum mechanics. We now see why such a
sequence was never found: once one of the terms becomes exceptional the rest
of the sequence comes to a grinding halt as far as growth of the unit goes. (An
exceptional simple J can be imbedded in an egregiously non-simple algebra
J�J′ with larger unit, and it can be imbedded in larger simple algebras with
the same unit, such as scalar extensions JΩ, but it turns out these are the
only unital imbeddings which are possible.)
Another important fact about Peirce products is that the Peirce special-

izations of the diagonal subspaces on J1 commute with each other; in terms of
bullet or brace products this can be expressed as associativity of the relevant
products.

Peirce Associativity Proposition 9.1.3 The Peirce specializations of σi
commute: for all elements ai ∈ Ji we have the operator relations

σ(a2)σ(a0) = σ(a0)σ(a2) = Ua2,a0 ;
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in other words, we have the elemental relations

[a2, x1, a0] = 0, (a2 • x1) • a0 = a2 • (x1 • a0) = 1
4{a2, x1, a0}

proof. This follows from the Peirce Principle 8.4.1 since it involves only
e, x1, a2, a0, and is straightforward to verify in an associative algebra A: for
x1 = a10 + a01, a2 = a11, a0 = a00 we have, by associative Peirce orthogonal-
ity, {a11, {a00, a10+a01}} = {a11, a00a01+a10a00} = a11a10a00+a00a01a11 =
{a11, a10 + a01, a00} and dually. [We can also argue directly: {a2, {a0, x1}} =
{a2, a0, x1} + {a2, x1, a0} [using Triple Switch (FFIVe)] = {a2, x1, a0} by
Peirce Orthogonality in 8.2.1, and dually by interchanging 2 and 0.] �

9.2 Peirce Quadratic Forms

The remaining facts we need about Peirce products all concern the compo-
nents of the square of an off-diagonal element. As we delve deeper into the
properties of Peirce decompositions, the results get more technical, but they
will be crucial to establishing the structure of simple algebras.

Peirce Quadratic Form Definition 9.2.1 An off-diagonal element x1
squares to a diagonal element x2

1 = Ux11 = Ux1e0 + Ux1e2 ∈ J2 ⊕ J0. We
define quadratic maps qi : J1 → Ji (i = 2, 0) by projecting the square of an
off-diagonal element onto one of the diagonal spaces:

qi(x1) := Ei(x2
1), qi(x1, y1) := Ei({x1, y1}).

Though these maps are not usually scalar-valued, the Peirce subalgebras
Ji (i = 2, 0) are so much more scalar-like than J itself that, by abuse of
language, we will refer to the qi as the Peirce quadratic forms (instead of
quadratic maps). If J = RedSpin(q) = Φe2 ⊕M ⊕ Φe0, then qi(w) = q(w)ei
where q(w) ∈ Φ is a true scalar.2

q-Properties Proposition 9.2.2 Let x1, y1 ∈ J1(e) relative to an idempotent
e ∈ J, and let i = 2, 0, j = 2−i, e2 = e, e0 = 1̂−e ∈ Ĵ. We have an Alternate
q Expression for the quadratic forms:

qi(x1) = Ux1ej .

(1) Powers can be recovered from the quadratic maps by Cube Recov-
ery:

x3
1 = {qi(x1), x1}, qi(x1)2 = Ux1(qj(x1)).

2 BEWARE (cf. the warning after Spin Factors Example 3.3.3): the Peirce quadratic
forms are built out of squares, and correspond to the forms q(v) of Reduced Spin Factors
3.4.1, and thus to the NEGATIVE of the global form Q in Jord(Q, c).
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(2) The operator Ux1 can be expressed in terms of q’s by the U1q Rules:

Ux1(y1) = {qi(x1, y1), x1} − {qj(x1), y1},
Ux1(ai) = qj(x1, ai • x1),

{x1, ai, z1} = qj({x1, ai}, z1) = qj(x1, {ai, z1}).
(3) The q’s permit composition with braces by the q-Composition Rules:

qi({ai, x1}) = Uai
(qi(x1)),

qi({ai, x1}, x1) = Vai
(qi(x1)),

qi({aj , x1}) = Ux1(a
2
j ).

proof. All except the formula for Ux1(y1) and the symmetry of the
linearized product in the U1q Rules follow directly from the Peirce Prin-
ciple 8.4.1 since they involve only e, x1, ai, and are straightforward to ver-
ify in an associative algebra A from the associative Peirce relations. In
detail, we may assume that A is unital to have complete symmetry in the indices i, j,
so we need only verify the formulas for i = 2, j = 0. For x1 = a10 + a01 we have
q2(x1) = a10a01, q0(x1) = a01a10, so we obtain the Alternate q Expression Ux1e0 =
x1e0x1 = a10a01 = q2(x1), Cube Recovery x3

1 = (a10 + a01)3 = a10a01a10 + a01a10a01 =(
a10a01

)
(a10 + a01) + (a10 + a01)

(
a10a01

)
= q2(x1)x1 + x1q2(x1), fourth-power Recov-

ery q2(x1)2 = (a10a01)(a10a01) = (a01 + a10)(a01)(a10)(a01 + a10) = x1q0(x1)x1, the
second U1q-Rule q0(x1, {a11, x1}) = q0(a10 + a01, a11a10 + a01a11) = a01(a11a10) +
(a01a11)a10 = 2Ux1a11; the first q-Composition Rule q2({a11, x1}) = q2(a11a10+a01a11) =
(a11a10)(a01a11) = a11(a10a01)a11 = Uaiiq2(x1), the second by linearizing ai �→ ai, ei,
and the third q2({a00, x1}) = q2(a00a01 + a10a00) = (a10a00)(a00a01) = a10(a00a00)a01 =
Ux1 (a2

00).
For the first U1q-Rule, linearize x1 �→ x1, y1 in Cube Recovery to see that

Ux1(y1) + {x1, x1, y1} = {q2(x1), y1} + {q2(x1, y1), x1} and hence Ux1(y1) =
{q2(x1, y1), x1} + {q2(x1) − x2

1, y1} [from Triple Shift (FFIIIe) with y = 1]
= {q2(x1, y1), x1} − {q0(x1), y1}. Symmetry in the third U1q-Rule follows by
taking Peirce 0-components of {x1, a2, z1} = {{x1, a2}, z1} − {a2, x1, z1} by
Triple Switch (FFIVe). �

Exercise 9.2.2A* Spurn new-fangled principles and use good-old explicit calculation to
establish q-Properties. Show that: (1) Ei(x2

1) = Ux1 (ej); (2) {qi(x1), x1} = Ux1 (x1); (3)
{x1, ai, z1} = qj({x1, ai}, z1); (4) qi(x1)2 = Ux1qj(x1). (5) Show that qi(x1, {x1, ai}) =
Vaiqi(x1), then 2Uai (qi(x1)) = 2qi({ai, x1}).

Exercise 9.2.2B (1) Show that the linearization of the quadratic map qi satisfies qi(x1, y1)
= Ei({x1, y1}) = {x1, ej , y1} = {x1, y1, ei} = {ei, x1, y1}. (2) Give an alternate direct
proof of U1q: linearize the Triple Shift Formula to show that Vei,U(x1)y1 = Vqi(x1,y1),x1

−Vy1,qj(x1) as operators, then have this act on ej . (3) Generalize the Fourth Power Rule to
show that (Ux1aj)

2 = Ux1Uaj qj(x1). (4) Give an alternate direct proof of q-Composition
using U{a,x} +UUa(x),x = UaUx+UxUa+VaUxVa [linearizing y �→ a, 1 in the Fundamental
Formula] and Peirce Orthogonality to show that U{ai,x1}(ej) = UaiUx1 (ej). (5) When there
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exists an invertible element v1 ∈ J1, show that the quadratic forms qi take on all values:
qi(J1) = qi(v1, {Jj , v1}) = Ji [show that Ji = Uv1Jj ].

Exercise 9.2.2C Establish a q-Flipping Formula Ux1

(
qi(x1)k

)
= qj(x1)k+1 for all k (even

negative k, if x1 is invertible in J) when x1 ∈ J1, i = 2 or 0, j = 2 − i.

q-Nondegeneracy Condition 9.2.3 (1) In any Jordan algebra, an element
z ∈ J1 belonging to both radicals is trivial :

Rad(qi) := {z1 ∈ J1 | qi(z1,J1) = 0,

q2(z1,J1) = q0(z1,J1) = 0 =⇒ z1 is trivial.

(2) If the algebra J is nondegenerate, then the Peirce quadratic forms are
both nondegenerate: Rad(qi) = 0 for i = 2, 0.
proof. (1) follows immediately from the U1q-Rules 9.2.2(2), Uz(J1) =

Uz(Ĵi) = 0 for any z = z1 with qi(z,J1) = 0 for both i = 2 and i = 0. We must
work a bit harder to establish that (2) holds, but some deft footwork and heavy
reliance on nondegeneracy will get us through. The first easy step is to note
that Uz(Ĵj) = qi(z, Ĵj • z) ⊆ qi(z,J1) = 0 for z ∈ Rad(qi). The next step is to
use this plus nondegeneracy to get Uz(Ĵi) = 0: each bj = Uz(âi) ∈ Jj vanishes
because it is trivial in the nondegenerate J, Ubj (Ĵ) = Ubj (Ĵj) [by Peirce U -

Products 8.2.1] = UzUâi

(
Uz(Ĵj)

)
[by the Fundamental Formula] = UzUâi (0)

[our first step] = 0. The third step is to use the U1q-Rule to conclude that
Uz(J1) = 0 from qi(z,J1) = 0 [our hypothesis] and qj(z) = Uz(êi) = 0 [our
second step]. Thus Uz kills all three parts Ĵj , Ĵi,J1 of Ĵ, so z itself is trivial,
and our fourth and final step is to use nondegeneracy of J yet again to conclude
that z = 0. �

Exercise 9.2.3* Let e be an idempotent in a Jordan algebra with the property that
J2(e), J0(e) contain no nonzero nilpotent elements (e.g., if they both are simple inner ideals).
(1) Show that the quadratic forms q2, q0 on J1 have the same radical Rad(qi) = {z1 ∈ J1 |
qi(z1, J1) = 0}. (2) Show that z1 ∈ J1 is trivial in such a J iff z1 ∈ Rad(q2) = Rad(q0). (3)
Show that if z = z2 + z1 + z0 is trivial in any Jordan algebra with idempotent e, so are z2

and z0; conclude that z2 = z0 = 0 when J2(e), J0(e) contain no nonzero nilpotent elements.
(4) Show that such a J is nondegenerate iff the quadratic maps qi are nondegenerate (in
the sense that Rad(qi) = 0).

9.3 Problems for Chapter 9

Question 9.1 (i) Work out in detail the Peirce specialization (investigating
Peirce injectivity and associativity) and Peirce quadratic forms (including U1q
Rules, q-Composition Rules, and radicals) for the case of a hermitian matrix
algebra H2(D,−) for an associative algebra D with involution. (ii) Repeat the
above for the case of a reduced spin factor RedSpin(q).
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Peirce Consequences

We now gather a few immediate consequences of the Peirce multiplication
rules which will be important for our classification theorems. The reader
should try to hang on for one more chapter without novocain, before we
come to the root of the matter in the next chapter.

10.1 Diagonal Consequences

For showing that nondegenerate algebras with minimum condition on inner
ideals have a capacity, it will be important to know that the diagonal Peirce
spaces inherit nondegeneracy and the minimum condition. Once more we fix
throughout the chapter an idempotent e and its Peirce decomposition into
spaces Jk = Jk(e), and refer to Ji (i = 0, 2) as a diagonal Peirce space, with
opposite diagonal space Jj (j = 2 − i). Throughout this section we use the
crucial Diagonal Orthogonality property that the U -operator of a diagonal
element kills all elements from the other Peirce spaces:

ai ∈ Ji =⇒ Uai Ĵj = Uai Ĵ1 = 0, Uai Ĵ = Uai Ĵi ⊆ Ji,
directly from the Peirce Othogonality Rules 8.2.1 in the unital hull.

Diagonal Inheritance Proposition 10.1.1 We have the following local–
global properties of the diagonal Peirce spaces Ji (i = 0, 2):
(1) An element zi is trivial locally iff it is trivial globally: zi ∈ Ji is trivial

in Ji iff it is trivial in J; in particular, if J is nondegenerate then so is Ji.
(2) A Φ-submodule Bi is inner locally iff it is inner globally : Bi ⊆ Ji is

an inner ideal of Ji iff it is an inner ideal of J.
(3) An inner ideal Bi is minimal locally iff it is minimal globally: Bi ⊆

Ji is minimal in Ji iff it is minimal in J; in particular, if J has minimum
condition on inner ideals, then so does Ji.
Thus the diagonal Peirce spaces inherit nondegeneracy and minimum condi-
tion on inner ideals from J.
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proof. (1), (2) follow immediately from Diagonal Orthogonality: Uzi
(Ĵi) =

0 ⇐⇒ Uzi(Ĵ) = 0 and UBi(Ĵi) ⊆ Bi ⇐⇒ UBi(Ĵ) ⊆ Bi. Then the lattice of
inner ideals of Bi is just that part of the lattice of inner ideals of J falling in
Bi, so (3) follows. �

It will also be important to know that when we get down to as small a
Peirce 0-space as possible (J0 = 0), we must have the biggest idempotent
possible (e = 1). We have the following improvement on the Idempotent Unit
Proposition 5.2.4.

Idempotent Unit Theorem 10.1.2 If e is an idempotent in a nondegenerate
Jordan algebra with Peirce space J0 = 0, then e = 1 is the unit of J.

proof. We will prove that the Peirce decomposition 8.1.2(1) reduces to
J = J2, where e is the unit by the Peirce Eigenspace Laws 8.1.4 (or by the old
Proposition 5.2.4). By hypothesis J0 = 0, so we only need to make J1 vanish.
This we accomplish by showing that every z1 ∈ J1 is weakly trivial,

Uz1(J) = 0, and therefore (in view of Weak Riddance 5.3.3) vanishes by non-
degeneracy. When J0 = 0 we trivially have Uz1(J0) = 0, and Uz1(J2) ⊆ J0 [by
Peirce U -Products 8.2.1] = 0, so all that remains is to prove Uz1(J1) = 0 too.
By the U1q-Rules 9.2.2(2) it suffices to show that q2(J1) = q0(J1) = 0; the sec-
ond vanishes by hypothesis, and for the first we have z2 := q2(z1) = z2

1 weakly
trivial since Uz2(J) = Uz2(J2) [by Peirce Orthogonality in 8.2.1] = U2

z1(J2) [by
the Fundamental Formula] ⊆ Uz1

(
J0

)
[by Peirce U -Products in 8.2.1] = 0, so

by nondegeneracy all z2 = q2(z1) vanish.
[Note that we can’t just quote Alternate q Expression 9.2.2 to conclude

that q2(J1) = UJ1(ê0) vanishes, because e0 is alive and well in Ĵ, even if his
relatives J0 are all dead in J. Of course, once all z2

1 = 0 we can avoid U1q-
Rules and see directly that all z1 are trivial: all z1 •y1 = 0 by linearization, so
by definition of the U -operator Uz1(ŷk) = 2z1•(z1•ŷk)−z2

1 •ŷk = 2z1•(z1•ŷk)
vanishes if k = 1 since J1 • Ĵ1 = J1 • J1 = 0, and also if k = 2 or 0 since then
J1 • (J1 • Ĵk) ⊆ J1 • J1 = 0.] �

In our strong coordinatization theorems a crucial technical tool is the fact
that “both diagonal Peirce spaces are created equal,” thanks to symmetries
which interchange the two diagonal Peirce spaces. These symmetries arise
as involutions determined by strong connection. We say that e and e′ are
connected1 if there is an invertible element v1 in the off-diagonal Peirce
space J1 (v2

1 = v2+ v0 for vi invertible in Ji), and are strongly connected if
there is an off-diagonal involution v1 (v2

1 = 1). Recall that by the Involution
Lemma 6.1.10, any such involution determines an involutory automorphism
Uv of J.

1 Basic examples of connection were given in I.5.1.
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Connection Involution Proposition 10.1.3 (1) Any off-diagonal involu-
tion v1 ∈ J1, v

2
1 = 1, determines a connection involution x �→ x := Uv1(x)

on J which fixes v1 and interchanges e and its complement e′,

e = e′, e′ = e, v1 = v1.

(2) In terms of the trace functions

ti(x1) := qi(v1, x1) (i = 2, 0, j = 2− i),

the connection action determined by the involution v1 can be expressed on
the Peirce spaces by

a2 = t0(a2 • v1) on J2, x1 = {ti(x1), v1} − x1 on J1,

a0 = t2(a0 • v1) on J0, qi(x1) = qj(x1).

(3) Its off-diagonal connection fixed points are just the diagonal mul-
tiples of v1, i.e., the fixed set of the involution x1 �→ x1 on J1 is {J2, v1} =
{J0, v1}:

{ai, v1} = {ai, v1} = {ai, v1}.

proof. All of these except the action on J1 follow from the Peirce Principle
8.4.1 by a straightforward calculation in special algebras (where tj(ai • v1) =
ajiaiiaij if v1 = aij + aji, ai = aii). We can also calculate them directly, as
follows. For convenience of notation set v = v1, e2 = e, e0 = 1−e = e′. For (1)
Uv(e2) = E0(v2) [by the Alternate q Expression 9.2.2] = e′ by involutority,
Uvv = v3 = v • v2 = v • 1 = v.
For the action (2) on the individual spaces, on Ji we have by the U1q-Rules

9.2.2(2) that ai = Uvai = qj(v, ai • v) = tj(ai • v) [by definition of trace], and
that x1 = Uv(x1) = {qi(v, x1), v} − {qj(v), x1} = {ti(x1), v} − {ej , x1} [by
definition of the trace ti and involutority] = {ti(x1), v} − x1. The action on
q’s follows from qi(x) = Uxej [by Alternate q Expression] = Ux̄ej [by the
homomorphism property] = Ux̄(ei) [by (1)] = qj(x̄).
(3) If x1 is fixed then 2x1 = x1 + x1 = {ti(x1), v} [by (2)] ∈ {Ji, v}, con-

versely {Ji, v} is fixed because {ai, v} = UvVv(ai) = Uv2,v(ai) [by Commuting
Formula (FFII)] = Vv(ai) = {ai, v}. Similarly, {ai, v} = VvUv(ai) = Vv(ai).
�

10.2 Diagonal Isotopes

We will reduce general coordinatization theorems to strong ones by passing
to a diagonal isotope where the connection becomes strong. First we have a
result about general isotopes.
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Diagonal Isotope Lemma 10.2.1 Let J be a unital Jordan algebra. If J =
J2 ⊕ J1 ⊕ J0 is the Peirce decomposition relative to an idempotent e ∈ J, and
u = u2 + u0 is a diagonal element with ui invertible in Ji, then the diagonal
isotope J(u) has new unit

1(u) = e
(u)
2 + e

(u)
0

for new idempotents

e(u) := e
(u)
2 := u−1

2 , e
(u)
0 := u−1

0

(where the inverses are taken in Ji), but the new Peirce decomposition in J(u)

coincides exactly with the old one in J:

J(u)
k (e(u)) = Jk(e) (k = 2, 1, 0).

The new Peirce specializations and quadratic forms on the off-diagonal space
J1 are given in terms of the old by

σ
(u)
i (ai) = σi(ai)σi(ui),

q
(u)
i (x1) = qi(x1, uj • x1).

proof. In J̃ := J(u) we denote the unit, square, and U -operator by
1̃, x2̃, Ũ . By the Jordan Homotope Proposition 7.2.1(2) and Invertible Prod-
ucts Proposition 6.1.8(3) we have 1̃ := 1(u) = u−1 = u−1

2 + u−1
0 [remember

that these denote the inverses in the subalgebras Ji, not in J itself!!], where
ẽ := e

(u)
2 := u−1

2 satisfies ẽ2̃ = Uu−1
2
(u) = Uu−1

2
(u2) = u−1

2 = ẽ. Then the

complement ẽ′ := 1̃− ẽ = u−1
0 = e

(u)
0 is an idempotent orthogonal to ẽ in J̃.

The Peirce decomposition in J̃ has J̃2 = Ũẽ(J̃) ⊆ UJ2(J) ⊆ J2 by Diagonal
Orthogonality; similarly, J̃0 = Ũẽ′(J̃) ⊆ J0 and J̃1 = Ũẽ,ẽ′(J̃) ⊆ UJ2,J0(J) ⊆
J1, so one decomposition sits inside the other J̃ =

⊕
J̃i(ẽ) ⊆

⊕
Ji(e) = J,

which implies that they must coincide: J̃i(ẽ) = Ji(e) for each i.
The Peirce Quadratic forms 9.2.1 take the indicated form since x2̃ = Ux(u)

[by Jordan Homotope (1)] = Ux(u2) + Ux(u0) = q0(x, u2 • x) + q2(x, u0 • x)
[by the U1q-Rules 9.2.2(2)]. The Peirce specializations have Ṽai

= Vai,ui
[by

Jordan Homotope (2)] = VaiVui [by the Peirce Specialization Rules 9.1.1]. �

The isotopes we seek are normalized so that e
(u)
2 = e, e

(u)
0 = q0(v1) for

an invertible element v1. Amazingly, such a u will turn v1 into an involution.
(Talk about frogs and princes!)
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Creating Involutions Proposition 10.2.2 (1) Any invertible off-diagonal
element can be turned into an involution by shifting to a suitable isotope: if
v1 ∈ J1(e) is invertible in J, and we set u := u2 + u0 for u2 := e, u0 :=
q0(v1)−1, then v1 ∈ J1(e(u)) becomes involutory in J(u),

v
(2,u)
1 = 1(u) = e

(u)
2 + e

(u)
0

for shifted idempotents

e(u) := e
(u)
2 := e, e

(u)
0 := q0(v1)

forming supplementary orthogonal idempotents in J(u) with the same Peirce
decomposition:

J(u)
k (e(u)) = Jk(e).

(2) The corresponding shifted connection involution x �→ x(u) :=
U

(u)
v1 (x) in the isotope J(u) is given by

a2
(u) = Uv1(a2), a0

(u) = U−1
v1
(a0), x1

(u) = Uv1{q0(v1)−1, x1}.
(3) The shifted Peirce specializations in the isotope take the form

σ
(u)
2 (a2) = σ2(a2), σ

(u)
0 (a0) = σ0(a0)σ0

(
q0(v1)

)−1
,

σ
(u)
2

(
q0(v1)k

(u))
= σ

(u)
2

(
U−1
v1

q0(v1)k
)
= σ2

(
q2(v1)

)k−1
.

(4) The shifted Peirce quadratic forms take the form

q
(u)
0 (x1) = q0(x1), q

(u)
2 (x1) = q2(x1, q0(v1)−1 • x1).

(5) We have a Flipping Rule for the powers

U±
v (v

k
i ) = vk±1

j (vi = qi(v)).

proof. For convenience, set qi(v) = vi, so that v2 = v2 + v0; then v2k =
vk2+vk0 for all k by orthogonality of J2,J0 [even for negative powers, by Direct
Product Invertibility Criterion 6.1.8(3)], so the Flipping Rule (5) follows from
U±
v (v

k
i ) = Ej

(
U±
v (v

2k)
)
= Ej(v2k±2) = vk±1

j . In particular, for j = k = 0 we
have the alternate description v−1

0 = E0(v−2).
(1) By Diagonal Isotope Lemma 10.3.1 for u = u2+u0, u2 := e, u0 := v−1

0 ,

we know that J̃ := J(u) has unit 1̃ = ẽ2 + ẽ0 for idempotents ẽ2 := u−1
2 =

e, ẽ0 := u−1
0 = v0 with the same Peirce spaces J̃k = Jk. In J̃ the emperor’s

new square is v2̃ = Uvu [by Jordan Homotope 7.2.1] = Uv

(
v0
2+v−1

0

)
= v1

0+v0
2

[by Flipping (5) for k = 0,−1] = v0 + e = 1̃, so v has become an involution.
(2) Once v becomes involutory it is granted an involution x̄ := Ũv(x) =

UvUu(x). On J2 we have a2 = UvUu(a2) = UvUu2(a2) = UvUe(a2) = Uv(a2).
On J0 we have a0 = UvUu(a0) = UvUu0(a0) = UvUE0(v−2)(a0) [as we noted
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above] = UvUv−2(a0) [since E2(v−2) can be ignored on J0 by Peirce Orthog-
onality 8.2.1] = UvU

−2
v (a0) [by the Fundamental Formula (FFI) and the U–

Inverse Formula 6.1.3] = U−1
v (a0). Finally, on J1 we have x1 = UvUu(x1) =

UvUe,u0(x1) = Uv{v−1
0 , x1}. This establishes the shifted connection involution

(2).
In (3), the first part follows immediately from Diagonal Isotope, σ(u)

2 (a2) =
σ2(a2)σ2(u2) = σ2(a2)σ2(e) = σ2(a2) [by unitality in Peirce Specialization
9.1.1] and σ

(u)
0 (a0) = σ0(a0)σ0(u0) = σ0(a0)σ0(v−1

0 ) = σ0(a0)
(
σ0(v0)

)−1

[since σ0 is a homomorphism by Peirce Specialization]. The second part follows
from applying the homomorphism σ

(u)
2 = σ2 to (5) [for i = 0].

(4) also follows immediately from the Diagonal Isotope Lemma, q(u)
0 (x1) =

q0(x1, u2 • x1) = q0(x1, e2 • x1) = 1
2q0(x1, x1) [by the Peirce Eigenspace Law

8.1.4] = q0(x1) and q
(u)
2 (x1) = q2(x1, u0 • x1) = q2(x1, v

−1
0 • x1). �

This result will be a life-saver when we come to our coordinatization the-
orems: once the connecting element v becomes involutory, the bar involution
can be used to simplify many calculations.

10.3 Problems for Chapter 10

Problem 10.1 Work out the details of Connection Involution Proposition
10.1.3 (condition for x ∈ J1 to be involutory, connection action, connection
fixed points) and the Creating Involutions Proposition 10.2.2 (shifted con-
nection involution, Peirce specializations, and quadratic forms) relative to an
idempotent e = 1[11] in a hermitian matrix algebra J = H2(D,−) for an
associative algebra D with involution.

Problem 10.2 Repeat the above problem for the case of a reduced spin
factor RedSpin(q).
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Spin Coordinatization

In this chapter we give a general coordinatization theorem for reduced spin
Jordan algebras, without assuming any simplicity. This is an example of a
whole family of coordinatization theorems, asserting that an algebra will be of a
certain form as soon as it has a family of elements of a certain kind. The grand-
daddy of all coordinatization theorems is the Wedderburn Coordinatization
Theorem: if an associative algebra A has a supplementary family of n × n
associative matrix units {eij} (1 ≤ i, j ≤ n), then it is a matrix algebra,
A ∼=Mn(D) with coordinate ringD = e11Ae11 under an isomorphism sending
eij �→ Eij . We will establish Jordan versions of this for n × n hermitian
matrices (n = 2 in Chapter 12, n ≥ 3 in Chapter 17).
Throughout the chapter we deal with a Peirce decomposition J = J2 ⊕

J1 ⊕ J0 of a unital Jordan algebra J with respect to an idempotent e. Recall
from Connection Involution 10.1.3 that e and 1 − e are connected if there is
an invertible element in J1, and strongly connected if there is an involutory
element v2

1 = 1 in J1 (in which case we denote the connection involution simply
by a bar, x̄ := Uv1x). We will consistently use the notation e2 := e, e0 := 1−e,
so our Peirce decomposition is always with respect to e2. Elements of the
diagonal Peirce spaces Ji (i = 2, 0) will be denoted by letters ai, bi, while
off-diagonal elements will be denoted by letters x1, y1, and we have Peirce
Specializations 9.1.1 σi(ai) = Vai |J1 of the diagonal spaces on the off-diagonal
space, and the Peirce Quadratic Forms 9.2.1 qi(x1) = Ei(x2

1) ∈ Ji.

11.1 Spin Frames

For both the spin and hermitian algebras of capacity 2, a family of 2 × 2
hermitian matrix units is just a 2-frame. Here frame suggests a frame for
weaving, for hanging a pattern around, and coordinatization will consist in
draping coordinates around a frame.
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2-Frame Definition 11.1.1 A 2-frame {e2, v1, e0} for a unital Jordan alge-
bra J consists of two supplementary orthogonal idempotents e2, e0 connected
by an invertible element v1 ∈ J1. The frame is strong if v1 strongly connects
the idempotents, v2

1 = e2 + e0 = 1; in this case the connection involution
x �→ x := Uv1(x) is, by the Connection Involution Proposition, an automor-
phism interchanging e2 and e0.

We begin by investigating the Peirce relation that sets spin factors off from
all others.

Spin Frame Definition 11.1.2 A Jordan algebra J satisfies the Spin Peirce
Relation with respect to a pair of supplementary idempotents e2, e0 if for all
x1, y1 in J1

q2(x1) • y1 = q0(x1) • y1.

A Spin frame {e2, v1, e0} is a 2-frame where J satisfies the Spin Peirce
Relation with respect to e2, e0.

Exercise 11.1.2 (1) Show that the Spin Peirce Relation is equivalent to the following
identity for all ai ∈ Ji, x, y ∈ J1 (for i = 2, 0): {Ux(ai), y} = {qi(x), ai, y}. (2) Show that
it is also equivalent to the identity {Ux(ai), y} = {ai, qi(x), y}.

The idea behind the Spin Peirce Relation is that the Peirce quadratic forms
q2, q0 agree in their action on J1, and represent the action of scalars (from
some larger ring of scalars Ω) determined by an Ω-valued quadratic form q
on J1. The primary examples of Spin frames come from reduced spin factors;
hermitian algebras produce Spin frames only if they are really reduced spin
factors in disguise.

Spin Frame Example 11.1.3 Every reduced spin factor RedSpin(q) = Ω⊕
M ⊕Ω, built as in the Reduced Spin Example 3.4.1 from an Ω-module M with
Ω-quadratic form q over a scalar extension Ω of Φ via

(α,w, β)2 =
(
α2 + q(w), (α+ β)w, β2 + q(w)

)
satisfies the Spin Peirce Relation with respect to the supplementary idempo-
tents e2 = (1, 0, 0), e0 = (0, 0, 1), since the Peirce quadratic forms

qi(w1) = q(w)ei ∈ Ωei
are essentially scalars.
For any invertible v1 = (0, v, 0) (i.e., q(v) invertible in Ω), we have a

standard Spin frame {e2, v1, e0}; such a frame is strong iff q(v) = 1, in
which case the quadratic form is unit-valued and the connection involution is
(α,w, β) = (β, q(w, v)v − w,α).



11.1 Spin Frames 261

proof. We saw in the Reduced Spin Decomposition 8.3.5 that the Peirce
decomposition relative to e = e2 is Ji = Φei (i = 2, 0),J1 = M . The explicit
multiplication formula shows that qi(w1) = Ei(w2

1) = q(w)ei, so qi(w1) • v1 =
1
2q(w)v1 is truly a scalar action, so {e2, v1, e0} is a spin frame, which is strong
(v2

1 = 1) iff q(v) = 1, in which case (α,w, β) = Uv1(αe2 + w1 + βe0) =
αe0 +

({q2(v1, w1), v1} − {q0(v1), w1}
)
+ βe2 [by the U1q Rule 9.2.2(2)] =

αe0 +
(
q(v, w)v1 − q(v)w1

)
+ βe2 = (β, q(w, v)v − w,α) [since q(v) = 1 by

strongness]. �

Jordan Matrix Frame Example 11.1.4 The hermitian matrix algebra
H2(D,−) as in 3.2.4 for an associative ∗-algebra D satisfies the Spin Peirce
Relation with respect to e2 = 1[11], e0 = 1[22] iff the involution − on D is
central, in which case the algebra may be considered as a reduced spin factor
over its ∗-center Ω, with strong Spin frame {1[11], 1[12], 1[22]}.
proof. By Basic Brace Products 3.2.4 we have q2(x[12]) = xx̄[11],

q0(x[12]) = x̄x[22], 2
(
q2(x[12]) − q0(x[12])

) • y[12] =
(
(xx̄)y − y(x̄x)

)
[12].

Therefore the Spin Peirce Relation holds iff all norms xx̄ = x̄x are cen-
tral (taking first y = 1 and then y arbitrary), so as we noted in ∗-Algebra
Definition 1.5.1, H(D,−) reduces to the ∗-center Ω. Then H2(D,−) =
H(D,−)[11] ⊕ D[12] ⊕ H(D,−)[22] = Ωe2 ⊕ M ⊕ Ωe0 ∼= RedSpin(q) for
q(w) := ww̄ on M := D. �

Twisted Matrix Frame Example 11.1.5 A twisted matrix algebra H2(D,Γ)
for Γ = diag(γ1, γ2) = diag(1, γ) as in 7.5.3 [normalized so that γ1 = 1] which
satisfies the Spin Peirce Relation with respect to e2 := 1[11]Γ = E11, e0 :=
γ−1[22]Γ = E22 must have Γ central, ∗Γ = ∗, so the algebra coincides with
H2(D,−) and is a reduced spin factor over its ∗-center.
proof. By the Twisted Matrix basic product rules 7.5.3 we have

q2(x[12]Γ) = xγx̄[11]Γ, q0(x[12]Γ) = x̄x[22]Γ, 2
(
q2(x[12]Γ) − q0(x[12]Γ)

) •
y[12]Γ =

(
(xγx̄)y − yγ(x̄x)

)
[12]Γ, and the Spin Peirce Relation holds iff

xγx̄ = γx̄x is central for all x; here x = 1 guarantees that γ is invertible
in the center of D, hence Γ is central inM2(D), and ∗Γ = ∗. But then we are
back to the untwisted case as above. �

Exercise 11.1.5 Go ahead, be a masochist — compute the Spin Peirce Relation directly
in twisted matrix algebras H2(D,Γ) of 7.5.3 for general (un-normalized) Γ = diag{γ1, γ2}.
(1) Show that q2(x[12]Γ) = xγ2x̄[11]Γ, q0(x[12]Γ) = x̄γ1x[22]Γ, {q2(x[12]Γ) − q0(x[12]Γ),
y[12]Γ} =

(
(xγ2x̄γ1)y − y(γ2x̄γ1x)

)
[12]Γ vanishes iff xγ2x̄γ1 = γ2x̄γ1x is central for all x.

(2) Linearize x �→ x, 1 in this to show that γ2 = λγ−1
1 for some central λ, and the condition

becomes that all x
(
γ−1
1 x̄γ1

)
=

(
γ−1
1 x̄γ1

)
x be central. (3) Conclude that is an isotope

(x̄ = γ1x∗γ−1
1 ) of a central involution ∗.
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11.2 Diagonal Spin Consequences

Now we gather up in three bite-sized lemmas the technical results about the
action of the diagonal Peirce spaces which we will need to carry out our strong
spin coordinatization.

Diagonal Commutativity Lemma 11.2.1 (1) If J satisfies the Spin Peirce
Relation with respect to a pair of supplementary orthogonal idempotents e2, e0,
then

σi(qi(x1, ai • x1)) = σi(ai)σi(qi(x1)) = σi(qi(x1))σi(ai)

for all ai ∈ Ji, x1 ∈ J1.
(2) When {e2, v1, e0} is a Spin frame, then on J1 we have Diagonal

Commutativity: Ω = σ2(J2) = σ0(J0) is a commutative associative subal-
gebra of EndΦ(J1) which is isomorphic to Ji via σi.

proof. (1) The Spin Peirce Relation 11.1.2 just means that Vq2(x1) =
Vq0(x1) as operators on J1, which therefore commute with all Vai

on J1 by
Peirce Associativity 9.1.3, so Vai

Vqi(x) = Vqi(x)Vai = Vai • Vqi(x) = Vai•qi(x)
[by linearizing Peirce Specialization Rules 9.1.1] = Vqi(x,ai•x) [by the q-
Composition Rules 9.2.2(3)].
(2) Peirce Associativity shows that Ωi := σi(Ji) commutes with Ωj :=

σj(Jj) ⊇ σj
(
qj(J1)

)
= σi

(
qi(J1)

)
[by the Spin Relation] ⊇ σi

(
qi(v,Jj • v)

)
=

σi
(
Uv(Jj)

)
[by q-Composition Rules] = σi

(
Ji
)
[by invertibility of v] = Ωi, so

Ω2 = Ω0 =: Ω is a commuting Φ-module of Φ-linear transformations. It is
also a unital Jordan subalgebra closed under squares by Peirce Specialization
Rules, hence because 1

2 lies in Φ it is also an associative Φ-subalgebra of
EndΦ(J1): σ(ai)σ(bi) = σ(ai) • σ(bi) = σ(ai • bi). Moreover, the surjection
σi : Ji → Ωi is also injective (hence Ji ∼= Ω+

i = Ω as algebras) by the Peirce
Injectivity Criterion 9.1.2(4) and the invertibility of v. This establishes (2).
�

Diagonal Spin Isotope Lemma 11.2.2 If J satisfies the Spin Peirce Rela-
tion with respect to e2, e0, then so does any diagonal isotope J(u) (u = u2+u0)
with respect to e

(u)
2 := u−1

2 , e
(u)
0 := u−1

0 .

proof. In J(u) we know by the Diagonal Isotope Lemma 10.2.1 that e(u)
2

is an idempotent with the same Peirce decomposition as e2, and we have
V

(u)

q
(u)
j (x)

= Vqj(x,ui•x)Vuj [by Diagonal Isotope] = Vqi(x,ui•x)Vuj [by the Spin

Relation] = Vqi(x)Vui
Vuj

[by the Diagonal Commutativity Lemma 11.2.1] =
Vqi(x)Uui,uj

[by Peirce Associativity], which by the Spin Relation is symmetric
in the indices i and j, so the Spin Relation holds for e(u)

2 , e
(u)
0 . �
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Spin Bar Lemma 11.2.3 A strong 2-frame {e2, v1, e0} satisfies the Spin
Peirce Relation iff the connection involution satisfies the Spin Bar Rela-
tion:

(1) a2 • y1 = a2 • y1.

The Spin Bar Relation implies three further relations:

(2) The Peirce form qi is Ji-bilinear: ai • qi(x1, y1) = qi({ai, x1}, y1);

(3) The involution on J1 is isometric: qi(x1) = qi(x1);

(4) The involution exchanges q2, q0 : qi(x1) = qj(x1).

proof. By the Connection Involution Lemma 10.1.3 we know that bar
is an involution of the Jordan algebra which interchanges e2, e0, hence their
diagonal Peirce spaces. The Peirce Spin Relation implies the Spin Bar Relation
because a2 • y = q0(a2 • v, v) • y [by the Connection Action 10.1.3(2)] =
q2(a2 • v, v) • y [by the Spin Relation] = (a2 • q2(v)) • y [by q-Composition
Rules 9.2.2(3)] = a2 • y [by strongness q2(v) = e2].

To see that the weaker Spin Bar implies Spin Peirce will require the three
relations (2)–(4), which are of independent interest (in other words, we’ll need
them in the next theorem!). For (2) we compute ai •qi(x, y)−qi({ai, x1}, y) =
qi(ai • x, y) + qi(ai • y, x)− 2qi(ai • x, y) [by linearized q-Composition Rules]
= qi(ai • y, x) − qi(ai • x, y) = qi(ai • y, x) − qi(ai • x, y) [by Spin Bar] = 0
[by U1q Rules 9.2.2(2)]. For (3) we compute qi(x̄) = qi({ti(x), v} − x) [by
Connection Action] = Uti(x)qi(v)−qi

({ti(x), v}, x)+qi(x) [by q-Composition]
= ti(x)2 − ti(x) • qi(v, x) + qi(x) [by qi(v) = ei and (2)] = qi(x) [by definition
of ti]. Relations (3) and (4) are equivalent by Connection Action. From this it
is immediate that Spin Bar implies Spin Peirce: the bar relation implies that
q2(x) • y = q2(x) • y = q0(x) • y [by (3)]. �

11.3 Strong Spin Coordinatization

Now we are ready to establish the main result of this section, that Jordan
algebras with strong Spin frame can be coordinatized as strongly reduced
spin factors.



264 Spin Coordinatization

Strong Spin Coordinatization Theorem 11.3.1 A Jordan algebra has
a strong Spin frame iff it is isomorphic to a reduced spin factor RedSpin(q)
over a scalar extension Ω of Φ with standard Spin frame and a unit-valued
quadratic form q. Indeed, if {e2, v1, e0} is a strong Spin frame, i.e.,

v2
1 = e2 + e0 = 1, q2(x1) • y1 = q0(x1) • y1,

for all x1, y1 ∈ J1, then the map

a2 ⊕ y1 ⊕ b0 �→ (σ(a2), y1, σ(b0)) = (σ(a2), y1, σ(b0))

is an isomorphism J
ϕ−→ RedSpin(q) where the coordinate map σ, quadratic

form q, and scalar ring Ω are given by

σ(ai) := σ(ai) := Vai |J1 (ā := Uv1a),
q(x1) := σ(q2(x1)) = σ(q0(x1)),

Ω := σ(J2) = σ(J0) ⊆ EndΦ(J1).

proof. By Diagonal Commutativity 11.2.1(2), Ω is symmetric in the in-
dices 2, 0 and forms a commutative associative Φ-subalgebra of EndΦ(J1).
Therefore J1 becomes a left Ω-module under ωx1 = ω(x1). By the Spin
Peirce Relation σ(q2(x1)) = σ(q0(x1)), so the (un-subscripted) quadratic
form q is also symmetric in the indices 2, 0, and is indeed quadratic over
Ω since q(x, y) is Ω-bilinear: it is Φ-bilinear and q(ωx, y) = ωq(x, y) for all
x, y ∈ J1, ω = σ(a2) ∈ Ω by the Spin Bar Lemma 11.2.3(2).
To show that ϕ is a homomorphism, it suffices to prove ϕ(x2) =

(
ϕ(x)

)2

for all elements x = a2 ⊕ y ⊕ b0. But by the Peirce relations

x2 = [a2
2 + q2(y)]⊕ [2(a2 + b0) • y]⊕ [b20 + q0(y)]

= [a2
2 + q2(y)]⊕ [σ

(
a2 + b0

)
y]⊕ [b20 + q0(y)],

so
ϕ(x2) =

(
σ
(
a2
2 + q2(y)

)
, σ

(
a2 + b0

)
y, σ

(
b20 + q0(y)

))
.

On the other hand, by the rule for multiplication in RedSpin(q) given by the
Reduced Spin Example 3.4.1, we have

ϕ(x)2 =
(
σ(a2), y, σ(b0)

)2 =
(
σ(a2)2 + q(y), σ(a2 + b0)y, σ(b0)2 + q(y)

)
,

so
ϕ(x2) = ϕ(x)2

follows from σ(c2i ) = σ(ci)2 [by Peirce Specialization 9.1.1] and σ(qi(y)) = q(y)
[by definition of q].
Finally, to show that ϕ is an isomorphism, it suffices to prove that it is

a linear bijection on each Peirce space: by Diagonal Commutativity ϕ is a
bijection σi of Ji onto Ω for i = 2, 0, and trivially ϕ is a bijection 1J1 on J1.
We have seen, conversely, in Spin Frame Example 11.1.3 that everyRedSpin(q)
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with unit-valued q has a standard strong Spin frame, so (up to isomorphism)
these are precisely all Jordan algebras with such a frame. �

11.4 Spin Coordinatization

Coordinatization is most clearly described for strong Peirce frames. When
the frames are not strong, we follow the trail blazed by Jacobson to a nearby
isotope which is strongly connected. The strong coordinatization proceeds
smoothly because the bar involution is an algebra automorphism and inter-
acts nicely with products, and we have complete symmetry between the indices
2 and 0. For the non-strong case the map Uv is merely a structural transfor-
mation, transforming J-products into products in an isotope, and we do not
have symmetry in J2,J0. Rather than carry out the calculations in the general
case, we utter the magic word “diagonal isotope” to convert the general case
into a strong case. Our isotope preserves the idempotent e2 but shifts e0, so
we base our coordinatization on the space J2. Notice that the main difference
between the present case and the previous strong case is that, since our frame
is not strong, we do not have a connection involution, and we do not know
that the quadratic form q is unit-valued (takes on the value 1); all we know
is that it is invertible-valued (takes on an invertible value at the connecting
element v1).

Spin Coordinatization Theorem 11.4.1 A Jordan algebra has a Spin
frame iff it is isomorphic to a reduced spin factor RedSpin(q) over a scalar
extension Ω of Φ with standard Spin frame and an invertible-valued quadratic
form q. Indeed, if {e2, v1, e0} is a Spin frame, i.e.,

v2
1 = v2 + v0 for vi invertible in Ji, q2(x1) • y1 = q0(x1) • y1,

for all x1, y1 ∈ J1, then the map

a2 ⊕ y1 ⊕ b0 �→ (
σ(a2), y1, µσ

(
U−1
v (b0)

))
is an isomorphism J

ϕ−→ RedSpin(q) sending the given Spin frame to a stan-
dard Spin frame,

{e2, v1, e0} �→ {(1, 0, 0), (0, v1, 0), (0, 0, 1)},
where the coordinate map σ, quadratic form q, scalar µ, and scalar ring Ω are
given by

σ(a2) := Va2 |J1 ,
q(x1) := µσ

(
U−1
v

(
q0(x1)

))
,

µ := σ(v2) ∈ Ω,
Ω := σ(J2) ⊆ EndΦ(J1).
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proof. By the Creating Involutions Proposition 10.2.2(1), the diagonal
isotope J̃ := J(u) for u := e2 + v−1

0 has the same Peirce decomposition as
J and still satisfies the Spin Peirce Relation (since all diagonal isotopes do
by Diagonal Spin Isotope Lemma 11.2.2), but now has a strong Spin frame
{ẽ2, v1, ẽ0} (ẽ2 = e2, ẽ0 = v0). Thus by the Strong Spin Coordinatization The-
orem J̃ ∼= RedSpin(q̃), and therefore J = (J̃)(u−2) for diagonal u−2 = e2 + v2

0
[by Isotope Symmetry (4) in the Jordan Homotope Proposition 7.2.1 and the
Direct Product Invertibility Criterion 6.1.8(3)] is isomorphic to RedSpin(q̃)(ũ)

for ũ = (1, 0, µ), which in turn is by Quadratic Factor Isotope 7.3.1(2) a
reduced spin Jordan algebra RedSpin(q) (where q = µq̃ still takes on an in-
vertible value on Ω). This completes the proof that J is a reduced spin algebra.
If we want more detail about q and the form of the isomorphism, we must

argue at greater length. By the Creating Involutions Proposition, J̃ = J(u) has
supplementary orthogonal idempotents ẽ2 = e2, ẽ0 = v0 strongly connected
by the same old v1, and with the same old Peirce decomposition; by the
Strong Spin Coordinatization Theorem 11.3.1 we have an explicit isomorphism
J̃ → RedSpin(q̃) by ϕ̃

(
a2 ⊕ y ⊕ b0

)
=

(
σ̃(a2), y, σ̃(b0)

)
. Here the coordinate

map, scalar ring, and quadratic form in J̃ can be expressed in J as

σ̃(a2) = σ(a2), σ̃(b0) = σ2
(
U−1
v (b0)

)
,

Ω̃ = Ω, q̃(y) = σ2
(
U−1
v (q0(y))

)
.

Indeed, by Creating Involutions (2) we have the shifted connection involution
b0 = U−1

v (b0) on J̃0, and by Creating Involutions (3) we have shifted Peirce
specialization σ̃2(a2) = σ2(a2) = σ(a2) [by definition], σ̃0(b0) = σ̃2(b0) =
σ
(
U−1
v (b0)

)
. From this, by Strong Coordinatization the scalar ring is Ω̃ =

σ̃2(J̃2) = σ2(J2) = Ω as we defined it. By Creating Involutions (4) we have
shifted Peirce quadratic form q̃0 = q0, so by Strong Coordinatization the
quadratic form q̃ is given by q̃(y) = σ̃0(q̃0(y)) = σ̃0(q0(y)) = σ

(
U−1
v (q0(y))

)
[by the above]. Thus the map ϕ̃ reduces to

ϕ̃ : a2 ⊕ y1 ⊕ b0 �→ (
σ(a2), y1, σ

(
U−1
v (b0)

))
.

Under this mapping ϕ̃ the original (weak) Spin frame is sent as follows in
terms of µ := σ(v2):

e2 �→ (1, 0, 0), v �→ (0, v, 0), e0 �→ (0, 0, µ−1), u−2 �→ (1, 0, µ).

Indeed, σ(e2) = 1, and by Creating Involutions 10.2.2(3) we have flipping
σ
(
U−1
v (vk0 )

)
= σ(vk−1

2 ) = σ(v2)k−1 [since σ is a homomorphism] = µk−1 [by
definition of µ]. Thus for k = 0 we have σ̃0(e0) = µ−1, and for k = 2 we have
σ̃0(v2

0) = µ. Therefore the diagonal element which recovers J from J̃ is sent to
ϕ̃(u−2) = (1, 0, µ). The isomorphism ϕ̃ is at the same time an isomorphism

J =
(
J(u)

)(u−2) = J̃
(u−2) ϕ̃−→ RedSpin(q̃)(ũ) (ũ = (1, 0, µ))
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[using Jordan Homotope (4) and our definitions]. By Quadratic Fac-
tor Isotopes 7.3.1(2) the map (a, y, b) �→ (a, y, µb) is an isomorphism(RedSpin(q̃))(ũ) → RedSpin(µq̃) = RedSpin(q) of Jordan algebras (recall our
definition of q as µq̃); combining this with the isomorphism ϕ̃ above gives an
isomorphism J → RedSpin(q) given explicitly as in (2) by a2 ⊕ y1 ⊕ b0 �→(
σ(a2), y1, σ

(
U−1
v (b0)

)) �→ (
σ(a2), y1, µσ

(
U−1
v (b0)

))
, sending e2, v, e0 to

(1, 0, 0), (0, v, 0), (0, 0, 1).
We have seen, conversely, that by Spin Frame Example 11.1.3 every

RedSpin(q) with invertible-valued q has a Spin frame, so these are again pre-
cisely all Jordan algebras with such a frame. �

Exercise 11.4.1* (1) Show that Vx2U
−1
x = Ux,x−1 whenever x is invertible in a unital

Jordan algebra. (2) Show that µσ2(U−1
v b0) = σ2(U(b0)) for U = 1

2Uv,v−1 , µ = σ(E2(v2)).
(3) Show that the isomorphism and quadratic form in the Coordinatization Theorem can
be expressed as ϕ(a2 ⊕ y1 ⊕ b0) =

(
σ2(a2), y1, σ2(U(b0))

)
, q(y1) = σ(U(q0(y1))).

11.5 Problems for Chapter 11

Problem 11.1 Among the two choices for coordinatizing J̃0 in the Strong
Coordinatization Theorem 11.3.1, we used the second, moving J0 over to J2
(where σ̃ = σ) via U−1

v before coordinatizing it. This is our first example of
asymmetry in the indices 2, 0. Show that we could also have used the direct
form σ̃(b0) = σ(b0)σ(v0)−1 from Creating Involutions. (2) Among the three
choices for the Peirce quadratic form, we used the expression relating the
new q to the old q0 through U−1

v . Show that we also have a direct expression
q̃(y) = σ̃2

(
q̃2(y)

)
= σ

(
q2(y, v−1

0 • y)
)
in terms of the index 2, and a direct

expression q̃(y) = σ̃0
(
q̃0(y)

)
= σ̃0

(
q0(y)

)
σ(v0)−1 in terms of the index 0.
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Hermitian Coordinatization

In this chapter we give another general coordinatization theorem, this time
for those 2× 2 hermitian matrix algebras H2(D,Γ) where the associative co-
ordinate algebra D is symmetrically generated in the sense that it is generated
by its symmetric elements. These hermitian algebras will be separated off, not
by an identity, but by the property that their off-diagonal Peirce space J1 is
a cyclic J2-module generated by an invertible (connecting) element.
General hermitian algebras H2(D,Γ) need not have D symmetrically gen-

erated. For example, the quaternions H under the standard involution are not
generated by H(H) = R1. However, for the simple Jordan algebras we are in-
terested in, the only non-symmetrically generated H2(D,Γ)’s (where H(D,−)
is a division algebra not generating D) are those where D is a composition
algebra, and these algebras are simultaneously spin factors. Our view is that
it is reasonable to exclude them from the ranks of algebras of “truly hermitian
type” and consign them to quadratic factor type.

12.1 Cyclic Frames

We begin by exploring the structural consequences that flow from the con-
dition that there exist a cyclic 2-frame. As usual, throughout the chapter
we fix a Peirce decomposition with respect to an idempotent e, and set
e2 := e, e0 := 1− e; i represents a “diagonal” index i = 2, 0, and j = 2− 1 its
complementary index; the Peirce specializations of Ji on J1 are denoted by a
subscriptless σ.

Cyclic Peirce Condition Definition 12.1.1 A Jordan algebra J is said to
satisfy the cyclic Peirce condition with respect to a pair of supplementary
idempotents e2, e0 if the off-diagonal Peirce space J1 has a cyclic Peirce
generator y1 as left D-module,

J1 = D(y1)
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where the coordinate algebra D is the subalgebra of EndΦ(J1) generated by
σ(J2). A cyclic 2-frame {e2, v1, e0} for a unital Jordan algebra J consists of
a pair of supplementary orthogonal idempotents e2, e0 and an invertible cyclic
generator v1 ∈ J1. As always, the frame is strong if v1 strongly connects e2
and e0,

v2
1 = e2 + e0 = 1.

Exercise 12.1.1* Let Di denote the subalgebra of EndΦ(J1) generated by σ(Ji), and let
v be any invertible element of J1. (1) Show that D2(v) = D0(v); conclude that {e2, v, e0}
is a cyclic frame iff D0(v) = J1, so cyclicity is symmetric in the indices 2, 0. (2) Show that
D2(v) = D2(v−1); conclude that {e2, v−1, e0} is a cyclic frame iff {e2, v, e0} is cyclic.

Twisted Hermitian Cyclicity Example 12.1.2 Let J be the twisted
2 × 2 hermitian algebra H2(A,Γ) of Twisted Matrix Example 7.5.3 for a
unital associative ∗-algebra A and diagonal matrix Γ = diag{1, γ2}. Then
e2 = 1[11]Γ = E11, e0 = γ−1

2 [22]Γ = E22 are supplementary orthogonal idem-
potents, with J1 = A[12]Γ, J2 = H(A)[11]Γ. Under the identification of J1
with A and J2 with H(A), the endomorphism σ2(b[11]Γ) on J1 corresponds
to left multiplication Lb by b on A,1 so D ⊆ EndΦ(J1) corresponds to all left
multiplications LB ⊆ EndΦ(A) by elements of the subalgebra B = 〈H(A)〉 ⊆ A
generated by the symmetric elements:

D(a[12]Γ) = (Ba)[12]Γ.
In this situation the element a[12]Γ is a cyclic generator for the space J1 iff

(1) a ∈ A is left-invertible: ba = 1 for some b ∈ A;
(2) A is symmetrically generated : H(A) generates A

as an associative algebra, i.e., B = A.

If a is in fact invertible, then {1[11]Γ, a[12]Γ, γ−1
2 [22]Γ} is a cyclic 2-frame.

Such a frame is strong iff γ2 is the norm of an invertible element of A:

(3) strong if γ−1
2 = āa for some invertible a.

In particular, when A is symmetrically generated and γ2 = 1 the stan-
dard 2-frame {1[11], 1[12], 1[22]} is a strong cyclic 2-frame for H2(A). But
even though A = R is (trivially) symmetrically generated under the (trivial)
identity involution, and is cyclically generated by any nonzero a[12]Γ, when
we take γ2 = −1 the twisted algebra H2(A,Γ) has no strong frame
{1[11]Γ, a[12]Γ, γ−1

2 [22]Γ} because γ−1
2 = −1  = āa = a2.

proof. (1)–(2) Since by Basic Brace Products 7.5.3(2) we know that
σ(b[11]Γ)(a[12]Γ) = ba[12]Γ = (Lb(a))[12]Γ, the generators σ(b[11]Γ) of D cor-
respond to the left multiplications Lb, and D corresponds to LB. Then a[12]Γ
is a cyclic generator for J1 iff Ba[12]Γ = A[12]Γ, i.e., Ba = A. This certainly

1 Warning: σ0(b[22]Γ) corresponds to right multiplication Rγ2b, not to Rb!
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happens if a is left-invertible and A = B, since ba = 1 as in (1) implies that
Ba = Aa ⊇ Aba = A1 = A; conversely, Ba = A implies left-invertibility
ba = 1 for some b ∈ B, so A = Ba = Ba1̄ = Baāb̄ ⊆ BHB ⊆ B and B = A.
(3) By Basic Brace Products a[12]2Γ = aγ2ā[11]Γ + āa[22]Γ equals 1 =

1[11]Γ + γ−1
2 [22]Γ iff āa = γ−1

2 , aγ2ā = 1; this forces a to have left and
right inverses, therefore to be invertible, and conversely if a is invertible with
āa = γ−1

2 then automatically āaγ2 = 1 implies aγ2ā = 1 too. �

12.2 Diagonal Hermitian Consequences

The next several lemmas gather technical information about the coordinate
algebras D of cyclic 2-frames. Throughout, let J be a unital Jordan algebra
with a pair of supplementary orthogonal idempotents e2, e0.

Cyclic Diagonal Isotope Lemma 12.2.1 Diagonal isotopes always inherit
the cyclic Peirce condition: If {e2, y1, e0} is a cyclic frame for J, then any
diagonal isotope J(u) (u = u2 + u0) has cyclic frame {e(u)

2 = u−1
2 , y

(u)
1 =

y1, e
(u)
0 = u−1

0 }.
proof. In any diagonal isotope J(u) we know by the Diagonal Isotope

Lemma 10.2.1 that e(u)
2 , e

(u)
0 are supplementary idempotents with the same

Peirce decomposition as e2, e0 and we have D(u) = D as subalgebras of
EndΦ(J1) because σ(a2)(u) = σ(a2)σ(u2) ⊆ D implies that D(u) ⊆ D, and
conversely σ(a2) = (σ(a2)σ(u2))(σ(u−2

2 )σ(u2)) ⊆ D(u) implies that D ⊆ D(u).
Thus J1 = D(y) is cyclic in J iff J(u)

1 = D(u)(y) is cyclic in J(u). �

Exercise 12.2.1A* Let v be any invertible element of J1. Show that for i = 2, 0, j = 2− i

that (1) UvVaiU
−1
v = VUv(ai)Vuj on J1 (uj := U−1

v (ei)) (use the linearized Fundamental
Formula), (2) UvDiU

−1
v = U−1

v DiUv = Dj . (3) Conclude anew (as in Exercise 12.1.1) that
J1 = D2(v) = D0(v) when {e2, v1, e0} is cyclic.

Exercise 12.2.1B* Alternately, establish the result of the previous exercise by showing
that (1) {dj ∈ Dj | dj(v) ∈ Di(v)} is a subalgebra which contains σ(Jj) = σ(UvJi), (2)
Dj(v) ⊆ Di(v), hence (3) Dj(v) = Di(v).

Coordinate Map Lemma 12.2.2 When {e2, v1, e0} is a strong cyclic 2-
frame then for all elements ak ∈ J2, σ(a) = Va|J1 , with respect to the involu-
tion ā = Uv1(a) we have the following relations:

(1) bar reversal: σ(a1) · · ·σ(an)(v1) = σ
(
an

) · · ·σ(a1
)
(v1);

(2) bi-cyclicity: J1 = D2(v1) = D0(v1) is cyclic as a left J2 or J0-module

for Di the subalgebra of EndΦ(J1) generated by σ(Ji);
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(3) faithfulness: d ∈ D is determined by its value on v1:

d(v1) = 0 =⇒ d = 0;

(4) coordinate bijection: ψ(d) := d(v1) defines a Φ-linear bijection

ψ: D −→ J1.

proof. By the Connection Involution Lemma 10.1.3 we know that bar
is an involution of the Jordan algebra which interchanges e2, e0, hence their
diagonal Peirce spaces. For bar reversal (1) we induct on n, n = 0 being
vacuous, and for n+ 1 elements ai ∈ J2 we have

σ(a1)σ(a2) · · ·σ(an)σ(an+1)(v)
= σ(a1)σ(a2) · · ·σ(an)σ

(
an+1

)
(v) [by Connection Fixed Point]

= σ(an+1)σ(a1)σ(a2) · · ·σ(an)(v) [by Peirce Associativity, an+1 ∈ J0]
= σ(an+1)σ(an) · · ·σ(a2)σ(a1)(v) [by the induction hypothesis].

This establishes (1) by induction, and shows that D2(v) = D0(v) as in bi-
cyclicity (2). For faithfulness (3), d(v) = 0 =⇒ d(J1) = d(D0(v)) [by (2)] =
D0(d(v)) [by Peirce Associativity] = 0, hence d = 0 in EndΦ(J1). For bijectivity
(4), ψ is injective by (3) and surjective by (2) for D = D2. �

Reversal Involution Lemma 12.2.3 When {e2, v1, e0} is a strong cyclic
2-frame, the coordinate algebra D carries a reversal involution ρ (written
as a superscript),(

σ(a1)σ(a2) · · ·σ(an)
)ρ := σ(an) · · ·σ(a2)σ(a1),

which interacts with the coordinate map ψ by :

(1) ψ intertwines ρ and bar : dρ(v1) = d(v1), ψ(dρ) = ψ(d);

(2) q–t reduction: q2(d(v1), c(v1)) = t2(cdρ(v1)) = t2
(
ψ(cdρ)

)
;

(3) trace-relation: d+ dρ = σ
(
t2(d(v1))

)
= σ

(
t2(ψ(d))

)
;

(4) norm relation: ddρ = σ
(
q2(d(v1))

)
= σ

(
q2(ψ(d))

)
;

(5) hermitian relation: H(D, ρ) = σ(J2).

proof. The invertibility of the coordinate map ψ in the Coordinate Map
Lemma 12.2.2(4) allows us to pull back the connection involution on J1 to an
involutory linear transformation ρ := ψ−1 ◦ ◦ψ on D. Thus intertwining (1)
holds by definition. We claim that ρ is just reversal on D since

ψ
((
σ(a1)σ(a2) · · ·σ(an)

)ρ)
= ψ

(
σ(a1)σ(a2) · · ·σ(an)

)
[by definition of ρ]

= σ(a1)σ(a2) · · ·σ(an)(v) [by definition of ψ]
= σ

(
an

) · · ·σ(a2
)
σ
(
a1

)
(v) [by bar reversal 12.2.2(1)]

= σ(an) · · ·σ(a2)σ(a1)(v) [bar is a Jordan algebra involution]
= ψ

(
σ(an) · · ·σ(a2)σ(a1)

)
[by definition of ψ].
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Since the reversal mapping is always an algebra involution as soon as it is
well-defined, we have a reversal involution ρ of the algebra D.
The salient facts about the hermitian elements with respect to ρ now fol-

low. The trace relation (3) follows easily: applying the invertible ψ, it suffices
if the two sides agree on v, and d(v)+dρ(v) = d(v)+d(v) [by intertwining (1)]
= σ(t2(d(v)))(v) [by Connection Fixed Point 10.1.3(3)]. The norm relation (4)
follows for monomials d = σ(a(1))σ(a(2)) · · ·σ(a(n)) from

σ(q2(d(v)))

= σ
(
q2(σ(a1)σ(a2) · · ·σ(an)(v)

)
= σ

(
Ua1Ua2 · · ·Uanq2(v)

)
[by repeated q-Composition 9.2.2(3)]

= σ(a1)σ(a2) · · ·σ(an)1σ(an) · · ·σ(a2)σ(a1)

= ddρ [by repeated Peirce Specialization 9.1.1 and σ(q2(v)) = 1].

The quadratic norm relation (4) for sums of monomials will require the re-
duction (2) of q2-values to t2-values. It suffices to establish (2) for monomials
d = σ(a(1))σ(a(2)) · · ·σ(a(n)), and here

q2(d(v), c(v)) = q2
(
σ(a1)σ(a2) · · ·σ(an)(v), c(v)

)
= q2

(
σ(an) · · ·σ(a2)σ(a1)(v), c(v)

)
[by bar reversal]

= q2
(
v, σ(a1)σ(a2) · · ·σ(an)c(v)

)
[by repeated U1q 9.2.2(2)]

= q2
(
v, cσ(a1)σ(a2) · · ·σ(an)(v)

)
[by Peirce Associativity]

= q2
(
v, cσ(an) · · ·σ(a2)σ(a1)(v)

)
[by bar reversal]

= q2
(
v, cdρ(v)

)
[ρ is reversal]

= t2
(
cdρ(v)

)
[by definition of the trace].

Once we have the q–t relation (2) we can finish the norm relation (4): for
mixed terms we have σ(q2(d(v), c(v))) = σ

(
t2(cdρ(v))

)
[by (2)] = cdρ+(cdρ)ρ

[by (3)] = cdρ + dcρ [ρ is an involution]. Finally, for the hermitian relation
(5) we have dρ = d =⇒ d = 1

2 [d + dρ] = 1
2σ(t2(d(v))) ∈ σ(J2) by the trace

relation (3), and the converse is clear by the definition of reversal. �

12.3 Strong Hermitian Coordinatization

Now we are ready to establish the main result of this section, that Jordan
algebras with strong hermitian frame can be coordinatized as hermitian alge-
bras.
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Strong 2 × 2 Hermitian Coordinatization Theorem 12.3.1 A Jordan
algebra J has a strong cyclic 2-frame {e2, v1, e0},

v2
1 = e2 + e0 = 1, J1 = D(v1),

iff it is isomorphic to a hermitian 2 × 2 matrix algebra with standard frame
and symmetrically generated coordinate algebra. Indeed, if J has strong cyclic
2-frame then the map

ϕ : a2 ⊕ d(v1)⊕ b0 �→ σ(a2)[11] + d[12] + σ(b0)[22]

is an isomorphism J
ϕ−→ H2(D, ρ) sending the given cyclic 2-frame {e2, v1, e0}

to the standard cyclic 2-frame {1[11], 1[12], 1[22]}, where the coordinate map
σ, the coordinate involution ρ, and the coordinate algebra D are defined by

σ(a2) := Va2 |J1 ,
dρ(v) := Uv1(d(v

−1
1 )),

D := the subalgebra of EndΦ(J1) generated by σ(J2).

proof. By coordinate bijectivity 12.2.2(4), every x ∈ J can be written
uniquely as x = a2 ⊕ d(v) ⊕ b0. To show that our map ϕ(x) = σ(a2)[11] +
d[12] + σ(b0)[22] =

(
σ(a2) d

dρ σ(b0)

)
is a homomorphism, it suffices to prove that

ϕ(x2) = ϕ(x)2. But by the Peirce Brace Rules 8.2.1, Peirce quadratic forms
9.2.1, Peirce associativity 9.1.3, and bar reversal 12.2.2(1) we have

x2 = [a2
2 + q2(d(v))]⊕ [2(a2 + b0) • d(v)]⊕ [b20 + q0(d(v))]

= [a2
2 + q2(d(v))]⊕ [σ(a2)d(v) + dσ(b0)(v)]⊕ [b20 + q0(d(v))]

= [a2
2 + q2(d(v))]⊕ [σ(a2)d+ dσ(b0)](v)⊕ [b20 + q0(d(v))],

so
ϕ(x2) = σ

(
a2
2 + q2(d(v))

)
[11] +

(
σ(a2)d+ dσ(b0)

)
[12]

+σ
(
b20 + q0(d(v))

)
[22].

On the other hand, by the Basic Brace Products in the Hermitian Matrix
Example 3.2.4, for H2(D, ρ) we have

ϕ(x)2 =
(
σ(a2)[11] + d[12] + σ(b0)[22]

)2

=
(
σ(a2)2 + ddρ

)
[11] +

(
σ(a2)d+ dσ(b0)

)
[12] +

(
σ(b0)2 + dρd

)
[22],

Comparing these two, ϕ(x2) = ϕ(x)2 follows from the diagonal facts that
σ(a2

2) = σ(a2)2 and σ(b20) = σ((b0)2) = σ(b0)2 [by the fact that bar is an
automorphism and by Peirce Specialization Rules 9.1.1], and from the off-
diagonal squaring facts that σ(q2(d(v))) = ddρ [by the norm relation (4) in
the Reversal Involution Lemma 12.2.3] and σ(q0(d(v))) = σ(q2(d(v))) [by
Connection Action 10.1.3(2)] = σ(q2(dρ(v))) [by intertwining (1) of ρ and bar
in Reversal Involution] = dρd [by the norm relation (4) again].
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To show that ϕ is an isomorphism it remains only to prove that it is a linear
bijection on each Peirce space. By Reversal Involution and Peirce Injectivity
9.1.2(1), ϕ is a bijection σ of J2 on H2(D, ρ)[11] and a bijection σ◦ of J0
on H2(D, ρ)[22], and by coordinate bijection in the Coordinate Map Lemma
12.2.2(4), ϕ is a bijection ψ−1 : J1 −→ D −→ D[12].
Finally, ϕ clearly sends e2 �→ 1[11] [since σ(e2) = 1], e0 �→ 1[22] [since

σ(e0) = σ(e2) = 1], and v = 1(v) �→ 1[12].
We have seen, conversely, by Twisted Hermitian Cyclicity Example 12.1.2

that every H2(A) for symmetrically generated A has a strong cyclic 2-frame,
so these are precisely all Jordan algebras with such a frame. �

12.4 Hermitian Coordinatization

Coordinatization is most clearly described for strong frames. When the frames
are not strong, we again follow the trail blazed by Jacobson to a nearby
strongly connected isotope, muttering the magic word “diagonal isotope” to
convert the general case into a strong case.

2× 2 Hermitian Coordinatization 12.4.1 A Jordan algebra J has a cyclic
2-frame {e2, v1, e0},

v2
1 = v2 + v0 for vi invertible in Ji, J1 = D(v1),

iff it is isomorphic to a twisted hermitian 2× 2 matrix algebra with standard
frame and symmetrically generated coordinate algebra. Indeed, if J has a cyclic
2-frame then the map

ϕ : a2 ⊕ d(v1)⊕ b0 �→ σ(a2)[11]Γ + d[12]Γ + σ(b0)[22]Γ

(Γ := diag{1, µ}, µ := σ(v2))

is an isomorphism J −→ H2(D,Γ) sending the given cyclic 2-frame {e2, v1, e0}
to the standard cyclic frame {1[11]Γ, 1[12]Γ, µ−1[22]Γ}, where the coordinate
map σ, coordinate involution ρ, and coordinate algebra D are defined by

σ(a2) := Va2 |J1 ,
dρ(v) := Uv1(d(v

−1
1 )),

D := the subalgebra of EndΦ(J1) generated by σ(J2).

proof. The argument follows the same path as that of Spin Coordina-
tization 11.4.1. By the Diagonal Isotope Lemma 10.2.1, the diagonal isotope
J̃ := J(u) for u = e2 + v−1

0 has the same Peirce decomposition as J and
still satisfies the cyclic Peirce condition (since all diagonal isotopes do by
the Cyclic Diagonal Isotopes Lemma 12.2.1), but is now strongly connected,
so by the Strong Hermitian Coordinatization Theorem J̃ ∼= H2(D̃, ρ̃). Then
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J =
(
J̃
)(u−2) [by Isotope Symmetry (4) in the Jordan Homotope Proposition

7.2.1, for diagonal u−2 = e2 + v2
0 ] ∼= H2(D̃, ρ̃)(Γ) ∼= H2(D,Γ) [by Twisted

Matrix Example 7.5.3] is a twisted hermitian matrix algebra. This completes
the proof that J is twisted hermitian.
If we want more detail about the form of the isomorphism, as in Spin

Coordinatization we must argue at greater length. J̃ = J(u) has, by Creating
Involutions 10.2.2(1), supplementary orthogonal idempotents ẽ2 = e2, ẽ0 =
v0 strongly connected by the same old v1, and with the same old Peirce
decomposition; by the Strong Coordinatization Theorem 12.3.1 we have an
explicit isomorphism J̃→ H2(D̃, ρ̃) by ϕ̃(a2 ⊕ d̃(v)⊕ b0) = σ̃(a2)[11]+ d̃[12]+
σ̃(b0)[22]. Here the coordinate map, coordinate ring, connection involution,
and coordinate involution in J̃ can be expressed in J as

σ̃ = σ, D̃ = D, b2 = Uv(b2), b0 = U−1
v (b0), ρ̃ = ρ.

Indeed, by Strong Coordinatization the coordinate map is σ̃(a2) = σ2(a2)
[by the Diagonal Isotope Lemma] = σ(a2) [by definition of σ], so by Strong
Coordinatization the coordinate ring is D̃ = 〈σ̃(J̃2)〉 = 〈σ(J2)〉 = D as
above. By Creating Involutions (1)–(2) the connection involution has b2 =
Uv(b2), b0 = U−1

v (b0), x1 = 2Uv(v−1
0 • x1). Then by Strong Coordinatization

dρ̃(v) = d(v) = 2Uv(v−1
0 • d(v)) = 2Uv(d(v−1

0 • v)) [by Peirce Associativity
9.1.3] = Uv(d(v−1)) = dρ(v) as above, because of the general relation

2q0(v1)−1 • v1 = v−1
1

resulting from canceling Uv from the equation 2Uv(v−1
0 • v) = UvVv(v−1

0 )
= Uv2,vv

−1
0 = {v2 + v0, v

−1
0 , v} = {v0, v

−1
0 , v} [by Peirce Orthogonality Rules

8.2.1] = v [by Peirce Specialization Rules 9.1.1] = Uv(v−1).
By Strong Coordinatization the map ϕ̃ reduces to

ϕ̃ : a2 ⊕ d(v)⊕ b0 �→ σ(a2)[11] + d[12] + σ
(
U−1
v (b0)

)
[22].

Under the mapping ϕ̃ the Spin frame is sent as follows:

e2 �→ 1[11], v �→ 1[12], e0 �→ µ−1[22], u−2 �→ diag{1, µ} = Γ (µ := σ(v2))

since σ(e2) = 1, and by Creating Involutions (3) we have σ
(
U−1
v (vk0 )

)
= µk−1,

so for k = 0, 2 we have σ
(
U−1
v (e0)

)
= µ−1, σ

(
U−1
v (v2

0)
)
= µ, hence ϕ̃(u−2) =

ϕ̃(e2 + v2
0) = 1[11] + µ[22] = diag{1, µ}.

The isomorphism ϕ̃ is at the same time an isomorphism

ϕ̃ : J =
(
J(u)

)(u−2) = J̃
(u−2) −→ H2(D̃, ρ̃)(Γ) = H2(D, ρ)(Γ)

[using Isotope Symmetry (4) in Jordan Homotope] of J with a diagonal iso-
tope of H2(D, ρ). By the Twisted Matrix Example with γ2 = µ, the map
LΓ : a[11] + d[12] + b[22] −→ a[11]Γ + d[12]Γ + b[22]Γ is an isomorphism
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H2(D, ρ)(Γ) −→ H2(D,Γ) of Jordan algebras; combining this with the iso-
morphism ϕ̃ gives an isomorphism J −→ H2(D,Γ) given explicitly as in (2)
by a2⊕d(v)⊕b0 �→ σ(a2)[11]+d[12]+σ

(
U−1
v b0

)
[22] �→ σ(a2)[11]Γ+d[12]Γ+

σ(U−1
v b0)[22]Γ, sending e2, v, e0 to 1[11]Γ, 1[12]Γ, µ−1[22]Γ.
We have seen, conversely, by Twisted Hermitian Cyclicity 12.1.2 that every

H2(A,Γ) for which A is symmetrically generated has a cyclic 2-frame, so these
are again precisely all Jordan algebras with such a frame. �



Third Phase: Three’s a Crowd
Ashes to ashes, dust to dust
Peirce decompositions are simply a must

–Old Jordan folksong, c. 40 B.Z.E.

In this phase we will investigate the structure of Jordan algebras having
an orthogonal family of three or more connected supplementary idempotents.
These five chapters are the heart of the classical approach, Peirce decom-
positions and coordinatization via hermitian matrix units. It is a very nuts-
and-bolts approach: we reach deep inside the Jordan algebra, take out and
examine the small Peirce parts of which it is composed, and then see how they
fit together to create the living organism, the Jordan algebra.
In Chapter 13 we develop the necessary machinery for multiple Peirce de-

compositions with respect to a finite family of mutually orthogonal idempo-
tents, featuring a larger cast of Peirce Multiplication Rules: Four Brace Prod-
uct, Three U -Product, one Triple Product, and Three Orthogonality Rules,
and a Peirce Identity Principle. We give an easy proof that the Albert algebra
is exceptional, exhibiting a simple s-identity which it fails to satisfy.
In Chapter 14 we gather consequences of Peirce decompositions which

follow easily from the Peirce Identity Principle, or from the two-idempotent
case. Key technical tools are again Peirce specializations, Peirce quadratic
forms, and connection involutions. Connection and strong connection of or-
thogonal idempotents are transitive, so if e1 is connected to each ej we obtain
connectors for all pairs ei, ej . Moreover, a family of off-diagonal elements v1j
connecting e1 to ej becomes strongly connecting in some diagonal isotope.
Jordan algebras with Peirce frames of length n ≥ 3 come in only one basic

flavor: the hermitian algebras of n × n hermitian matrices with entries from
a ∗-algebra. This uniform homogeneous structure is due to the rich group of
hermitian symmetries Uπ for all permutations π (automorphisms permuting
idempotents and Peirce spaces in the same way that π permutes the n indices).
This is the focus of Chapter 15. Strongly connecting v1j can be completed to
a family of hermitian matrix units {hij}, yielding hermitian involutions U (ij)
corresponding to the transpositions, which then generate all other hermitian
symmetries Uπ.
In Chapter 16 we show that, once n ≥ 3, the space J12 can be endowed with

a ∗-algebra structure (D,−) which coordinatizes all the off-diagonal Peirce
spaces, while H(D,−) coordinatizes all the diagonal Peirce spaces.
In Chapter 17 we establish our main result in this phase, the Jacobson

Coordinatization Theorem, which asserts that Jordan algebras with hermi-
tian n-frames for n ≥ 3 (but without any further nondegeneracy hypotheses)
are automatically hermitian matrix algebras Hn(D,Γ), where the Jordan Co-
ordinates Theorem shows that D must be alternative with nuclear involution
if n = 3 and associative if n ≥ 4. As usual, we establish this for strongly
connected Peirce frames, then deduce the result for general Peirce frames via
the magic wand of isotopy.



13

Multiple Peirce Decompositions

The time has come, the walrus said, to talk of Peirce decompositions with
respect to more than one idempotent. By now the reader has gained some
familiarity with Peirce decompositions with respect to a single idempotent,
and will not be surprised or overwhelmed when digesting the general case. This
time we will immediately apply Peircers to obtain the basic facts of Peirce
decompositions: as the World War I song says, “How are you going to keep
them down on the farm, after they’ve seen Peircers?” Not only do Peircers
show that Peirce decomposition works, they show why it works, as an instance
of toral actions which play important roles in many areas of mathematics.1

13.1 Decomposition

Throughout this chapter we will fix an orthogonal family of idempotents
E = {e1, . . . , en} in a Jordan algebra J, a set of mutually orthogonal
idempotents,

e2
i = ei, ei • ej = 0 (i  = j).

These are often called pairwise orthogonal idempotents, since orthogonality
takes place between idempotents two at a time. We will always supplement
these to form a supplementary set of n + 1 orthogonal idempotents in the
unital hull Ĵ by adjoining

e0 := 1̂− (
∑n

i=1 ei) ∈ Ĵ.

Peirce Projections Definition 13.1.1 The Peirce projections Eij =
Eji in J determined by an orthogonal family of idempotents E are the linear
transformations on J  Ĵ given for i, j = 0, 1, . . . , n by

Eii := Uei , Eij := Uei,ej = Eji (i  = j).
1 Multiple Peirce decompositions and the associated Multiplication Rules were men-

tioned in I.6.1.
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Notice that for indices i, j  = 0 the Peirce projection Eij is intrinsically deter-
mined on J by ei and ej themselves; it is only for index i = 0 that E0j depends
on the full collection E of idempotents in order to form e0 = 1̂−

∑
E ei.

Peircer Definition 13.1.2 For any (n+1)-tuple of scalars t = (t0, t1, . . . , tn)
∈ Φn+1 we define the Peircer E(t ) to be the linear transformation on J  Ĵ
given by the U -operator of the element e(t ) =

∑n
i=0 tiei ∈ Ĵ,

E(t ) := Ue(t )|J =
∑

0≤i≤j≤n titjEij .

It is very important that the Peircer is the U -operator determined by an
element, since this guarantees (by the Fundamental Formula) that it is a
structural transformation on J.

Peircer Torus Proposition 13.1.3 The Peircer torus of operators on
J determined by E is the strict homomorphism t �→ E(t ) of multiplicative
monoids Φn+1 → EndΦ(J): the Peircer Toral Property

E(1) =
∑

0≤i≤j≤nEij = 1J, E(st) = E(s)E(t),

holds strictly in the sense that it continues to hold over all scalar extensions Ω,
i.e., holds as operators on JΩ for any (n+ 1)-tuples s = (s0, s1, . . . , sn), t =
(t0, t1, . . . , tn) ∈ Ωn+1.

proof. While it was easy to establish Ue(s)Ue(t ) = Ue(st ) for a single
idempotent by power-associativity, for more than one idempotent we cannot
apply power-associativity or Macdonald directly, and must digress through
standard, but lengthy, arguments about scalar extensions and localizations in
order to justify the Toral Property. (We sketch this sotto voce in Section 6.)
The most elementary route to show that e(s), e(t ) lead an associative life

together uses only properties of Peirce decompositions relative to a single
idempotent. If the multiplication operators E(t ) are toral on the unital hull,
their restrictions will be toral on the original algebra. Because of this, it suffices
to work in the unital hull, so we again assume from the start that J = Ĵ is
unital, and we can treat the idempotent e0 and the index 0 like all the others.
The Eij are clearly supplementary operators since the ei are supplementary

elements:
∑

iEii+
∑

i<j Eij =
∑

i Uei+
∑

i<j Uei,ej = U∑
i ei
= Ue(1) = U1 =

1J by the basic property of the unit element. We have

E(s)E(t)− E(s t) =
∑

i≤j ; k≤�(sisj)(tkt�)(EijEk� − δikδj�Eij),

so the Toral Property holds strictly (equivalently, holds for all indeterminates
in Φ[S, T ]) iff the Peirce projections Eij satisfy EijEk� − δikδj�Eij = 0, i.e.,
form a family of mutually orthogonal projections: E2

ij = Eij , EijEkl = 0 if
{i, j}  = {k, ?}. We now establish this projection property.
If {i, j} does not contain {k, ?}, set e = ei + ej (or e = ei if i = j),

so ei, ej ∈ J2(e) and one of ek, e� ∈ J0(e) [since at least one of k, ? doesn’t
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appear in {i, j}]; then orthogonality EijEk� = 0 follows from UJ2UJ0,JJ ⊆
UJ2(J0 + J1) = 0 from Peirce Product Rules and Orthogonality 8.2.1.
Dually, if {i, j} is not contained in {k, ?} then ek, e� ∈ J2(e) and one of

ei, ej ∈ J0(e) for e = ek+e� (or e = ek if k = ?); then orthogonality EijEk� = 0
follows from UJ0,JUJ2J ⊆ UJ0,JJ2 = 0.
When {i, j} = {k, ?} we have EijEk� = EijEij = Eij

∑
r,sErs [by the

above orthogonality of distinct projections] = Eij1J = Eij . �
Recall that one virtue of the Peircers is that they clearly reveal why the Peirce
projections are a supplementary family of mutually orthogonal projections;
unfortunately, our elementary proof required us to prove this directly instead
of harvesting it as a consequence.

Exercise 13.1.3A* In any associative algebra with 1
2 , show that E2 = E,EA + AE = 0

imply EA = AE = 0. If 1
2 �∈ Φ, show that E2 = E,EA + AE = 0, EAE = 0 imply EA =

AE = 0. Use this to derive the orthogonality of the Peirce projections directly from the
Jordan identity Ux2 = U2

x and its linearizations: if e, f, g, h ⊥ are orthogonal idempotents
show that (1) U2

e = Ue, (2) U2
e,f = Ue,f , (3) UeUf = 0, (4) UeUe,f = Ue,fUe = 0, (5)

UeUf,g = Uf,gUe = 0, (6) Ue,fUe,g = 0, (7) Ue,fUg,h = 0. Give a different direct proof of
(2) using the general identity U2

x,y = Ux2,y2 + Vx,yVy,x − VUxy2 .

Exercise 13.1.3B* A slightly less elegant method than the Peircer Toral Property for
establishing the orthogonality of Peirce projections uses a non-controversial application of
Macdonald’s Principle, UxUx3 = Ux4 for x = e(t ) ∈ J[T ], but to recover the individual
Eij without the help of the independent si ∈ S requires a more delicate combinatorial
identification of coefficients of various powers of the ti. (1) Verify that no two distinct pairs
{i, j}, {k, >} can give rise to the same product titjt

3
kt

3
! . (2) Use this to show that identifying

coefficients of t4i t
4
j in (

∑
i≤j titjEij)(

∑
k≤! t

3
kt

3
!Ek!) =

∑
p≤q t

4
pt

4
qEpq yields E2

ij = Eij ,
and that identifying coefficients of titjt3kt

3
! yields EijEk! = 0 if {i, j} �= {k, >}.

Either way, elegant or not, we have our crucial decomposition of the iden-
tity operator and hence the module.

Peirce Decomposition Theorem 13.1.4 (1) The Peirce projections with
respect to an orthogonal family of idempotents form a supplementary family
of projection operators on J,

1J =
∑

0≤i≤j≤nEij , EijEk� = δi,kδj,�Eij ,

and therefore the space J breaks up as the direct sum of the ranges: we have
the Peirce Decomposition of J into Peirce subspaces,

J =
⊕

i≤j Jij for Jij = Jji := Eij(J).

(2) Peirce decompositions are inherited by ideals or by subalgebras contain-
ing E : we have Peirce Inheritance,

K =
⊕

i≤j Kij for Kij = Eij(K) = K ∩ Jij (K  J or E ⊆ K ≤ J).
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proof. (1) We have already decomposed the identity operator into sup-
plementary orthogonal projections, and this always leads to a decomposition
of the underlying Φ-submodule into the direct sum of the Peirce subspaces
Jij = Eij(J).
(2) For Peirce Inheritance, just as in 8.1.2(2) the Peirce projections Eij

are by definition multiplications by 1 and the ei, so they map into itself
any ideal or any subalgebra containing E , therefore induce by restriction a
decomposition K =

⊕
i≤j Kij for Kij = Eij(K); clearly this is contained in

K ∩ Jij , and conversely if x ∈ K ∩ Jij then x = Eij(x) ∈ Eij(K). �
We will usually denote the Peirce projections by Eij ; if there were any

danger of confusion (which there won’t be), then we would use the more
explicit notation Eij(E) to indicate which family of idempotents gives rise to
the Peirce decomposition.

Peirce Eigenspace Laws 13.1.5 The Peirce subspace Jij is the intersec-
tion of J with the eigenspace with eigenvalue titj of the indeterminate Peircer
E(t ) (t = (t0, t1, . . . , tn), on J[T ] for independent indeterminates ti ∈ Φ[T ]),
and also the common eigenspaces of the V -operators Vei

, Vej
on J with eigen-

value 1 (or 2 if i = j): we have the Peircer- and V -Eigenspace Laws:

Jij = {x ∈ J | E(t )x = titjx},
Jii = J2(ei) = {x ∈ J | Vei(x) = 2x},
Jij = J1(ei) ∩ J1(ej) = {x ∈ J | Vei(x) = Vej (x) = x} (i  = j),

and all other Vek
(k  = i, j) have eigenvalue 0 on Jii,Jij :

Jii = J2(ei) ∩ (
⋂
k �=i

J0(ek))

= {x ∈ J | Vei(x) = 2x, Vek
(x) = 0 (k  = i)},

Jij = J1(ei) ∩ J1(ej) ∩
( ⋂
k �=i,j

J0(ek)
)

= {x ∈ J | Vei(x) = Vej (x) = x, Vek
(x) = 0 for k  = i, j}.

Thus on a Peirce space either some idempotent’s V -operator has eigenvalue
2 (and all the rest have eigenvalue 0), or else two separate idempotents’ V -
operators have eigenvalue 1 (and all the rest have eigenvalue 0). We have
exactly the same result for the L’s, scaled by a factor 1

2 .

proof. As for the one-idempotent Peircer Eigenspace Law 8.1.4, the
multiple Peircer Eigenspace Law follows from the definition of the Peircer
E(t ) =

∑
titjEij , since the “eigenvalues” titj are by construction inde-

pendent. Similarly, the V -Eigenspace Laws follow because Vei = Uei,1 =
Uei,

∑
j ej

= Uei,ei
+

∑
j �=i Uei,ej

= 2Eii +
∑

j �=iEij where the eigenvalues
2, 1, 0 are distinct when 1

2 ∈ Φ. �
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13.2 Recovery

We will frequently need to focus on a single idempotent ei out of the family
E , and it will be useful to recognize the Peirce decomposition relative to ei
inside the general Peirce decomposition.

Peirce Recovery Theorem 13.2.1 (1) The Peirce decomposition of J rela-
tive to a single idempotent ei in the family can be recovered as

J2(ei) = Jii, J1(ei) =
⊕
j �=i

Jij , J0(ei) =
⊕
j,k �=i

Jjk,

so the Peirce 2, 1, or 0 space relative to ei is the sum of the Peirce spaces
where 2, 1, or 0 of the indices equals i.
(2) More generally, the Peirce decomposition relative to any sub-sum eI =∑

i∈I ei for a subset I ⊆ {0, 1, . . . , n} is given by

J2(eI) =
∑
i≤j∈I

Jij , J1(eI) =
∑

i∈I,k �∈I
Jik, J0(eI) =

∑
k≤� �∈I

Jk�,

so again the Peirce 2, 1, or 0 space relative to eI is the sum of all Peirce spaces
Jij where 2, 1, or 0 of the indices fall in I.

proof. It suffices to establish the general case (2), and here by the Peirce
projection definitions 8.2, 13.1 we have

E2(eI) = UeI
= U∑

i∈I ei
=

∑
i∈I

Uei
+

∑
i<j∈I

Uei,ej
=

∑
i≤j∈I

Eij ,

E1(eI) = UeI ,1−eI
= U∑

i∈I ei,
∑

k �∈I ek
=

∑
i∈I,k �∈I

Uei,ek
=

∑
i∈I,k �∈I

Eik,

E0(eI) = U1−eI
= U∑

k �∈I ek
=

∑
k≤l �∈I

Ek�. �

13.3 Multiplication

The whole rationale for Peirce decomposition is that it breaks an indigestible
algebra down into bite-sized Peirce pieces, which have simpler multiplication
rules. As in the one-idempotent case, the underlying philosophy is that Peirce
spaces behave like the Φ-submodules DEij ⊆ Mn(D) and multiply like the
matrix units Eij themselves. We must again keep in mind that in the Jordan
case the off-diagonal spaces DEij ,DEji cannot be separated, they are lumped
into a single space Jij = D[ij] = Jji. This symmetry in indices is important
to keep in mind when considering “linked” or “connected” indices.
We have the following crucial rules for multiplying multiple Peirce spaces,

generalizing Peirce Multiplication Rules for Peirce spaces relative to a single
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idempotent e (which is now subsumed under the general case by taking e1 =
e, e0 = 1−e). Again the Peircer is effective because it satisfies the Fundamental
Formula.

Peirce Multiplication Theorem 13.3.1 The Peirce spaces multiply accord-
ing to the following rules.
(1) For bilinear products we have Four Peirce Brace Rules for distinct

indices i, j, k:

J2
ii ⊆ Jii, J2

ij ⊆ Jii + Jjj , {Jii,Jij} ⊆ Jij , {Jij ,Jjk} ⊆ Jik.

(2) For distinct indices i, j we have Three Peirce U-Product Rules

UJii
(Jii) ⊆ Jii, UJij

(Jii) ⊆ Jjj , UJij
(Jij) ⊆ Jij ,

and for arbitrary i, j, k, ? we have the Peirce Triple Product Rule

{Jij ,Jjk,Jk�} ⊆ Ji�.

(3) We have Peirce Brace, U -, and Triple Orthogonality Rules

{Jij ,Jk�} = 0 if the indices don’t link, {i, j} ∩ {k, ?} = ∅,

UJij (Jk�) = 0 if {k, l} � {i, j},

{Jij ,Jk�,Jrs} = 0 if the indices cannot be linked
(for possible linkages keep in mind that Jrs = Jsr). In particular, the diagonal
spaces Jii are inner ideals.

proof. Just as in the single-idempotent case 8.2.1, for the multiplica-
tion rules it is crucial that we have scalars t−1

i to work with, so we pass to
the formal Laurent polynomials J[T, T−1] in T = {t0, t1, . . . , tn} (consisting
of all finite sums

∑M
−N xk0,k1,... ,kn

tk0
0 tk1

1 · · · tkn
n with coefficients xk from J),

with the natural operations. This is an algebra over the Laurent polynomi-
als Ω := Φ[T, T−1] (consisting of all finite sums

∑M
−N αk0,k1,... ,knt

k0
0 tk1

1 · · · tkn
n

with coefficients αCk from Φ), with the natural operations. In particular, Ω is
a free Φ-module with basis of all monomials tk0

0 tk1
1 · · · tkn

n (ki ∈ Z) over Φ, so
J is imbedded in JΩ ∼= J[T, T−1].
Since by the Peircer Definition 13.1.2 the Peircer is a U -operator E(t ) =

Ue(t ) restricted to J, and E(t ) now has an inverse E(t−1) since the Toral
Property 13.1.3 continues [by strictness] to hold in JΩ, we have for the U -
rules E(t )

(
Uxij (yk�)

)
= E(t )UxijE(t )E(t

−1)(yk�) [by the Toral Property]
= UE(t )(xij)E(t

−1)(yk�) [by the Fundamental Formula] = Utitjxij
t−1
k t−1

� (yk�)
[by the Peircer Eigenspace Law 13.1.5] = t2i t

2
j t
−1
k t−1

� Uxij (yk�), so the product
is zero as in (3) unless t2i t

2
j t
−1
k t−1

� = trts for some r, s, i.e.,

{k, ?} ⊆ {i, j}.
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If k and ? coincide, then by symmetry we may assume that k = ? = i, in
which case trts = t2j and Uxij

yii lies in the eigenspace Jjj as in the first (if
i = j) or second (if i  = j) part of (2). If k and ? are distinct, then so are i, j,
and by symmetry we may assume that k = i, ? = j, trts = titj , so Uxij

yij lies
in the eigenspace Jij as in the third part of (2).
Similarly for the trilinear products:

E(t ){xij , yk�, zrs} = E(t )Uxij ,zrsE(t )E(t
−1)(yk�)

= UE(t )(xij),E(t )(zrs)E(t−1)(yk�), [by Toral and Fundamental again]

= {titjxij , t−1
k t−1

� yk�, trtszrs} [by the Peircer Eigenspace Law again]

= titjt
−1
k t−1

� trts {xij , yk�, zrs}
is zero as in (3) unless the indices can be linked j = k, ? = r so titjt−1

k t−1
� trts =

tits, in which case the product falls in the eigenspace Jis as in (2). [Note
that the middle indices k, ? can’t both be linked only to the same side, for
example the left, since if k = j, ? = i but k, ? are not linked to the right
(k, ?  = r, s) then xij , yk� = yji ∈ J2(eI) (I = {i, j}) but zrs ∈ J0(eI), so
{xij , yk�, zrs} ∈ {J2,J2,J0} = 0 by Peirce Orthogonality 8.2.1.]
The triple products come uniformly because the Peircer is a U -operator

and satisfies the Fundamental Formula. There is no corresponding uniform
derivation for the brace products (1), instead we derive them individually
from the triple products: from (2)–(3) we see that x2

ii = Uxii
1 = Uxii

(
∑

ek) =
Uxiiei ∈ Jii; x2

ij = Uxij1 = Uxij (
∑

ek) = Uxij (ei+ej) ∈ Jjj+Jii; {xij , yk�} =
{xij , 1, yk�} =

∑{xij , ep, yk�} is 0 as in (3) unless {i, j} ∩ {k, ?}  = ∅ con-
tains a linking index p, and if (by symmetry) p = j = k then {xij , yk�} =
{xij , ej , yj�} ∈ {Jij ,Jjj ,Jj�} ⊆ Ji� as in the third [if i = j  = ? or i  = j = ?]
or fourth [if i, j, ? are distinct] part of (1). �
As in so many instances in mathematics, the picture is clearest if we step

back and take a broad view: to understand radii of convergence of real power
series we need to step back to the complex domain, so to understand the Peirce
decomposition in J it is best to step back to J[T, T−1], where the Jij appear
as eigenspaces of one particular operator relative to distinct eigenvalues titj ,
and their triple products are governed by the condition that the Peircer is a
U -operator satisfying the Fundamental Formula.

13.4 The Matrix Archetype

We now give examples of idempotents and their Peirce decompositions. The
guiding light for Peirce decompositions is the example set by the associative
matrix algebras, the generalization of Associative, Full, and Hermitian Peirce
Decomposition 8.3.1, 8.3.2, 8.3.3.
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Full and Hermitian Peirce Decomposition 13.4.1 (1) If E = {e1, . . . , en}
is a family of orthogonal idempotents in an associative algebra A, we have the
associative Peirce decomposition

A =
⊕n

i,j=0 Aij (Aij := eiAej)

relative to E. These satisfy the Associative Peirce Multiplication Rules

AijAk� ⊆ δjkAi�.

The associated Jordan algebra J = A+ has Jordan Peirce decomposition

A+ =
⊕n

i≤j=0 Jij for Jii := Aii, Jij := Aij ⊕Aji (i  = j).

If A has an involution ∗, and e∗i = ei are symmetric idempotents, then the as-
sociative Peirce spaces satisfy A∗ij = Aji, the Jordan algebra H(A, ∗) contains
the family E, and the Peirce decomposition is precisely that induced from that
of A+: H(A, ∗) =⊕n

i,j=0 Hij for Hii = H(Aii, ∗),
Hij = H(Aij +Aji, ∗) = {aij + a∗ij | aij ∈ Aij}.

(2) If A = Mn(D) is the algebra of n × n matrices over an associative
algebra D and ei = Eii are the diagonal matrix units, the Peirce spaces Aij

relative to E = {E11, . . . , Enn} are just the matrices having all entries 0
except for the ij-entry : Aij = DEij. When J = A+ we have the Jordan
Peirce decomposition

Jii = DEii, Jij = DEij +DEji.

If D carries an involution then A =Mn(D) carries the conjugate-transpose
involution X∗ = X

tr
, and the Jordan algebra of hermitian elements J =

Hn(D,−) := H(Mn(D), ∗) has Peirce decomposition
Jii = H(D,−)[ii] = {aEii | a ∈ H(D,−)},
Jij = D[ij] = {dEij + d̄Eji | d ∈ D}. �

The Peirce Multiplication Rules 13.3.1 are precisely the rules for multi-
plying matrices, and one should always think of Peirce decompositions and
rules as matrix decompositions and multiplications. As with the case of a sin-
gle idempotent, we are led by the archetypal example of hermitian matrices
to call the Peirce spaces Jii = J2(ei) the diagonal Peirce spaces, and the
Jij = J1(ei) ∩ J1(ej) (i  = j) the off-diagonal Peirce spaces.
We cannot give an example of a multiple Peirce decomposition for a re-

spectable quadratic factor extending the Reduced Spin Decomposition 8.3.5,
since by law these algebras are limited to two orthogonal idempotents to a
customer. The respectable cubic factors are allowed three orthogonal idempo-
tents (but no more), so we can give an example extending 3× 3 Cubic Peirce
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Decomposition 8.3.7, analogous to that for any associative matrix algebra
13.4.1(2).

3 × 3 Hermitian Peirce Decomposition 13.4.2 In a cubic factor J =
H3(D,−) for any alternative ∗-algebra D with nuclear involution in the
Freudenthal Construction 4.4.1, the three diagonal idempotents E11, E22, E33,
form a supplementary orthogonal family, with Peirce decomposition

J =
⊕

1≤i≤j≤3 Jij ,

Jii = H(D)[ii] = {aEii | a ∈ H(D)},
Jij = D[ij] = {dEij + d̄Eji | d ∈ D}.

In the important case of an Albert algebra H3(O), we have H(O) = Φ, so the
three diagonal Peirce spaces Jii = ΦEii are one-dimensional, and the three
off-diagonal Jij = O[ij] are eight-dimensional, leading to a 27-dimensional
algebra. �

13.5 The Peirce Principle

Macdonald’s Principle provides us with a powerful method for verifying facts
about multiple Peirce decompositions in Jordan algebras which extends the
Peirce Principle 8.4.1 of a single Peirce decomposition.

Peirce Principle 13.5.1 Any set of Peirce elements {xij}, from distinct
Peirce spaces Jij relative to a family E of orthogonal idempotents, lie in a
special subalgebra B of J containing E. Therefore, all Jordan behavior of dis-
tinct Peirce spaces in associative algebras persists in all Jordan algebras: if
fα, f are Jordan polynomials, a set of relations

fα(e1, . . . , en, xi1j1 , . . . , xirjr ) = 0

among Peirce elements xij with distinct index pairs will imply a relation

f(e1, . . . , en, xi1j1 , . . . , xirjr ) = 0

in all Jordan algebras if it does so in all special Jordan algebras, i.e.,
if the relations fα(e1, . . . , en, ai1j1 + aj1i1 , . . . , airjr + ajrir ) = 0 imply
f(e1, . . . , en, ai1j1 + aj1i1 , . . . , airjr + ajrir ) = 0 for Peirce elements aij ∈ Aij

relative to idempotents E in all unital associative algebras A.
In particular, we have the Peirce Identity Principle: any Peirce iden-

tity f(e1, . . . , en, xi1j1 , . . . , xirjr
) = 0 for a Jordan polynomial f will hold

for Peirce elements xij with distinct index pairs in all Jordan algebras J if
f(e1, . . . , en, ai1j1 + aj1i1 , . . . , airjr + ajrir ) = 0 holds for all Peirce elements
aij ∈ Aij in all associative algebras A.
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proof. Everything takes place in the subalgebra

B := Φ[e0, e1, . . . , en, xi1j1 , . . . , xirjr ]

= Φ[e0, e1, . . . , en, x] ⊆ Ĵ (x :=
∑

i<j xij),

since by distinctness we can recover the individual components xij from the
sum x by the Peirce projections, xij = Eij(x). Our goal is to show that this
subalgebra B is special. A standard localization procedure (which we will
explain in detail in Section 6) produces a faithful cyclifying scalar extension
Ω = Φ[T ]S ⊇ Φ[T ] := Φ[t0, t1, . . . , tn] in the sense that

(1) Ω is faithful: Ĵ is faithfully imbedded in ĴΩ;

(2) Ω cyclifies the ei: Ω[e0, e1, . . . , en] = Ω[e(t )]

with cyclic Ω-generator e(t ) :=
∑n

i=0 tiei.

Then B will be special since it imbeds in the special algebra BΩ: B ⊆ BΩ
[because of faithfulness (1)] = Ω[e0, e1, . . . , en, x] [by the above expression for
B] = Ω[e(t ), x] [by cyclification (2)], where the latter is generated over Ω by
two elements and hence is special by the Shirshov–Cohn Theorem 5.2.
The Peirce decomposition of the special algebra BΩ ⊆ A+ is related to

that of A by Full Example 13.4.1(1), so we can write xij = aij + aji for
i ≤ j (if i = j we can artificially write xii = aii = 1

2aii +
1
2aii). Then

f(e1, . . . , en, ai1j1 + aj1i1 , . . . , airjr + ajrir ) = 0 in A implies that we have
f(e1, . . . , en, xi1j1 , . . . , xirjr ) = 0 in J. �
Just as in the one-idempotent Peirce Principle, this Principle gives yet

another method for establishing the Peirce Toral Property 13.1.3, Peirce De-
composition 13.1.4, Eigenspace Laws 13.1.5, and Peirce Multiplication Rules
13.3.1. The toral property, decomposition, and eigenvalues involve only the ei
and a general x =

∑
i,j xij . The associative Peirce decomposition 13.4.1 has

AijAk� = δjkAi� with orthogonal Peirce projections Cij(a) = eiaej , so the
Jordan Peirce projections Eii = Cii, Eij = Cij + Cji are also supplementary
orthogonal projections as in the Peirce Decomposition 13.1.4. We can recover
all Peirce Brace Multiplication rules in 13.3.1: for squaring we have x2

ii ∈
AiiAii ⊆ Aii and x2

ij ∈ (Aij +Aji)2 = AijAji +AjiAij ⊆ Aii +Ajj , while
for the brace we have {xii, xij} ∈ Aii(Aij+Aji)+(Aij+Aji)Aii ⊆ Aij+Aji

and {xij , xk�} = 0 since (Aij+Aji)(Ak�+A�k) = (Ak�+A�k)(Aij+Aji) = 0.
Similarly, we obtain Triple Orthogonality Rules for distinct index pairs; we
use Triple Switching to reduce repeated index pairs to {xij , yk�, zij} = 0,
which follows as a linearization of Uxijyk� = 0. For the Basic U -Product
Rules we get Uxijyii ∈ (Aij + Aji)Aii(Aij + Aji) ⊆ Ajj , but we do not
get the U -product rule Uxijyij ∈ Jij directly since it involves terms xij , yij
from the same Peirce space [we must get it by linearizing Uxijxij ∈ Jij ,
or by building the U -operator out of bullets and using (1)]. We obtain the
non-orthogonal triple products for distinct index pairs by {xij , yjk, zk�} ∈
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{Aij +Aji,Ajk+Akj ,Ak�+A�k} ⊆ Ai�+A�i, while we use Triple Switching
to reduce repeated pairs to linearizations of U -products; or we could again
build the triple products out of bullets and use (1).

Indistinct Indices Example 13.5.2 The requirement of distinct index pairs
in the Peirce Principle is crucial. We have a Jordan Peirce relation

f(x12, y12, x13, y13, z23) = [Vx12,y12 , Vx13,y13 ](z23) = 0

for Peirce elements (but with repeated index pairs) which holds in all associa-
tive algebras with at least three mutually orthogonal idempotents, but does not
hold in the Albert algebra H3(O).

Indeed, writing xij = aij + aji, yij = bij + bji, z23 = c23 + c32 as in the
3 × 3 Hermitian Peirce Decomposition 13.4.2 we have Vx12,y12Vx13,y13(z23) =
a21b12c23b31a13 + a31b13c32b21a12 = Vx13,y13Vx12,y12(z23). Yet this is not a
Peirce relation for all Jordan algebras, since if in the Albert algebra H3(O)
we take x12 = a[21], y12 = 1[12], x13 = c[13], y13 = 1[31], z23 = b[23] for
arbitrary Cayley elements a, b, c ∈ O, we have

Vx12,y12Vx13,y13(z23) = {a[21], 1[12], {b[23], 1[31], c[13]}}
= a(1((b1)c)[23] = a(bc)[23],

Vx13,y13Vx12,y12(z23) = {{a[21], 1[12], b[23]}, 1[31], c[13]}
= ((a(1b))1)c[23] = (ab)c[23],

so f(a[21], 1[12], b[23], 1[31], c[13]) = −[a, b, c][23], where the associator [a, b, c]
does not vanish on the nonassociative algebra O (recall that a = i, b = j, c = ?
have [a, b, c] = 2k?  = 0 in characteristic  = 2). �
Such an identity distinguishing special algebras from all Jordan algebras

is called a Peirce s-identity; this shows in a very painless way the excep-
tionality of reduced Albert algebras.

Albert’s Exceptional Theorem 13.5.3 A reduced Albert algebra H3(O) is
exceptional. �

13.6 Modular Digression

The key step in the Peirce Principle is to show that there is a faithful cycli-
fying extension Ω = Φ[T ]S ⊇ Φ[T ] := Φ[t0, t1, . . . , tn] where all ei lie in the
“cyclic” subalgebra Ω[e(t )] generated by a single element (a Peircer, no less).
[Note that this digression was unnecessary in the case of a single idempotent:
Φ[e0, e1] = Φ[1− e, e] = Φ[e] is already cyclified in a unital algebra.] This is a
purely module-theoretic result, having nothing to do with Jordan algebras. It
is not hard to create the localization Φ[T ]S and see why it achieves cyclifica-
tion, the only delicate point is to see that it is faithful. The argument that the
imbedding is indeed faithful uses standard facts about ‘localizing,” forming
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rings and modules of “fractions.” We will go through this in some detail in
case the reader is rusty on this material, but its length should not obscure
the fact that the Jordan proof has quickly been reduced to standard results
about modules.

Cyclification

We have seen that J ∼= J ⊗ 1 is faithfully imbedded in JΦ[T ]
∼= J[T ] for the free Φ-module

Φ[T ] of polynomials. For cyclification, there is a standard interpolation argument allowing
us to recover the individual idempotents from a distinct linear combination:

if (αi − αk)−1 ∈ Ω for all i �= k, then the interpolating polynomials

pi(λ) :=
∏

k �=i
λ−αk
αi−αk

∈ Ω[λ] satisfy pi(αi) = 1, pi(αj) = 0 (j �= i),

and hence recover ei = pi(x) ∈ Ω[x] from x =
∑n

i=1 αiei.

Indeed, by power-associativity and definition of orthogonal idempotents, for any polynomial
p we have p(x) = p(

∑
k αkek) =

∑
k p(αk)ek. In particular, the interpolating polynomials

produce pi(x) =
∑

k pi(αk)ek = ei. To create these interpolating polynomials we need only
an Ω containing n scalars αi with invertible differences. For example, if we were working
over a field with at least n elements this would be automatic.

To do this “generically” for independent indeterminates ti, we define

Ω := Φ[T ][∆−1] = Φ[T ]|S (usually written just Φ[T ]S)

(∆ :=
∏

i<j(ti − tj), S := {∆n | n ≥ 0})

obtained by localizing Φ[T ] at the multiplicative submonoid S consisting of all non-negative
powers of ∆. The resulting set of “fractions” f(T )∆−n, with “numerator” f(T ) ∈ Φ[T ]
forms a commutative Φ[T ]-algebra, and the fact that ∆ is invertible guarantees that each of
its factors ti− tj is invertible there, (ti− tj)−1 ∈ Ω for all i �= j as required to construct the
interpolating polynomials. Note that Φ, Φ[T ], Ω = Φ[T ]|S need not themselves be integral
domains in order to make ∆ invertible.

Faithfulness

In localizing non-integral domains, some of the original scalars are generally collapsed in
the process of making ∆ invertible. We need to know that in our particular case J̃ ⊆ J̃Ω
remains faithfully imbedded in this larger algebra J̃Ω := J̃⊗Φ Ω ∼=

(
J̃⊗Φ Φ[T ]

)
⊗Φ[T ]Ω [by

a basic transitivity property of tensor products] ∼= J̃[T ]⊗Φ[T ] Φ[T ]|S ∼= J̃[T ]|S [by the basic
property of localization of modules that for an R-module M , M ⊗R R|S is isomorphic to
the module localization M |S consisting of all “fractions” ms−1 with “numerator” m ∈ M
and “denominator” s ∈ S].

It is another standard fact about localizations that the kernel of the natural inclusion
σ : Ĵ → Ĵ[T ]|S is precisely the set of elements of Ĵ[T ] killed by some element of S (such
elements must die in order for the s to become invertible, just as in a pride of lions some
innocent bystanders are unavoidably killed when new rulers depose the old). We now prove
that in our case the takeover is pacific, and σ injective, since all elements of S are injective
(not zero-divisors) on Ĵ.

In our case, we must show that the generator ∆ of S acts injectively,

j(T ) · ∆ = 0 =⇒ j(T ) = 0 ∈ Ĵ[T ].

For this we mimic the standard argument used to show that in the polynomial ring in
one variable a polynomial f(t) will be a non-zero-divisor in R[t] if its top term an is a
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non-zero-divisor in R: its product with a nonzero polynomial g(t) can’t vanish since the
top degree term of the product is the nonzero product anbm of the top degree terms of the
two factors. In our several-variable case, to identify the “top” term we use lexicographic
ordering on the monomials induced by the ordering t0 > t1 > · · · > tn of the variables.
In “vector-notation” we decree t (e := te00 te11 · · · ten

n is bigger than t (f := tf00 tf11 · · · tfn
n if it

has bigger exponent, -e > -f in the sense that ei > fi in the first place they differ. In this
lexicographic ordering, ∆ =

∏
0<j≤n[t0− tj ] ·

∏
1<j≤n[t1− tj ] · · ·

∏
n−1<j≤n[tn−1− tj ] has

monic lexicographically leading term tn0 t
n−1
1 · · · t1n−1t

0
n. From this fact we can see that ∆ is

nonsingular, since the lexicographically leading term of the product j(T ) ·∆ is the product
of the two lexicographically leading terms, which doesn’t vanish in the present case (as long
as j(T ) �= 0) because the leading term of ∆ is monic.

Conclusions

The scalar extension Ω = Φ[T ]|S achieves cyclicification due to invertibility of ∆, and the
imbedding Ĵ ⊆ Ĵ[T ] ⊆ Ĵ[T ]|S is faithful because ∆ acts injectively on Ĵ[T ]. The existence
of a faithful cyclifying extension establishes the Peirce Principle 13.5.1.

Notice that existence of Ω yields the multiplicative property in the Peircer Torus
13.1.3 directly: E(st ) = Ue(st ) [by definition 13.1.2] = Ue(s)•e(t ) [by definition of mu-
tually orthogonal idempotents] = Ue(s)Ue(t )

[
by Macdonald’s Principle 5.1.2 since ev-

erything takes place in Ω′[e(t )], Ω′ = Ω[s0, . . . , sn]
]

= E(s)E(t ). As usual, the Peirce
Decomposition 13.1.4(1) is an immediate consequence of the this: identifying coefficients
of sisjtkt! in

∑
p≤q spsqtptqEpq =

∑
p≤q(sptp)(sqtq)Epq = E(st ) = E(s)E(t ) =(∑

i≤j sisjEij

) (∑
k≤l tkt!Ek!

)
=

∑
i≤j, k≤l sisjtkt!EijEk! gives EijEk! = 0 unless

{i, j} = {k, >} = {p, q}, in which case EpqEpq = Epq , so the Eij are supplementary orthog-
onal idempotent operators.

Exercise 13.6.0* Prove that the above ∆ is injective on Ĵ[T ] by using induction on n.

13.7 Problems for Chapter 13

Problem 13.1* Another method of justifying the Toral Property 13.1.3 is
to establish a general result that the U -operators permit composition (not
just Jordan composition, as in the Fundamental Formula) for elements x, y
which operator-commute (Lx, Lx2 commute with Ly, Ly2 on J), generalizing
the case Power-Associativity 5.2.2(2) of elements p, q which are polynomials
in a single element. (1) Prove that if elements x, y of a Jordan algebra J
operator-commute, then they satisfy the strong version Ux•y = UxUy of the
Fundamental Formula. (2) Conclude that if B is an operator-commutative
subalgebra of J in the sense that Lb, Lc commute for all elements b, c ∈ B,
then B satisfies the Commutative Fundamental Formula Ub•c = UbUc on J for
all b, c ∈ B. (3) Show that any two polynomials x = p(z), y = q(z) in a com-
mon element z operator-commute. (4) Show that any two orthogonal idempo-
tents e, f operator-commute. (5) Prove the Peirce Commutativity Theorem:
For any supplementary orthogonal family of idempotents E , the subalgebra
B := Φe1 � · · ·�Φen is operator-commutative, and satisfies the Commutative
Fundamental Formula Up•q = UpUq for any p, q ∈ B.
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Problem 13.2* In general, just because x, y operator-commute on J does
not guarantee that they continue to operator-commute on larger J′. (1) Show
that any left, right multiplications in a linear algebra commute on the unit ele-
ment, [Lx, Ry]1 = 0. Conclude that in any commutative algebra [Lx, Ly]1 = 0.
(2) Show that if x, y operator-commute on J, then they continue to operator-
commute on Ĵ. (3) Show that in an associative algebra A two elements x, y
commute on z ∈ A+, [Vx, Vy]z = 0, iff their commutator commutes with
z, [[x, y], z] = 0. Conclude that x, y operator-commute in A+ iff their commu-
tator is central, [x, y] ∈ Cent(A). (4) Give an example of x, y which operator-
commute on A+ but not on a larger (A′)+. Can you find an example for
semiprime A,A′?

Problem 13.3 (1) If R is any commutative ring with unit and S a multiplica-
tive submonoid of R, show that we can create a “ring R|S of S-fractions” r/s
under the usual operations on fractions and the (slightly unusual) equivalence
relation r/s ∼ r′/s′ ⇐⇒ there exists t ∈ S such that (rs′−r′s)t = 0. (2) Show
that this ring has the properties (a) the images of the “denominators” s ∈ S all
become invertible in R|S , (b) there is a universal homomorphism R

σ−→ R|S of
rings with the universal property that any homomorphism R

f̃−→ R̃ such that
the image f̃(S) is invertible in R̃ can be written uniquely as a composite of σ

and a homomorphism R|S f−→ R̃. (3) Show that the kernel of σ is precisely
the set of elements of R killed by some element of S. Prove that σ injec-
tive iff all elements of S are injective on R. (4) Show that, similarly, for any
right R-module M we can form a “module M |S of S-fractions” m/s with the
properties (a) M |S is an R|S-module, (b) there is a natural homomorphism
M

σ→ M |S of R-modules whose kernel is the set of m ∈ M killed by some
element of S. (5) Show that the correspondencesM → M |S , ϕ → ϕ|S (defined
by ϕ|S(m/s) = ϕ(m)/s) give a functor from the category of R-modules to the
category of R|S-modules.
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Multiple Peirce Consequences

Once more we stop to gather consequences from the multiple Peirce decom-
position. First we use Peirce decomposition and orthogonality to establish
the Jordan criterion for the hermitian matrix algebras. Then we extend the
results on Peirce specializations, quadratic forms, and connection involutions
to multiple Peirce decompositions.

14.1 Jordan Coordinate Conditions

Earlier we indicated, by ingenious substitutions into the linearized Jordan
identities, why alternativity or associativity of the coordinates is necessary in
order for the hermitian matrices to form a Jordan algebra. Now that we are
more sophisticated, in particular know about Peirce decompositions in Jordan
algebras, we can see the necessity of these conditions another way.1

Jordan Coordinates Theorem 14.1.1 If the hermitian matrix algebra
Hn(D,−) for n ≥ 3 satisfies the Jordan identities, then the coordinate ∗-
algebra D must be alternative with nuclear involution, H(D,−) ⊆ Nuc(D),
and must even be associative if n ≥ 4.
proof. We show that

(1) [a, b, c] = 0 (a, b, c ∈ D, n ≥ 4);
(2) [ā, a, b] = 0 (a, b ∈ D);
(3) [α, b, c] = 0 (b, c ∈ D, α ∈ H(D,−)).

These are enough to derive the theorem: (1) shows that D must be associative
for n ≥ 4, (3) and (2) show that left alternativity [a, a, b] = [(a + ā), a, b] −
[ā, a, b] = 0 [since a + ā = α ∈ H(D,−)], hence right alternativity by the
involution, which shows D is alternative by Alternative Algebra Definition

1 The Associative Coordinates Theorem for n ≥ 4 was stated in I.2.6, and the Alternative
Coordinates Theorem for n = 3 was stated in I.2.7; here we give full detailed proofs.
Connected idempotents were defined in I.5.1 in discussing connected capacity.
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2.1.1. Then (3) shows that H(D,−) lies in the nucleus by Nucleus Definition
2.2.1. We claim that for a, b, c ∈ D and α ∈ H(D,−) we have
(1’) 0 = 2{b[13], a[21], c[34]} = [a, b, c][24] (n ≥ 4);
(2’) 0 = 2Ua[12](b[23]) = −[ā, a, b][23];
(3’) 0 = 2{b[21], α[22], c[13]} = [α, b, c][23].

On the one hand, all these disconnected triple products in (1′), (2′), (3′) must
vanish by Peirce Orthogonality 13.3.1(3). On the other hand, using the brace
definition of the U -operator, 2Uxy =

(
V 2
x − Vx2

)
y = {x, {x, y}}−{x2, y} and

its linearization, together with the Basic Products 3.2.4(2) for brace multipli-
cation in hermitian matrix algebras, the right sides of (1′), (2′), (3′) reduce
respectively to

{b[13], {a[21], c[34]}}+ {{a[21], b[13]}, c[34]} − {a[21], {b[13], c[34]}}
= 0 + (ab)c[24]− a(bc)[24] = [a, b, c][24];

{ā[21], {a[12], b[23]}} − {a[12]2, b[23]}
= ā(ab)[23]− {aā[11] + āa[22], b[23]} = −[ā, a, b][23];

{b[21], {α[22], c[13]}}+ {{α[22], b[21]}, c[13]} − {α[22], {b[21], c[13]}}
= 0 + (αb)c[23]− α(bc)[23] = [α, b, c][23].

This finishes the proof. �

Note how clearly the associators materialize out of the brace products.
The above conditions are in fact necessary and sufficient for Hn(D,−) to

form a linear Jordan algebra. The converse when n ≥ 4 is easy: whenever
D is associative, Hn(D,−) is a special Jordan subalgebra of Mn(D)+. The
converse when n = 3 is considerably messier, so we leave it to Appendix C;
in our work we will need only the easier case of a scalar involution.

Exercise 14.1.1A Carry out a direct frontal attack on the Jordan identity without the aid
of Peirce decompositions. (1) Multiply the Jordan Definition (JAX2)′′ in 1.8.1 by 8 to turn
all associators into brace associators [z, y, z]′ := {{x, y}, z}− {x, {y, z}}. For x = c[21], z =
b[32], w = 1[11], y = a[j3] (j = 3 or 4) show that {x, z} = bc[31], {z, w} = 0, {w, x} = c[21],
and that the brace version of (JAX2)′′ reduces to −[a, b, c][j1] = 0. Conclude that 14.1.1(1)
holds, hence D must be associative. (3) When n = 3 take j = 3, y = α[33] ∈ Hn(D,−)
for any α ∈ H(D,−) to obtain 14.1.1(3). (4) Use a different substitution x = a[12], z =
b[23], y = 1[33] in the brace version of (JAX2)′ [x2, y, z]′ + [{x, z}, y, x]′ = 0 to get
−[ā, a, b][23] = 0 as in 14.1.1(2). Conclude as in 14.1.1 that in this case D is alternative
with nuclear involution.

Exercise 14.1.1B Deduce the vanishing of 14.1.1(1′-3′) from single-idempotent Peirce
Orthogonality 8.2.1.



294 Multiple Peirce Consequences

14.2 Peirce Specializations

The basic facts about Peirce specializations and associativity follow directly
from the results for a single idempotent. Throughout the rest of this chapter
we continue the conventions of the previous chapter: we fix an orthogonal
family E = {e1, . . . , en} of idempotents in a Jordan algebra J with supple-
mentation {e0, e1, . . . , en} in Ĵ, and denote the Peirce subspaces by Jij . With
this understanding, we will not explicitly mention the family E again.
Peirce Specialization Proposition 14.2.1 For k  = i the Peirce special-
izations σii(a) := Va |Jik

is a Jordan homomorphism Jii
σii−→ EndΦ(Jik):

σii(ei) = 1Jik
σii(Uxy) = σii(a)σii(b)σii(a),

σii(a2) = σii(a)2, σii(a)σii(b) = Vx,y |Jik
.

Similarly, for distinct i, j, k the Peirce specializations σij(x) := Vx |Jik+Jjk

is a Jordan homomorphism Jii + Jij + Jjj
σij−→ EndΦ(Jik + Jjk):

σij(x2) = σij(x)2, σij(Uxy) = σij(x)σij(y)σij(x),

σij(x)σij(y) = Vx,y |Jik+Jjk
.

proof. By Peirce Recovery 13.2.1 this follows directly from the single-
idempotent case Peirce Specialization 9.1.1 (taking e = ei, e = ei + ej re-
spectively), because by the Peirce Multiplication Rules 8.2.1 Jik ⊆ J1(e) is
invariant under VJii

, is killed by VJjj
, and is mapped into Jjk by VJij

. �

Exercise 14.2.1 Just as in 9.1.1, establish the above directly from the Peirce relations
and Peirce Orthogonality in 13.3.1, using the Specialization Formulas (FFIII)′ and Triple
Switch (FFIV) {x, {z, y}} = {x, z, y} + {x, y, z}.

Already we can see one benefit of Peirce analysis: we see that the diagonal
Peirce subalgebras have a more associative nature, because they act associa-
tively on the off-diagonal spaces by Peirce specialization. In respectable cases,
where these specializations are faithful, this guarantees that the diagonal sub-
algebras are special Jordan algebras, so the only possible exceptionality resides
in the off-diagonal part of the algebra.
Once more, the diagonal Peirce spaces Alphonse (Jii) and Gaston (Jjj)

courteously commute with each other as they take turns feeding on Jij .

Peirce Associativity Proposition 14.2.2 When {i, j} ∩ {k, l} = ∅ the
Peirce specializations of Jij and Jk� on Jjk commute: we have the operator
relations

Vxij
Vzkl

(yjk) = {xij , yjk, zkl} = Vzk�
Vxij (yjk)

for elements wrs ∈ Jrs, equivalently the elemental relations
[xij , yjk, zk�] = 0, (xij • yjk) • zk� = xij • (yjk • zk�).
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proof. This follows immediately from the Peirce Identity Principle 13.5.1
(by a somewhat messy computation), or from the single-idempotent case of
Peirce Associativity 9.1.3 relative to e = ei (if i = j) or e = ei + ej (if i  = j)
[since then by Peirce Recovery 13.2.1 x ∈ J2(e), y ∈ J1(e), and z ∈ J0(e)],
or best of all from Triple Switching [since {xij , {yjk, zk�}} = {xij , yjk, zk�}+
{xij , zk�, yjk} = {xij , yjk, zk�} by Peirce Orthogonality 13.3.1(3) when {i, j},
{k, ?} can’t be linked]. �

14.3 Peirce Quadratic Forms

Again, the diagonal behavior of off-diagonal spaces Jij is captured in the
Peirce quadratic form qii.

q-Properties Proposition 14.3.1 For off-diagonal elements xij ∈ Jij (i  =
j) we define Peirce quadratic forms qii : Jij → Jii by

qii(xij) := Eii(x2
ij) = Uxijej .

(1) We have Cube Recovery and recovery of fourth powers by

x3
ij = {qii(xij), xij}, Eii(x4

ij) = Uxij
qjj(xij) = qii(xij)2.

(2) The operator Uxij can be expressed in terms of q’s: for yij ∈ Jij , aii ∈
Jii, ajj ∈ Jjj for j  = i we have the Uijq Rules

Uxijyij = {qii(xij , yij), xij} − {qjj(xij), yij},
Uxijajj = qii(xij , ajj • xij),

{xij , ajj , zij} = qii({xij , ajj}, zij) = qii(xij , {ajj , zij}).
(3) The Peirce quadratic forms permit composition with braces: for distinct

i, j, k we have the q-Composition Rules

qii({aii, xij}) = Uaiiqii(xij),

qii({aii, xij}, xij) = Vaii
qii(xij),

qii({ajj , xij}) = Uxij (a
2
jj),

qii({xij , yjk}) = Uxijqjj(yjk).

(4) We have a q-Nondegeneracy Condition: If the algebra J is nonde-
generate, then the Peirce quadratic forms qii are nondegenerate (in the sense
that Rad(qii) = 0).
proof. Everything except (4) and the first and third parts of (2), (4)

follows easily from the Peirce Identity Principle 13.5.1 (note that qii(xij) =
aijaji if xij = aij + aji in A).
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Alternately, everything but the fourth part of (3) follows from the q-
Properties 9.2.2 and q-Nondegeneracy 9.2.3(2) for the single-idempotent case,
since it takes place in the Peirce subalgebra J2(ei+ej) of Ĵ where e = ei, 1̂−e =
ej are supplementary orthogonal idempotents with xij ∈ J1(ei) (note that by
Diagonal Inheritance 10.1.1(1) this Peirce subalgebra inherits nondegeneracy
from J). For the fourth part of (3), if we eschew the Peirce Identity Prin-
ciple we are reduced to calculating: 2Uxijqjj(yjk) = 2qii(xij , qjj(yjk) • xij)
[by the second part of (2)] = 2qii(xij , y2

jk • xij) [since qkk(yjk) acts trivially
by Peirce Orthogonality] = qii(xij , {y2

jk, xij}) = qii(xij , {yjk, {yjk, xij}}) [by
Peirce Specialization 14.2.1] = qii({xij , yjk}, {yjk, xij}) [by symmetry in the
third part of (2) with ei, ej replaced by ej + ek, ei] = 2qii({xij , yjk}), and we
scale by 1

2 . �
As with products in matrix algebras (cf. 3.2.4), most of these formulas are

more natural for brace products than bullet products.

Exercise 14.3.1 Establish the fourth part of q-Composition (3) above without invoking 1
2

by setting x = xij , y = yjk in the identity UxUy + UyUx + VxUyVx = U{x,y} + UUx(y),y

applied to the element 1.

14.4 Connected Idempotents

Orthogonal idempotents ei, ej which belong together in the same “part” of
the algebra are “connected” by an off-diagonal element uij ∈ Jij invertible
in Jii + Jij + Jjj . Invertibility of an off-diagonal element is equivalent to
invertibility of its square, which is a diagonal element. We will frequently
be concerned with diagonal elements in a Peirce decomposition, and it is
important that the only way they can be invertible is for each diagonal entry
to be invertible.

Diagonal Invertibility Lemma 14.4.1 If x =
∑n

i=0 xii for xii ∈ Jii is a
diagonal element in a unital Jordan algebra J, then x has an inverse x−1 in J
iff each component xii has an inverse x−1

ii in Jii, in which case x
−1 =

∑
i x

−1
ii

is also diagonal.

proof. It will be easier for us to work with the quadratic conditions
(QJInv1)–(QJInv2) of 6.1.1. If each xii has inverse x−1

ii in Jii then it is easy
to see that y =

∑
x−1
ii is the (unique) inverse of x: Uxy

k = x2−k for k = 1, 2.
Conversely, if x has inverse y =

∑
i≤j yij then Ux is invertible on J, and since

Ux leaves each Peirce subspace invariant, each restriction Ux|Jii
= Uxii

and
Ux|Jij = Uxii,xjj (i  = j) is invertible. From x = Uxy we see that xii = Uxiiyii
and 0 = Uxii,xjjyij for i  = j, which by invertibility on Jij forces yij = 0, y =∑

yii; then 1 = Uxy
2 = Ux(

∑
y2
ii) implies that each ei = Uxii

y2
ii, so yii = x−1

ii

and y =
∑

x−1
ii . �
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Exercise 14.4.1* Prove Diagonal Invertibility using the Linear Jordan Inverse Conditions
6.1.7 (LJInv1)–(LJInv2) x • y = 1, x2 • y = x. (1) If each xii has inverse yii in Jii, show
that y =

∑
i yii acts as inverse in J. (2) If x has inverse y =

∑
i≤j yij show that each yii

must be the inverse of xii; conclude by (1) that y′ =
∑

i yii is an inverse of x. (3) Conclude
that y = y′.

Using the Peirce decomposition we can introduce an equivalence relation
among orthogonal idempotents, which we will use in our structure theory to
lump together idempotents which fall in the same “simple chunk.”

Connection Definition 14.4.2 Two orthogonal idempotents ei, ej are con-
nected if they have a connecting element, an element vij ∈ Jij which
is invertible in Jii + Jij + Jjj = J2(ei + ej). The idempotents are strongly
connected if they have a strong connecting element, one which is an in-
volution in J2(ei+ej). To indicate the connection together with the connecting
element we use the notation

ei
vij∼ ej .

Off-Diagonal Invertibility Lemma 14.4.3 (1) We can detect off-diagonal
invertibility of vij ∈ Jij by invertibility of the Peirce quadratic forms in the
diagonal spaces:

vij is connecting ⇐⇒ qii(vij), qjj(vij) are invertible in Jii,Jjj ;
vij is strongly connecting ⇐⇒ qii(vij) = ei, qjj(vij) = ej .

(2) We can also detect off-diagonal invertibility of vij ∈ Jij by invertibility
of Uvij

on the diagonal spaces:

vij is connecting ⇐⇒ Uvij (Jii) = Jjj and Uvij (Jjj) = Jii
⇐⇒ ej ∈ Uvij

(Jii) and ei ∈ Uvij
(Jjj).

proof. (1) For the first equivalence, by the Power Invertibility Criterion
6.1.8(2), vij is invertible in B := Jii + Jij + Jjj iff v2

ij = qii(vij) + qjj(vij)
is, which is equivalent by Diagonal Invertibility 14.4.1 to each piece being
invertible. For the second equivalence, clearly v2

ij = ei + ej iff qii(vij) =
ei, qjj(vij) = ej .
(2) follows from the Invertibility Criterion 6.1.2: invertibility of vij implies

surjectivity of Uvij
on B, so Uvij

Jii = Jjj by the Peirce Multiplication Rules
13.3.1(2), surjectivity implies ei, ej are in the range, and their being in the
range guarantees that the unit ei+ ej of B is in the range of Uvij , making vij
invertible. �
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Connection Equivalence Lemma 14.4.4 Connectivity and strong connec-
tivity are equivalence relations on orthogonal idempotents: if E = {e1, . . . , en}
is an orthogonal family of idempotents in a Jordan algebra J, the (respectively
strong) connection relation

ei ∼ ej ⇐⇒
{
ei = ej , if i = j;
ei, ej (respectively strongly) connected, if i  = j;

is an equivalence relation on the set E :

ei
vij∼ ej , ej

vjk∼ ek =⇒ ei
vik∼ ek (vik := {vij , vjk}, i, j, k distinct)

(and if the connecting elements vij , vjk are strong, so is vik).

proof. By definition ∼ is reflexive and symmetric, so we need only verify
transitivity.
To establish transitivity in the weak connection case, by Off-Diagonal In-

vertibility 14.4.3(1) we must show that qii(vik) is invertible in Jii [then du-
ally for qkk]. But qii(vik) = qii({vij , vjk}) = Uvijqjj(vjk) [by q-Composition
14.3.1(3)] is invertible by Diagonal Invertibility 14.4.1 in B := Jii+Jij+Jjj as
the ii-component of the invertible diagonal element Uvij (qjj(vjk)+ ei) (which
in turn is invertible by Invertible Products 6.1.8(1), since vij is invertible in B
by hypothesis and the diagonal element qjj(vjk)+ ei is invertible by Diagonal
Invertibility again because each term is).
To show transitivity in the strong case, by Off-Diagonal Invertibility

14.4.3(1) we must show that qii(vik) = ei. But again by q-Composition,
qii(vik) = Uvijqjj(vjk) = Uvijej [by strongness of vjk] = qii(vij) = ei [by
strongness of vij ]. �
Once more, strong connection leads to involutions.

Connection Involution Proposition 14.4.5 (1) If orthogonal idempotents
e1, e2 in an arbitrary Jordan algebra J are strongly connected, v2

12 = e1 + e2
for an element v12 in the Peirce space J12, then the element

u := 1− e1 − e2 + v12

is a connection involution in Ĵ, and Uu on Ĵ induces an involution on J
which interchanges e1 and e2: we have ei = ej for i = 1, 2, j = 3− i, and

=


Uv12 on J2(e1 + e2) = J11 + J12 + J22,

Vv12 on J1(e1 + e2) = J10 + J20,

1J00 on J0(e1 + e2) = J00.

(2) On J2(e1 + e2) we have a finer description of the action on the Peirce
subspaces: if we define the trace by ti(x) = qi(v12, x) (i = 1, 2, j = 3− i) as in
the single-variable case 10.1.3(2), then



14.4 Connected Idempotents 299

aii = tj(aii • v12) on Jii,
x12 = 2ti(x12) • v12 − x12 on J12,

qi(x12) = qj(x12).

(3) The fixed set of the connection involution on J12 is {Jii, v12}:

xii • v12 = xii • v12 = xii • v12, v12 = v12.

proof. (1) We have u = e0 + v for e0 = 1− e1 − e2 ∈ Ĵ00 an idempotent
orthogonal to e1, e2, and hence by Peirce Orthogonality 13.3.1(1) u2 = e2

0 +
v2 = e0+ e1+ e2 = 1. Therefore, by the Involution Lemma 6.1.10 the map Uu

is an involutory automorphism on Ĵ, and it (and its inverse!) leave the ideal
J invariant, so it induces an involutory automorphism on J. Making heavy
use of the Peirce Recovery formulas 13.2.1(2) for e = e1 + e2, we see that
= Uu = Ue0+v reduces by Peirce Orthogonality 13.3.1(3) to Ue0 = 1J0 on

J0(e), to Ue0,v = U1,v = Vv on J1(e) [note that Ue,v(J1(e)) ⊆ UJ2(J1) = 0 by
Peirce Orthogonality Rules 8.2.1], and to Uv on the Peirce subalgebra J2(e)
[where v is involutory, so ei = ej from Connection Action 10.1.3(2)]. Similarly,
(2),(3) follow from Connection Involution 10.1.3(2),(3) applied to J2(e). �
And once more we can strengthen connection by means of a diagonal

isotope. We derive only the form we will need later, and leave the general case
as an exercise.

Creating Involutions Theorem 14.4.6 (1) We can strengthen the connec-
tivity by passing to a diagonal isotope: if E = {e1, . . . , en} is a supplementary
set of mutually orthogonal idempotents in a unital Jordan algebra J with e1
weakly connected to ej by connecting elements v1j ∈ J1j (j  = 1), then for
u11 := e1, ujj := qjj(v1j)−1 the diagonal element u =

∑n
j=1 ujj is invertible,

and the diagonal isotope J(u) has a supplementary set E(u) = {e(u)
1 , . . . , e

(u)
n }

of mutually orthogonal idempotents e
(u)
j := qjj(v1j) strongly connected to

e
(u)
1 := e1 via the now-involutory v1j ∈ J(u)

ij ,

v
(2,u)
1j = e

(u)
1 + e

(u)
j .

(2) This isotope has exactly the same Peirce decomposition as the original,(
J(u)

)
ij
(E(u)) = Jij(E),

and the new quadratic forms and Peirce specializations are given (for distinct
1, i, j) by

q
(u)
11 (x1j) = q11(x1j), q

(u)
ii (xij) = qii(xij , qjj(v1j)−1 • xij),

σ(u)(a11) = σ(a11), σ(u)(aii) = σ(aii)σ(qii(v1i))−1.
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proof. We can derive this from the single-idempotent case Creating In-
volutions Proposition 10.2.2, noting that by Peirce Orthogonality the space
J2(e1+ ej) is a subalgebra of J̃ := J(u) coinciding with J2(e

(u)
1 + e

(u)
j )(e1+ujj).

Alternately, we can derive it from our multiple Peirce information as follows:
(1) We know that u is invertible with u−1 =

∑n
i=1 u

−1
ii by Diagonal Invertibil-

ity 14.4.1, and in J̃ has 1̃ := 1(u) = u−1 =
∑n

j=1 ẽi for ẽi := e
(u)
i := u−1

ii

orthogonal idempotents since ẽ2̃
i = Uu−1

ii
u = Uu−1

ii
(uii) = u−1

ii = ẽi and
ẽi•̃ẽj = 1

2{ẽi, u, ẽj} ∈ {Jii, u,Jjj} = 0 when i  = j by Peirce orthogonality
and diagonality of u.
The new idempotents are strongly connected by the old v1j : v

(2,u)
1j =

Uv1j (u11 + ujj) by Peirce Orthogonality, where Uv1j
(u11) = Uv1j

(e1) =
qjj(v1j) = u−1

jj = e
(u)
j and Uv1j (ujj) = Uv1jEjj

(
(v2

1j)
−1

)
= E11

(
Uv1j (v

−2
1j )

)
=

E11(e1 + ej) = e1 = e
(u)
1 (as in Flipping 10.2.2(5)).

(2) The new Peirce spaces are J̃ij = Ũẽi,ẽj J̃ ⊆ UJii,Jjj (J) ⊆ Jij by the
Peirce U and Triple Products 13.3.1(2), so J̃ =

⊕
J̃ij ⊆ ⊕

Jij = J implies
that J̃ij = Jij for each i, j. The new Peirce Quadratic Forms 14.3.1(1) and
Peirce Specializations 14.2.1 take the form Ẽii(x2̃

ij) = Eii(Uxij
u) [using (1)]

= Uxijujj = qii(xij , ujj •xij) [by Uijq Rules 14.3.1(2)] and Ṽaii = Vaii,uii [by
Jordan Homotope 7.2.1(2)] = VaiiVuii [by Peirce Specialization]. In particular,
for i = 1, u11 = e1 we have q̃11(x1j) = q11(x1j) and Ṽaii = Vaii , while for
i  = 1 we have q̃ii(xij) = qii(xij , qjj(v1j)−1 • xij) and we have Ṽaii =
VaiiVqii(v1i)−1 = VaiiV

−1
qii(v1i)

= σ(aii)σ(qii(v1i))−1. �

Exercise 14.4.6 Let E = {e1, . . . , en} be a supplementary orthogonal family, and ujj arbi-
trary invertible elements in Jjj . (1) Show that u =

∑n
j=1 ujj is invertible, and the diagonal

isotope J(u) has a supplementary orthogonal family E(u) = {e(u)
1 , . . . , e

(u)
n } for e(u)

j := u−1
jj .

(2) Show that the Peirce decompositions in J(u) and J coincide:
(
J(u))(E(u))

ij
= J(E)

ij . (3)

Show that the new quadratic forms and Peirce specializations are given by q
(u)
ii (xij) =

qii(xij , ujj • xij), σ(u)(aii) = V
(u)
aii

= VaiiVuii = σ(aii)σ(uii) on Jij .
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Hermitian Symmetries

In the Hermitian and Spin Coordinatization Theorems, we needed two con-
nected idempotents and a spin or hermitian condition. Once we get to three
or more connected idempotents we don’t need to impose additional behavioral
conditions — the algebras all have a uniform pattern, and the key to having
hermitian structure is the mere existence of hermitian frames.

15.1 Hermitian Frames

Hermitian frames consist of hermitian matrix units, the Jordan analogue of
associative matrix units.

Hermitian n-Frame Definition 15.1.1 For n ≥ 3, a hermitian n-frame
in a unital Jordan algebra J is a family of hermitian n × n matrix units
H = {hij | 1 ≤ i, j ≤ n}, consisting of orthogonal idempotents h11, . . . , hnn
together with strongly connecting elements hij = hji (i  = j) satisfying :
(1) the Supplementary Rule

∑n
i=1 hii = 1;

(2) the Hermitian Product Rules for distinct indices i, j, k

h2
ii = hii, h2

ij = hii + hjj , {hii, hij} = hij , {hij , hjk} = hik;

(3) and the Hermitian Orthogonality Rule

{hij , hk�} = 0 if {i, j} ∩ {k, ?} = ∅.
Note also that by definition a hermitian n-frame is always strong. In contrast
to the case of 2-frames in Chapter 12, we will not need to impose any cyclicity
conditions, hence our coordinate algebras will not have to be symmetrically
generated.
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Special Frame Example 15.1.2 (1) The standard hermitian n-frame
for Hn(D,−) consists of the standard hermitian matrix units

hii := 1[ii] = eii , hij := 1[ij] = eij + eji = hji.

(2) In general, if Ea = {eij | 1 ≤ i, j ≤ n} is a family of n×n associative
matrix units for an associative algebra A, in the usual sense that

1 =
∑n

i=1 eii, eijek� = δjkei�,

then the associated family of symmetric matrix units

H(Ea) : hii := eii, hij := eij + eji,

is a hermitian n-frame for the Jordan algebra A+ (or any special subalgebra
J ⊆ A+ containing H); if an involution ∗ on A has e∗ij = eji for all i, j, then
H is a hermitian n-frame for H(A, ∗).
(3) Conversely, in any unital special Jordan algebra 1 ∈ J ⊆ A+ these are

the only hermitian families:

H hermitian in J =⇒ H = H(Ea) for eii := hii, eij := eiihijejj .

proof. (1), (2) are straightforward associative calculations; the condition
e∗ij = eji in (2) guarantees that the hij are hermitian, H(Ea) ⊆ H(A, ∗).
To see the converse (3), we use the Peirce Decomposition 13.4.1 for A+: by
the hermitian matrix units condition 15.1.1 the eii := hii are supplementary
associative idempotents, and they are associatively orthogonal because (as we
have seen before) {e, x} = 0 ⇒ Uex = 1

2 ({e, {e, x}} − {e, x}) = 0 ⇒ ex =
e(ex+xe)−exe = 0 and dually. Then the associative Peirce components eij :=
eiihijejj satisfy hij = eij + eji, and by 15.1.1(2) h2

ij = eii+ ejj ⇒ eijeji = eii
for i  = j, {hij , hjk} = hik ⇒ eijejk = eik for i, j, k  =, eij ∈ Aij ⇒ eijek� = 0
if j  = k, so Ea = {eij}1≤i,j≤n forms a family of associative matrix units. �
Thus another way to say that H is a hermitian n-frame is that J contains

a copy of Hn(Φ) = (
⊕n

i=1 Φeii)⊕ (
⊕

i<j Φ(eij + eji)) such that H is the copy
of the standard symmetric matrix units.
Having each pair hii, hjj strongly connected by hij is not enough: the

connecting elements themselves must interact according to {hij , hjk} = {hik}.
In case the hij are all tangled up, we can start all over again and replace them
by an untangled family built up from only the connecting elements h1j .

Hermitian Completion Lemma 15.1.3 Any supplementary family E =
{e1, . . . , en} of n orthogonal idempotents which are strongly connected can be
imbedded in a hermitian n-frame: if e1 is strongly connected to each ej (j =
2, 3, . . . , n) via v1j ∈ J1j, then these can be completed to a family H = {hij |
1 ≤ i, j ≤ n} of hermitian matrix units by taking (for distinct indices 1, i, j)

hii := ei, h1j := v1j =: hj1, hij := {v1i, v1j} =: hji.
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proof. Let Jij denote the Peirce spaces with respect to the orthogonal
idempotents {ei}. By the Peirce Identity Principle 13.5.1 it suffices to prove
this in special algebras. But the supplementary ekk := ek are associative
idempotents, and by the Special Example 15.1.2(3) in each Bij = J11+J1j +
Jjj we have v1j := e1j + ej1 for 2× 2 associative matrix units e11, e1j , ej1, ejj ,
so we obtain a full family of n×n associative matrix units Ea = {eij := ei1e1j}
because eijek� = ei1e1jek1e1� = δjkei1e11e1� = δjkei1e1� = δjkei�. Hence the
associated symmetric matrix units H(Ea) = {eii, eij + eji} of the Special
Example (2) are a hermitian family, given for i = j by hii = eii = ei, for
i = 1  = j by h1j = e1j + ej1 = v1j , and for distinct 1, i, j  = by hij =
eij + eji = ei1e1j + ej1e1i = {e1i + ei1, e1j + ej1} = {v1i, v1j}. Thus our
definitions above do lead to a hermitian completion. �

Exercise 15.1.3* Give a direct Jordan proof of Hermitian Completion by tedious cal-
culation, showing that for i, j �= 1 the new hij := {hi1, h1j} continue to satisfy h2

ij =
hii + hjj , {hii, hij} = hij , {hij , hjk} = hik, {hij , hk!} = 0 if {i, j} ∩ {k, >} = ∅. After all
the calculations are over, step back and survey the carnage, then wistfully appreciate the
power of the Peirce Identity Principle.

15.2 Hermitian Symmetries

The Coordinatization Theorem we are aiming for involves two aspects: finding
the coordinate algebra D, and using it to coordinatize the entire algebra. The
first involves Peirce relations just in the “Northwest” 3 × 3 chunk of the
algebra, while the second involves constructing the connection symmetries
that guarantee that all off-diagonal spaces look likeD and all diagonal ones like
H(D,−). In this section our main goal is to construct Hermitian Symmetries
corresponding to each permutation π of the indices, which flow directly out
of Hermitian Involutions corresponding to the transpositions (ij).

Hermitian Involutions Lemma 15.2.1 A hermitian n-frame H = {hij}
gives rise to a family U(H) of hermitian involutions U ij for i  = j, involu-
tory automorphisms of J given by :

(1) U ij = Uji := Uuij for uij := 1− (hii + hjj) + hij .

These permute the hermitian matrix units, involutions, and the Peirce spaces
according to the transposition τ = (ij) on the index set as follows:
(2) we have the Action Formula

U ij =


1 on

∑
k,l �=i,j Jk�

Vhij
on

∑
k �=i,j(Jki + Jkj)

Uhij
on Jii + Jij + Jjj ,
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(3) the Index Permutation Principle

U ij(hkk) = hτ(k)τ(k), U ij(hk�) = hτ(k)τ(�),

U ij(uk�) = uτ(k)τ(�), U ij(Jk�) = Jτ(k)τ(�),

(4) and the Fundamental Interaction Formula

U ij Uk� U ij = Uτ(k)τ(�) ( τ := (ij) ).

proof. (1)–(2) Note that the elements uij do satisfy uij = uji, u
2
ij = 1,

so by the Connection Involution Lemma 14.4.5(1) they determine involutory
automorphisms U ij = Uji on J, U2

ij = 1J as in (1), with action given in
(2) using the Peirce Recovery Theorem 13.2.1(2) to identify J0(hii + hjj) =∑

k,� �=i,j Jk�, J1(hii+hjj) =
∑

k �=i,j(Jki+Jkj), J2(hii+hjj) = Jii+Jij+Jjj .
(3) The first index permutation U ij(hkk) = hτ(k)τ(k) of (3) follows for

k  = i, j because then τ(k) = k and U fixes hkk ∈ J0 by (2), and for k = i
follows by U ij(hii) = hjj from the Connection Involution Lemma again. The
second permutation of (3) on matrix units hk� is trivial if k, ? are distinct
from i, j [then τ fixes the indices k, ? and U fixes the element hk� ∈ J0 by
(2) again]; if k, ? = i, j agree entirely, then by symmetry we can assume
that (k, ?) = (i, j), where U ij(hij) = hij [by Connection Involution (3)] =
hji = hτ(i)τ(j); while if k, ? agree just once with i, j we may assume that
k = i, ?  = i, j, k, in which case U ij(hi�) = Vhji

(hi�) [by (2)] = hj� [by the
Hermitian Product Rule 15.1.1(2)] = hτ(i)τ(�). The third permutation of (3)
on involutions uk� then follows because they are linear combinations of matrix
units. The fourth permutation of (3) on spaces follows from the fact that an
automorphism U takes Peirce spaces wherever their idempotents lead them,
U(Ue,fJ) = UU(e),U(f)(J).
(4) follows directly from these: U ij Uk� U ij = UuijUuk�

Uuij [by definition
of U ] = UUuij

(uk�) [Fundamental Formula] = UUij(uk�) [by definition again]
= Uuτ(k)τ(�) [by (3)] = Uτ(k)τ(�) [by definition yet again]. �

Exercise 15.2.1A* Give an alternate proof using (as far you can) the Peirce Identity
Principle 13.5.1 and calculations with associative matrix units of Special Example 15.1.2(3).

Exercise 15.2.1B* Establish the Lemma, discarding all your Principles, by direct calcu-
lation using Peirce Orthogonality on uij = u0 + hij for u0 ∈ J0(ei + ej).

Just as the transpositions generate all permutations, so the hermitian in-
volutions generate all hermitian symmetries.
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Hermitian Symmetries Theorem 15.2.2 If H = {hij} is a hermitian
n-frame, and U ij are the associated hermitian involutions

U ij = Uuij ∈ Aut(J), U2
ij = 1J,

then we have a monomorphism π �→ Uπ of the symmetric group Sn → Aut(J)
extending the map (ij) �→ U (ij) := U ij,

(1) U1 = 1J, Uσ◦π = Uσ ◦ Uπ (σ, π ∈ Sn).

(2) These hermitian symmetries naturally permute the hermitian ma-
trix units and involutions and Peirce spaces by the Index Permutation
Principle

Uπ(hii) = hπ(i)π(i), Uπ(hij) = hπ(i)π(j),

Uπ(uij) = uπ(i)π(j), Uπ(Jij) = Jπ(i)π(j).

(3) Furthermore, we have the Agreement Principle

Uπ = 1 on Jij if π fixes both i and j: π(i) = i, π(j) = j,

Uπ = Uσ on Jij if π(i) = σ(i), π(j) = σ(j).

proof. The hard part is showing (1), that the map (ij) �→ U (ij) extends to
a well-defined homomorphism π �→ Uπ on all of Sn. Once we have established
this, the rest will be an anticlimax. For (2) it suffices if Index Permutation
holds for the generators U (ij), which is just the import of Index Permutation
Principle 15.2.1(3). For the First Agreement Principle in (3), if π fixes i, j it
can be written as a product of transpositions (k?) for k, ?  = i, j. Then [by (1)
and well-definedness] Uπ is a product of U (k�), which by the Action Formula
15.2.1(2) are all the identity on Jij . From this the Second Agreement Principle
follows: π(i) = σ(i), π(j) = σ(j) =⇒ σ−1π(i) = i, σ−1π(j) = j =⇒ U−1

σ Uπ =
Uσ−1◦π [by (2)] = 1 on Jij [by First Agreement] =⇒ Uσ = Uπ on Jij .
The key to (1) is that Sn can be presented by generators tij = tji for

i  = j = 1, 2, . . . , n and t-relations

t2ij = 1, tijtk�tij = tτ(k)τ(�) (τ = (ij)),

which are precisely the relations which we, with admirable foresight, have
established in the Fundamental Interaction Formula 15.2.1(3). Let F be the
free group on generators tij = tji for i  = j = 1, 2, . . . , n, and K the normal
subgroup generated by the t-relations, i.e., by all elements t2ij , tijtk�tijtτ(k)τ(�).
By the universal property of the free group, the set-theoretic map tij �→
U (ij) extends to an epimorphism ϕ0 : F → U ⊆ Aut(J) for U the subgroup
generated by the Hermitian Involutions Lemma 15.2.1. By (1), (3) of that
Lemma the generators of K lie in the kernel of ϕ, so we have an induced
epimorphism ϕ : F/K → U . We use t̃ to denote the coset of t ∈ F modulo K.
Furthermore, we have a restriction homomorphism ρ : U → Symm(H) = Sn
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forH = {h11, . . . , hnn}, since by the Index Permutation Principle (3) the U (ij)
(hence all of U) stabilize H; the image of ρ contains by Hermitian Involutions
(1) the generators (ij) of Sn, hence is all of Sn, so ρ is an epimorphism too.
The composite ρ̃ := ρ ◦ ϕ : F/K → U → Symm(H) = Sn sends the coset
t̃ij �→ U (ij) �→ (ij). To show that the epimorphisms ϕ, ρ are isomorphisms
(so ρ−1 is an isomorphism Sn → U as desired) it suffices if the composite is
injective, i.e.,

ρ̃: F/K → Sn via t̃ij �→ (ij) is a presentation of Sn.

This is a moderately “well-known” group-theoretic result, which we proceed
to prove sotto voce.

Suppose ρ̃ is not injective, and choose a product p = t̃i1j1 · · · t̃iN jN
�= 1 of shortest

length N in Ker(ρ̃). We can rewrite p as p(n)p(n−1) · · · p(2) without changing its length,
where p(k) =

∏
j<k t̃kj involves transpositions with indices ≤ k. Indeed, we can move all

t̃ij for i, j < n to the right of all t̃nk (keeping the same overall length, but perhaps increasing
the number of occurrences of the index n) via

t̃ij t̃nk =

{
t̃nk t̃ij if i, j, k distinct < n,

t̃nk t̃ni if k = j (dually if k = i),

in F/K, since for τ the transposition (nk) we have t̃−1
nk t̃ij t̃nk = t̃nk t̃ij t̃nk = t̃τ(1)τ(j) by the

defining t-relations for K, where τ(i) = i, τ(j) = j if i, j �= n, k, and τ(i) = i, τ(j) = τ(k) = n
if j = k. Thus we get p = p(n)p′ for p′ a product of t̃ij for i, j < n; repeating this procedure,
we get p′ = p(n−1) · · · p(2) and p = p(n)p(n−1) · · · p(2). Deleting any of these p(k) which
reduce to 1 (empty products), we have the p-product

p = p(r)p(s) · · · p(q) for n ≥ r > s > · · · > q ≥ 2 (p(k) �= 1).

By minimality of N , the j’s in p(r) must be distinct,

p(r) = t̃rjm · · · t̃rj1 =⇒ jk �= j!,

since any repetition would lead to a sub-expression

t̃rj

(∏
r>k �=j t̃rk

)
t̃rj = t̃rj

(∏
r>k �=j t̃rk

)
t̃−1
rj [by the t-relations]

=
∏

r>k �=j

(
t̃rj t̃rk t̃

−1
rj

)
[conjugation by t̃rj is a group automorphism]

=
∏

r>k �=j

(
t̃rj t̃rk t̃rj

)
[by the t-relations]

=
∏

r>k �=j t̃jk [by the t-relations, since k �= r, j is fixed by τ ].

But this would lead to an expression for p of length N − 2, contrary to minimality of N .
Applying ρ̃ to the p-product gives 1 = ρ̃(p) = ρ̃(p(r))ρ̃(p(s)) · · · ρ̃(p(q)) in Sn; now ρ̃(p(i))
for i < r involves only transpositions (ik) for r > i > k, all of which fix the index r,
so acting on r gives r = 1(r) = ρ̃(p(r))ρ̃(p(s)) · · · ρ̃(p(q))(r) [by p-product and ρ̃(p) = 1]
= ρ̃(p(r))(r) = τrjm · · · τrj1 (r) [by p-product] = j1 [since by distinctness all other r, jk �= j1

have τrjk
fixing j1], contrary to r > j1. Thus we have reached a contradiction, so no p �= 1

in Ker(ρ̃) exists, and the epimorphism ρ̃ is an isomorphism. Thus the t-relations are indeed
a presentation of Sn by generators and relations. �
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15.3 Problems for Chapter 15

Problem 15.1 (1) Show that the scalar annihilators AnnΦ(J) := {α ∈
Φ | αJ = 0} form an ideal in Φ, and that J is always a Φ-algebra for Φ =
Φ/(AnnΦ(J). We say that Φ acts faithfully on J if the scalar annihilators
vanish, AnnΦ(J) = 0. (2) For a unital Jordan algebra show that the scalar
annihilators coincide with the scalars that annihilate 1, {α ∈ Φ | α1 = 0}, so
α acts faithfully on J iff it acts faithfully on the unit 1, αJ = 0 ⇔ α1 = 0.
(3) Show that if H is a family of n× n hermitian matrix units in J  = 0, and
Φ acts faithfully on J, then the units are linearly independent (in particular,
nonzero) and J contains an isomorphic copy of Hn(Φ). (4) Conclude that
a Jordan algebra J contains a family of n × n hermitian matrix units iff it
contains an isomorphic copy of Hn(Φ) (in the category of unital algebras).
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The Coordinate Algebra

In this chapter we take up the task of finding the coordinate algebra D. This
is strictly a matter of the “upper 3×3 chunk” of the algebra. The coordinates
themselves live in the upper 2×2 chunk. Recall from the 2×2 coordinatization
in Chapters 11 and 12 that spin frames never did develop a coordinate algebra,
and hermitian frames were only fitted unnatural coordinates from EndΦ(J1(e))
upon the condition that J1(e) was cyclic as a J2(e)-module. But once a frame
has room to expand into the Peirce spaces J13 and J23, the coordinate algebra
J12 automatically has a product of its very own.

16.1 The Coordinate Triple

In order for us to coordinatize hermitian matrices, we need a unital coordinate
algebra with involution for the off-diagonal Peirce spaces, plus a designated
coordinate subspace for the diagonal matrix entries. Luckily, in the presence of
1
2 this diagonal coordinate subspace must be just the full space of all hermitian
elements, but if we did not have 1

2 our life would be more complicated and
there could be many possibilities for the diagonal subspace.1

Hermitian Coordinate Algebra Definition 16.1.1 If H = {hij} is a
hermitian n-frame for n ≥ 3 in a unital Jordan algebra J, then the hermitian
coordinate ∗-algebra D for J determined by H is defined as follows. Recall
that U (12) = Uh12 on J12, that U (ij) = Vhij on Jik for i, j, k  = by the Action
Formula 15.2.1(2), and that the fixed space of U (12) on J12 is {J11, h12} by
Connection Involution 14.4.5(3).

(1) The coordinate algebra is the space D := J12 with product
1 Over an imperfect field Φ of characteristic 2 (i.e., Φ2 < Φ) with identity involution we

would have to accept the simple algebra of symmetric n× n matrices with diagonal entries
only from Φ2, and over Z we would have to accept the prime ring of symmetric n × n
matrices over Z[t] with diagonal entries only from Z[t]2 = Z[t2] + 2Z[t].
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a · b := {{a, h23}, {h31, b}} = {U (23)(a),U (13)(b)}
(a, b ∈ D = J12, U (ij) = Uuij

for uij = 1− (ei + ej) + hij).

(2) The coordinate involution on D is

ā := Uh12(a) = U (12)a.

(3) The diagonal coordinate space is the image D0 = H(D,−) ⊆ D of
the space J11 under the diagonalization map δ0 = Vh12 :

D0 := δ0(J11) (δ0(a11) := {a11, h12} = Vh12(a11)).

In keeping with our long-standing terminology, the basic object of our
functorial construction is the coordinate ∗-algebra (D,−), but by abuse of
language we will refer to it as just plain D. To see that we have captured the
correct notion, let us check our definition when the Jordan algebra is already
a hermitian matrix algebra.

Hermitian Matrix Coordinates 16.1.2 If J = Hn(D,−) as in Her-
mitian Matrix Example 3.2.4, and hij = 1[ij] are the standard hermitian
matrix units, then the coordinate algebra is the space J12 = D[12] under
the product a[12] · b[12] = {{a[12], 1[23]}, {1[31], b[12]}} = {a[13], b[32]} =
ab[12] by Basic Brace Products 3.7(2), the diagonal coordinate space is
{H(D,−)[11], 1[12]} = H(D,−)[12] by Basic Brace Products, with coordi-
nate involution a[12] = U1[12](a[12]) = (1ā1)[12] = ā[12] by Basic U Prod-
ucts 3.7(3). Thus the coordinate ∗-algebra is canonically isomorphic to (D,−)
under the natural identifications, and the diagonal coordinate space D0 is iso-
morphic to H(D,−).
More generally, if 1 ∈ J ⊆ A+ is any unital special algebra then by the

Special Example 15.2(3) any hermitian family in J has the form H = H(Ea)
for a family Ea = {eij} of associative matrix units, and the product in the
coordinate algebra D, the involution , and the diagonalization map, are
given by

a · b = a12e21b12 + b21e12a21,

ā = e12a21e12 + e21a12e21,

δ0(a11) = a11e12 + e21a11.

because the product is

{{a12 + a21, e23 + e32}, {e31 + e13, b12 + b21}}
= {a12e23 + e32a21, e31b12 + b21e13}
= (a12e23)(e31b12) + (b21e13)(e32a21)
= a12e21b12 + b21e12a21,
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the involution is (e12+ e21)(a12+ a21)(e12+ e21) = e12b21e12+ e21b12e21, and
the diagonal map is a11(e12 + e21) + (e12 + e21)a11 = a11e12 + e21a11. �
The proof of the pudding is in the eating, and of the coordinate triple

in the ability to coordinatize hermitian matrix algebras. We must now verify
that the coordinate triple lives up to the high standards we have set for it. By
Jordan Coordinates 14.1.1 we already know that it must be alternative with
nuclear involution (even associative once n ≥ 4).
Coordinate Algebra Theorem 16.1.3 If (D,−) is the coordinate ∗-algebra
of a unital Jordan algebra J with respect to a hermitian n-frame (n ≥ 3) H =
{hij}, then the algebra D is a unital linear algebra with unit 1 = h12, whose
product mimics the brace product {, } : J13×J32 → J12, and whose coordinate
involution is a true involution on the coordinate algebra:

(1) d · h12 = h12 · d = d;
(2) {y13, z32} = U (23)(y13) · U (13)(z32);

(3) d · b = b̄ · d̄, d = d, h12 = h12.

The diagonal coordinate space D0 = H(D,−) = {a ∈ D | ā = a} is the space
of symmetric elements under the coordinate involution, whose action on D
mimics that of J11 on J12 and which is isomorphic as Jordan algebra to J11
under the diagonal coordinate map δ0 : J11 −→ D+

0 , where norms and traces
given by the q- and t-forms:

(4) δ0(a2
11) = δ0(a11) · δ0(a11) (a11 ∈ J11);

(5) δ0(q11(d)) = d · d̄;
(5′) δ0(t11(d)) = d+ d̄;
(6) {a11, d} = δ0(a11) · d (a11 ∈ J11, d ∈ J12).

proof. The Peirce relations show that the product gives a well-defined
bilinear map D×D −→ D. Here the Hermitian Involutions Lemma 15.2.1 (1)-
(3) shows that h12 is a left unit as in (1) since h12 · b = {U (23)(h12),U (13)(b)}
[by Definition 16.1.1(1)] = {h13,U (13)(b)} [by Index Permutation (3)] =
U (13)(U (13)(b)) [by the Action Formula (2)] = b [by the involutory nature
(1) of the hermitian involutions U (ij)]. Dually h12 is a right unit (or we can
use the result below that is an involution with h12 = h12).
(2) is just a reformulation of the Definition of the product: U (23)(y13) ·

U (13)(z32) = {U (23)(U (23)(y13)),U (13)(U (13)(z32))} = {y13, z32} [since the U (ij)
are involutory].
For (3), the coordinate involution in the Definition 16.1.1(2) is certainly

linear of period 2 since it is given by the hermitian involution U (12), and
it is an anti-homomorphism since d · b = U (12)({U (23)(d),U (13)(b)}) [by the
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Definitions (1),(3)] = {U (12)U (23)(d),U (12)U (13)(b)} [since the hermitian invo-
lutions are algebra automorphisms] = {U (13)U (12)(d), U (23)U (12)(b)} [by the
Agreement Principle 15.2.2(3) since (12)(23) = (13)(12), (12)(13) = (23)(12)]
= {U (23)(U (12)(b)),U (13)(U (12)(d))} = b̄ · d̄ [by the Definitions (1), (3) again].
The involution must fix h12 since it is the unit element, but we can also

see it directly: h12 = U (12)(h12) = h12 by Index Permutation 15.2.1(3).
We already know that D0 = H(D,−) from the Definition 16.1.1(3). The

formulas (4)–(6) follow via the Peirce Identity Principle 13.5.2 from the Spe-
cial Example 15.1.2(3), with the product, involution, and δ0 given as in Her-
mitian Matrix Example 16.1.2. For (4), δ0 is a Jordan homomorphism since
δ0(a11)·δ0(a11) = (a11e12)e21(a11e12)+(e21a11)e12(e21a11) = a2

11e12+e21a
2
11 =

δ0(a2
11). The map δ0 is linear, and by definition a surjection; it is injective

since a11e12 + e21a11 = 0 ⇐⇒ a11 = (a11e12 + e21a11)e21 = 0. Thus δ0 is an
isomorphism.
To establish the relation (5) between the Peirce quadratic form and the

norm, we compute: dd̄ = a12e21(e12a21e12)+(e21a12e21)e12a21 = (a12a21)e12+
e21(a12a21) = δ0(a12a21). Linearizing d �→ d, h12 gives the trace relation (5′),
since h12 is the unit by (1) above.
For the action (6) of D0 on D we have δ0(a11) · d = (a11e12)e21a12 +

a21e12(e21a11) = a11a12 + a21a11 = {a11, a12 + a21} = {a11, d}. �

The results in (4)–(6) can also be established by direct calculation, without
recourse to Peirce Principles.

Exercise 16.1.3A* Even without checking that h12 is symmetric in (1), show that if e is
a left unit in a linear algebra D with involution then e must be a two-sided unit and must
be symmetric.

Exercise 16.1.3B* Establish the results in (4)–(6) above by direct calculation. (1) Establish
that δ0 maps into hermitian elements. (2) Establish the norm relation: d · d̄ = δ0(q11(d)).
(3) Establish the action of D0. (4) Establish directly that δ0 is a homomorphism. (5) Verify
that δ0 is injective.
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Jacobson Coordinatization

We are now ready to establish the most powerful Jordan coordinatization
theorem, the Jacobson Coordinatization Theorem1 for algebras with three or
more supplementary connected orthogonal idempotents. It is important to
note that no “nondegeneracy” assumptions are made (which means that the
theorem can be used to reduce the study of bimodules for such an algebra to
the study of bimodules for its coordinate algebra, a topic we won’t broach in
this book).

17.1 Strong Coordinatization

As with the degree–2 coordinatization theorems (but with even more justifi-
cation), the calculations will all be made for strongly connected algebras, and
then the magic wand of isotopy will convert a merely-connected algebra to a
strongly-connected one. So we begin with the conceptually simpler strongly
connected case.

Jacobson Strong Coordinatization Theorem 17.1.1 Any unital Jordan
algebra J with a family H of hermitian n×n matrix units (n ≥ 3) is an algebra
of n × n hermitian matrices: there is an isomorphism δ : J −→ Hn(D,−)
taking the given family of matrix units to the standard family,

δ(hii) = 1[ii] = Eii, δ(hij) = 1[ij] = Eij + Eji.

Here D is an alternative algebra with nuclear involution, which must be asso-
ciative if n ≥ 4.
Indeed, if J has merely a supplementary orthogonal family of idempotents

{ei} with e1 strongly connected to ej by v1j ∈ J1j, then there is an isomor-
phism δ : J −→ Hn(D,−) with δ(ei) = 1[ii], δ(v1j) = 1[1j].

1 This was stated in I.5.2.
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proof. By Hermitian Completion 15.1.3 any such family {ei, v1j} can be
completed to a Hermitian family {hij}, so we may assume from the start that
we have a complete family H. By the Coordinate Algebra Theorem 16.1.3 the
hermitian 3 × 3 subfamily gives rise to a unital coordinate ∗-algebra D with
unit 1 = h12; so far this is merely a unital linear algebra, but we can use
it to build a unital linear matrix algebra Hn(D,−) as in Hermitian Matrix
Example 3.2.4, which is a direct sum of off-diagonal subspaces D[ij] (i  = j)
and diagonal subspaces D0[ii]. (Once we know that Hn(D,−) is Jordan, these
will in fact be the Peirce spaces relative to the standard idempotents 1[ii]).

Step 1: The Linear Coordinatization

We want to introduce coordinates into the Jordan algebra; all the off-diagonal
Peirce spaces Jij will be coordinatized by D (a copy of J12), and all diagonal
spaces Jii will be coordinatized by D0 (a copy of J11 in D under δ0 = Vh12).
To do this we use the Hermitian Symmetries Uπ of 15.2.2(1), which allow
us to move freely between diagonal (respectively off-diagonal) Peirce spaces.
Since J12 and J11 are “self-coordinatized,” it is natural to define the Peirce
coordinatization maps

for i  = j, δij : Jij −→ D = J12 is given by δij = Uπ

for any π with π(i) = 1, π(j) = 2;
for i = j, δii : Jii −→ D0 = δ0(J11) is given by δii = δ0 ◦ Uπ

for any π with π(i) = 1.

By the Agreement Principle 15.2.2(3) these are independent of the particular
choice of π (any one will do equally well, giving the same map into D or D0).
We glue these pieces together to obtain a global coordinatization map

δ: J −→ Hn(D,−) via δ
(∑
i≤j

xij
)
=

∑
i≤j

δij(x)[ij],

which is automatically a linear bijection because J is the direct sum of its
Peirce spaces Jij [by Peirce Decomposition 13.1.4], Hn(D,−) is the direct
sum of the off-diagonal spaces D[ij] (i  = j) and the diagonal spaces D0[ii],
and the Uπ and δ0 are bijections.

Step 2: The Homomorphism Conditions

We must prove that δ is a homomorphism of algebras. If we can do this,
everything else will follow: we will have the isomorphism δ of algebras, and
it will take hij to 1[ij] as in the theorem because [by the Index Permutation
Principle 15.2.2(2)] for i  = j we have δij(hij) := Uπ(hij) = hπ(1)π(j) =
h12 [by choice of π] = 1, while for i = j we have δii(hii) := δ0(Uπ(hii)) =
δ0(hπ(1)π(1)) = δ0(h11) [by choice of π] = h12 = 1, so in either case δ(hij) =
δij(hij)[ij] = 1[ij]. Moreover, the alternativity or associativity of D will follow
from the Jordan Coordinates Theorem 14.1.1 once we know that Hn(D,−) is
Jordan (being isomorphic to J).
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While we have described δ in terms of Peirce spaces with indices i ≤ j, it
is very inconvenient to restrict ourselves to such indices; it is important that
δ preserves the natural symmetry Jji = Jij , d[ji] = d̄[ij]:

δ(xij) = δij(xij)[ij] = δji(xij)[ji], i.e., δji(xij) = δij(xij).

This is trivial if i = j, since δii maps into D0 = H(D,−). If i  = j and σ is
any permutation with σ(j) = 1, σ(i) = 2, then π = (12) ◦ σ is a permutation
with π(j) = 2, π(i) = 1, so by definition we have δji = Uσ, δij = Uπ, hence
δji(xij) = U (12)(δji(xij)) [by Definition of the involution] = U (12)Uσ(xij) =
Uπ(xij) [by homomorphicity of U from Hermitian Symmetries 15.2.2(1)] =
δij(xij).

Step 3: Peirce Homomorphism Conditions

Thus it all boils down to homomorphicity δ({x, y}) = {δ(x), δ(y)}. It suffices
to prove this for the spanning set of Peirce elements x = xij , y = ykl. By
the rules for multiplication in J and Hn(D,−) given by the Peirce Multi-
plication Theorem 13.3.1 and the Hermitian Matrix Example 3.2.4, respec-
tively, both J and Hn(D,−) have (I) the same symmetry in the indices,
δji(xij)[ji] = δji(xij)[ij] [by Step 2] and d[ji] = d̄[ij] [by Box Notation (1)],
(II) the same four basic products A2

ii ⊆ Aii, A2
ij ⊆ Aii +Ajj , {Aii,Aij} ⊆

Aij , {Aij ,Ajk} ⊆ Aik for linked products (i, j, k distinct) [by the Peirce
Brace Rules (1) and the Basic Brace Products (2)], and (III) the same ba-
sic orthogonality relations {Aij ,Ak�} = 0 if the indices cannot be linked [by
Peirce Orthogonality Rules (3) and Basic Brace Orthogonality Rules (2)].
Thus homomorphicity reduces to four basic product conditions:

(3.1) δii(a2
ii) = δii(aii) · δii(aii),

(3.2) δii(qii(xij)) = δij(xij) · δji(xij),
(3.4) δij({aii, xij}) = δii(aii) · δij(xij),
(3.5) δij({yik, zkj}) = δik(yik) · δkj(zkj),

for distinct indices i, j, k.

Step 4: As Easy as 1,2,3

Everything can be obtained from J11 or J12 by a hermitian symmetry, so
these reduce to the case of indices i = 1, j = 2, k = 3:

(4.1) δ11(a2
11) = δ11(a11) · δ11(a11),

(4.2) δ11(q11(x12)) = δ12(x12) · δ21(x12),
(4.3) δ12({a11, x12}) = δ11(a11) · δ12(x12),
(4.4) δ12({y13, z32}) = δ13(y13) · δ32(z32).

But we already know these by the Coordinate Algebra Theorem 16.1.3 (4),
(5), (6), (2) respectively, since by definition and symmetry
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δ11 = δ0, δ12 = 1J12 , δ21 = U (12) = , δ13 = U (23), δ32 = U (13).

To see the reduction from (3) to (4) in detail, choose any π such that
π(1) = i, π(2) = j, π(3) = k; then by the Index Permutation Principle
15.5(2) we can find elements a11, x12, y13, z23 so that (since the hermitian
symmetries are algebra automorphisms)

aii = Uπ(a11), a2
ii = Uπ(a2

11),
xij = Uπ(x12), qii(xij) = Uπ(q11(x12)),

{aii, xij} = Uπ({a11, x12}),
yik = Uπ(y13), zkj = Uπ(z32), {yik, zkj} = Uπ({y13, z32}).

By definition and the Agreement Principle

δiiUπ = δ11, δijUπ = δ12, δjiUπ = δ21, δikUπ = δ13, δkjUπ = δ32.

Thus

δii(aii) = δ11(a11), δii(a2
ii) = δ11(a2

11), δii(qii(xij)) = δ11(q11(x12)),
δij(xij) = δ12(x12), δji(xij) = δ21(x12), δij({aii, xij}) = δ12({a11, x12}),
δik(yik) = δ13(y13), δkj(zkj) = δ32(z32), δij({yik, zkj}) = δ12({y13, z32}),
and (3.1)–(3.4) reduce to (4.1)–(4.4). �

17.2 General Coordinatization

We obtain the general coordinatization by reduction to an isotope.

Jacobson Coordinatization Theorem 17.2.1 Any unital Jordan algebra
J with a supplementary orthogonal family of n ≥ 3 connected idempotents
{ei} (it suffices if e1 is connected to each ej) is isomorphic to an algebra of
n×n twisted hermitian matrices: there is an isomorphism ϕ : J −→ Hn(D,Γ)
taking the given family of idempotents to the standard family,

ϕ(ei) = 1[ii] = Eii.

Here D is an alternative algebra with nuclear involution, which must be asso-
ciative if n ≥ 4.
proof. Suppose e1 is connected to ej by v1j ∈ J1j ; then by the Con-

nection Definition 14.4.2 and the Off-Diagonal Invertibility Lemma 14.4.3(1),
qjj(v1j) is invertible in Jjj . Set ujj = qjj(v1j)−1, u11 = e1 = u−1

11 , u =
∑

j ujj .
By the Creating Involutions Theorem 14.4.6, the isotope J̃ := J(u) has sup-
plementary orthogonal idempotents ẽj = u−1

jj yielding the same Peirce de-
composition J̃ij = Jij as the original {ej}, but with v1j strongly connecting
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ẽ1 to ẽj . By the Strong Coordinatization Theorem we have an isomorphism
δ̃ : J̃ −→ Hn(D,−) sending ẽj �→ 1[jj] and v1j �→ 1[1j]. In particular,
D is alternative with symmetric elements in the nucleus: D0 ⊆ Nuc(D).
Furthermore, by Jordan Isotope Symmetry 7.2.1(4) we can recover J as

J = J̃
(u−2) ∼= Hn(D,−)(Γ) ∼= Hn(D,Γ) via ϕ = LΓ ◦ δ̃ since [by the Cre-

ating Involutions again] u−2 =
∑

j u
−2
jj ∈ ∑

j Jjj corresponds to a diagonal
(hence, by the above, nuclear) element Γ ∈ ∑

j D0[jj]. Under this isomor-
phism ej goes to an invertible idempotent in Hn(D,Γ)jj , so it can only be
1[jj]. We can also verify this directly: by the Jordan Homotope inverse recipe
7.2.1(3), ej has inverse Uu−1

jj
(e−1

j ) = u−2
jj in J

(u)
jj = J(ujj)

jj , so their images are

inverses in Hn(D,−); but δ̃(u−2
jj ) = γj [jj], δ̃(ej) = αj [jj] implies that γj , αj

are inverses in D, so ϕ(ej) = LΓ(δ̃(ej)) = Γ(αj [jj]) = γjαj [jj] = 1[jj] = Ejj

as desired. �

This completes our Peircian preliminaries, preparing us for the final push
towards the structure of algebras with capacity.
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In the final phase we will determine the structure of Jordan algebras having
capacity. We begin in Chapter 18 with basic facts about regular elements and
pairs. Structural pairs of transformations (interacting “fundamentally” with
U -operators) are more useful than automorphisms for moving around among
inner ideals. Structurally paired inner ideals have the same “inner shape”.
Chapter 19 focuses on simple elements, those which are regular and whose

principal inner ideal is simple (minimal and not trivial). The Minimal Inner
Ideal Theorem shows that there are just three types of minimal inner ide-
als: principal inner ideals generated by trivial elements, simple (or division)
idempotents, and simple nilpotents (which are structurally paired with simple
idempotents). This guarantees that a nondegenerate algebra with d.c.c. on in-
ner ideals always has a finite capacity (its unit is a sum of mutually orthogonal
division idempotents). From this point on we concentrate on nondegenerate
algebras with finite capacity.
Chapter 20 focuses on simple connectivity. Peirce arguments show that an

algebra with capacity breaks into its connected components, and is connected
iff it is simple, so an algebra with capacity is a direct sum of simple algebras
with capacity.
Thus we narrow our focus to simple algebras. First we must describe their

possible coordinate algebras. This requires a digression in Chapter 21 into
alternative algebras, involving the Moufang identities, Artin’s Theorem (that
any two elements generate an associative subalgebra), together with a de-
tailed study of the nucleus and center. The Herstein–Kleinfeld–Osborn Theo-
rem shows that in a nondegenerate alternative algebra with nuclear involution
whose nonzero hermitian elements are all invertible, the nucleus is either the
whole algebra or the center, therefore the algebra is either associative (a divi-
sion algebra, or the exchange algebra of a division algebra) or a composition
algebra.
We divide the simple algebras up according to their capacity, capacity 1

being an instantaneous case (a division algebra). The case of capacity two
in Chapter 22 is the most difficult: Osborn’s Capacity Two Theorem shows
that such an algebra satisfies either the Spin Peirce identity or the hermitian
Peirce condition, so by Spin or Hermitian Coordinatization is a reduced spin
factor or 2× 2 hermitian algebra (which by H–K–O must be full or hermitian
matrices over an associative division algebra).
Chapter 23 pulls it all together. In capacity three or more we can use Ja-

cobson Coordinatization, augmented by the H-K-O to tell us what coordinates
are allowable, to show that such an algebra is a hermitian matrix algebra over
a division or composition algebra. Putting these pieces together gives the final
Classical Classification Theorem, that simple Jordan algebras of finite capac-
ity are either Jordan division algebras, reduced spin factors, hermitian matrix
algebras (with respect to an exchange, orthogonal, or symplectic involution),
or Albert algebras.
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Von Neumann Regularity

In order to run at full capacity, we need a steady supply of idempotents.
Before we can show in the next section that minimal inner ideals always lead
to idempotents, we will have to gather some general observations about von
Neumann regularity.

18.1 vNr Pairing

We begin with the concept of a regular element, showing that these naturally
come in pairs; such pairs are precisely the idempotents in the theory of Jordan
pairs.

vNr Definition 18.1.1 An element x ∈ J is a von Neumann regular
element1 or vNr if

x = Uxy for some y ∈ J (i.e., x ∈ UxJ),

and x is a double vNr if

x = UxUxy for some y ∈ J (i.e., x ∈ UxUxJ).

A Jordan algebra is von Neumann regular (or vNr) if all its elements
are. Elements x, y are regularly paired, denoted x O y, if they are mutually
paired with each other,

x = Uxy, y = Uyx,

in which case we call (x, y) a vNr pair.
1 In the literature this is usually just called regular element, but then, so are lots of other

things. To avoid the overworked term “regular,” we identify it by its originator, John von
Neumann. But it becomes too much of a mouthful to call it by its full name, so once we get
friendly with it we call it by its nickname “vNr,” pronounced vee-nurr as in schnitzel; there
will be no confusion between “Johnny” and “Norbert” in its parentage. We will happily use
the notation vNr both as a noun, “is a vNr” (is a von Neumann regular element), and as
an adjective, “is vNr” (is von Neumann regular).
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Exercise 18.1.1 (1) Show that 0, all invertible elements, and all idempotents are always
vNr, but that nonzero trivial elements never are: invertibles are paired with their inverses
(u EF u−1), and idempotents are narcissistically paired with themselves (e EF e). (2) Show
that a vNr algebra is nondegenerate. (3) Show that if (x, y) is a vNr pair, then so is
(αx, α−1y) for any invertible α ∈ Φ.

In associative algebras (especially matrix algebras) such a y paired with x
is called a generalized inverse of x. While inverses are inherently monogamous,
generalized inverses are bigamous by nature: a given x usually has several
different generalized inverses. For example, while the matrix unit x = E11 is
happily paired with itself, it is also regularly paired with all the y = E11+αE12
as α ranges over Φ. Any one of x’s generalized inverses is equally useful in
solving equations: when x ∈ A is invertible, the equation x(u) = m for a fixed
vector m in a left A-module M is always solvable uniquely for u = x−1(m) ∈
M , but if x has only a generalized inverse y, then x(u) = m is solvable iff
e(m) = m for the projection e = xy, in which case one solution (out of many)
is u = y(m).

vNr Pairing Lemma 18.1.2 (1) Any vNr can be regularly paired : if x = Uxz

then x O y for y = Uzx. (2) vNrs are independent of hats: x is a vNr in Ĵ iff
it is a vNr in J: in the notation of the Principal Inner Proposition 5.3.1,

x is a vNr ⇐⇒ x ∈ (x) = UxJ⇐⇒ x ∈ (x] = UxĴ.

proof. (1) We work entirely within the subalgebra Φ[x, z] of J generated
by the two elements x and z, so by the Shirshov–Cohn Principle 5.1.4 we may
assume that we are living in H(A, ∗) for an associative ∗-algebra A where
xzx = x. The element y = zxz still satisfies xyx = x(zxz)x = (xzx)zx =
xzx = x, and in addition satisfies yxy = (zxz)x(zxz) = zxyxz = zxz = y,
so x O y. (2) if x is a vNr in the unital hull, x = Uxẑ ∈ UxĴ = (x] for some
ẑ ∈ Ĵ, then by (1) x = Uxy is a vNr in the original algebra for y = Uẑx ∈ J,
so x ∈ UxJ = (x). The converse is clear, x ∈ (x) =⇒ x ∈ (x]. �

Exercise 18.1.2* Prove the vNr Pairing Lemma using only the Fundamental Formula,
with no reference to an associative algebra. Prove that x is regular iff all principal inner
ideals (x) = [x) = (x] = [x] agree.

A nice system (say, finite-dimensional semisimple) is always vNr, so every
element can be regularly paired. In many ways a regular pair behaves like an
idempotent. In the associative case, if x = xyx then e = xy, f = yx are true
idempotents, but in a special Jordan algebra J ⊆ A+ the elements e, f may
no longer exist within J, only inside the associative envelope A.
If an element is a double vNr, it is invertible in its own little part of the

algebra.
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Double vNr Lemma 18.1.3 If b is a double vNr, then its principal inner
ideal (b] = UbĴ is a unital Peirce subalgebra J2(e) in which b is invertible: if
b = UbUba, then b is invertible in (b] = J2(e) for the idempotent e = Ub2Uab

2.

proof. First we work entirely within the subalgebra Φ[a, b], so by the
Shirshov–Cohn Principle again we may assume that we are living in H(A, ∗).
In A we have b = b2ab2 and e = (b2ab2)ab2 = bab2, hence be = b(bab2) =
b2ab2 = b (dually, or via ∗, eb = b), so b = ebe = Ueb and e2 = e(bab2) =
bab2 = e. Thus we deduce that in J we have the Jordan relation

b = Ueb ∈ J2(e) for e2 = e.

If we want results about principal inner ideals, we cannot work just within
Φ[a, b], we must go back to J. By the nature of inner ideals, e = Ub2Uab

2 ∈
Ub2J, b2 = Ub1̂ ∈ UbĴ, b = Ueb ∈ UeĴ imply (e] ⊆ (b2] ⊆ (b] ⊆ (e], so

(b] = (b2] = (e] = J2(e).

By the Invertibility Criterion 6.1.2(3), b is invertible in (b] since its U -operator
is surjective on the unital subalgebra (b]: Ub(b] = Ub

(
UbĴ

)
= Ub2 Ĵ = (b2] =

(b]. �

Thus we see that little units e come, not from the stork, but from double
vNrs.

Exercise 18.1.3A (1) As a lesson in humility, try to prove the vNr Pairing and Double vNr
Lemmas strictly in Jordan terms, without using Shirshov–Cohn to work in an associative
setting. You will come away with more respect for Shirshov and Cohn.

Exercise 18.1.3B (1) Show directly that for a vNr pair (x, y) the operators E2(x, y) :=
UxUy , E1(x, y) := Vx,y − 2UxUy , E0(x, y) := Bx,y = 1J − Vx,y + UxUy are supplemen-
tary orthogonal projection operators. (2) Alternately, show that the Ei are just the Peirce
projections corresponding to the idempotent x in the homotope J(y) (cf. Jordan Homo-
tope Proposition 7.2.1). (3) If x, y are a vNr pair in a special algebra J ⊆ A+, show that
e = xy, f = yx are idempotents in A, and in J there is a ghostly “Peirce decomposition,”
J = eJf +((1−e)Jf +eJ(1−f))+(1−e)J(1−f), and a similar one with e, f interchanged.
Show that ezf = E2(x, y)z, (1− e)zf + ez(1− f) = E1(x, y)z, (1− e)z(1− f) = E0(x, y)z.
Thus in the Jordan algebra itself, the pair of elements x, y acts in some sense like an idem-
potent. This rich supply of “idempotents” was one of the sparks leading to Loos’s creation
of Jordan pairs (overcoming the severe idempotent-deficiency of Jordan triple systems); in
the Jordan pair (J, J) obtained by doubling a Jordan algebra or triple system J, the “pair
idempotents” are precisely the regular pairs (x, y), leading to pairs of Peirce decompositions
Ei(x, y), Ei(y, x), one on each copy of J.

The Invertibility Criterion assumes that the algebra is unital. Now we can
show that not only does the existence of a surjective U -operator creates an
inverse in the presence of a unit element, it even creates the unit element.
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Surjective Unit Lemma 18.1.4 If a Jordan algebra J contains an element
with surjective U -operator, UbJ = J, then J has a unit element and b is
invertible.

proof. Such a b is a double vNr, b ∈ J = UbJ = Ub (UbJ), so by the
Double vNr Lemma 18.3 J = (b] is unital with b invertible. �

Exercise 18.1.4 Strengthen the Jordan Homotope Theorem 7.2.1(2) to show that if J is
an arbitrary Jordan algebra and u an element such that the homotope J(u) is unital, then
J was necessarily unital to begin with, and u was an invertible element.

18.2 Structural Pairing

When x and y are regularly paired their principal inner ideals (x] and (y] are
also paired up in a natural structure-preserving way, which is most clearly
understood using the concept of structural transformation. This is a weaker
notion than that of homomorphism because it includes “multiplications” such
as U -operators, and is often convenient for dealing with inner ideals. Taking
the Fundamental Formula as our guide, we consider operators which interact
nicely with the U -operators. (We have crossed paths with these several times
before.)

Structural Transformation Definition 18.2.1 (1) A linear transformation
T on J is weakly structural if it is structurally linked to some linear
transformation T ∗ on J in the sense that

UT (x) = TUxT
∗ on J for all x ∈ J;

(2) T is structural if it is weakly structural and remains so on the unital
hull; more precisely, T is structurally linked to some T ∗ on J such that T, T ∗

have extensions to Ĵ (by abuse of notation still denoted by T, T ∗) which are
structurally linked on Ĵ,

UT (x̂) = TUx̂T
∗ on Ĵ for all x̂ ∈ Ĵ.

(3) A structural pair (T, T ∗) consists of a pair of structural transforma-
tions linked to each other,

UT (x̂) = TUx̂T
∗, UT∗(x̂) = T ∗Ux̂T on Ĵ for all x̂ ∈ Ĵ,

equivalently, T is structurally linked to T ∗ and T ∗ is structurally linked to
T ∗∗ = T .

For unital algebras all weakly structural T are automatically structural
(with extension 0 � T to Ĵ = Φe′ � J). In non-unital Jordan algebras we
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usually demand that a transformation respect the square x2 as well as the
quadratic product Uxy, i.e., be structural on the unital hull, so we usually
work with structural rather than weakly structural transformations.
For Jordan triples or pairs, or for non-invertible structural T in Jordan

algebras, the “adjoint” T ∗ need not be uniquely determined. The accepted
way to avoid this indeterminacy is to explicitly include the parameter T ∗ and
deal always with the pair (T, T ∗). Again, T ∗ need not be structural in general,
but since it is for all the important structural T, the accepted way to avoid
this nonstructurality is to impose it by fiat, and hence we consider structural
pairs instead of mere structural transformations.
Clearly, any automorphism T = ϕ determines a structural pair (T, T ∗) =

(ϕ,ϕ−1) (i.e., ϕ∗ = ϕ−1). The Fundamental Formula says that all multipli-
cations Ux determine a structural pair (Ux, Ux) (i.e., (Ux)∗ = Ux), but the
Vx and Lx are usually not structural. It can be shown2 that the Bergmann
operators (Bα,x,y, Bα,y,x) form a structural pair for any α ∈ Φ, x ∈ J, y ∈ Ĵ;
in particular, the operator Uα1̂−x = Bα,x,1 from the unital hull is structural
on J. If J = A+ for an associative algebra A, then each left and right asso-
ciative multiplications Lx, Rx determine structural pairs, (Lx, Rx), (Rx, Lx)
(i.e., (Lx)∗ = Rx and (Rx)∗ = Lx), and so again Ux = LxRx is structural
with U∗

x = Ux, but Vx = Lx +Rx is usually not structural.

Structural Innerness Lemma 18.2.2 (1) If T is a structural transformation
on J, then its range T (J) is an inner ideal. (2) More generally, the image T (B)
of any inner ideal B of J is again an inner ideal. (3) If T, S are structural,
then so is their composite T ◦ S with (T ◦ S)∗ = S∗ ◦ T ∗.
proof. The first assertion follows from the second because J itself is an

inner ideal. For the second, if B is inner in J, UBĴ ⊆ B, then so is the
Φ-submodule T (B): UT (B)Ĵ = TUBT

∗(Ĵ) [by structurality] ⊆ T (UBĴ) ⊆
T (B). The third assertion is a direct calculation, UT (S(x)) = TUS(x)T

∗ =
T (SUxS

∗)T ∗ by structurality of T and S. �

Exercise 18.2.2 (1) If T is weakly structural and B is a weak inner ideal, show that
T (B) is also weakly inner. Show that (Tx) ⊆ T

(
(x)

)
for weakly structural T , and (Tx] ⊆

T
(
(x]

)
, [Tx] ⊆ T

(
[x]

)
for structural T . (2) If T, S are weakly structural show that T ◦S is

too. (3) Define a weakly structural pair (T, T ∗), and show that if (T, T ∗), (S, S∗) are weakly
structural pairs, then so is their product (T ◦ S, S∗ ◦ T ∗). (4) If T is weakly structural and
both T, T ∗ are invertible on J, show that T−1 is also weakly structural with (T−1)∗ =
(T ∗)−1. (5) Show that if (x, y) is a vNr pair then so is (T (x), S(y)) for any structural pairs
(T, T ∗), (S, S∗) such that T ∗Sy = y, S∗Tx = x (in particular, if S = (T ∗)−1 where both
T, T ∗ are invertible).

2 cf. Exercise 5.3.1 and Bergmann Structurality IV.1.2.2.
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Structural Pairing Definition 18.2.3 Two inner ideals B,D in J are
structurally paired if there exist structural transformations T, S on J which
are inverse bijections between B and D:

(SP1) T (B) ⊆ D, S(D) ⊆ B;
(SP2) T ◦ S = 1D on D, S ◦ T = 1B on B.

Structural pairing for inner ideals is a more general and more useful concept
than conjugacy under a global isotopy of the algebra; it is a “local isotopy”
condition, yet strong enough to preserve the lattice of inner ideals.

Structural Pairing Lemma 18.2.4 If inner ideals B,D of J are structurally
paired, then there is an isomorphism between the lattices of inner ideals of J
contained in B and those contained in D.

proof. If B,D are structurally paired by T, S, then T |B, S|D are inverse
bijections of modules which preserve inner ideals by Structural Innerness
18.2.2(2): if B′ ⊆ B is inner, then D′ = T (B′) is again an inner ideal of
J and is contained in D = T (B). Thus the pairing sets up inverse order-
preserving bijections between the lattices of inner ideals in B and those in D,
in short, a lattice isomorphism. �

Principal Pairing Lemma 18.2.5 If elements b, d are regularly paired in a
Jordan algebra, then their principal inner ideals (b], (d] are structurally paired
by Ud, Ub : (b] Ud−→ (d] and (d] Ub−→ (b] are inverse structural bijections pre-
serving inner ideals.

proof. Ub is certainly structural on Ĵ and maps all of Ĵ into (b], dually for
Ud, as in (SP1) of the above Structural Pairing Definition. For (SP2), on any
Ubâ ∈ UbĴ = (b] we have UbUd(Ubâ) = UUbdâ [by the Fundamental Formula]
= Ubâ [by pairing], so UbUd = 1(b], and dually for UdUb. �

These Lemmas will be important in the next chapter, where we will be
Desperately Seeking, not Susan, but Idempotents. The good minimal inner
ideals are those governed by a division idempotent. At the other extreme
are the minimal inner ideals governed by trivial elements, and these are so
badly behaved that we will pass a law against them (the Nondegeneracy Law).
The remaining minimal inner ideals B are nilpotent, so there is no hope of
squeezing idempotents out of them. Structural Pairing shows that the image
of a minimal inner ideal under a structural transformation T is again mini-
mal, and luckily the nilpotent B’s run around with respectable T (B)’s having
idempotents. In this way the minimal inner ideals will provide us enough fuel
(division idempotents) to run our structure theory.
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18.3 Problems for Chapter 18

Problem 18.1 (1) (cf. Problem 7.2(1)) If T is structural and invertible on
a unital algebra, show that the adjoint T ∗ is uniquely determined as T ∗ =
T−1UT (1) = UT−1(1)T

−1. (2) If J = A+ for A the unital associative algebra
of upper triangular 2 × 2 matrices over Φ, show that T = UE11 is structural
for any T ∗ = T + S as long as S(A) ⊆ AE22, so T ∗ is far from unique. [In
upper triangular matrices E22AE11 = 0.]

Problem 18.2 Let J be a non-unital Jordan algebra (cf. Problem 7.2(2) for
the case of a unital algebra). (1) If T is structurally linked to T ∗ and both
T, T ∗ are invertible on J, show that T−1 is structurally linked to (T ∗)−1. (2)
If (T, T ∗) is an invertible structural pair (a structural pair with both T, T ∗

invertible), show that the inverse structural pair (T−1, (T ∗)−1) is also struc-
tural. (3) Show that the set of invertible structural pairs forms a subgroup
Strg(J) ⊂ End(J)× × (End(J)×)op, called the structure group of J. Show that
in a natural way this contains a copy of the automorphism group Aut(J) as
well as all invertible Bergmann operators Bα,x,y. [There are usually many in-
vertible Bergmann operators, corresponding to quasi-invertible pairs x, y, but
there are invertible operators Uv only if J is unital, the situation of Problem
7.2.]

Question 18.1* (1) If T is invertible and structurally linked to T ∗, is T ∗

necessarily invertible? (2) If (T, T ∗) is structural and T is invertible, is T ∗ nec-
essarily invertible too? Equivalently, in a unital algebra must T (1) or T−1(1)
be invertible?

Question 18.2* In order for a weakly structural transformation T linked
to T ∗ to become strong, T, T ∗ must extend to (T̂ , T̂ ∗) on the unital hull, i.e.,
they must decide what to do to the element 1: T̂ (1) = t̂ = τ1⊕t, T̂ ∗(1) = t̂∗ =
τ∗1⊕t∗. (1) If τ is cancelable (e.g., if Φ is a field and τ  = 0) show that τ∗ = τ ,
so it is natural to impose this as a general condition. (2) Assuming τ∗ = τ ,
find conditions on τ, t, t∗ which are necessary and sufficient for T structurally
linked to T ∗ to extend to T̂ structurally linked to T̂ ∗ on Ĵ. (3) If T, T ∗ are
structurally linked to each other, find necessary and sufficient conditions on
the τ = τ∗, t, t∗ of (1) for (T̂ , T̂ ∗) to be structurally linked to each other (i.e.,
(T, T ∗) is a structural pair).

Question 18.3 vNr-ity is defined as x ∈ (x). Investigate what happens if
we choose the other principal inner ideals. Is x vNr iff x ∈ (x]? Iff x ∈ [x]?
What happens if we can generate the square: what is the connection between
x being vNr and x2 being in (x)? Or in (x]? Or in [x]? Either prove your
assertions or give counterexamples.

Question 18.4 Can you think of any conditions on the element x in J = A+

for an associative algebra A in order for Vx = Lx + Rx to be a structural
transformation?
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Inner Simplicity

We obtain an explicit description of all simple inner ideals, which shows that
they all are closely related to simple idempotents. The main purpose of simple
inner ideals is to provide us with simple idempotents, the fuel of classical
structure theory.1

19.1 Simple Inner Ideals

We begin by defining simple elements and giving archetypal examples thereof
in the basic examples of Jordan algebras.

Simple Inner Ideal Definition 19.1.1 A nonzero inner ideal B of J is
minimal if there is no inner ideal 0 < C < B of J properly contained inside
it. An inner ideal is simple if it is both minimal and nontrivial, UBĴ  = 0. An
element b of J is simple if its principal inner ideal (b] is a simple inner ideal
of J containing b; since b ∈ (b] iff b ∈ (b) by vNr Pairing 18.1.2(2), this is
the same as saying that b is a vNr and generates a simple inner ideal (b]. An
idempotent e is a division idempotent if the Peirce subalgebra (e] = J2(e)
is a division algebra.2

Simple Pairing Lemma 19.1.2 (1) If inner ideals B,D in J are structurally
paired, then B is minimal (respectively simple) iff D is minimal (respectively
simple). (2) If elements b, d are regularly paired, then b is simple iff d is simple.

proof. (1) Preservation of minimality follows from the lattice isomor-
phism in the Structural Pairing Lemma 18.2.4. Simplicity will be preserved

1 The Minimal Inner Ideal Theorem and examples of simple inner ideals were given in
I.6.4.

2 In the literature such an idempotent is often called completely primitive, but the ter-
minology is not particularly evocative. In general, one calls e a (something-or-other) idem-
potent if the subalgebra UeJ it governs is a (something-or-other) algebra. A good example
is the notion of an abelian idempotent used in C∗-algebras.
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if triviality is, and B trivial =⇒ UBĴ = 0 =⇒ UT (B)Ĵ = TUBT
∗(Ĵ) ⊆

T
(
UB(Ĵ)

)
= 0 =⇒ T (B) trivial. (2) If b, d are regularly paired, then by

the Principal Pairing Lemma 18.2.5 the inner ideals (b], (d] are structurally
paired, so by (1) (b] is minimal ⇐⇒ (d] is minimal, and since b, d are both
automatically vNr if they are regularly paired, we see that b is simple ⇐⇒ d
is simple. �
Now we give examples of simple elements and pairings.

Full and Hermitian Idempotent Example 19.1.3 In the Jordan matrix
algebra J =Mn(∆)+ or Hn(∆,−) for any associative division algebra ∆ with
involution, the diagonal matrix unit e = Eii is a simple idempotent and its
principal inner ideal (e] = (e) = ∆Eii or H(∆)Eii is a simple inner ideal.
The same holds in any diagonal isotope Hn(∆,Γ), since the isotope

J(uii)
ii = H(∆)(γi)Eii is a division algebra iff H(∆)Eii is by Jordan Homo-
tope Proposition 7.2.1(3).
In the Jordan matrix algebra Hn(C,Γ) for any composition algebra C

(whether division or split) over a field Φ, the diagonal matrix unit b = Eii is
a simple idempotent and its principal inner ideal Jii = H(C)(γi)Eii

∼= ΦEii is
a simple inner ideal. �

Full and Hermitian Nilpotent Example 19.1.4 In Mn(∆)+ for an as-
sociative division algebra ∆, the off-diagonal matrix unit b = Eij is a simple
nilpotent element, whose simple principal inner ideal B = Ub(J) = ∆Eij

is regularly paired b O d, b O e with the nilpotent d = Eji and the sim-
ple idempotents e = Eii + Eji or e = Ejj + Eji, and is structurally
paired with the simple idempotents U 1

2+db = 1
2Eii + 1

4Eij + Eji + 1
2Ejj and

1
2U1+db = 1

2

(
Eii + Eij + Eji + Ejj

)
.

In general, a hermitian algebra Hn(∆,−) need not contain nilpotent el-
ements (e.g., it may be formally real). If ∆ contains an element γ of norm
γγ∗ = −1, then the element b = Eii+γEij+γ∗Eji−Ejj is a simple nilpotent
in Hn(∆,−) paired with the simple idempotent e = Eii. �

Triangular Trivial Example 19.1.5 If J = A+ for A = T n(∆) the upper-
triangular n × n matrices over a division algebra ∆, then the off-diagonal
matrix units Eij (i < j) are trivial elements, and the inner ideal ΦEij is a
trivial inner ideal which is minimal if Φ is a field. �

Division Example 19.1.6 If J is a division algebra, then every nonzero
element b is simple, (b] = (b) = J. �

Reduced Spin Idempotent Example 19.1.7 The spin factor RedSpin(q) of
Reduced Spin Example 3.4.1 has Jii = Φei ∼= Φ+ for i = 1, 2 by construction.
Thus the ei are simple idempotents (Jii is a division subalgebra and a simple
inner ideal) iff Φ is a field. �
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19.2 Minimal Inner Ideals

We show that all minimal inner ideals (simple or not) are of the three types
encountered in the examples: idempotent, nilpotent, and trivial.

Minimal Inner Ideal Theorem 19.2.1 (1) The minimal inner ideals B in
a Jordan algebra J over Φ are of the following Types:

Trivial: B = Φz for a trivial z (UzĴ = 0);

Idempotent: B = (e] = UeJ for a simple idempotent e
(in which case B is a division subalgebra);

Nilpotent: B = (b] = UbJ for a simple nilpotent b
(then B is a trivial subalgebra, B2 = UBB = 0).

Any (b] of Nilpotent Type is structurally paired with a simple inner ideal (e]
for a simple idempotent e.

(2) An idempotent e is simple iff it is a division idempotent.

(3) An inner ideal is simple iff it is of Idempotent Type for a division
idempotent, or of Nilpotent Type for a simple nilpotent structurally paired
with a division idempotent.

proof. Let B be a minimal inner ideal of J. We will break the proof into
several small steps.

Step 1: The case where B contains a trivial element

If B contains a single nonzero trivial element z, then Φz is an inner ideal
of J contained in B, so by minimality of B we must have B = Φz and B
of Trivial Type is entirely trivial. FROM NOW ON WE ASSUME THAT B
CONTAINS NO TRIVIAL ELEMENTS, in particular, UBĴ  = 0 implies that
B is simple.

Step 2: Two properties

The absence of trivial elements guarantees that b  = 0 in B implies that (b] =
UbĴ  = 0 is an inner ideal of J contained in B, so again by minimality we have

(2.1) B = (b] for any b  = 0 in B,
(2.2) all b  = 0 in B are simple.

Step 3: The case b2  = 0 for all b  = 0 in B
If b  = 0 in B, then by hypothesis b2  = 0 lies in B [because inner ideals are
also subalgebras], so b ∈ B = Ub2 Ĵ [using (2.1) for b2] = Ub

(
UbĴ

)
= UbB [by

(2.1)] implies that all Ub are surjective on B, so by the Surjective Unit Lemma
18.1.4 B = (e] is a unital subalgebra and all b  = 0 are invertible. Then B is a
division algebra with e a simple idempotent, and B is of Idempotent Type.
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Step 4: The case some b2 = 0 for b  = 0 in B
Here B2 = UBB = 0, since B2 = (UbĴ)2 [by (2.1)] = UbUĴ b

2 [by the
Fundamental Formula acting on 1] = 0, and once all b2 = 0 we have all
UbB = 0 [if UbB  = 0 then, since it is again an inner ideal of J con-
tained in B by Structural Innerness 18.2.2(2), by minimality it must be all of
B, B = UbB = Ub(UbB) = Ub2B = 0, a contradiction], and B is of Nilpotent
Type.

Step 5: The Nilpotent Type in more detail

By (2.2), all b  = 0 in B are simple, hence regular, so by vNr Pairing 18.1.2
we have b regularly paired with some d (which by Simple Pairing 19.1.2(2) is
itself simple, so (d] is again simple). If d2  = 0 then by the above (d] = (e] for
a simple idempotent e, and we have established the final assertion of part (1)
of the Theorem.
So assume that b2 = d2 = 0. Then (b] can divorce (d] and get structurally

paired with (e], where e := U 1
2 1̂+d

(b) O b is a simple (but honest) idempotent
in J regularly paired with b. Indeed, by the Shirshov–Cohn Principle 5.1.3 we
can work inside Φ[b, d] ∼= H(A, ∗) ⊆ Â+

, where the element u := 1
2 1̂ + d ∈ Â

has
(5.1) bub = b, (5.2) bu2b = b,

since bub = 1
2b

2 + bdb = 0 + b and bu2b = 1
4b

2 + bdb + bd2b = bdb = b when
b2 = d2 = 0. But then e2 = (ubu)(ubu) = u(bu2b)u = ubu [using (5.2)] = e is
idempotent, and it is regularly paired with b because beb = bubub = bub = b
[using (5.1) twice] and ebe = (ubu)b(ubu) = u(bubub)u = u(b)u [above] = e.
This establishes the tripartite division of minimal inner ideals into types as

in part (1). For (2), the unital subalgebra e is a division algebra iff it contains
no proper inner ideals by the Division Algebra Criterion 6.1.4, i.e., is simple.
For (3), by (1) a simple inner ideal has one of these two types; conversely, by
(2) the Idempotent Types are simple, and by Simple Pairing 19.1.2 any inner
ideal (of nilpotent type or not) which is structurally paired with a simple (e]
is itself simple. �
Note that we have not claimed that all Φz of Trivial Type are minimal, nor
have we said intrinsically which nilpotent b are simple.

Exercise 19.2.1A (1) Show that when Φ is a field, every trivial element z determines a
trivial minimal inner ideal B = Φz = [z]. (2) Show that for a general ring of scalars Φ,
B = Φz for a trivial z is minimal iff z⊥ = {α ∈ Φ | αz = 0} is a maximal ideal M F Φ,
so B = Φ′z is 1-dimensional over the field Φ′ = Φ/M . (3) Show that a trivial element z is
never simple, (z) = (z] = 0, and an inner ideal B = Φz is never simple.

Exercise 19.2.1B* (1) In Step 5 where b2 = d2 = 0, show that b is regularly paired with
c := U1+db EF b satisfying c2 = 2c, and e := 1

2 c is a simple idempotent with (e] = (c]
structurally paired with (b]. (2) Give a proof of the Nilpotent case b2 = d2 = 0 strictly in
terms of the Fundamental Formula, with no reference to associative algebras.
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19.3 Problems for Chapter 19

Problem 19.1 Let T be a structural transformation on a nondegenerate
algebra J. Show that for any simple inner B, T (B) is either simple or zero.
If b is simple, conclude that T ( (b] ) is either simple or zero. (2) Define the
socle of a nondegenerate Jordan algebra to be the sum of all its simple inner
ideals. Show that this is invariant under all structural transformations, hence
is an ideal. A deep analysis of the socle by Loos showed that it encompasses
the “finite-capacity” parts of a nondegenerate algebra, and provides a useful
tool to streamline some of Zel’manov’s structural arguments.
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Capacity

We are now ready to obtain a capacity from the d.c.c and break it up into
connected capacities which represent the simple direct summands of the alge-
bra.

20.1 Capacity Existence

In this section we will show that nondegenerate Jordan algebras with d.c.c. on
inner ideals necessarily have finite capacity. This subsumes the classification of
algebras with d.c.c. under the (slightly) more general classification of algebras
with finite capacity, the ultimate achievement of the Classical Theory. Recall
the notion of capacity that we are concerned with in this Phase.1

Capacity Definition 20.1.1 A Jordan algebra has capacity n if it has a
unit element which is a sum of n mutually orthogonal simple idempotents:

1 = e1 + · · ·+ en (ei simple orthogonal).

J has connected or strongly connected capacity n if it has such a decom-
position where ei, ej are (respectively strongly) connected for each pair i  = j.
An algebra has (finite) capacity if it has capacity n for some n (a priori
there is no reason that an algebra couldn’t have two different capacities at the
same time).
Straight from the definition and the Minimal Inner Ideal fact 19.2.1(2)

that e is simple iff it is a division idempotent, we have the following theorem.

Capacity 1 Theorem 20.1.2 A Jordan algebra has capacity 1 iff it is a
division algebra. �

1 Capacity was defined in I.5.1, and capacity theorems were stated in I.6.5–6.
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Thus Jordan division algebras have capacity 1 (and are nondegenerate).
We saw in the Simple Reduced Spin Idempotent Example 19.1.6 that a re-
duced spin factorRedSpin(q) of a quadratic form q over a field Φ (which is non-
degenerate iff q is nondegenerate, by Factor Triviality Example 5.3.6) has con-
nected capacity 2 unless q = 0, in which case by nondegeneracy J12 =M = 0
and it collapses to Φe1 � Φe2 of disconnected capacity 2. We also saw in
Simple Matrix Idempotent Example 19.1.3, 19.1.7 the Jordan matrix algebras
Mn(∆)+ and Hn(∆,Γ) for an associative division algebra ∆, or the Hn(C,Γ)
for a composition algebra C over a field, have connected capacity n (and are
nondegenerate). The goal of this Phase is the converse: that any nondegener-
ate Jordan algebra with connected capacity is one of these types.
Let’s show that algebras with d.c.c. have capacity.

Capacity Existence Theorem 20.1.3 If J is nondegenerate with minimum
condition on inner ideals, then J has a finite capacity.

proof. We tacitly assume that J  = 0. Since J is nondegenerate, there are
no simple inner ideals of trivial type, so the Simple Inner Ideal Theorem 19.3
guarantees that there exist simple idempotents in J. Among all idempotents
e = e1 + · · · + en for ei simple orthogonal idempotents, we want to choose a
maximal one and prove that e = 1; we don’t have a maximum condition on
inner ideals, so we can’t choose e with maximal J2(e), so instead we use the
minimum condition to choose e with minimal Peirce inner ideal J0(e). Here
J0(e) inherits nondegeneracy and minimum condition from J by Diagonal
Inheritance 10.1.1, so if J0(e)  = 0 it too has a simple idempotent en+1 (which
by Diagonal Inheritance is simple in J as well). Now en+1 ∈ J0(e) is orthogonal
to all ei ∈ J2(e) by Peirce Orthogonality Rules 8.2.1, so ẽ = e + en+1 =
e1 + · · · + en + en+1 is a bigger sum of simple orthogonal idempotents, with
smaller Peirce space J0(ẽ) = J00 < J00 ⊕J0,n+1 ⊕Jn+1,n+1 = J0(e) [applying
Peirce Recovery 13.2.1(2) to Ẽ = {e1, . . . , en, en+1}] since en+1 ∈ Jn+1,n+1.
But this contradicts minimality of J0(e), so we must have J0(e) = 0. But then
e = 1 by the Idempotent Unit Theorem 10.1.2. �

20.2 Connected Capacity

Once J has a capacity, we can forget about the minimum condition: we discard
it as soon as we have sucked out its capacity. To analyze algebras with capacity,
we first we break them up into connected components. To insure that the
components are mutually orthogonal we need to know what connection and
non-connection amount to for simple idempotents, and here the key is what
invertibility and non-invertibility amount to.
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Off-Diagonal Non-Invertibility Criterion 20.2.1 Let e1, e2 be orthogonal
simple idempotents in J. Then the following six conditions on an element x12
of the off-diagonal Peirce space J12 are equivalent :

(1) x12 is not invertible in J2(e1 + e2) = J11 + J12 + J22;

(2a) Ux12J11 = 0;

(2b) Ux12J22 = 0;

(3a) q22(x12) = 0;

(3b) q11(x12) = 0;

(4) x2
12 = 0.

proof. The reader will have to draw a diagram for this play — watch our
moves! We first show that (4)⇐⇒ (3a) AND (3b), and (1)⇐⇒ (3a) OR (3b).
Then we establish a “left hook” (3b) =⇒ (2a) =⇒ (3a), so dually we have
a “right hook” (3a) =⇒ (2b) =⇒ (3b), and putting the two together gives
a “cycle” (2a) ⇐⇒ (2b) ⇐⇒ (3a) ⇐⇒ (3b) showing that all are equivalent
[knocking out the distinction between “and” and “or” for (3a),(3b)], hence
also equivalent to (1) and to (4).
From x2

12 = q22(x12)+ q11(x12) we immediately see “and,” and to see “or”
note that x12 not invertible ⇐⇒ x2

12 = q22(x12) + q11(x12) not invertible [by
Power Invertibility Criterion 6.1.8(2)] ⇐⇒ q22(x12) or q11(x12) not invertible
[by the Diagonal Invertibility Lemma 14.4.1]⇐⇒ q22(x12) = 0 or q11(x12) = 0
[since Jii are division algebras].
For the left hook, (3b) passes to (2a) by (Ux12J11)

2 = Ux12UJ11 x
2
12 [by

the Fundamental Formula] = Ux12UJ11 q11(x12) [by Peirce Orthogonality] = 0
[by (3b)] =⇒ Ux12J11 = 0 [by the fact that the division algebra J22 has no
nilpotent elements], and (2a) hands off to (3a) by the definition of q in the
q-Proposition 14.3(1). Is that footwork deft, or what! �
The crucial fact about connectivity between simple idempotents is that it

is an all-or-nothing affair.

Simple Connection Lemma 20.2.2 If e1, e2 are orthogonal simple idempo-
tents in a nondegenerate Jordan algebra J, then either e1, e2 are connected or
else J12 = Ue1,e2J = 0.

proof. e1, e2 not connected⇐⇒ no x12 ∈ J12 is invertible ⇐⇒ qii(J12) =
UJ12Jii = 0 for i = 1, 2 [by the previous Non-invertibility Criterion 20.2.1(2ab),
(3ab)] ⇐⇒ UJ12(J11 + J12 + J22) = 0 [by the Uijq-Rules 14.3.1(2)]
⇐⇒ UJ12J = 0 [by Peirce Orthogonality 13.3.1(3)] ⇐⇒ J12 = 0 [by nonde-
generacy]. �

From this the decomposition into a direct sum of connected components
falls right into our laps.
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Connected Capacity Theorem 20.2.3 A nondegenerate Jordan algebra
with capacity splits into the direct sum J = J1 � · · · � Jn of a finite number
of nondegenerate ideals Jk having connected capacity.

proof. Let 1 =
∑

i∈I ei for simple ei as in the Capacity Definition 20.1.1.
By Connection Equivalence 14.4.4, connectivity of the ei defines an equiva-
lence relation on the index set I : i ∼ j iff i = j or ei, ej are connected.
If we break I into connectivity classes K and let the fK =

∑{ei|i ∈ K} be
the class sums, then for K  = L, UfK ,fL

J =
∑

k∈K,�∈L Uek,e�
J = 0 by Simple

Connection 20.2.2, so that J = U1J = U∑
K fK

J =
∑

K UfK
J = �KJK is

[by Peirce Orthogonality 8.2.1] an algebra-direct sum of Peirce subalgebras
JK = UfK

J (which are then automatically ideals) having unit fK with con-
nected capacity. �

An easy argument using Peirce decompositions shows the following.

Simple Capacity Theorem 20.2.4 A nondegenerate algebra with capacity
is simple iff its capacity is connected.

proof. If J is simple there can be only one summand in the Connected
Capacity Theorem 20.2.3, so the capacity must be connected. To see that
connection implies simplicity, suppose K were a nonzero ideal in J where any
two ei, ej are connected by some vij . Then by Peirce Inheritance 13.1.4(2) we
would have the Peirce decomposition K =

⊕
i≤j Kij where some Kij  = 0 is

nonzero. We can assume that some diagonal Kii  = 0, since if an off-diagonal
Kij  = 0 then also Kii = K ∩ Jii ⊇ qii(Kij ,Jij)  = 0 by q-Nondegeneracy
14.3.1(4). But Kii = K∩Jii is an ideal in the division algebra Jii, so Kii = Jii
and for all j  = i K ⊇ Uvij

Kii = Uvij
Jii = Jjj [by connectivity] as well, so

K ⊇ ∑
Jkk ⊇ ∑

ek = 1 and K = J. �
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20.3 Problems for Chapter 20

In the above proofs we freely availed ourselves of multiple Peirce decomposi-
tions. Your assignment, should you choose to accept it, is to exercise mathe-
matical frugality (avoiding the more cumbersome notation and details of the
multiple case) and derive everything from properties of single Peirce decom-
positions.

Problem 20.1* (Capacity Existence) Show, in the notation of the proof of
20.1.3, that (1) J0(e+ en+1) ⊆ J0(e), (2) the inclusion is proper.

Problem 20.2* (Simple Connection) Show that Ue1,e2(J) = 0 for dis-
connected e1, e2 as in 20.2.2. (1) Show that it suffices to assume from the
start that J is unital with 1 = e1 + e2, where e = e1 is an idempotent
with 1 − e = e2, J1(e) = Ue1,e2(J). (2) Show that J2(e),J0(e) are di-
vision algebras, in particular have no nilpotent elements. (3) Show that
q2(x1) = 0 ⇐⇒ q0(x1) = 0. (4) If the quadratic form q2(J1) vanishes identi-
cally, show that J1 vanishes. (5) On the other hand, if q2(J1)  = 0, show that
there exists an invertible v.

Problem 20.3* (Connected Capacity) Show that connection is transitive
as in 20.2.3. Assume vij connects ei, ej and vjk connects ej , ek. (1) Show
that v = {vij , vjk} ∈ J′1(e) for J

′ = J2(ei + ek), e = ei, 1′ − e = ej .
(2) Show that both J′2(e),J

′
0(e) are division algebras, so v will be invertible

if v2 = q2(v) + q0(v) is invertible, hence if q2(v) (dually q0(v)) is nonzero.
(3) Show that q2(v) = E2

(
Uvij (aj)

)
where (vjk)2 = aj + ak for nonzero

ar ∈ J2(er). (4) Conclude that q2(v) is nonzero because Uvij is invertible on
the nonzero element aj ∈ J2(ei + ej).

Problem 20.4* (Simple Capacity) To see that connection implies simplicity
in 20.2.4, suppose K were a proper ideal. (1) Show that Uei

(K) = 0 for each
i. (2) Then show that Uei,ej

(K) = 0 for each pair i  = j. (3) Use (1) and (2)
to show that K = U1(K) = 0.
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Herstein–Kleinfeld–Osborn Theorem

In classifying Jordan algebras with nondegenerate capacity we will need infor-
mation about the algebras that arise as coordinates. Recall that the Hermitian
and Jacobson Coordinatization Theorems have, as their punch line, that the
Jordan algebra in question looks like Hn(D,Γ) for an alternative algebra D
with involution whose hermitian elements are all nuclear. Here D coordina-
tizes the off-diagonal Peirce spaces and H(D,−) coordinatizes the diagonal
spaces. The condition that Hn(D,Γ) be nondegenerate with capacity n rela-
tive to the standard Eii reduces by Jordan Matrix Nondegeneracy 5.3.5 to the
condition that the coordinates be nondegenerate and the diagonal coordinates
be a division algebra. In this chapter we will give a precise characterization
of these algebras.
Along the way we need to become better acquainted with alternative al-

gebras, gathering a few additional facts about their nuclei and centers, and
about additional identities they satisfy.

21.1 Alternative Algebras Revisited

Alternative algebras get their name from the fact that the associator is an
alternating function of its arguments. Alternative algebras satisfy the Moufang
Laws, which play as important a role in the theory as do the alternative laws
themselves.

Moufang Lemma 21.1.1 An alternative algebra is automatically flexible,

(1) [x, y, x] = 0,

so alternativity is the condition that the associator [x, y, z] be an alternating
multilinear function of its arguments, in the sense that it vanishes if any two
of its variables are equal (equivalently, in the presence of 1

2 , the condition that
the associator is a skew-symmetric function of its arguments).
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Alternative algebras automatically satisfy the Left, Middle, and Right
Moufang Laws

(2) x(y(xz)) = (xyx)x, (xy)(zx) = x(yz)x, ((zx)y)x = z(xyx),

as well as the Left Bumping Formula

(3) [x, y, zx] = x[y, z, x].

Any linear algebra satisfies the Teichmüller Identity

(4) [xy, z, w]− [x, yz, w] + [x, y, zw] = [x, y, z]w + x[y, z, w].

proof. (1) As we have seen before, our old friend flexibility comes from
linearizing alternativity, [x, y, x] = −[y, x, x] = 0. Thus we are entitled to
write xyx without ambiguity in place of (xy)x and x(yx).
Left Moufang is equivalent to Left Bumping because

x(z(xy))− (xzx)y = x
(
(zx)y − [z, x, y])− (

[x, zx, y] + x((zx)y)
)

= −x[y, z, x] + [x, y, zx], [by alternativity],
which in turn is equivalent to Middle Moufang because

−x[y, z, x] + [x, y, zx] =
(− x(yz)x+ x(y(zx))

)
+

(
(xy)(zx)− x(y(zx))

)
= −x(yz)x+ (xy)(zx).

Dually for Right Moufang, so all the Moufang Laws (2) are equivalent to
Left Bumping (3). To see that Left Bumping holds, note that [x, y, x2] = 0
[Lx commutes with Rx by flexibility, hence also with Rx2 = R2

x by right
alternativity], so linearizing x �→ x, z in this shows that
[x, y, zx] = −[x, y, xz]− [z, y, x2]

= +[x, xz, y]− [x2, z, y] [by alternativity]

= (x2z)y − x((xz)y)− (x2z)y + x2(zy)

= −x((xz)y) + x(x(zy) [by left alternativity]

= −x[x, z, y] = x[y, z, x] [by alternativity].
Teichmüller (4) can be verified by direct calculation to hold in all nonassocia-
tive algebras:
[xy, z, w]− [x, yz, w] + [x, y, zw]
= ((xy)z)w− (xy)(zw)− (x(yz))w+ x((yz)w) + (xy)(zw)− x(y(zw))

= ((xy)z)w − (x(yz))w + x((yz)w)− x(y(zw))

= [x, y, z]w + x[y, z, w]. �
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Exercise 21.1.1* Alternative implies Moufang, but in characteristic 2 situations the left
alternative law is not strong enough to guarantee left Moufang, resulting in some patho-
logical [= not-alternative] simple left alternative algebras; the proper notion is that of a
left Moufang algebra, satisfying both the left alternative and left Moufang laws, and the
satisfying theorem states that every simple left Moufang algebra is actually alternative. (1)
Show that the left alternativity [x, x, y] = 0 plus flexibility [x, y, x] = 0 implies alternativity.
(2) Show that the left alternativity implies the Left Moufang Law (x(yx))z = x(y(xz)) if
1
2 ∈ Φ [you must be careful not to assume flexibility, so carefully distinguish x(yx) from
(xy)x!]

Emil Artin gave a beautiful characterization of alternative algebras: they
are precisely the nonassociative algebras in which every subalgebra generated
by two elements is associative (just as the power-associative algebras are pre-
cisely the nonassociative algebras in which every subalgebra generated by one
element is associative). This gives us an analogue of Macdonald’s Theorem: A
polynomial in two variables will vanish in all alternative algebras if it vanishes
in all associative algebras.

Artin’s Theorem 21.1.2 A linear algebra A is alternative iff every subalge-
bra generated by two elements is associative. In particular, alternative algebras
satisfy every identity in two variables that is satisfied by all associative alge-
bras.

proof. The proof requires only the alternative laws, Middle Moufang, and
Teichmüller. If the subalgebra Φ[x, y] ⊆ A is associative, then we certainly
have [x, x, y] = [y, x, x] = 0 for all x, y ∈ A, and therefore A is alternative by
Alternative Definition 2.1.1.
The nontrivial part is the converse: if A is alternative then every Φ[x, y]

is associative, equivalently, [p(x, y), q(x, y), r(x, y)] = 0 for all nonassociative
polynomials p, q, r in two variables. By linearity it suffices to prove this for
monomials p, q, r, and we may induct on the total degree n = ∂p + ∂q + ∂r
(using the obvious notion of degree for a nonassociative monomial). The result
is vacuous for n = 0, 1, 2 (if we are willing to work in the category of unital
algebras where Φ[x, y] is understood to contain the “trivial” monomial 1 of
degree 0, the result is no longer vacuous, but it is still trivial, since if the
three degrees sum to at most 2, then at least one factor must be 1, and any
associator with term 1 vanishes). The result is also trivial if n = 3: if none of
the factors is 1, all must be degree 1 monomials x or y, and two of the three
must agree, so the associator vanishes by the alternative and flexible laws.
Assume now we have proven the result for monomials of total degree < n,

and consider p, q, r of total degree = n. The induction hypothesis that lower as-
sociators vanish shows, by the usual argument (Generalized Associative Law),
that we can rearrange parentheses at will inside any monomial of degree < n.
We may assume that p, q, r are all of degree ≥ 1 (the associator vanishes triv-
ially if any term has degree 0, i.e., is 1); then each of p, q, r has degree < n,
and therefore we can rearrange parentheses at will inside p, q, r.



338 Herstein–Kleinfeld–Osborn

We have a general principle: the associator [p, q, r] vanishes if one term
begins with a variable x or y, and another term ends in that same vari-
able. To see this, by rearranging (using alternation of the associator, and
symmetry in x and y) we may suppose that p begins with x and r ends
with x: then [p, q, r] = [xp′, q, r′x] [for p′, q′ ∈ Â monomials of degree
≥ 0, using the induction associative hypothesis to rearrange parentheses in
p, r] =

(
(xp′)q

)
(r′x) − (xp′)(q(r′x)) = (

x(p′q)
)
(r′x) − (xp′)((qr′)x)) [again

using the induction associativity hypothesis] = x
(
(p′q)r′

)
x)− x

(
p′(qr′)

)
x [by

the Middle Moufang Law] = x[p′, q, r′]x = 0 [by the induction hypothesis
again].
Suppose [p, q, r]  = 0, where by symmetry we may assume that p = xp′

begins with x. Then by the Principle neither q nor r can end in x, they
must both end in y. But then by the Principle q (respectively r) ending in
y forces r (respectively q) to begin with x. But then [p, q, r] = [xp′, q, r] =
[x, p′q, r] − [x, p′, qr] + [x, p′, q]r + x[p′, q, r] [by Teichmüller], where the last
two associators vanish because they are of lower degree < n, and the first two
vanish by the above principle, since in both of them x certainly ends with x,
while in the first r, and in the second qr, begins with x. Thus [p, q, r]  = 0 leads
to a contradiction, and we have established the induction step for degree n.
�

Exercise 21.1.2 Thinking of Macdonald’s Theorem, can you find an identity in three
variables, of degree one in one of the variables, that holds in all associative algebras but
not in all alternative algebras?

21.2 A Brief Tour of the Alternative Nucleus

Alternative algebras come in only two basic flavors, associative (where the
nucleus is the whole algebra) and octonion (where the nucleus reduces to the
center). This incipient dichotomy is already indicated by basic properties of
the nucleus,

Alternative Nucleus Lemma 21.2.1 If D is alternative with nucleus N =
Nuc(D), then for any elements n ∈ N , x, y, z ∈ D we have the Nuclear
Slipping Formula:

(1) n[x, y, z] = [nx, y, z] = [xn, y, z].

The nucleus is commutator-closed:

(2) [N ,D] ⊆ N .

We have nuclear product relations

(3) [N , x]x ⊆ N , [N , x][x, y, z] = 0 for any x, y, z ∈ D.
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Nuclear commutators absorb D and kill associators,

(4) [N ,N ]D ⊆ N , [N ,N ] [D,D,D] = 0.

Indeed, any nuclear subalgebra closed under commutators automatically
satisfies these last two inclusions, and if it contains an invertible commutator
then the nuclear subalgebra must be the whole algebra:

(5) if B satisfies [B,D] ⊆ B ⊆ N , then it also has:

(5a) [B,B]D+ 2[B, x]x ⊆ B for all x ∈ B,
(5b) if b ∈ [B,B] has b−1 ∈ D, then D = B is associative.

proof. Notice that all of these properties are true in associative algebras
(where [x, y, z] = 0 and N = D) and in octonion algebras (where N =
Cent(D), [N ,D] = 0).
A nuclear element slips in and out of parentheses, so n[x, y, z] = [nx, y, z]

and [xn, y, z] = [x, ny, z] in any linear algebra; what is different about alterna-
tive algebras is that nuclear elements can hop because of the alternating nature
of the associator: n[x, y, z] = −n[y, x, z] = −[ny, x, z] = [x, ny, z] = [xn, y, z]
as in (1). Subtracting the last two terms in (1) gives 0 = [[n, x], y, z], so
[[n, x],D,D] = 0, which implies that [n, x] ∈ N in an alternative algebra,
establishing (2). Since [n, x]x ∈ N ⇔ [[n, x]x,D,D] = 0 ⇔ [n, x][x, y, z] by
slipping (1) for the nuclear [n, x] by (2), we see that the two parts of (3) are
equivalent; the second holds because [n, x][x, y, z] = nx[y, z, x] − xn[y, z, x]
[by nuclearity of n and alternativity] = n[x, y, zx] − x[ny, z, x] [bump and
slip] = [x, ny, zx]− [x, ny, zx] [hop and bump] = 0. Linearizing x �→ x,m for
m ∈ N in (3) gives (4): [n,m]x ∈ −[n, x]m + N ⊆ −Nm + N [using (2)]
⊆ N , and [n,m][x, y, z] = −[n, x][m, y, z] = 0 [for nuclear m].
The first part of (4) is also a special case of the first part of (5a), which

follows easily from [b, c]x = [b, cx]− c[b, x] [by nuclearity of b, c] ⊆ B−BB [by
hypothesis (5)] ⊆ B. Then the implication (5b) holds for such commutators
b since B ⊇ bD ⊇ b(b−2(bD)) = (bb−2b)(D) [by Left Moufang] = 1D = D,
and N ⊇ B ⊇ D ⊇ N implies that N = B = D is associative. Finally,
for the second part of (5a) (with the annoying factor 2) we have 2[b, x]x =
([b, x]x+x[b, x])+([b, x]x−x[b, x]) = [b, x2]+[[b, x], x] ∈ B [using alternativity
and the hypothesis (5) thrice]. �

Exercise 21.2.1A Enlarge on the Alternative Nucleus Lemma 21.2.1. (1) Show that in
alternative algebras we have unrestricted nuclear slipping n[x, y, z] = [nx, y, z] = [xn, y, z] =
[x, ny, z] = [x, yn, z] = [x, y, nz] = [x, y, zn] = [x, y, z]n; in particular, the nucleus commutes
with associators. (2) Show that nuclear commutators annihilate associators, [n,m][x, y, z] =
0.

Exercise 21.2.1B* Enlarging on 21.2.1(5b), if all nonzero elements of H are invertible,
show that any skew element b = −b∗ ∈ B = Φ〈H〉 (the subalgebra generated by hermitian
elements) which is invertible in D is actually invertible in B itself.
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Next we look inside the nucleus at the center. We can always replace the
current ring of scalars by the center, since multiplication is still bilinear over
the center. A ∗-algebra becomes an algebra over the ∗-center H(Cent(D), ∗)
(in order that the involution remain linear).

Central Involution Theorem 21.2.2 Every unital alternative algebras with
central involution has norms n(x) := xx̄ and traces t(x) := x + x̄ in the
∗-center satisfying
(1) t(x̄) = t(x), n(x̄) = n(x) (Bar Invariance),
(2) t(xy) = n(x̄, y) = t(yx) (Trace Commutativity),
(3) t((xy)z) = t(x(yz)) (Trace Associativity),
(4) n(xy) = n(x)n(y) (Norm Composition),
(5) x̄(xy) = n(x)y = (yx)x̄ (Kirmse Identity),

(6) x2 − t(x)x+ n(x)1 = 0 (Degree–2 Identity).

Every alternative algebra with central involution and no nil ideals of index
2 (i.e., ideals where every element z satisfies z2 = 0) is a composition algebra
with standard involution x̄ = t(x)1− x over its ∗-center.
proof. Note that since x + x̄ ∈ Cent (D) ⊆ Nuc(D), we can remove a

bar anywhere in an associator for the price of a minus sign; e.g., [a, b, x̄] =
−[a, b, x]. For Bar Invariance (1), the involution trivially leaves the trace in-
variant, t(x̄) = t(x), and it also leaves the norm invariant: n(x̄) = x̄x =
(t(x)−x)x = t(x)x−x2 = x(t(x)−x) = xx̄ = n(x). Along the way we estab-
lished the Degree–2 Identity (6). The linearization of the norm is a twist of
the trace bilinear form: n(x, ȳ) = xȳ+ ȳx̄ = xy+xy [since bar is an involution]
= t(xy) [by definition]. Trace Commutativity (2) then follows from symmetry,
n(x, ȳ) = n(x̄, ȳ) [by bar-invariance (1) of the norm] = n(x̄, y).
For Trace Associativity (3), associators [x, y, z] are skew because [x, y, z]

= −[z̄, ȳ, x̄] [by the involution] = +[z, y, x] [removing three bars] = −[x, y, z]
[by alternativity], so 0 = t([x, y, z]) = t((xy)z)− t(x(yz)).
From Artin’s Theorem 21.2 we know that x, y, x̄, ȳ all lie in a unital asso-

ciative subalgebra B generated by two elements x, y over the ∗-center. Inside
the associative subalgebra B, the calculations for norm composition (4) and
Kirmse (5) are trivial (compare the blood, sweat, and tears of Exercise 21.2.2
below using only alternativity!): n(xy)1 = (xy)(xy) = (xy)(ȳ x̄) = x(yȳ)x̄ =
x(n(y)1)x̄ = n(y)xx̄ = n(y)n(x)1 = n(x)n(y)1 and n(x)y = (x̄x)y = x̄(xy),
dually on the right.
Finally, we check that absence of ideals nil of index 2 guarantees that n

is nondegenerate. The radical of n is an ideal: it is clearly a Φ-submodule
by definition of quadratic form, and it is a left (dually right) ideal because
linearizing x �→ x, 1, y �→ y, z in n(xy) = n(x)n(y) gives n(xy, z)+n(xz, y) =
t(x)n(y, z), hence for radical z we see that n(xz, y) = 0 and xz ∈ Rad(n). Its
elements z all have t(z) = n(z, 1) = 0, n(z) = 1

2n(z, z) = 0 and so square to 0
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by the Degree–2 Identity (6). If there are no nil ideals of index 2 then radical
Rad(n) vanishes, and n is nondegenerate permitting composition, so we have
a composition algebra. �

Exercise 21.2.2* Establish Norm Composition and the Kirmse Identity in the Cen-
tral Involution Theorem (4), (5) without invoking Artin’s Theorem, expanding

(
n(xy) −

n(x)n(y)
)
1 for norm composition and n(x)y − x̄(xy) for Kirmse.

In studying the octonions and the eight-square problem, J. Kirmse in
1924 considered linear ∗-algebras satisfying x∗(xy) = n(x)y = (yx)x∗ for
a quadratic form n. In 1930 Artin and his student Max Zorn (he of the fa-
mous lemma) dropped the involution condition and invented the category of
alternative algebras.

21.3 Herstein–Kleinfeld–Osborn Theorem

Now we have enough information about alternative algebras to embark on a
proof of our main result.

Herstein–Kleinfeld–Osborn Theorem 21.3.1 A nondegenerate alterna-
tive ∗-algebra has all its hermitian elements invertible and nuclear iff it is
isomorphic to one of the following :
Noncommutative Exchange Type: the exchange algebra Ex(∆) of a

noncommutative associative division algebra ∆;
Division Type: an associative division ∗-algebra ∆ with non-central in-

volution;
Composition Type: a composition ∗-algebra of dimension 1, 2, 4, or 8

over a field Ω (with central standard involution) : the ground field (unarion),
a quadratic extension (binarion), a quaternion algebra, or an octonion algebra.

In particular, the algebra is automatically ∗-simple, and is associative unless
it is an octonion algebra. We can list the possibilities in another way : the
algebra is one of
Exchange Type′: the direct sum ∆ �∆op of an associative division al-

gebra ∆ and its opposite, under the exchange involution;
Division Type′: an associative division algebra ∆ with involution:
Split Quaternion Type′: a split quaternion algebra of dimension 4 over

its center Ω with standard involution; equivalently, 2 × 2 matrices M2(Ω)
under the symplectic involution xsp := sxtrs−1 for symplectic s :=

(
0 1−1 0

)
;

Octonion Type′: an octonion algebra O of dimension 8 over its center
Ω with standard involution.

proof. We will break the proof into bite-sized steps, each one of some
intrinsic interest.
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Step 1: Reduction to the ∗-simple case
We claim that D is AUTOMATICALLY ∗-simple:1 a proper ∗-ideal I  D
would consist entirely of trivial elements, so by nondegeneracy no such ideal
exists. Indeed, I  = D contains no invertible elements, hence no nonzero her-
mitian elements; yet for z ∈ I, x ∈ D the elements z + z̄, zz̄, xz + z̄x̄ are
hermitian and still in I, so they vanish: I is skew [z̄ = −z], nil [z2 = −zz̄ = 0],
and ∗-commutes with D [xz = zx̄]. But then all z ∈ I are trivial: z(xz) =
z(zx̄) = z2x̄ [using alternativity] = 0. FROM NOW ONWE ASSUME THAT
D IS ∗-SIMPLE.

Step 2: Reduction to the simple case

We can easily take care of the case where D is ∗-simple but NOT simple: this
is exactly Exchange Type by the general ∗-Simple Theorem 1.5.4 for ∗-simple
linear algebras (alternative or not). We may assume that ∆ is noncommutative
in Exchange Type, since if ∆ = Ω is a field then ∆�∆op = Ω�Ωop is merely
a split 2-dimensional binarion algebra over its ∗-center Ω(1 � 1), and can be
included under Composition Type. FROM NOW ON WE ASSUME THAT
D IS SIMPLE.

Step 3: Reduction to the case of non-central H
Next we take care of the case of a central involution where the hermitian ele-
ments all lie in the center (hence in the ∗-center): this is exactly Composition
Type. Indeed, by simplicity D contains no ideals nil of index 2, so by the
Central Involution Theorem 21.2.2,

(3.1) If D has central involution, it is a composition algebra
over its ∗-center with standard involution.

By Hurwitz’s Theorem 2.6.2 we know that the composition algebras are of
dimension 1, 2, 4, or 8. FROM NOW ON WE ASSUME THAT THE HER-
MITIAN ELEMENTS ARE NOT CENTRAL.

Step 4: Reduction to the associative, hermitian-generated case

Since hermitian elements are nuclear by hypothesis, they are central as soon
as they commute with D, so by our non-centrality assumption we must have
[H,D]  = 0. We will go part way towards establishing Division Type by show-
ing that D is associative and hermitian-generated:

(4.1) if D is simple with [H,D]  = 0, then D = 〈H〉 is associative
and hermitian-generated.

Let B ⊆ N denote the subalgebra generated by H. Note that if x̄ = εx, ȳ =
δy, then [x, y] = [ȳ, x̄] = −[x̄, ȳ] = −εδ[x, y], so if we denote the skew elements

1 We want to classify only simple algebras with capacity, so we could have assumed from
the start that D is ∗-simple. Instead, we have shown that nondegeneracy implies ∗-simplicity
in coordinates where hermitians are invertible, analogous to the Simple Capacity Theorem
20.2.4 that connection implies simplicity in Jordan algebras with capacity.
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under the involution by S, we have [H,H] ⊆ S, [H,S] ⊆ H. We automatically
have [H,H] ⊆ B since B is a subalgebra, and [H,S] ⊆ H ⊆ B, so [H,D] ⊆ B;
thus commutation by D maps H into B, hence maps the nuclear subalgebra
B generated by H back into B, and B itself is invariant under commutation:

(4.2) [B,D] ⊆ B.
Thus B satisfies the hypotheses (5) of Alternative Nucleus 21.2.1, so by (5b)
we will have D = B = N associative if there is an invertible B-commutator
b ∈ [B,B]. We now exhibit such a b.
By non-centrality 0  = [H,D] = [H,S +H], so either (Case 1) [H,S]  = 0,

or (Case 2) [H,S] = 0 but [H,H]  = 0. In Case 1, some b = [h, s] is a
nonzero hermitian element (hence by hypothesis invertible), which is also
a B-commutator because we have bs = [h, s]s ∈ [B, s]s ⊆ B using 1

2 with
Alternative Nucleus (5a), so s = b−1(bs) [by nuclearity of b ∈ H] ∈ b−1B ⊆ B
[since b−1 ∈ H ⊆ B] and b = [h, s] ∈ [B,B].
In Case 2, 0  = [H,H] contains a nonzero B-commutator b ∈ [H,H] ⊆

[B,B] ∩ S, which we claim is invertible in D because it lies in the center of
D, which is a field by simplicity of D. To see centrality, [b,H] ⊆ [S,H] = 0
by hypothesis in Case 2, and [b,S] ⊆ [[H,H],S] = [[H,S],H] + [H, [H,S]]
[by Jacobi’s Identity and nuclearity of H] = 0 by our hypothesis again, so b
commutes with S +H = D and therefore is central.
Thus we have exhibited our invertible B-commutator b, so by Alternative

Nucleus D = B = N is associative and hermitian-generated as claimed in
(4.1). FROM NOW ON ASSUME THAT D IS SIMPLE, ASSOCIATIVE,
HERMITIAN-GENERATED, WITH NON-CENTRAL INVOLUTION.

Step 5: Reduction to the division algebra case

Let Z be the set of non-invertible elements. We want these rowdy elements
to vanish, so that everybody but 0 is invertible and we have an associative
division algebra with non-central involution as in Division Type. We know
that Z misses the hermitian elements, H ∩ Z = 0, since nonzero hermitian
elements are invertible; we want to show that it kills hermitian elements in
the sense that

(5.1) z ∈ Z =⇒ zHz̄ = z̄Hz = 0.

To see this, remember that in H each element must be invertible or die, and
if 0  = z ∈ Z then zz̄, z̄z ∈ H can’t both be invertible [zz̄a = 1 = bz̄z ⇒ z
has right, left inverses ⇒ z is invertible, contrary to z ∈ Z], and as soon as
one dies the other does too [if zz̄ = 0 then z̄z kills z  = 0, z(z̄z) = (zz̄)z =
0z = 0, is thereby barred from invertibility, and so is condemned to die]. Once
z̄z = zz̄ = 0 the hermitian elements zhz̄, z̄hz ∈ H both kill z  = 0 [by(zhz̄)z =
z(z̄hz) = 0] and likewise join their comrades in death, establishing (5.1).
We claim that once z has tasted the blood of hermitian elements it will

go on to kill all elements,
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(5.2) z ∈ Z =⇒ zDz̄ = 0.

For d ∈ D the element w := zdz̄ is skew, w̄ = zd̄z̄ = z(d+ d̄)z̄−zdz̄ = 0−w by
(5.1), and for h ∈ H the commutator h′ = [h,w] ∈ [H,S] ⊆ H is not invertible
because it kills z, h′z = [h(zdz̄)− (zdz̄)h]z = hzd(z̄z)− zd(z̄hz) = 0 by (5.1).
Therefore h′ is condemned to death, and h′ = 0 means that w commutes with
H. BECAUSE D IS HERMITIAN-GENERATED this implies that w lies in
the center, yet is nilpotent since w2 = zd(z̄z)dz̄ = 0 by (5.1). The center is a
field, so like H its elements must invert or die; therefore, each w = zdz̄ must
die, establishing (5.2). But in any simple (even prime) associative algebra
xDy = 0 implies that x = 0 or y = 0 [if x, y  = 0 then the three nonzero
ideals Ix := D̂xD̂,D, Iy := D̂yD̂ have zero product IxDIy = 0], so we see that
z = 0. Thus Z = 0, and we return to a tranquil life in a division algebra with
non-central involution.

Step 6: Converse

For the converse, clearly Exchange, Division, and Composition Types are
nondegenerate, and they have invertible hermitian elements in the nucleus:
the hermitians in Exchange Type are all δ ⊕ δ which are thus isomorphic to
∆+, in Division Type they are in ∆+, and in Composition Type they are
equal to Ω, so in all cases are invertible and nuclear.

Step 7: Alternate List

Finally, we check the alternate list, where we divvy up the algebras of Com-
position Type and parcel them among the other Types. The composition
algebras of dimension 1 and the non-split ones of dimension 2 and 4 are as-
sociative division algebras and so go into Division Type′ (where of course we
now drop the assumption of non-central involution). A split composition al-
gebra of dimension 2 is just Ω⊕Ωop, so it can be included in Exchange Type′

(where of course we must drop the assumption of noncommutativity). A split
composition algebra of dimension 4 is a split quaternion algebra, isomorphic
to M2(Ω), and the standard involution corresponds to the involution on ma-
trix units given by E∗

ii = Ejj , E∗
ij = −Eij (i = 1, 2, j = 3 − i), which is just

the symplectic involution xsp = sxtrs−1. This particular situation gets its
own Split Quaternion Type′. The lone nonassociative algebra, the octonion
algebra of dimension 8 (split or not), gets its own Octonion Type′. �

In the Hermitian Coordinatization of Chapter 12 a large role was played
by the fact that the coordinate algebra was hermitian-generated (generated
as an associative algebra by its hermitian elements). The above proof can
be modified (cf. Problem 21.1 below) to show that every division algebra
with non-central involution is automatically hermitian-generated, so that the
crucial issue is whether the involution is central or not.
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21.4 Problems for Chapter 21

Problem 21.1* Establish the Hermitian Generation Theorem: In the
Herstein–Kleinfeld–Osborn Theorem, every ∗-algebra D of Exchange or Divi-
sion Type is hermitian-generated, and an algebra D of Composition Type is
hermitian-generated iff D has dimension 1.
(I) Show that D = Ex(∆) for an associative division algebra ∆ is

hermitian-generated iff the involution is non-central iff ∆ is noncommuta-
tive. (1) Show that the center of any D = Ex(B) is Ω�Ω for Ω the center of
B, and the exchange involution is central, i.e., H = {(b, b) | b ∈ B} lies in the
center, iff B = Ω is commutative. Conclude that the involution is noncentral
iff B is noncommutative. (2) If B is commutative show that H = {(b, b)} does
not generate all of D, only itself. (3) Show that if B = ∆ is noncommutative,
then D = Ex(∆) is hermitian-generated. (4) Conclude that D = Ex(∆) is
hermitian-generated iff ∆ is noncommutative.
(II) Show that if D = ∆ is an associative division algebra with involu-

tion, then D is hermitian-generated iff the involution is either trivial (so ∆ is
commutative) or non-central (so ∆ is noncommutative).
(III) Show that a simple D with central involution is hermitian-generated

iff D = Ω has trivial involution (hence is a composition algebra of dimension
1).

Our proof of the Herstein–Kleinfeld–Osborn Theorem 21.5 is “slick,” but a
more leisurely proof may put it in a broader perspective.

Problem 21.2* Show that (3.1) in Step 3 of HKO works for ∗-simple D
(even for ∗-semiprime D). (1) If D is alternative with central involution and
norm Q (Q(x)1 = xx̄), show that for z ∈ Rad(Q), x ∈ D we have z2 = 0,
z̄ = −z, zx = x̄z, zxz = 0. (2) For z ∈ Rad(Q) show that Z := zD = Dz is
a trivial ∗-ideal ZZ = 0. (3) Conclude that if D has no trivial ∗-ideals then
Rad(Q) = 0, and if D is ∗-simple then Q is nondegenerate over a field Ω.

Problem 21.3* Enlarge on (4.1) in Step 4 of HKO. Let A be any linear
algebra. (1) Use the Teichmüller Identity [xy, z, w] − [x, yz, w] + [x, y, zw] =
x[y, z, w] + [x, y, z]w to show that [A,A,A]Â = Â[A,A,A] =: A(A) forms an
ideal (the associator ideal generated by all associators [x, y, z]). (2) Show that
if A is simple, then either A(A) = A is “totally nonassociative,” or A(A) = 0
and A is associative. (3) Show that if A is totally nonassociative simple, then
no nuclear element n  = 0 can kill all associators n[A,A,A] = [A,A,A]n = 0.
(4) Conclude that if A is simple alternative but not associative, then [N ,N ] =
0. (5) If A is simple alternative with nuclear involution (H ⊆ N ), show that
either (i) A is associative, (ii) the involution is central ([H,D] = 0), or (iii)
[H,S]  = 0. Conclude that a simple alternative algebra with nuclear involution
either has central involution or is associative.

Problem 21.4* In (5.1) of Step 5 of HKO, let D be a unital associative
algebra. (1) Prove that you can’t be invertible if you kill someone (nonzero,
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i.e., who is not already dead, as pointed out by Hercule Poirot in Murder
on the Orient Express). Even more, if xy = 0, then not only x, but also
yx can’t be invertible. (2) Prove again that if an element has a right and a
left inverse, these coincide and are the unique two-sided inverse. Conclude
that the set Z of non-invertible elements is the union Z = Zr ∪ Z� for Zr

the elements with no right inverse and Z� the elements with no left inverse.
(3) Show that if an element has a right multiple which is right invertible,
then the element itself is right invertible (and dually for left). Conclude that
ZrD ⊆ Zr, DZ� ⊆ Z�. (4) Conclude that if an element has an invertible right
multiple and an invertible left multiple, then it is itself invertible. (5) When
H = H(D,−) is a division algebra, show that z ∈ Z ⇒ zz̄ = z̄z = 0. Use
this to show that zHz̄ = 0. (6) Show that in any prime algebra (one with no
orthogonal ideals), xDy = 0 ⇒ x = 0 or y = 0.

Problem 21.5 In (5.1) of HKO, reveal the Peirce decomposition lurking
behind Step 5. Assume that the set of non-invertible elements is Z  = 0. (1)
Show that Z = {z | zz̄ = 0} = {z | z̄z = 0} has 0 < Z < D. (2) Show
that Z is invariant under multiplications from D (in particular, from Φ),
but Z cannot by simplicity be an ideal, so it must fail the only other ideal
criterion: Z + Z  ⊆ Z. Conclude that there exist non-invertible zi ∈ Z with
z1+ z2 = u invertible. (3) Show that ei = ziu

−1 are conjugate supplementary
orthogonal idempotents. (4) Show that the off-diagonal Peirce spaces Dij =
eiDej = eiDei are skew, and H(D,−) = {aii + aii | aii ∈ Dii} commutes
with I = D12D21 + D12 + D21 + D21D12. (5) Show that I < D is the ideal
generated by the off-diagonal Peirce spaces, so I = 0 by simplicity; but then
D = D11 ⊕D22 contradicts simplicity too, a contradiction.

Problem 21.6* Show that unital alternative algebras have a well-defined
notion of inverse. (1) If the element x has y with xy = yx = 1, show that
y := x−1 is unique, and that Lx−1 = (Lx)−1, Rx−1 = (Rx)−1. (2) Conclude
(cf. 21.2.1(5b)) that bD ⊆ B =⇒ D ⊆ b−1B ⊆ B if b−1 belongs to the
subalgebra B. The Moufang identities for the U -operator Ux := LxRx allow
us to show that alternative inverses behave much like Jordan inverses. (3)
Show that x has an inverse⇐⇒ 1 ∈ Im(Lx)∩ Im(Rx) ⇐⇒ 1 ∈ Im(Ux) ⇐⇒
Ux invertible, in which case Ux−1 = U−1

x . (4) Show that x, y invertible =⇒
xy invertible =⇒ x has a right inverse, y has a left inverse. (5) Give an
associative example where xy is invertible but neither x nor y is. (6) Show
that xy, zx invertible =⇒ x invertible. (7) Prove the Fundamental Formulas
Uxy = LxUyRx = RyUxLy, Uxyx = UxUyUx in alternative algebras, and use
them to re-establish (6) [use the inverse criterion (3)].

Problem 21.7 (1) Show that for any invertible elements u, v in a unital
alternative algebra the product x ·u,v y = (xu)(vy) gives a new alternative
algebra A(u,v), the elemental isotope, with unit v−1u−1. (2) Show that in
a composition algebra with norm Q, the isotope determined by invertible
elements u, v is again a composition algebra with norm Q(u,v) = Q(u)Q(v)Q.
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(3) IfA is associative, show thatA(u,v) = A(uv) is the usual associative isotope
A(w) : x ·w y = xwy.

Problem 21.8 (1) Show [x, yz] = [x, y]z+y[x, z]− [x, y, z]+[y, x, z]− [y, z, x]
in any linear algebra A; conclude that adx : y �→ [x, y] is a derivation of
A for any nuclear element x. (2) In an alternative algebra show adx is a
derivation iff 3x ∈ Nuc(A) is nuclear, in particular adx is always a derivation
in alternative algebras of characteristic 3, and in algebras without 3-torsion
adx is only a derivation for nuclear x. (3) Show adx is a derivation of Jor-
dan structure A+ for any alternative algebra: [x, y2] = {y, [x, y]}, [x, yzy] =
y[x, z]y+ {y, z, [x, y]} (where {x, y, z} := x(yz)+ z(yx) = (xy)z+(zy)x is the
linearization of xyx).

Problem 21.9 In coordinatizing projective planes, an important role is
played by isotopy. An isotopy of a linear algebrasA→ A′ is a triple (T1, T2, T3)
of invertible linear transformations A→ A′ with T1(x · y) = T2(x) ·′ T3(y) for
all x, y ∈ A. (1) Show that the composition of two isotopies A → A′ → A′′

is again an isotopy, as is the inverse of any isotopy, and the identity isotopy
(1A, 1A, 1A) is always an autotopy (= self-isotopy) of A. (2) Show that if A
is unital then necessarily T2 = R−1

T3(1)
T1, T3 = L−1

T2(1)
T1, so the isotopy takes

the form T1(xy) = R−1
T3(1)

(T1(x)) ·′ L−1
T2(1)

(T1(y)). (3) In a unital alterna-
tive algebra (satisfying the left and right inverse properties M−1

x = Mx−1

for M = L,R), show that isotopies are precisely the maps T satisfying
T (xy) =

(
T (x)u

)(
vT (y)

)
for some invertible u, v and all x, y. (4) Show that

the isotopies (T1, T2, T3) of unital alternative algebras are in 1-to-1 correspon-
dence with the isomorphisms T : A→ (A′)(u

′,v′) onto elemental isotopes. (5)
Use the Moufang identities to show that for an invertible element u of an
alternative algebra the triples (Uu, Lu, Ru), (Lu, Uu, L

−1
u ), (Ru, R

−1
u , Uu) are

autotopies. (6) Establish the Principle of Triality: if (T1, T2, T3) is an auto-
topy of a unital alternative algebra A, then so are (T2, R

−1
u2

T2, Uu2T3) and
(T3, Uu3T2, L

−1
u3

T3) for u2 := T3(1)−1, u3 := T2(1)−1.

Question 21.1 (1) Does the Fundamental Formula UUxy = UxUyUx hold
for the operator Ux := LxRx in all alternative algebras? In all left alternative
algebras? (2) Does an alternative algebra A become a Jordan algebra A+ via
x • y := 1

2 (xy + yx)? Does this hold for left or right alternative algebras? (3)
Does a unital alternative algebra become a Jordan algebra A+ via Uxy :=
x(yx)? Does this work for left or right alternative algebras? Are the resulting
algebras ever special?
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Osborn’s Capacity 2 Theorem

The hardest case in the classification is the case of capacity two; once we get
to capacity three or more we have a uniform answer, due to the Jacobson
Coordinatization Theorem. For capacity two we have two coordinatization
theorems, and the hard part will be proving that at least one of them is
applicable.1

22.1 Commutators

Zel’manov has shown us that commutators [x, y], despite the fact that they
don’t exist, are crucial ingredients of Jordan theory. While they don’t exist in
a Jordan algebra itself, they lead an ethereal existence lurking at the fringe
of the Jordan algebra, just waiting to manifest themselves. They do leave
footprints: double commutators, squares of commutators, and U -operators of
commutators do exist within the Jordan algebra. In associative algebras we
have

[[x, y], z] = (xy − yx)z − z(xy − yx) = (xyz + zyx)− (yxz + zxy)

[x, y]2 = (xy − yx)2 = (xy + yx)2 − 2(xyyx+ yxxy)
[x, y]z[x, y] = (xy + yx)z(xy + yx)− 2(xyzyx+ yxzxy),

[[x, y]3, z] =
[
[x, y],

[
[x, y], [[x, y], z]

]]
+ 3

[
[x, y], [x, y]z[x, y]

]
.

Since each of these right-hand expressions can be formulated in Jordan terms
which make sense in any Jordan algebra, we are motivated to make the follow-
ing definition. (Note that the expression [x, y] does not make Jordan sense by
itself, so these “commutator products” cannot be regarded as true products.)

1 cf. I.6.6.
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Commutator Definition 22.1.1 In any Jordan algebra we introduce the
following mnemonic shorthands:

[[x, y], z] := (Vx,y − Vy,x) z =: Dx,y(z), (Double Commutator),

[x, y]2 := {x, y}2 − 2(Ux(y2) + Uy(x2)
)

(Commutator Square),

U[x,y]z :=
(
U{x,y} − 2{Ux, Uy}

)
z (U Commutator),

[[x, y]3, z] :=
(
D3

x,y + 3Dx,yU[x,y]
)
z (Commutator Cube).

Note that the usual inner derivation Dx,y := Vx,y−Vy,x determined by x and y
agrees with [Vx, Vy] by Macdonald’s Principle; it is a manifestation of Ad[x,y]
(where the ghostly [x, y] itself becomes visible only in associative envelopes of
special Jordan algebras).

By our calculation above, in special Jordan algebras these fictitious Jordan
commutators reduce to products of actual associative commutators.

Exercise 22.1.1A (1) Show that we have an alternate expression [x, y]2 = {x, Uyx} −
Uxy2 − Uyx2 for Square Commutator. (2) Show that we have operator identities Wx,y :=
U2
x,y −Ux2,y2 = Vx,yVy,x−VUxy2 = VxUyVx−UUxy,y in any Jordan algebra; show that in

special algebras this operator acting on z reduces to the “pentad” {x, y, z, x, y}. (3) Show
that we have the alternate expression U[x,y] = Wx,y − UxUy − UyUx for U Commutator.
(4) Show that in any Jordan algebra U[x,y]1 = [x, y]2.

Exercise 22.1.1B* (1) If e is an idempotent in a Jordan algebra and a2, b2 ∈ J2, x1 ∈ J1,
show that we have q0([[a2, b2], x1], y1) = −q0(x1, [[a2, b2], y1]). (2) Conclude that we have
q0([[a2, b2], x1]) = −Ux1 [a2, b2]2. (3) Show that q2([[a2, b2], x1], x1) = [[a2, b2], q2(x1)] two
different ways: firstly, use q-Composition Rules 9.2.2(3) twice and subtract, and secondly,
note that D = Da2,b2 is a derivation with D(e0) = 0, so apply it to q2(x1). (4) Show that
q2([[a2, b2], x1]) = U[a2,b2]q2(x1).

Throughout the rest of the chapter we will be working with a connection
involution x̄ determined by a strong connecting element as in the Connection
Involution Lemma 10.1.3(1). Our proof of Osborn’s Theorem will frequently
depend on whether the elements at issue are skew or symmetric, and it will
be convenient to introduce some notation for these.

Skewtrace Definition 22.1.2 (1) Let e2 be an idempotent in a Jordan algebra
strongly connected to e0 via v1 ∈ J1, with connection involution x �→ x̄ :=
Uv(x). We define the trace and skewtrace (pronounced tur and skewtur) of
an element x by

Tr(x) := x+ x̄, Sktr(x) := x− x̄

We depart from our standard notation t(x) = x+x∗ for traces of an arbitrary
involution (cf. Morphism Definition 1.5.1), using capital letters to carefully
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distinguish between traces of the “global” involution on J and those of the
“local” involution ρ on the coordinate algebra D of J which will be induced by
Hermitian Coordinatization.
Because we have the luxury of a scalar 1

2 , our module decomposes into
symmetric and skew submodules with respect to the involution: every symmet-
ric element is a trace, every skew element is a skewtrace, and every element
x = 1

2

(
(x+x̄)+(x−x̄)

)
= 1

2Tr(x)+
1
2Sktr(x) can be represented as the average

of its symmetric and skew parts.
(2) We will also save ourselves a lot of V ’s and subscripts by using the

notation of the Peirce specializations 9.1.1, σ(ai) = Vai |J1 of J2 + J0 on J1
for an idempotent e, and define corresponding action of skewtraces

σκ(ai) := σ(ai − ai) = VSktr(ai)|J1 .

Peirce Commutator Lemma 22.1.3 If e2 is an idempotent in a Jordan
algebra strongly connected to e0 via v1 ∈ J1, with connection involution x �→ x̄,
then

σκ(a2)(v1) = 0, σκ(a2)(σ(b2)(v1)) = [[a2, b2], v1].

proof. The first holds because σ(a2)(v) = σ(a2)(v) by the Connec-
tion Fixed Points 10.1.3(3). Then the second results from σκ(a2)σ(b2)(v) =
[σκ(a2), σ(b2)](v) [by the first part] = [σ(a2), σ(b2)](v) [since σ(a2) ∈ σ(J0)
commutes with σ(b2) by Peirce Associativity 9.1.3] = [[a2, b2], v] [by the Peirce
Specialization Rules 9.1.1]. �

One suspects that commutators will help future generations understand
the classical structure theory in a new light. For example, the Spin Peirce
Relation 11.1.2 can be formulated as [[e, y1], [e, x1]2] = 0, and we have
U[[a2,b2],x1] = U[a2,b2]Ux1 on J0, q2 ([[a2, b2], x1])) = U[a2,b2]q2(x1). If u is an
involution in J, the involution U = Uu on J has the form U(x) = x− 1

2 [[x, u], u]
(so in some sense it equals 1 − 1

2Ad2
u).

As another example, commutators provide clear examples of s-identities. I
once blithely took it for granted that U[x,y], like any self-respecting U -operator,
belonged to the structure semigroup: UU[x,y]z − U[x,y]UzU[x,y]. Armin Thedy,
coming from right alternative algebras, showed that this is not an identity
for all Jordan algebras, indeed T11(x, y, z) := UU[x,y]z − U[x,y]UzU[x,y] is an
operator s-identity separating special from exceptional Jordan algebras. As
this book went to press, Ivan Shestakov gave a lovely commutator-version of
Glennie’s identities G8 and G9, namely that [[x, y]3, z] is a derivation. The
derivation rule [[x, y]3, z2] = {z, [[x, y]3, z]} for squares is just G8, and the
derivation rule for cubes [[x, y]3, z3] = {z2, [[x, y]3, z]} + Uz[[x, y]3, z] is just
G9. This makes it crystal clear that G8 implies G9: from the square we get the
bullet product, and hence j(x, y, ·) is a derivation on any auxiliary product,
for example we have another s-identity [[x, y]3, Uzw] = {z, w, [[x, y]3, z]} +
Uz[[x, y]3, w].
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Exercise 22.1.3A Justify the above remark about commutators. (1) Show the Spin Peirce
Relation 11.1.2 can be formulated as [[e, y], [e, x]2] = 0 for all x, y ∈ J1(e), and (2)
U[[a2,b2],x1] = U[a2,b2]Ux1 on J0, q2([[a2, b2], x1])) = U[a2,b2] (q2(x1)). (3) An alternate
proof of (2) uses the fact (easily seen from Macdonald’s Principle) that D = Da2,b2 is
a derivation, so D (q2(x1)) = D (Ux1e0) =

(
UD(x1),x1 + Ux1D

)
e0 = q2(D(x1), x1) since

D(J1) ⊆ J1 and D(J0) = 0. (4) If u is an involution in J, show that the involution U = Uu

on J has the form U(x) = x− 1
2 [[x, u], u], so that in some sense U = 1− 1

2Ad(u)2. (5) If e2
is strongly connected to e0 by v1 with connection involution , mimic the proof in 22.1.3
to show that VSktr(a2)([[b2, c2], v1]) = 2[a2, [b2, c2]] • v1.

Exercise 22.1.3B (1) Show that T10(x, y, z) = UU[x,y]z − U[x,y]UzU[x,y] = 2Kx,y,z

collapses entirely in characteristic 2 (K = 1
2T10(x, y, z) survives as an s-identity, but

an unlovely one). (2) Show that, for any derivation D, D3(ab) − D3(a)b − aD3(b) =
3f(a, b,D(a), D(b)); conclude that X8(x, y, z) = [[x, y]3, z2] − {z, [[x, y]3, z]} = 3F (x, y, z)
collapses entirely in characteristic 3 (F = 1

3X8(x, y, z) survives as an s-identity, but again
an unlovely one).

22.2 Capacity Two

Recall that an algebra has capacity two if it has unit the sum of two supple-
mentary division idempotents (i.e., the diagonal Peirce spaces Ji are division
algebras), and is nondegenerate if it has no trivial elements Uz = 0.

Osborn’s Capacity Two Theorem 22.2.1 A Jordan algebra is simple
nondegenerate of capacity 2 iff it is isomorphic to one of :
Full 2 × 2 Type: M2(∆)+ ∼= H2(Ex(∆), ex) for a noncommutative

associative division algebra ∆;
Hermitian 2× 2 Type: H2(∆,Γ) for an associative division algebra ∆

with non-central involution;
Reduced Spin Type: RedSpin(q) for a nondegenerate quadratic form q

over a field Ω.

proof. This will be another long proof, divided into a series of short steps.

Step 1: Reduction to the strong case

By Creating Involutions Proposition 10.2.2 some diagonal isotope J̃ = J(u)

has strong capacity 2 (the diagonal Peirce spaces J̃i = J
(ui)
i are still division

algebras), and J ∼= J̃
(ũ)

is a diagonal isotope of J̃. If we can prove that J̃
is of one of the three Types (with Γ = 1 in the second Type), then so is

J = J̃
(ũ)
: any diagonal isotope of RedSpin(q) is reduced spin by Quadratic

Factor Isotopes Example 7.3.1(2); any isotope (A+)(u) = (Au)
+ ∼= A+ of a

full M2(D)+ = A+ is isomorphic to M2(D)+; and any diagonal isotope of
H2(D,−) is H2(D,Γ) by Twisted Matrix Example 7.5.3(3).
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FROM NOW ON WE ASSUME THAT J HAS STRONG CAPACITY 2:
let 1 = e2+ e0 for Ji division idempotents strongly connected by v = v1 ∈ J1,
let x̄ = Uv(x) be the connection involution, and let D ⊆ End(J1) be the
subalgebra generated by σ(J2). We claim that the following five properties
hold:
(1.1) J1 = H1 ⊕ S1 = Tr(J1)⊕ Sktr(J1) for H1 := {x ∈ J1 | x̄ = x},

S1 := {x ∈ J1 | x̄ = −x};
(1.2) x+ x̄ = σ(ti(x))v (x ∈ J1, ti(x) := qi(x, v), i = 2, 0);

(1.3) H1 = σ(J2)v : σ(a2)v = σ(a2)v = σ(a2)v;

(1.4) S1 = {x ∈ J1 | t2(x) = 0} = {x ∈ J1 | t0(x) = 0};
(1.5) H1 is a “division triple”: all h1  = 0 are invertible in J.

Indeed, the decomposition (1.1) follows from the Skewtrace Definition 22.1.2.
(1.2)–(1.3) follow from the Connection Involution Lemma 10.1.3(2)–(3). For
(1.4), S1 consists by (1.2) of elements with σ(ti(x)) = 0, which is equivalent
to ti(x) = 0 by Peirce Injectivity 9.1.2(1) [from injectivity of Uv1 ]. For (1.5),
if h1 = σ(a2)v weren’t invertible then by the Off-Diagonal Non-Invertibility
Criterion 20.2.1 we would have 0 = q2(h1) = q2({a2, v}) = Ua2q2(v) [by the
q-Composition Rules 9.2.2(3)] = a2

2, which forces a2 to vanish in the division
algebra J2, hence h1 = σ(a2)v = 0 too.

Step 2: The case where diagonal skewtraces kill J1

We come to the First Dichotomy, the first branching in our family tree, where
the spin factors diverge from the main line. The decision whether the algebra
is a spin factor or not hinges on whether diagonal skewtraces vanish identically
on the off-diagonal space. We will show that the diagonal skewtraces kill J1
precisely when J is of Reduced Spin Type.
The Spin Peirce Relation 11.1.2 for norms is equivalent to the Spin Bar

Relation 11.2.3(1), which can be reformulated as (a2 − a2) • J1 = 0, or in
terms of diagonal skewtraces σκ(J2)J1 = 0. When this vanishes identically,
then by the Strong Spin Coordinatization Theorem 11.3.1 J ∼= RedSpin(q) over
Ω = Ω+ ∼= J+

2 . Then Ω is a field because it is commutative and J2 is a Jordan
division algebra. Here RedSpin(q) is nondegenerate iff q is a nondegenerate
quadratic form by Factor Nondegeneracy 5.3.6(3), and we have Reduced Spin
Type.
FROM NOWONWE ASSUME THAT DIAGONAL SKEWTRACES DO

NOT ALL KILL J1, so in the notation of Skewtrace Definition 22.1.2(2)

(2.1) σκ(J2)J1  = 0.

Step 3: The case where diagonal skewtraces kill S1 but not J1

By (1.1) and assumption (2.1), σκ(J2)H1⊕σκ(J2)S1 = σκ(J2)J1  = 0, so one
of the two pieces must fail to vanish. In principle there is a branching into the
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case where skewtraces kill S1 but not H1, and the case where they do not kill
S1. We will show that the first branch withers away and dies.
We begin by showing that σκ(J2)S1 = 0 leads to D-invariance and q0-

orthogonality of S1,Dv:

(3.1) σκ(J2)S1 = 0 =⇒ D(S1) ⊆ S1, q0(S1,Dv) = 0.

Invariance holds because the generators σ(a2) of D leave S1 invariant,

σ(a2)s1 = σ(a2)s1 = −σ(a2)s1 = −σ(a2)s1

by the skewtrace assumption. Orthogonality holds because q0(S1,Dv) =
q0(DS1, v) [by repeated use of U1q Rules 9.2.2(2)] = t0(DS1) ⊆ t0(S1) [by
invariance] = 0 [by (1.3)]. Thus (3.1) holds.
From this we can show that if skewtraces die on S1, then on H1 they

shrink into the radical:

(3.2) σκ(J2)S1 = 0 =⇒ σκ(J2)H1 ⊆ Rad(q0).
Indeed, any such value z1 = σκ(a2)h1 = σ(a2 − a2)σ(b2)v [by (1.3)] =
[[a2, b2], v] ∈ Dv [by Peirce Commutator 22.1.3] is skew because skewtraces
are skew and h is symmetric: z1 = σ(a2 − a2)h1 = −z1. Thus z1 ∈ S1 ∩Dv is
q0-orthogonal by (3.1) to both to S1 and to H1 ⊆ Dv [by (1.3)], hence to all
of J1, and we have q0-radicality q0(z1,J1) = 0. This establishes (3.2).
But J is nondegenerate, so q0 is too by q-Nondegeneracy 9.2.3(2), there-

fore (3.2) implies that σκ(J2)H1 = 0 and skewtraces kill H1 too. Thus if
skewtraces killed the skew part, they would be forced to kill the symmetric
part as well, hence all of J1 = H1 + S1 [by (1.1)], which is forbidden by (2.1)
above. This allows us to ASSUME FROM NOW ON THAT DIAGONAL
SKEWTRACES DO NOT KILL S1,

(3.3) σκ(J2)S1  = 0.

Step 4: The case where diagonal skewtraces do not all kill S1

The final branching in the family tree, the Second Dichotomy, is where the
hermitian algebras of Full and Hermitian Types diverge. We claim that if
diagonal skewtraces fail to kill S1, σκ(J2)S1  = 0, then J is of hermitian type.
The crux of the matter is that each off-diagonal skew element s1 ∈ S1 faces
a Zariski dichotomy: it must either live invertibly in D(v) or be killed by all
diagonal skewtraces,

(4.1) σκ(J2)s1  = 0 =⇒ s1 ∈ D(v) is invertible in J.
Indeed, by hypothesis (3.3) some h := σκ(a2)s  = 0. Now this h is symmet-
ric because s and Sktr(a2) are both skew, so by (1.5) it is invertible. We
can use this to show that s itself is invertible: if s were not invertible, then
for the diagonal b = Sktr(a2) ∈ J2 + J0 we would have Us(b), Us(b2), s2 ∈
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Us(J2 + J0) = 0 by the Off-Diagonal Non-Invertibility Criterion again, so
h2 = {b, s}2 = {b, Us(b)} + Us(b2) + Ub(s2) [by Macdonald’s Principle] = 0,
contradicting the invertibility of h.
Thus s and h are invertible in J. We will have to work harder to show that

s belongs to D(v) as in (4.1). Since s is invertible, we may set
d2 := Us−1(a2), s2 := q2(s), c2 := a2

2 − {a2, s2, d2}+ Ud2(s
2
2) ∈ J2,

d := σ(a2)− σ(s2)σ(d2), dρ := σ(a2)− σ(d2)σ(s2) ∈ D.

In these terms we claim that

(4.2) h = d(s), dρd = σ(c2).

The first holds because

h = σ(a2 − a2)s = σ(a2)s− Vs(a2) [by definition of h]
= σ(a2)(s)− VsUs(d2) [by definition of d2]
= σ(a2)(s)− Us2,s(d2) [by Commuting (FFII)]
= σ(a2)(s)− {q2(s), d2, s} [by Peirce Orthogonality 8.2.1]

=
(
σ(a2)− σ(s2)σ(d2)

)
(s) [by Peirce Specialization 9.1.1]

= d(s) [by definition of d, s2],

while for the second, as operators on J1 we have

dρd =
(
σ(a2)− σ(d2)σ(s2)

)(
σ(a2)− σ(s2)σ(d2)

)
[by definition of d]

= σ(a2)σ(a2)−
(
σ(a2)σ(s2)σ(d2) + σ(d2)σ(s2)σ(a2)

)
+ σ(d2)σ(s2)σ(s2)σ(d2)

= σ(a2
2 − {a2, s2, d2}+ Ud2(s

2
2)) [by Peirce Specialization Rules]

= σ(c2) [by definition of c2].

By invertibility of h and the Non-Invertibility Criterion again, we have 0  =
2q0(h) = q0(d(s), d(s)) = q0(dρd(s), s) [by the U1q Rules twice] = q0(σ(c2)s, s)
[by (4.2)], so the element c2 must be nonzero, therefore invertible in the divi-
sion algebra J2, hence from the formula σ(c2)(s) = dρd(s) = dρ(h) [by (4.2)]
we get an explicit expression

s = σ(c−1
2 )dρ(h) ∈ D(v),

since h ∈ H1 ⊆ D(v) [by (1.3)]. Thus s lies in D(v), completing the argument
for (4.1).
Applying a Zariski-density argument to the Zariski dichotomy (4.1) shows

that all skew elements make a common decision: if each s1 must submit to
being killed by all skewtraces or else live in D(v), then all S1 must submit
to being killed by skewtraces or else all must live together in D(v). Since by
hypothesis they aren’t all killed by skewtraces, they must all live in D(v):
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(4.3) S1 ⊆ D(v).
Indeed, by (3.3) there exists at least one resistant s ∈ S1 which refuses to
be killed by skewtraces, and he drags all submissive t’s into resistant s + t’s
[σκ(J2)t = 0 =⇒ σκ(J2)(s+ t)  = 0]; but all resisters live in D(v) by (4.1), so
even the submissive t’s must live there too: s, s+t ∈ D(v) =⇒ t = (s+t)−s ∈
D(v). Thus S1 ⊆ D(v).
By (4.3) all of S1 moves to D(v) to join H1 (which already lives there

by (1.3)), so we have all J1 ⊆ D(v). Once the Hermitian Peirce Condition
J1 = D(v) holds, the Strong 2×2 Hermitian Coordinatization Theorem 12.3.1
shows that J ∼= H2(D) with v ∼= 1[12] and D hermitian-generated. (2.1)
together with the Hermitian Matrix formulas 3.2.4 then imply the involution
is not central. Also, H2(D) ∼= J nondegenerate implies D nondegenerate by
Jordan Matrix Nondegeneracy 5.3.5, andH(D) ∼= J2 a Jordan division algebra
by capacity 2 implies that the hermitian H(D) are invertible in D. By the
Herstein–Kleinfeld–Osborn Theorem 21.3.1, either D = Ex(∆) of Full Type,
or D = ∆ of Hermitian Type, or else D is a composition algebra over its ∗-
center Ω, which is excluded because its standard involution is central, violating
(2.1).

Step 5: The converse

We have shown the hard part, that every simple J has one of the given types.
We now check conversely that these types are always simple and nondegen-
erate. Since they all have connected capacity 2, by Simple Capacity 20.2.4
we know that they will be simple as soon as they are nondegenerate. But
all types are nondegenerate: RedSpin(q) is nondegenerate iff q is by Factor
Nondegeneracy (3) again, H2(D,Γ) ∼= H2(D,−)(Γ) is nondegenerate since
isotopes inherit nondegeneracy (by Jordan Homotope 7.2.1(3)) and H2(D,−)
is nondegenerate by Jordan Matrix Nondegeneracy again.
Thus we have the simples, the whole simples, and nothing but the simples.

�

One way to measure the depth of a result is to count the number of previous
results that it depends on. I count 23 different numbered results from 11
chapters used in the above proof!

Exercise 22.2.1A Assume that e2 is strongly connected to e0 by v1. (1) Show that
V[[a2,b2],c2] = [[VSktr(a2), Vb2 ], VSktr(c2)] ∈ (DVSktr(J2)D

)2 on J1. (2) If σκ(J2)S1 = 0

(as in Step 3 of the above proof), show that [[J2, J2], J1] ⊆ S1 and [[J2, J2], J2] = 0.

Exercise 22.2.1B In Step 4 we called on Macdonald to certify the identity {x, y}2 =
{x, Uyx}+Uxy2 +Uyx2. (1) Verify that this does indeed hold in all special algebras, hence
in all Jordan algebras. (2) Less loftily, derive it by setting y �→ 1, z �→ y in (FFI′) acting on
1, using {x, Uyx} = {y, Uxy} from setting z �→ 1 in (FFIIIe).
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Classical Classification

The denouement, the final classification theorem, comes as an anticlimax,
since all the hard work has already been done. If we wish, we may treat this
section as an easy victory lap in celebration of our achievement.

23.1 Capacity n ≥ 3

There is a uniform pattern to all simple nondegenerate Jordan algebras of
capacity at least three: they are all matrix algebras.

Capacity ≥ 3 Theorem 23.1.1 A Jordan algebra is simple nondegenerate
of capacity n ≥ 3 iff it is a Jordan matrix algebra isomorphic to one of the
following :

Hn(Ex(∆), ex) ∼=Mn(∆)+ for ∆ a noncommutative associative
division algebra;

Hn(∆,Γ) for an associative division algebra ∆ with non-central
involution;

Hn(C,Γ) for a composition algebra C of dimension 1, 2, 4, or 8 over
its center Ω with standard involution [dimension 8 only for n = 3].

In particular, it is automatically special unless it is a reduced 27-dimensional
Albert algebra. We can list the possibilities in another way : the algebra is
isomorphic to one of

Hn(Ex(∆), ex) ∼=Mn(∆)+ for ∆ an associative division algebra;
Hn(∆,Γ) for an associative division ∗-algebra ∆;
Hn(Q(Ω),Γ) = H2n(Ω, sp) for Q(Ω) the split quaternion algebra over
a field Ω, equivalently, the hermitian 2n× 2n matrices over Ω
under the symplectic involution Xsp = SXtrS−1, for S the
symplectic 2n× 2n matrix diag{s, s, . . . , s} with s =

(
0 1−1 0

)
;

H3(O,Γ) for an octonion algebra O of dimension 8 over its center Ω
[n = 3 only ].
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proof. If J is simple nondegenerate of capacity n, then by the Simple
Capacity Theorem 20.2.4 it has n connected idempotents with diagonal Peirce
spaces Jii division algebras. By Jacobson’s Coordinatization Theorem 17.2.1,
when n ≥ 3 the algebra J is isomorphic to Hn(D,Γ) for D alternative with
nuclear involution, and Jii is isomorphic to H(D,−), so the latter is a division
algebra, and (as we noted before Osborn’s Theorem) D is nondegenerate.
By the Herstein–Kleinfeld–Osborn Theorem 21.3.1, D is one of the above

types. The only case that needs some explaining is the split quaternion case.
Here D = M2(Ω) under x̄ = sxtrs−1. Mn(M2(Ω)) ∼= M2n(Ω) by regarding
an n×n matrix X = (xij) of 2×2 matrices xij ∈ M2(Ω) as a 2n×2n matrix
decomposed into 2×2 blocks xij . The involution (X)tr ofMn (M2(Ω)) yields
a matrix whose ij-block is xji = sxtrjis

−1. Any time that Y ∈ M2n(Ω) is de-
composed into 2×2 blocks Y = (yij), the conjugate SY S−1 = (sIn)Y (sIn)−1

has as its ij-block syijs
−1, and Y tr has as its ij block ytrji , so SXtrS−1 has

as its ij-block sxtrjis
−1, showing that X

tr
= SXtrS−1 corresponds to the

symplectic involution.
We have thus shown that every simple J has one of the given types, and

it remains to check conversely that these types are always simple and nonde-
generate. Just as in Osborn’s Capacity 2 Theorem 22.2.1, since they all have
connected capacity n it suffices by Simple Capacity 20.2.4 to verify nondegen-
eracy. But H(D,−) is a division algebra and certainly semiprime, and each
algebraD = ∆⊕∆op or ∆ or C is semiprime, soHn(D,−) is nondegenerate by
Jordan Matrix Nondegeneracy 5.3.5. Then its isotope Hn(D,Γ) is also nonde-
generate [by Twisted Matrix Isotopy 7.5.3(3) and Jordan Homotope 7.2.1(3)].
Once more we have captured precisely the simple algebras. �
We can sum up the cases of Capacity 1 (20.1.2), Capacity 2 (22.2.1), and

Capacity ≥ 3 (23.1.1) to construct our final edifice.
Classical Structure Theorem 23.1.2 A Jordan algebra is nondegenerate
with finite capacity iff it is a direct sum of a finite number of simple ideals of
the following Division, Spin, or Matrix Types:
J0 (n = 1) a Jordan division algebra;

RedSpin(q) (n = 2) for a nondegenerate quadratic form q over a field Ω;

Mn(∆)+ (n ≥ 2) for a noncommutative associative division algebra ∆;
Hn(∆,Γ) (n ≥ 2) for an associative division algebra ∆ with non-

central involution;
Hn(C,Γ) (n ≥ 3) for a composition algebra C of dimension 1, 2, 4, or 8

over its center Ω (dimension 8 only for n = 3).

This classification1 is focused on the capacity n of the algebra. If we organize
the algebras according to structure (as Zel’manov has taught us to understand

1 See the Classical Structure Theorem I.5.2.
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it), and allow some overlapping of Types, we can describe the algebras as
Division, Quadratic, Albert, and Hermitian Types:

Division Type: a Jordan division algebra;
Quadratic Type: a quadratic factor Jord(Q, c) determined by a nondegen-
erate quadratic form Q with basepoint c over a field Ω (not split of dimension
2);
Albert Type: a cubic factor Jord(N, c) determined by a Jordan cubic form
N with basepoint c (an exceptional Albert algebra) of dimension 27 over a
field Ω;
Hermitian Type: H(A, ∗) for a ∗-simple artinian associative algebra A.
In more detail, the algebras of Hermitian Type are twisted Jordan matrix
algebras:
Exchange Type: Mn(∆)+ for an associative division ring ∆
(A is ∗-simple but not simple, A = Ex(B) with exchange
involution for a simple artinian algebra B =Mn(∆));

Orthogonal Type: Hn(∆,Γ) for an associative division ring ∆
with involution (A =Mn(∆) simple artinian with involution);

Symplectic Type: Hn(Q,Γ) for a quaternion algebra Q over a
field Ω with standard involution (A =Mn(Q) simple artinian
with involution of symplectic type). �

Strictly speaking, if ∆ is a composition algebra with its usual central invo-
lution over Ω, the involution in Hermitian Orthogonal Type is not truly of
orthogonal type (a form of the transpose on some AΩ ∼=Mnm(Ω)); if ∆ = Q
is quaternion the involution on A is of symplectic type; if ∆ = B is binarion
the involution on A is of exchange type; only the composition algebra ∆ = Ω
yields an involution of orthogonal type.
Notice that there is no twisting by Γ in the Hermitian Exchange Type:

the Full Isotope Example 7.5.1 shows that (A+)(u) ∼= A+ for any invertible
u ∈ A. There is also no diagonal twisting needed in Hermitian Symplectic
Type when Q = Q(Ω) is split quaternion (see the following exercise).
Exercise 23.1.2* Let J := H(A, ∗) for an associative ∗-algebra A. (1) If a ∈ A, α ∈ Φ are
invertible, show that T (x) := αaxa∗ is a structural transformation on J with T (1) = αaa∗,
hence J ∼= J(u) if u−1 = αaa∗. (2) If all invertible v ∈ J are norms v = bb∗ for invertible
b ∈ A, show all isotopes J(u) are isomorphic to J. (3) If A = Mn(D) for D with involution

, and x∗ = x̄tr is the standard involution, and Γ = diag(γ1, . . . , γn) for invertible
γi = γi ∈ D, show that if each γi = didi is a norm of an invertible di ∈ D, then Γ is an
invertible norm in Mn(D,−) and thus Hn(D,Γ) ∼= Hn(D,−). (4) Use this to prove that
all diagonal isotopes of J are isomorphic to J when (i) D = Ex(B) under the exchange
involution, (ii) D = Q(Ω) = M2(Ω) is split quaternion under the symplectic involution.

And thus we come to the end of a Theory, an Era, and the Classical Part of
our story.



Part III

Zel’manov’s Exceptional Theorem



Introduction

In Part III we will give a fairly self-contained treatment of Zel’manov’s cele-
brated theorem that the only prime i-exceptional Jordan algebras are forms
of Albert algebras, filling in the details sketched in Chapter 8 of the Histori-
cal Survey (Part I). Throughout this part we again work with linear Jordan
algebras over a fixed (unital, commutative, associative) ring of scalars Φ con-
taining 1

2 , but we conduct a quadratic argument as long as it is convenient
and illuminating. We will make use of a few results from Part II on Peirce
decompositions and invertibility, and of course will invoke Macdonald’s Prin-
ciple at the drop of a hat, but otherwise require very little from Part II. The
actual classification of simple exceptional algebras shows in essence that they
must have capacity, and then falls back on the classification in Part II to
conclude that they are Albert algebras. It does not provide an independent
route to Albert algebras, but rather shows that finiteness is unavoidable in
the exceptional setting.
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First Phase: Begetting Capacity

In this phase we describe general situations that lead to the classical algebras
of finite capacity considered in Part II. An algebra over a large field will have
a finite capacity if its elements have small spectra. The crucial result is that a
non-vanishing f always puts a bound on the f -spectra of elements (which is
close to putting a bound on ordinary spectra); this means that i-exceptionality,
the non-vanishing of some s-identity f , is an incipient finiteness condition.
Chapter 1 reviews standard features of invertibility and extends them to

quasi-invertibility and proper quasi-invertibility: for an element x, invertibility
is reflected in invertibility of Ux (as operator), q.i. is reflected in invertibility
of U1−x = Bx,1, and p.q.i. in invertibility of all Bergmann operators Bx,y.
Structural transformations which are congruent to 1 are surjective or invert-
ible on Ĵ iff they are on J, allowing us to pass to the unital hull whenever the
mood strikes us. The Jacobson radical has the elemental characterization as
all p.q.i. elements. It reduces to the nil radical for algebraic or I-genic algebras,
and algebras over a big field; it reduces to the degenerate radical for algebras
with d.c.c. on inner ideals (a nondegenerate algebra avoids the radical of any
larger algebra with d.c.c.)
Chapter 2 tells how to beget and bound idempotents. Begetting is ram-

pant in I-genic algebras (e.g., algebraic algebras), where every non-nilpotent
element generates a nonzero idempotent in its principal inner ideal. An al-
gebra is I-finite if it has no infinite orthogonal family of idempotents; this is
equivalent to the a.c.c. on idempotents (the d.c.c. on idempotents is equiva-
lent to having no infinite orthogonal family of bounded idempotents). These
two conditions together beget capacity: a semiprimitive I-finite I-genic algebra
always has finite capacity.
Chapter 3 brings in the concepts of spectra and bigness for Jordan algebras

over a field. The usual spectrum of an element x is the set of scalars for which
λ1 − x is not invertible (Uλ1−x(J) is not all of J). Slightly smaller than the
spectrum is the f -spectrum for a nonvanishing polynomial f (the scalars for
which f vanishes on Uλ1−x(J)). The ingenious f -Spectral Bound Theorem
shows that the f -spectrum is bounded in size by 2N if f has degree N . In a
semiprimitive algebra, a global bound on the spectra of elements yields I-gene
and I-finiteness, hence a capacity. Thus capacity will follow whenever we can
translate the f -spectral bound into an ordinary spectral bound.
The resolvent is the complement of the spectrum. An infinite set of scalars

from a field is big with respect to an algebra if its cardinality is greater than
the dimension of the algebra. Amitsur’s Big Resolvent Theorem says that an
element with a big resolvent must be algebraic, and the amazing Division
Evaporation Theorem guarantees that the only division algebra over a big
algebraically closed field is the field itself.



1

The Radical

We begin with some basic results about the semiprimitive radical; the connec-
tion between nondegeneracy and primitivity depends on a detailed analysis
of the radical. Although our final structure theorem concerns nondegenerate
algebras, our proof proceeds by classifying the more restrictive primitive alge-
bras. At the very end we imbed a prime nondegenerate algebra in a semiprim-
itive algebra, wave a magic ultrafilter wand, and presto — all nondegenerate
prime exceptional algebras are turned into Albert forms.
The Jacobson radical Rad(A) of an associative algebra A can be defined in

three ways. Its origin and its primary importance come from its role as the ob-
stacle to irreducible representation: the part of the algebra that refuses to act
on irreducible modules (the intersection of the kernels of all irreducible repre-
sentations). Secondly, it is the maximal quasi-invertible ideal (ideal consisting
entirely of quasi-invertible elements, elements z such that 1̂ − z is formally
invertible in the unital hull). Thirdly, and most useful in practice, it can be
precisely described elementally as the set of all elements which are properly
quasi-invertible (where in general the adverb “properly” means “all multiples
remain such”).
In Jordan theory there are no irreducible representations or irreducible

modulesM = A/B for maximal modular left ideals B, though there are ghosts
of such modules (namely, the maximal modular inner ideals we will meet in
Chapter 5). Jordan algebras do have an exact analogue for the associative
theory of inverses and quasi-inverses, and so we will define the radical to be
the maximal quasi-invertible ideal. But we will spend the rest of this chapter
making sure that we again have the user-friendly elemental characterization
in terms of properly quasi-invertible elements. This is especially important in
Jordan algebras, where ideals are hard to generate.
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1.1 Invertibility

We begin by establishing the basic facts about quasi-invertibility. Since quasi-
invertibility of z means invertibility of 1̂−z, many results are mere translations
of results about inverses, which we now “recall.”1

Basic Inverse Theorem 1.1.1 We have the following basic facts about
inverses in Jordan algebras.
(1) Existence: An element u in a unital Jordan algebra J is defined to

be invertible if there exists an element v satisfying the Quadratic Jordan
Inverse Conditions

(QJInv1) Uuv = u, (QJInv2) Uuv
2 = 1.

The element v is called the inverse u−1 of u.
(2) Extension: If u is invertible in J, then it remains invertible (with the

same inverse) in any algebra J̃ ⊇ J having the same unit as J.
(3) Criterion: The following are equivalent for an element u of a unital

Jordan algebra J:
(i) u is an invertible element of J;
(ii) Uu is an invertible operator on J;
(iii) Uu is surjective on J: Uu(J) = J;
(iv) the image of Uu contains the unit : 1 ∈ Uu(J);
(v) Uu(J) contains some invertible element.
(4) Consequences: If u is invertible in J with inverse v, then:
(i) Uu, Uv are inverse operators;
(ii) the inverse is uniquely determined as v = U−1

u u;
(iii) invertibility is symmetric: v is invertible with inverse u;
(iv) {u, v} = 2.
proof. (1) is just the definition of inverse as given in II.6.1.1. (2) holds

because invertibility is strictly a relation between u, v, and the unit element
1. (3) We repeat the arguments of the Invertibility Criterion II.6.1.2 (with the
wrinkle (v) thrown in). (i)⇒ (ii): Applying the Fundamental Formula to the
relations (QJInv1)–(QJInv2) shows that UuUvUu = Uu, UuUvUvUu = 1J; the
latter shows that the operator Uu is surjective and injective, hence invertible,
and then canceling Uu from the former gives UuUv = UvUu = 1J, so Uu and
Uv are inverses. [This also proves (4)(i).] Clearly (ii) ⇒ (iii) ⇒ (iv) ⇒ (v).
On the other hand, (v) ⇒ (ii) follows from the Fundamental Formula: if
Uua is invertible, so is the operator UUua = UuUaUu [by (i) ⇒ (ii)], which
again implies that Uu is invertible. (ii) ⇒ (i) because v := U−1

u u satisfies
Uuv = u [by definition], Uuv

2 = UuUv1 = UuUvUuU
−1
u 1 = UUuvU

−1
u 1 [by the

Fundamental Formula] = UuU
−1
u 1 = 1. [This also establishes (4)(ii).]

1 cf. II Section 6.1.
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(4) We saw (i) and (ii) above. (iii) follows from (ii): the conditions
(QJInv1)–(QJInv2) are satisfied with the roles of u and v switched, since
Uvu = Uv(Uu(v)) = 1J(v) = v, Uvu

2 = Uv(Uu(1)) = 1J(1) = 1. (iv) re-
sults by canceling Uu from Uu({u, v}) = UuVu(v) = VuUu(v) [by Commuting
(FFII)] = Vu(u) = 2u2 = Uu(2). �

1.2 Structurality

Naturally we are going to derive the basic facts about quasi-inverses from
facts about ordinary inverses making use of the unital hull Ĵ = Φ1̂⊕ J. First
we need to recall the results on structural transformations2 about operators
on Ĵ and their restrictions to J.

Structural Transformation Definition 1.2.1 (1) A structural transfor-
mation T on a Jordan algebra J is a linear transformation for which there
exists a linear T ∗ on J such that both T, T ∗ extend to Ĵ and satisfy

UT (x̂) = TUx̂T
∗ on Ĵ for all x̂ ∈ Ĵ.

If T ∗ is also structural with T ∗∗ = T , we say that (T, T ∗) is a structural
pair on J.
(2) We say that a linear transformation S on Ĵ is congruent to 1̂ := 1Ĵ

mod J if
(1̂ − S)(Ĵ) ⊆ J, i.e., S(J) ⊆ J and S(1̂) = 1̂− c

for some c in J, more explicitly,

S(α1̂⊕ x) = α1̂⊕ (−αc+ S(x)).

Important examples of structural T congruent to 1̂ are the quasi-U oper-
ators Bx,1̂ = 1J − Vx +Ux = U1̂−x for x ∈ J, more generally the Bergmann

operators Bx,ŷ := 1J − Vx,ŷ + UxUŷ for x ∈ J, ŷ ∈ Ĵ. We have mentioned
several times that these Bergmann operators are structural, and it is now
time to put our proof where our mouth is. This is one important identity that
will not succumb to Macdonald’s blandishments, so the fact that it is easy to
verify in associative algebras won’t save us from the calculations that follow.

Bergmann Structurality Proposition 1.2.2 The generalized
Bergmann operators

Bα,x,y := α21J − αVx,y + UxUy (x, y ∈ J, α ∈ Φ)
form a structural pair (Bα,x,y, Bα,y,x),

UBα,x,y(z) = Bα,x,yUzBα,y,x.

2 cf. II.18.2.1.
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proof. Expanding this out in powers of α, for B := Bα,x,y we have
UB(z) = Uα2z−α{x,y,z}+UxUy(z) = α4Uz − α3Uz,{x,y,z} + α2

(
U{x,y,z} +

UUxUy(z),z
)−αUUxUy(z),{x,y,z}+UUxUy(z), while BUzB

∗ = α4Uz−α3
(
Vx,yUz+

UzVy,x
)
+α2

(
UxUyUz+UzUyUx+Vx,yUzVy,x

)−α
(
UxUyUzVy,x+Vx,yUzUyUx

)
+UxUyUzUyUx. To show that these coincide for all x, y, α in all situations, we
must prove that the coefficients of like powers of α coincide. This is trivial for
α4, is the Fundamental Lie Formula (FFV) for α3, is Alternate Fundamental
Formula (FFI)′ for α2, and is the Fundamental Formula (FFI) for α0, but for
α1 we have a totally unfamiliar bulky formula:

(α1) UUxUy(z),{x,y,z} = UxUyUzVy,x + Vx,yUzUyUx.

For this we need the following Formulas from II Section 5.2: Commuting
(FFII), Triple Shift (FFIIIe), Fundamental Lie (FFV), and a linearized Fun-
damental (FFI) UUx(y),Ux,z(y) = UxUyUx,z +Ux,zUyUx [replace x �→ x+λz in
(FFI) and equate coefficients of λ]. Using this linearized (FFI) we compute

UUxUy(z),{x,y,z} = UUx(Uy(z)),Ux,z(y)

= −UUx(y),Ux,z(Uy(z)) + UxUUy(z),yUx,z + Ux,zUy,Uy(z)Ux

= −UUx(y),Ux,Uz(y)(y) + Ux

(
UyVz,y

)
Ux,z + Ux,z

(
Vy,zUy

)
Ux

[by Triple Shift on the first term, and Commuting (FFII) on the second and
third terms]. In the first term we replace y �→ Uzy in linearized (FFI) to get

−UUx(y),Ux,Uz(y)(y) = −(
UxUyUx,Uz(y) + Ux,Uz(y)UyUx

)
.

On the second term above we apply Vz,yUx,z = Ux,Uz(y)+UzVy,x [noting that
{z, y, {x, a, z}} = Uz{a, x, y} + {x, a, Uzy} by Fundamental Lie (FFVe)] to
get

UxUy

(
Vz,yUx,z

)
= UxUy

(
Ux,Uz(y) + UzVy,x

)
.

Finally, on the third term above we apply Ux,zVy,z = Ux,Uzy + Vx,yUz [not-
ing that {x, {y, z, b}, z} = {x, b, Uzy} + {x, y, Uzb} by linearized Triple Shift
(FFIIIe)] to get (

Ux,zVy,z
)
UyUx =

(
Ux,Uzy + Vx,yUz

)
UyUx.

When we add these three expressions, four terms cancel, and the expression
of α1 becomes

UUxUy(z),{x,y,z} = UxUyUzVy,x + Vx,yUzUyUx

as claimed. This finishes α1, and hence the structurality of the Bergmann
operators. �

The pain of the above proof could have been lessened by an injection of
Koecher’s Principle (see Problems 1.6, 1.7 below).
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Congruent to 1̂ Lemma 1.2.3 (1) If a structural transformation T on a
unital Jordan algebra J is invertible, then its adjoint is T ∗ is invertible too.
(2) If T is structural and has the property that it is invertible as soon

as it is surjective (for example, a U -operator), then we have contagious
invertibility: if T ever takes on an invertible value, then it and its adjoint
are invertible operators,

T (x) is invertible iff T, T ∗, x are invertible.

(3) If a structural T is congruent to 1̂ mod J on a general J, then T is
injective (respectively surjective) on Ĵ iff it is injective (respectively surjective)
on J. In particular, a Bergmann operator Bx,y is invertible or surjective on J
iff it is on Ĵ.
proof. (1) If T is invertible, then T (x) = 1 for some x, so 1J = UT (x) =

TUxT
∗ [by Structurality 1.2.1(1)] implies that UxT

∗ = T−1 invertible; then
Ux is surjective, hence invertible [by Inverse Criterion 1.1(3)(ii) = (iii)], so
T ∗ = U−1

x T−1 is invertible too.
(2) A similar argument works whenever T (x) is invertible if we know that

T , like Ux, becomes invertible once it is surjective: UT (x) = TUxT
∗ invertible

[by the Inverse Criterion (i) = (ii) and Structurality] =⇒ T is surjective
=⇒ T is invertible [by the hypothesis on T ] =⇒ UxT

∗ = T−1UT (x) is invertible
=⇒ Ux surjective =⇒ Ux invertible =⇒ x invertible [by the Inverse Criterion]
=⇒ T ∗ = U−1

x T−1 invertible.
(3) In Ĵ = Φ1̂ ⊕ J, the submodule Φ1̂ is a faithful copy of Φ, α1̂ = 0 =⇒

α = 0. Applying Congruence to 1̂ 1.2.1(2) with S replaced by T , and using
directness, the kernel and cokernel of T live in J: any killing takes place in J
because T (α1̂ ⊕ x) = α1̂ ⊕ (−αc + T (x) = 0 ⇐⇒ α = 0, T (x) = 0; similarly,
any non-imaging takes place in J because α1̂⊕x  ∈ T (Ĵ)⇐⇒ α1̂⊕x−T (α1̂)  ∈
T (Ĵ)⇐⇒ x+ αc  ∈ T (J). �

1.3 Quasi-Invertibility

Quasi-invertibility is determined by Bergmann operators, which are congruent
to 1̂.

Radical Definition 1.3.1 (1) An element x of an arbitrary Jordan algebra J
is quasi-invertible (q.i. for short) if 1̂−z is invertible in the unital hull Ĵ; if
(1̂− z)−1 = 1̂−w then w is called the quasi-inverse of z, denoted by qi(z).3

3 The notation q(x) has already been used for the Peirce quadratic forms; to avoid
confusion, we add the i to make qi(·) (pronounced “kyoo-eye”) to make the reference to
quasi-inverse clearer, but we save space by staying aperiodic and not going the whole way
to write q.i.(·). Some authors use the negation of our definition, (1̂− z)−1 = 1̂ +w, so that
the quasi-inverse is the geometric series w = +

∑
zi. We prefer to keep the symmetry in z

and w, so that (1̂ − w)−1 = 1̂ − z just as
(
u−1)−1 = u for ordinary inverses.
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The set of quasi-invertible elements of J is denoted by QI(J). An algebra or
ideal is called quasi-invertible (q.i.) if all its elements are q.i.
(2) The Jacobson radical Rad(J) is the maximal q.i. ideal, i.e., the max-

imal ideal contained inside the set QI(J).4 An algebra is called semiprim-
itive5 if it has no q.i. ideals, equivalently its Jacobson radical vanishes,
Rad(J) = 0.

(3) An element is nilpotent if some power vanishes, xn = 0; then all
higher powers xm = xn •xm−n = 0 for m ≥ n also vanish. Nilpotent elements
are always q.i.:

zn = 0 =⇒
{
(1̂− z)−1 = 1̂ + z + z2 + · · ·+ zn−1,

−qi(z) = z + z2 + · · ·+ zn−1

by the usual telescoping sum, since by power-associativity this all takes place
in the special subalgebra Φ[z].
(4) The nilpotent elements are the most important single source of q.i.

elements. An algebra or ideal is called nil if all its elements are nilpotent. The
nil radical Nil(J) is defined as the maximal nil ideal.6 Since nil implies q.i.
by (3), we have

Nil(J) ⊆ Rad(J).
It is always useful to think of (1̂ − z)−1 and the negative −qi(z) as given

by the geometric series

(1̂− z)−1 ≈ ∑∞
n=0 z

n, −qi(z) ≈ ∑∞
n=1 z

n.

This is strictly true whenever the infinite series converges respectably, such
as for an element of norm < 1 in a Banach algebra (see Problem 1.1), or if
z is nilpotent so the series is finite as in (3). Amitsur’s Tricks (see Problem
1.2 and Theorem 3.2.2) show that the nil elements are the only die-hard q.i.
elements, the only ones that remain q.i. over a big field or when multiplied by
a scalar indeterminate. In some sense the nil radical is the “stable” form of
the Jacobson radical: in Chapter 5 we will see that if we perturb the algebra
enough, the radical will shrink down into the nil radical. But the Jacobson
radical has proven to be the most useful radical, both structurally and practi-
cally. We will soon obtain a handy elemental characterization of the Jacobson
radical, but there is no such characterization known for the nil radical: even
in associative algebras, the Köthe Conjecture (that the nil radical consists
precisely of the properly nilpotent elements) remains unsettled.

4 Defining is not creating: we have to show that there is just one such maximal ideal,
which we will do in 1.5.1.

5 Philosophically, an algebra is semi-blah iff it is a subdirect product of blah algebras.
Later, in Chapter 5, we will see what a vanishing Jacobson radical has to do with primitivity.
For the present, just think of semiprimitivity as some form of “semisimplicity.”

6 This is to be carefully distinguished from a nilpotent ideal, which means a power of
the ideal (not just of its individual elements) vanishes. The nil radical is sometimes called
the Köthe radical.
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Basic Quasi-Inverse Theorem 1.3.2 We have the following basic facts
about quasi-inverses in Jordan algebras.
(1) Existence: An element z is quasi-invertible in J with quasi-inverse w

iff it satisfies the Quasi-Inverse Conditions

(QInv1) U1̂−zw = z2 − z, (QInv2) U1̂−zw
2 = z2.

(2) Extension: If z is quasi-invertible in J, then it remains quasi-
invertible (with the same quasi-inverse) in any extension algebra J̃ ⊇ J.
(3) Criterion: The following are equivalent for an element z of a Jordan

algebra J:
(i) z is a quasi-invertible element of J;
(ii) the quasi-U-operator U1̂−z is an invertible operator on J

(equivalently, invertible on Ĵ);
(iii) U1̂−z is surjective on J, U1̂−z(J) = J

(equivalently, surjective on Ĵ, U1̂−z(Ĵ) = Ĵ);
(iv) the image of U1̂−z contains 2z − z2 ∈ U1̂−z(J);
(v) U1̂−z(J) contains 2z − z2 − u for some q.i. u.
(4) Consequences: If z is quasi-invertible in J with quasi-inverse w =

qi(z), then:
(i) the quasi-U-operators U1̂−z, U1̂−w are inverse operators;
(ii) w is uniquely determined as w = U−1

1̂−z(z
2 − z);

(iii) w is quasi-invertible with quasi-inverse z = qi(w);
(iv) {z, w} = 2(z + w), Uzw = w + z + z2,

showing that the quasi-inverse w necessarily lies in the original J.

proof. We apply the Basic Inverse Theorem 1.1.1 to u = 1̂ − z in the
algebra Ĵ. (1) The invertibility conditions (QJInv1)–(QJInv2) of the Definition
1.1.1(1) for u = 1̂ − z, v = 1̂ − w become 1̂ − z = U1̂−z(1̂ − w) = (1̂ − 2z +
z2)−U1̂−z(w)⇐⇒ U1̂−z(w) = −z+z2 as in (QInv1) and 1̂ = U1̂−z(1̂−w)2 =
U1̂−z(1̂−2w+w2) = U1̂−z(2(1̂−w)−1̂+w2) = 2(1̂−z)−(1̂−2z+z2)+U1̂−z(w

2)
[by the above] = 1̂− z2 + U1̂−z(w

2)⇐⇒ U1̂−zw
2 = z2 as in (QInv2).

(2) is clear, since quasi-invertibility is strictly between z and w.
(3) Since z is q.i. iff 1̂− z is invertible, Invertible Criterion 1.1.1(3)(i)–(v)

implies the equivalence of (i)–(v). For (ii) and (iii) use the Congruent to 1̂

Lemma 1.2.3(3) for T = U1̂−z to see that invertibility or surjectivity on J
is equivalent to invertibility or surjectivity on Ĵ. For (iv), since U1̂−z(1̂) =
1̂ − 2z + z2, the element 1̂ lies in the range of U1̂−z iff 2z − z2 does (and its
preimage must be in J by directness); (iv) is the special case u = 0 of (v),
where U1̂−z(a) = 2z − z2 − u for q.i. u iff U1̂−z(1̂ + a) = 1̂− u is an invertible
value of U1̂−z.
(4) Since z is q.i. with quasi-inverse w iff 1̂ − z is invertible with inverse

1̂−w in Ĵ, (i)–(iii) follow from Inverse Consequences 1.1.1(4) and (1). For (iv),
note that 2̂ = {(1̂−z), (1̂−w)} = 2̂−2w−2z+{z, w} ⇐⇒ {z, w} = 2(z+w),
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so −z+ z2 = U1̂−zw [by the above] = w−{z, w}+Uzw = w−2w−2z+Uzw.

Since Uz(w) ∈ J, this shows that w lies in J, not just Ĵ. �

Exercise 1.3.2* Show that zn q.i. implies z q.i. ; show that the converse is false.

1.4 Proper Quasi-Invertibility

The Jacobson radical consists precisely of the properly quasi-invertible ele-
ments. In general, in Jordan algebras the adverb “properly” means “in all
homotopes”; in Jordan theory we don’t have a notion of “left multiple” yz,
but the notion “z in the y-homotope J(y)” provides a workable substitute. We
will write the unital hull of the homotope as

Ĵ(y) := Φ1(y) ⊕ J(y),

so that the fictitious unit 1(y) wears a (y) instead of a hat .̂

Proper Quasi-Invertible Definition 1.4.1 (1) A pair (z, y) of elements
in a Jordan algebra J is called a quasi-invertible (q.i.) pair if z is quasi-
invertible in the homotope J(y), in which case its quasi-inverse is denoted
by zy = qi(z, y) and called the quasi-inverse of the pair. The quasi-U
operators which determine quasi-invertibility become, in the y-homotope, the
Bergmann operators 1.2.2:

U
(y)
1(y)−z = 1J − V

(y)
z + U

(y)
z = 1J − Vz,y + UzUy =: Bz,y.

Thus (z, y) is q.i. iff Bz,y is an invertible operator on J.
(2) An element z is called properly quasi-invertible (p.q.i. for short)

if it remains quasi-invertible in all homotopes J(y) of J, i.e., all pairs (z, y)
are quasi-invertible and all Bz,y are invertible on J. The set of properly quasi-
invertible elements of J is denoted by PQI(J). Proper quasi-invertibility is a
stronger condition than mere quasi-invertibility :

z p.q.i. =⇒ (z, z) q.i. ⇐⇒ z2 q.i. ⇐⇒ z, −z q.i.

since [by Macdonald or Section II.5.2] Bz,z = 1J − Vz,z + UzUz = 1J − Vz2 +
Uz2 = U1̂−z2 = U1̂−zU1̂+z = U1̂+zU1̂−z invertible on J [equivalently, on
Ĵ by the Congruent to 1̂ Lemma 1.2.3(3)] ⇐⇒ U1̂−z, U1̂+z invertible on Ĵ
⇐⇒ 1̂− z, 1̂ + z invertible in Ĵ ⇐⇒ z,−z q.i. in J.
(3) An element z is called properly nilpotent (p.n. for short) if it re-

mains nilpotent in all homotopes J(y) of J, i.e., all pairs U
(y)
z = UzUy are

nilpotent operators. The set of properly nilpotent elements of J is denoted
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by Pnil(J). Just as nilness is more restrictive than quasi-invertibility, proper
nilpotence is more restrictive than proper quasi-invertibility :7

z p.n. =⇒ z p.q.i.

We should think associatively that Bz,y(x) ≈ (1− zy)x(1− yz). Again, a
good mnemonic device is to think of the negative of the quasi-inverse of the
pair as a geometric series related to the associative quasi-inverses of zy and
yz; since the homotope is obtained by sticking a factor y in the middle of all
products, the geometric approach to quasi-inverses leads to

−qi(z, y) ≈ z + zyz + zyzyz + · · · = ∑∞
n=1 z

(n,y)

≈ z(1̂ + yz + yzyz + · · · ) = z(1̂− yz)−1 ≈ (1̂− zy)−1z
≈ z + z(y + yzy + · · · )z = z + Uz(−qi(y, z)).

This helps us understand some of the facts about q.i. pairs.

Basic Q.I. Pair Theorem 1.4.2 We have the following basic facts about
quasi-invertible pairs in Jordan algebras.
(1) Existence: (z, y) is quasi-invertible in J with quasi-inverse w =

qi(z, y) iff it satisfies the Quasi-Inverse PairConditions

(QInvP1) Bz,yw = Uzy − z, (QInvP2) Bz,yUwy = Uzy.

(2) Extension: If (z, y) is quasi-invertible in J, then it remains quasi-
invertible (with the same quasi-inverse qi(z, y)) in any extension algebra J̃ ⊇
J.
(3) Criterion: The following are equivalent for a pair of elements (z, y):
(i) (z, y) is quasi-invertible in J;
(ii) the Bergmann operator Bz,y is an invertible operator on J

(equivalently, on Ĵ);
(iii) Bz,y is surjective on J, Bz,y(J) = J

(equivalently, on Ĵ, Bz,y(Ĵ) = Ĵ);
(iv) 2z − Uzy ∈ Bz,y(J);
(v) Bz,y(J) contains 2z − Uzy − u for some q.i. pair (u, y);
(vi) {z, y} − Uzy

2 ∈ Bz,y(J);
(vii) {z, y} − Uzy

2 is q.i. in J;
(i)∗ (y, z) is quasi-invertible in J;
(ii)∗ the Bergmann operator By,z is an invertible operator on J

(equivalently, on Ĵ).
7 The Köthe conjecture is that, as with the radical, the nil radical consists of the entire

set Pnil(J). Most ring theorists believe that the conjecture is false, but no one has been
able to come up with a counter-example, even in associative algebras.
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(4) Consequences: If (z, y) is quasi-invertible in J with quasi-inverse
w = qi(z, y), then:

(i) the Bergmann operators Bz,y, Bw,y are inverse operators;
(ii) w is uniquely determined as w = B−1

z,y(Uzy − z);
(iii) (w, y) is quasi-invertible with quasi-inverse z = qi(w, y);
(iv) {z, y, w} = 2(z + w), UzUyw = w + z + Uzy;
(i)∗ the Bergmann operators By,z, By,w are inverse operators,

so again necessarily w ∈ J.
proof. Before we begin we must be clear about a subtle point: though the

homotope J(y) has the same underlying space as the algebra J, the unital hull
Ĵ(y) := Φ1(y)⊕J of the homotope does not have the same underlying space as
the unital hull Ĵ := Φ1̂⊕J of J (and the hull of the homotope Ĵ(y) is definitely
not the homotope of the hull

(
Ĵ
)(y), since the latter is never unital). By the

Structural Transformation Definition 1.2.1 and Bergmann Structurality 1.2.2,
as an operator on the y-homotope the Bergmann operator Bz,y is a symmetric
structural transformation (a U -operator Bz,y = U

(y)
1(y)−z = B∗

z,y) which is

congruent to 1
(y) since Bz,y(1(y)) = 1(y) − 2z + Uz(y). At the same time it is

a non-symmetric structural transformation (B∗
z,y = By,z) on J itself which is

congruent to 1̂ since Bz,y(1̂) = 1̂−{z, y}+Uz(y2). Thus by the Congruent to
1̂ Lemma 1.2.1(3) we have

Bz,y is invertible on Ĵ(y) ⇐⇒ invertible on J(y) ⇐⇒ surjective on J(y)

⇐⇒ invertible on Ĵ ⇐⇒ invertible on J ⇐⇒ surjective on J.
Thus when we talk about the Bergmann operator being invertible or surjective
“on the unital hull,” it doesn’t matter which hull we are talking about. In
consequence, we will entirely neglect the hull of the homotope, with its funny
1(y), and deal entirely with our usual hull.
We apply the Basic Q.I. Theorem 1.3.2 in the homotope J(y). Since in J(y)

the operator U1̂−z becomes the Bergmann operator Bz,y, and the squares and
braces are x(2,y) = Uxy and {x, z}(y) = {x, y, z}, Q.I. Existence (1) gives (1);
Q.I. Extension (2) gives (2) [for y ∈ J we still have inclusion J̃(y) ⊇ J(y)]; Q.I.
Criterion (3)(i)–(v) gives the equivalence of (3)(i)–(v); and Q.I. Consequences
(4)(i)–(iv) gives the consequences (4)(i)–(iv). An immediate consequence of
Congruent to 1̂ 1.2.3(1) applied to T = Bz,y is that q.i. pairs are symmetric:
in (3), (ii)⇐⇒ (ii)∗, and hence (i)⇐⇒ (i)∗.
In any structural pair (T, T ∗) as defined in 1.2.1(1), T = 1̂ =⇒ T ∗ =

TU1̂T
∗ = UT (1̂) = U1̂ = 1̂ too. Applying this to T := Bz,yBw,y and T ∗ :=

By,wBy,z (which form a structural pair as the “product” of the structural
pairs (Bz,y, By,z) and (Bw,y, By,w) from Bergmann Structurality 1.2.2), and
dually to the pair (S, S∗) for S := Bw,yBz,y and S∗ := By,zBy,w, we have
(4)(i) ⇐⇒ T = S = 1̂ ⇐⇒ T ∗ = S∗ = 1̂ ⇐⇒ (4)(i)∗. Thus (4)(i)∗ is a
consequence.
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To get the remaining equivalences with (vi), (vii) in (3) we work in the
unital hull Ĵ instead of the hull of the homotope Ĵ(y). Set

B := Bz,y, B
∗ := By,z, x := {z, y} − Uzy

2, so B(1̂) = 1̂− x.

We noted at the start that B is structural on the unital algebra Ĵ, and is in-
vertible iff it is surjective [on the module Ĵ or on the module J], so Contagious
Inversion 1.2.3(2) tells us that

(C.I) B(â) invertible in Ĵ =⇒ B,B∗, â invertible.

Thus (ii) ⇐⇒ (ii) + (ii)∗ [from (3)(ii) = (ii)∗] ⇐⇒ B,B∗ invertible ⇐⇒
U1̂−x = UB(1̂) = BU1̂B

∗ = BB∗ invertible [⇒ is clear, ⇐ follows from (C.I.)
with â = 1̂] ⇐⇒ x q.i. ⇐⇒ (vii). This establishes the equivalence of (vii).
For the equivalence of (vi), clearly (iii) =⇒ (vi), while conversely (vi) ⇐⇒
x = B(a) [for some a ∈ J] ⇐⇒ 1̂ = x+ (1̂− x) = B(a) + B(1̂) = B(1̂ + a) ∈
B(Ĵ) =⇒ B invertible [by (C.I.)] =⇒ (iii). Thus all conditions in (3) are
equivalent. �

Three Basic Q.I. Pair Principles 1.4.3 (1) Symmetry Principle: Quasi-
invertibility is symmetric: (z, y) is quasi-invertible in J iff (y, z) is, in which
case

qi(y, z) = Uyqi(z, y)− y.

(2) Structural Shifting Principle: If T is a structural transformation
on J, then it is a homomorphism J(T∗(y)) → J(y) of Jordan algebras for any
y ∈ J, and it can be shifted in quasi-invertible pairs: if (z, T ∗(y)) is quasi-
invertible, so is (T (z), y), in which case

qi(T (z), y) = T (qi(z, T ∗(y))).

If (T, T ∗) is a structural pair, then (T (z), y) is quasi-invertible iff (z, T ∗(y))
is quasi-invertible.

(3) Addition Principle: Quasi-invertibility is additive: if x, y, z are el-
ements of J with (z, y) quasi-invertible, then (x + z, y) is quasi-invertible iff
(x,−qi(y, z)) is quasi-invertible,

Bx+z,y = Bx,−qi(y,z)Bz,y (if (z, y) q.i.).

proof. (1) We noticed in constructing Principal Inner Ideals II.5.3.1 the
general formula

(4) Uy−Uyz = UyBz,y = By,zUy,

which follows from Macdonald, since it involves only two elements, or di-
rectly from Uy − Uy,Uyw + UUyw = Uy(1J − Vw,y + UwUy) by the Com-
muting Formula (FFII) and the Fundamental Formula (FFI). Basic Q.I.
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Pair Facts 1.4.2(3)(i) = (i)∗ shows symmetry (z, y) q.i. ⇐⇒ (y, z) q.i.,
and then the formula for qi(y, z) follows from Q.I. Pair Consequences
1.4.2(4)(ii): qi(y, z) = B−1

y,z(Uyz − y) = B−1
y,z

(
Uy[Uzy − z] − [y − {y, z, y} +

UyUzy]
)
= B−1

y,z

(
Uy[Bz,yqi(z, y)] − [By,zy]

)
[by Q.I. Pair Consequences (4)]]

= B−1
y,z

(
By,z[Uyqi(z, y)]−By,z[y]

)
[by (4) above] = Uyqi(z, y)− y.

(2) T is a homomorphism because it preserves squares, T (x(2,T∗(y))) =
T (UxT

∗(y)) = UT (x)y [by Structurality 1.2.1(1)] = T (x)(2,y), therefore T takes
q.i. elements z ∈ J(T∗(y)) to q.i. elements T (z) ∈ J(y). Then takes quasi-
inverses qi(z, T ∗(y)) to quasi-inverses qi(T (z), y) as in (2). Conversely, if T ∗∗ =
T then (T (z), y) q.i. =⇒ (y, T (z)) = (y, T ∗∗(z)) q.i. [by Symmetry (1) above]
=⇒ (T ∗(y), z) q.i. [by the above shift applied to T ∗] =⇒ (z, T ∗(y))q.i. [by
Symmetry again].
(3) We have another general formula

(5) Bx,y−Uyw = B
(y)
x,1(y)−w on Ĵ

(y) = Φ1(y) ⊕ J(y),

which follows from Bx,y−Uyw = 1̂− (Vx,y−Vx,Uyw)+UxUy−Uyw = 1̂− (V (y)
x −

V
(y)
x,w)+UxUyBw,y [using (4)] = 1̂−V

(y)
x,1(y)−w+U

(y)
x U

(y)
1(y)−w [by P.Q.I. Definition

1.4.1(1)] = B
(y)
x,1(y)−w.

For invertible u we have formulas

(6) VUuw,u−1 = Vu,w, (7) BUuw,u−1 = Bu,w, (8) Bx,u−1Uu = Uu−x.

To see (6), on J = UuJ we have {Uuw, u
−1, Uua} = UuUw,aUuu

−1 [Fundamen-
tal Formula (FFI)] = Uu{w, u, a} = {u,w, Uua} [by Commuting (FFII)]. For
(7), 1J−VUuw,u−1 +UUuwUu−1 = 1J−Vu,w+UuUw [by (6), the Fundamental
Formula, and Inverse Consequences 1.1.1(2)]. For (8), Uu−x = Uu−Uuw [for
w = U−1

u x] = Bu,wUu [by (4)] = BUuw,u−1Uu [by (7)] = Bx,u−1Uu.

Applying (8) to u = 1̂(y) − z, u−1 = 1̂(y) − qi(z, y) in Ĵ(y) gives
B

(y)

x,1̂(y)−qi(z,y)
U

(y)

1̂(y)−z
= U

(y)

(1̂(y)−z)−x
= U

(y)

1̂(y)−(z+x)
. By (5) and Proper

Q.I. Definition 1.4.1(1) this converts to Bx,y−Uyqi(z,y)Bz,y = Bx+z,y, where
y − Uyqi(z, y) = −qi(y, z) by Symmetry (1), establishing the formula in part
(3). Thus (x + z, y) q.i. ⇐⇒ Bx+z,y invertible [by the Basic Q.I. Criterion
1.3.2(3)(i) = (ii))] ⇐⇒ Bx,−qi(y,z) invertible [from the formula in part (3),
since By,z is already assumed invertible] ⇐⇒ (x,−qi(y, z)) q.i. �

Exercise 1.4.3* (1) Recall that T is weakly structural if there is a T ∗ such that UT (x) =
TUxT ∗ just on J. Prove that T : J(T

∗(y)) → J(y) is a homomorphism of quadratic Jordan al-
gebras with 1

2 held behind your back [i.e., prove T (x(2,T∗(y))) = T (x)(2,y), T (U(T∗(y))
x z) =

U
(y)
T (x)T (z) directly from structurality]; prove TBx,T∗(y) = BT (x),yT for all x, y. (2) Use

this to verify that T (qi(z, T ∗(y))) = qi(T (z), y). (3) If (T, T ∗) is a weakly structural pair,
show that (z, T ∗(y)) q.i. ⇐⇒ (T (z), y) q.i.
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1.5 Elemental Characterization

Now we are ready to give our elemental characterization of the radical as the
properly quasi-invertible elements. In the next section we will harvest some
of the consequences of this characterization.

Elemental Characterization Theorem 1.5.1 (1) If K is a q.i. ideal of J,
then

K ⊆ PQI(J) ⊆ QI(J).
(2) The Jacobson radical coincides with the set of all properly quasi-

invertible elements:
Rad(J) = PQI(J),

which therefore forms a structurally invariant ideal, the unique maximal q.i.
ideal (containing all others).

(3) Thus an algebra is semiprimitive iff it contains no nonzero properly
quasi-invertible elements.

proof. (1) The second inclusion holds by the P.Q.I. Definition 1.4.1(2).
The first inclusion holds because the elements of any q.i. ideal must actually be
properly q.i.: z in a q.i. ideal K =⇒ all {z, y}−Uzy

2 ∈ K =⇒ all {z, y}−Uzy
2

q.i. =⇒ all (z, y) are q.i. [by Q.I. Pair Criterion 1.4.2(4)(vi)] =⇒ z is p.q.i.
Thus the radical, and all q.i. ideals, are contained in PQI(J).
(2)–(3) We claim that PQI(J) itself is a structurally invariant ideal, and

therefore from the above is the maximal q.i. ideal Rad(J) as in (2), so that
an algebra is semiprimitive iff PQI(J) = 0 as in (3). PQI(J) is closed under
addition: if x, z are p.q.i., then for any y the pairs (z, y) and (x,−qi(z, y)) are
quasi-invertible, implying that (x + z, y) is quasi-invertible by the Addition
Principle, so x+ z is p.q.i. It is closed under structural transformations T : z
p.q.i. =⇒ (z, T ∗(y)) quasi-invertible for all y =⇒ (T (z), y) is quasi-invertible
for all y by Structural Shifting =⇒ T (z) is p.q.i. In particular, PQI(J) is
invariant under scalar multiplications, so it is a linear subspace, and it is
invariant under all outer multiplications T = Ua (a ∈ Ĵ), hence also all La =
1
2Va =

1
2 (Ua+1̂ − Ua − 1J), so it is an ideal. �

Exercise 1.5.1* (1) Use the elemental characterization to show that
Rad(UeJ) = UeJ ∩ Rad(J) for any idempotent e. (2) Show that Rad(J) is invariant
under multiplication by all elements γ of the centroid (all linear transformations with
γ(x • y) = γ(x) • y = x • γ(y), cf. II Section 1.6.2).
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1.6 Radical Inheritance

This elemental characterization of the radical has several immediate conse-
quences. It allows us to relate semiprimitivity to nondegeneracy, and to prove
that the radical is hereditary, in the sense that the property of radicality
(Rad(J) = J) is inherited by ideals.8 The useful version of the hereditary
property is that the radical of an ideal (or Peirce inner ideal) is just the part
inherited from the global radical.

Hereditary Radical Theorem 1.6.1 (1) Quasi-invertibility takes place in
inner ideals: if an element of an inner ideal B is q.i. in J, then its quasi-
inverse lies back in B, and similarly for p.q.i.:

qi(B) ⊆ B, B ∩QI(J) ⊆ QI(B),
pqi(B,J) ⊆ B, B ∩ PQI(J) ⊆ PQI(B).

(2) We have equality for ideals or Peirce inner ideals:

PQI(K) = K ∩ PQI(J) if K  J,
PQI(Jk(e)) = Jk(e) ∩ PQI(J) (k = 2, 0, e idempotent).

(3) In particular, the radical remains radical in the unital hull :

PQI(J) = J ∩ PQI(Ĵ).
(4) These guarantee that ideals and Peirce inner ideals inherit semiprimi-

tivity : we have the Ideal and Peirce Inheritance Principles

Rad(J) = 0 =⇒ Rad(K) = Rad(Jk(e)) = 0.

(5) Semiprimitivity implies nondegeneracy :

Rad(J) = 0 =⇒ J nondegenerate.

proof. (1) By Q.I. Existence 1.3.2(1), the quasi-inverse qi(z) = −z−z2+
Uzqi(z) lies in the inner ideal B if z does (thanks to our strongness require-
ment that all inner ideals be subalgebras). The same holds for all qi(z, y) by
applying this in the y-homotope where B remains inner (cf. Q.I. Pair Existence
1.4.2(1)).
(2) There are lots of inner ideals where the p.q.i. inclusion is strict (an

upstanding algebra with no radical can have nilpotent inner ideals which are
entirely radical), but for ideals K or Peirce inner ideals J2(e),J0(e) we always
have PQI(B) ⊆ PQI(J), since if z ∈ PQI(B), y ∈ J, then in the ideal case
the square y(2,z) = Uyz ∈ K is q.i. in K(z), therefore in J(z), so by P.Q.I.
Definition 1.4.1(2) y itself is q.i. in J(z) too and [by Symmetry 1.4.3(1)] z is

8 It is a fact from general radical theory that radical-freedom Rad(J) = 0 is always
inherited by ideals!



376 The Radical

p.q.i. in J. In the Peirce case, similarly, for the Peirce projection T = T ∗ = Ue

or U1̂−e, the element T (y) ∈ B is q.i. in B(z), therefore in J(z), so by Structural
Shifting 1.4.3(2) y itself is q.i. in J(T∗(z)) = J(z), too [since z = T (z) ∈ Jk(e)].
Thus [by Symmetry again] z is p.q.i. in J.
(3) is an immediate consequence of (2), since J is an ideal in Ĵ. (4) follows

immediately from (2). For (5), any trivial z would be p.q.i. (even properly
nilpotent, z(2,y) = Uzy = 0 for all y), so z ∈ PQI(J) = Rad(J) = 0. �

1.7 Radical Surgery

For a “bad” property P of algebras (such as trivial, q.i., nil, degenerate, or
nilpotent), the P-radical P(J) is designed to isolate the bad part of the algebra
so that its surgical removal (forming the quotient algebra J/P(J), referred to
as radical surgery) creates an algebra without badness: the radical is the
smallest ideal whose quotient is “free of P” (has no P-ideals). On the other
hand, for a “nice” property P of algebras (such as primitive or simple or
prime), the P-radical P(J) is designed to isolate the obstacle to niceness so
that its surgical removal creates “semi-niceness”: the radical is the smallest
ideal whose quotient is semi-P [= subdirect product of P-algebras]. Then
an algebra is semi-P iff P(J) vanishes. In the case of the Jacobson radical,
the bad property is quasi-invertibility and the nice property is primitivity.
Let us convince ourselves that removing the radical does indeed stamp out
quasi-invertibility and create semiprimitivity.

Radical Surgery Theorem 1.7.1 The quotient of a Jordan algebra by its
radical is semiprimitive:

Rad(J/Rad(J)) = 0.

proof. There is no q.i. ideal I left in J = J/Rad(J) because its preimage I
would be q.i. in J [hence contained in the radical and I = 0]: quasi-invertibility
is a “recoverable” property in the sense that if K ⊆ I ⊆ Ĵ where both I/K
and K have the property, so did I to begin with. Indeed, note first that hat
interacts smoothly with quotient bars: Ĵ =

(
Φ1̂ ⊕ J)/K = Φ1̂ ⊕ (

J/K
)
= Ĵ.

Since any z ∈ I becomes q.i. in I, in Ĵ = Ĵ we have 1̂ = U
1̂−z̄x̂ for some

x̂ ∈ Ĵ, 1̂ = U1̂−zx̂ + k in Ĵ for some k in the q.i. K. Then 1̂ − k = U1̂−zx̂ is
invertible, hence 1̂ − z is too [by Invertibility Criterion 1.1.1(3)(v)], and z is
quasi-invertible. �

So far we have an idea of semi-niceness, but we will have to wait till Chap-
ter 6 to meet the really nice primitive algebras. Now we derive some relations
between radicals that will be needed for the last step of our summit assault,
the Prime Dichotomy Theorem 9.2.1. In keeping with the above philosophy,
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we define the degenerate radical Deg(J) to be the smallest ideal whose quo-
tient is nondegenerate. Such a smallest ideal exists: it is just the intersection
K =

⋂
αKα of all such nonzero ideals. Indeed, this ideal is clearly smallest, and

it still has nondegenerate quotient: Uz̄J = 0 ⇒ UzJ ⊆ K ⊆ Kα ⇒ z ∈ Kα

[for all α, since J/Kα is nondegenerate] ⇒ z ∈ ⋂
αKα = K.

Jacobson radical surgery creates nondegeneracy, rather brutally for most
algebras, but for algebras with d.c.c. the surgery is non-invasive: it removes
nothing but the degenerate radical.9

Radical Equality Theorem 1.7.2 (1) Rad(J) contains all weakly trivial
elements z (UzJ = 0), but contains no nonzero vNrs (von Neumann regular
elements x ∈ UxĴ). In particular, the radical contains no nonzero idempotents.
(2) The degenerate radical is always contained in the semiprimitive radical,

Deg(J) ⊆ Rad(J).
(3) A nondegenerate algebra with d.c.c. on inner ideals is semiprimitive.
(4) The degenerate and semiprimitive radical coincide, Deg(J) = Rad(J),

for algebras J which have the d.c.c. on inner ideals.

proof. Set R := Rad(J),Z := Deg(J) for brevity. (1): If z is weakly trivial,
then z(2,y) = Uzy = 0 for all y, so z is properly nilpotent, hence properly quasi-
invertible, and therefore lies in R. If x ∈ (x] then by the vNr Pairing Lemma
II.18.1.2 it is regularly paired x O y with some y ∈ J, x = Uxy, y = Uyx. But
then Bx,y(x) = x−{x, y, x}+UxUyx = x−2Uxy+Uxy = x−2x+x = 0. If x
is nonzero then Bx,y kills x and is not invertible, so (x, y) is not q.i. [by Basic
Q.I. Theorem 1.4.2(ii)], therefore x is not p.q.i., and so does not lie in the
radical R [by Elemental Characterization 1.5.1]. All idempotents are clearly
vNr’s, e = Uee [or: no e  = 0 is q.i., no 1̂− e is ever invertible, because it kills
its brother, U1̂−ee = 0], so no nonzero idempotents lie in the radical.
(2) By Radical Surgery 1.7.1 above, J := J/R is a semiprimitive algebra,

Rad(J) = 0, and so by (1) J has no trivial elements. But then R creates
nondegeneracy by surgery, hence contains the smallest ideal Deg(J) with that
property.
(3) will follow as the particular case J′ = J of the following general result

(which is what we really need for Dichotomy 9.2.1).

Radical Avoidance Lemma 1.7.3 A nondegenerate Jordan Φ-algebra J
avoids the radical of any larger Jordan Φ′-algebra J′ ⊇ J over Φ′ ⊇ Φ which
has d.c.c. on principal inner Φ′-ideals (e.g., if J′ is finite-dimensional over a
field Φ′): J ∩Rad(J′) = 0.

proof. If the intersection is nonzero, choose a principal inner Φ′-ideal
(x]′ = UxĴ′ of J′ minimal among all those determined by elements 0  = x ∈
J ∩ Rad(J′) (which we can do, thanks to the d.c.c. in J′). By nondegeneracy
of J, x is not trivial in J, 0  = UxĴ ⊆ UxĴ′ = (x]′, so there exists 0  =

9 cf. the A–W–J Structure Theorem in I.4.11.
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y ∈ UxĴ ⊆ (x]′ ∩ J ∩ Rad(J′) [since the ideal Rad(J′) is closed under inner
multiplication] of the same type as x. But then (y]′ ⊆ (x]′ by innerness [or
directly, (y]′ := UyĴ′ ⊆ UxUĴUxĴ′ ⊆ UxĴ′ =: (x]′], so (y]′ = (x]′ by minimality
of (x]′, and therefore y ∈ (x]′ = (y]′ is a nonzero vNr contained in Rad(J′),
contradicting (1) above. �
Returning to the proof of (3), taking J′ = J,Φ′ = Φ we see that a non-

degenerate algebra with d.c.c. avoids its own radical, J ∩ Rad(J) = 0, i.e.,
Rad(J) = 0 and J is semiprimitive.
(4) follows from (3) by radical surgery: the reverse inclusion Z ⊇ R to (2)

follows because the q.i. ideal R/Z vanishes in the nondegenerate algebra J/Z
by (3) [note that any quotient J := J/I inherits the d.c.c. from J, since the
inner ideals of J are in 1–to–1 order–preserving correspondence with the inner
ideals of J containing I]. �
Radical Avoidance is a poor man’s way of avoiding having to prove that

the radical is actually nilpotent in the presence of the d.c.c.

Exercise 1.7.3* Show that the Radical Avoidance Lemma goes through if J′ has d.c.c. on
those open principal inner ideals (x)′ := UxJ′ which are determined by elements x ∈ J.
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1.8 Problems for Chapter 1

Problem 1.1* Let A be an associative (real or complex) unital Banach
algebra (a complete normed vector space with norm ‖x‖ satisfying ‖αx‖ =
‖α‖‖x‖, ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ‖xy‖ ≤ ‖x‖ ‖y‖). (1) Show that every element
of norm ‖x‖ < 1 is quasi-invertible, with (1−x)−1 =

∑∞
n=0 x

n. (2) Show that
in a Banach algebra α lies in the resolvent of x (i.e., α1−x is invertible) for all
α with α > ‖x‖. (3) Show more generally that the set of invertible elements is
an open subset: if u is invertible, then so are all v with ‖u− v‖ < ‖u−1‖−1.

Problem 1.2* (Amitsur’s Polynomial Trick) If x ∈ J is such that the el-
ement tx is quasi-invertible in the unital Jordan algebra J[t] = Φ[t] ⊗Φ J of
polynomials in the scalar indeterminate t, show that x must be nilpotent in J:
the quasi-inverse must be the geometric series (1̂ − tx)−1 =

∑
n=0 t

nxn, and
since this exists as a finite polynomial, we must eventually have xn = 0.

Problem 1.3 (1) If u, v are inverses in a unital Jordan algebra, show that the
operators Uu, Uv, Vu, Vv all commute, and hence all operators Up(u), Vq(u) com-
mute with all Ur(v), Vs(v) for polynomials p, q, r, s. Use 1

2 ∈ Φ to show that the
subalgebra Φ[u, v] is a commutative associative linear algebra. (2) If z, w are
quasi-inverses in a Jordan algebra, show that the operators Uz, Uw, Vz, Vw all
commute, and therefore all operators Up(z), Vq(z) commute with all Ur(w), Vs(w)
for polynomials p, q, r, s; and the subalgebra Φ[z, w] is a commutative associa-
tive linear algebra.

Problem 1.4* (1) For quadratic Jordan algebras the argument of Elemen-
tal Characterization 1.5.1 establishes that PQI(J) is an outer ideal, but it
requires more effort to prove that it is also inner. One needs a Fourth Prin-
ciple for q.i. pairs: the Homotope Shifting Principle. Show that (x, Uzy) is
quasi-invertible in J iff (x, y) is quasi-invertible in J(z) iff (w, z) is quasi-
invertible in J for w := {x, z, y} − UxUzUyz. (2) Use this Principle to show
that Rad(J(z)) = {x ∈ J | Uzx ∈ Rad(J)}. (3) Show that J is radical iff all
J(z) are radical.

Problem 1.5* (1) If u is invertible in a unital J, show that u−x is invertible
⇐⇒ x is q.i. in J(u−1); conclude that x p.q.i. in a unital J implies that u− x
is invertible for all invertible u. (2) Show that x p.q.i. , y q.i. in J =⇒ x + y
q.i. in J. (3) Conclude that x, y p.q.i. in J =⇒ x+ y p.q.i. in J.

Problem 1.6 Show that J is radical (Rad(J) = J) iff all J(z) are radical.

Problem 1.7* A useful sidekick of Macdonald and Shirshov–Cohn is
Koecher’s Principle, which says that if a homogeneous Jordan polynomial
f(x1, . . . , xn) vanishes whenever the xi are invertible elements of unital Jor-
dan algebras, then f vanishes for all elements xi in all Jordan algebras. (1)
Establish Koecher’s Principle. (2) Show that Koecher’s Principle for finite-
dimensional algebras over an infinite field Φ follows from Zariski-density.
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Problem 1.8* Bergmann Structurality 1.2.2 has an easy proof using
Koecher’s Principle. (1) Show as in the P.Q.I. Definition 1.4.1 that Bα,x,y =
U

(y)

α1̂(y)−x
for 1̂(y) the formal unit for Ĵ (y) = Φ1̂(y) ⊕ J(y), and as in the

proof of 1.4.3(4) that Bα,x,yUx = Uαx−Ux(y) = UxBα,y,x. (2) Show that

[UBα,x,y(z) − Bα,x,yUzBα,y,x]Uy = 0 by the Fundamental Formula in Ĵ (y).
(3) Show that the Bergmann structural identity holds for all z ∈ UxJ. (4)
Conclude that the Bergmann structural identity holds whenever x or y is
invertible. Use Koecher’s Principle to show that the identity holds for all
elements of all Jordan algebras.

Problem 1.9* (1) Examine the proof of the Minimal Inner Ideal Theorem
II.19.2.1 to show that every minimal inner ideal in a nondegenerate Jordan
algebra contains an element which is regularly (not just structurally) paired
with a nonzero idempotent. Conclude that the radical of a nondegenerate Jor-
dan algebra with d.c.c. on inner ideals must vanish. (2) Argue directly from
the d.c.c. that if (c] (respectively, (c)) is minimal among nonzero principal
(respectively, open principal) inner ideals in a nondegenerate Jordan algebra,
then every one of its nonzero elements b is a vNr. (3) Conclude that in a
nondegenerate Jordan algebra with d.c.c. on principal inner ideals (x] (re-
spectively, open principal inner ideals (x)), every nonzero inner ideal I  = 0
contains a von Neumann regular element (vNr) b  = 0. (4) Deduce from this
a slight improvement on Radical Equality Theorem 1.7.2(3): a nondegenerate
Jordan algebra J with d.c.c. on principal inner ideals (x] (respectively, open
principal inner ideals (x)) is semiprimitive, Rad(J) = 0.

Question 1.1 Is Koecher’s Principle valid for inhomogeneous f (so that any
f which vanishes on invertible elements vanishes on all elements)?

Question 1.2 The Zariski topology (where the closed sets are the zero-sets
of polynomial functions, so nonempty open sets are always dense) is usually
defined only for finite-dimensional vector spaces over an infinite field. Can the
restriction of finite-dimensionality be removed?

Question 1.3* Our entire treatment of quasi-invertibility has taken place
in the formal unital hull Ĵ = Φ1̂⊕ J. What if J already has a perfectly good
unit element? Can we replace 1̂ by 1 in all definitions and results, and obtain
an analogous theory entirely within the category of unital Jordan algebras?

Question 1.4* It was easy to see that J/I inherits the d.c.c. from J. Does it
always inherit the principal d.c.c. (with respect to either open (x), principal
(x], or closed [x] principal inner ideals)?



2

Begetting and Bounding Idempotents

In this chapter we give some natural conditions on an algebra which guarantee
that it has a finite capacity.1 These are mild enough that they will automati-
cally be satisfied by primitive i-exceptional algebras over big fields, and so will
serve to cast such algebras back to the classical theory, where we know that
they must be Albert algebras. First we formulate axiomatically the crucial
property of having a rich supply of idempotents, and show that this property
can be derived from algebraicness2 rather than a finiteness condition. Once
we are guaranteed a rich supply of idempotents, our second step is to insure
that we don’t have too many : all things in moderation, even idempotents. The
reasonable restriction is that there be no infinite family of orthgonal idem-
potents. Thirdly, when we mix in semiprimitivity, these three conditions are
sufficient to produce a capacity.

2.1 I-gene

An associative algebra is called I-genic, or an I-algebra, if every non-nilpotent
element generates an idempotent as a left multiple, equivalently, if every non-
nil left ideal contains an idempotent. In Jordan algebras we don’t have left or
right, but we do have inner and outer.

I-Genic Definition 2.1.1 (1) An algebra is I-genic (idempotent-genera-
ting), if it has the I-gene (idempotent-generating) property that every non-
nilpotent element b has an idempotent inner multiple, i.e., generates a nonzero
idempotent in its principal inner ideal :

1 cf. I.18.1, where the concepts of this chapter (I-gene, I-finiteness) were introduced, and
proofs sketched for the basic results (Algebraic-I Proposition, I-Finite Proposition, I-Finite
Capacity Theorem).

2 Most authors use the term algebraicity for the property of being algebraic, but I prefer
a plebeian ness to an elevated icity: al–juh–bray–iss–it–tee is too much for my common
tongue.
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b not nilpotent =⇒ (b] = UbĴ contains e  = 0.
(2) I-gene is equivalent to the condition that every non-nil inner ideal

contains a nonzero idempotent,

B not nil =⇒ B contains e  = 0.
Indeed, the second condition implies the first because if b is not nilpotent then
B = (b] is not nil [it contains the non-nilpotent b2], so contains an idempotent.
Conversely, the first implies the second because any non-nil inner ideal B
contains a non-nilpotent b, and e ∈ (b] implies e ∈ B.

Exercise 2.1.1A* An associative algebra A is called a left I-algebra if every non-nilpotent
element x ∈ A has a nonzero idempotent left multiple e = ax; dually for right I-algebra. (1)
Show that A is a left I-algebra iff every non-nil left ideal contains a nonzero idempotent.
(2) Show that A is a left I-algebra iff it is a right I-algebra; show that this happens if A+

is I-genic. (3) Does left-I imply inner-I?

Exercise 2.1.1B* The Principal Inner Proposition II.5.3.1 shows that (b) ⊆ (b] ⊆ [b], (b) ⊆
[b) ⊆ [b], U[b]J ⊆ (b) for the principal inner ideals (b) := Ub(J), (b] = Ub(Ĵ), [b] = Φb+Ub(Ĵ)
and the weak inner ideal [b) := Φb + Ub(J). Show that we could have defined I-gene using
weak inner ideals instead of all inner ones, by showing that the following are equivalent:
there is a nonzero idempotent e in (1) every non-nil weak inner ideal; (2) every non-nil
inner ideal; every principal inner ideal (3) (b); (4) (b]; (5) [b); or (6) [b] for non-nilpotent b.

I-gene need not be inherited by all subalgebras: if Φ[b] inherited I-gene it
would imply that b generated an idempotent which is a polynomial in b, which
is too strong a condition – too close to algebraicness. But I-gene is inherited
by inner ideals.

I-Gene Inheritance Lemma 2.1.2 In a Jordan algebra J, any principal
inner ideal of an inner ideal is again inner:

b ∈ B inner in J =⇒ Ub(B̂) is inner in J.

I-gene is inherited by all inner ideals:

B inner in I-genic J =⇒ B is I-genic.

proof. The first follows from the invariance of inner ideals under struc-
tural transformations (Structural Innerness II.18.2.2), or directly from the
Fundamental Formula: UUb(B̂)(Ĵ) = UbUB̂Ub(Ĵ) ⊆ UbUB̂(B) [by innerness of

B] ⊆ Ub(B̂). [An arbitrary inner ideal of B need not remain inner in J; for
example, B′ = ΦE12 in B = ΩE12 in J =M2(Ω).]
For the second part, if b ∈ B is non-nilpotent then the B-principal inner

ideal (b)B = Ub(B̂) ⊆ B is not nil (it contains b2) and is inner in J by the first
part, so by the I-Gene property 2.1.1(2) in J, it contains an idempotent. �
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2.2 Algebraic Implies I-Genic

I-genic algebras are precisely those that are rich in idempotents, the very
stuff of the classical approach. A crucial fact for Zel’manov’s approach is
that algebraicness, a condition of “local” finiteness at each individual element
(every subalgebra Φ[x] generated by one element is finite-dimensional over Φ),
suffices to produce the required idempotents.

Algebraic Definition 2.2.1 An element x of a Jordan Φ-algebra is alge-
braic if it satisfies a monic polynomial with zero constant term,

p(x) = 0 for some p(t) = tn + αn−1t
n−1 + · · ·+ α1t

1 ∈ tΦ[t].

For unital algebras the condition is equivalent to the condition that it satisfy
a monic polynomial

q(x) = 0 for some q(t) = tn + αn−1t
n−1 + · · ·+ α01 ∈ Φ[t],

since if x satisfies a general q(t), it also satisfies p(t) = tp(t) with zero constant
term. Algebraicness just means that some power xn can be expressed as a
Φ-linear combination of lower powers. Notice in particular, that nilpotent
elements are always algebraic, as are idempotents. Over a field it suffices if x
satisfies a nonzero polynomial, since any nonzero polynomial over a field can
be made monic.
An algebra is algebraic if all of its elements are algebraic.

Algebraic I Proposition 2.2.2 Every algebraic algebra over a field is I-
genic.

proof. If b is non-nilpotent, then there is a nonzero idempotent in the
subalgebra C = Φ[c]0 ⊆ (b] of polynomials with zero constant term in c =
b2 = Ub1̂ ∈ (b] [which is non-nilpotent since b is]: C is a finite-dimensional
commutative associative algebra which is not nil, since it contains c, so by
standard associative results it contains an idempotent. [Or directly: by finite-
dimensionality the decreasing chain of subalgebras Cn = Ĉcn eventually stabilizes, and
when Cn = C2n we have cn = ac2n = acncn for some a ∈ Ĉ, e := acn ∈ C has cne =
ecn = cn �= 0, so e �= 0 and e2 = acne = acn = e is idempotent]. �

Exercise 2.2.2* An element y is von Neumann regular (a vNr, as in II.18.1.1) if y ∈ (y),
and doubly vNr if y = Uy2a ∈ (y2), in which case by the Double vNr Lemma II.18.1.3
e = Uy2Uay2 is a nonzero idempotent in (y). (1) If (xm) = (x4m+2) show that y = x2m+1

is doubly vNr. (3) Prove Morgan’s Theorem that if J has d.c.c. on the open principal inner
ideals {(xm)}, then J is I-genic. In particular, any Jordan algebra with d.c.c. on inner ideals
is I-genic.
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2.3 I-genic Nilness

In I-genic algebras, proper quasi-invertibility shrinks to nilness.

Radical Nilness Proposition 2.3.1 (1) The Jacobson radical of an I-genic
algebra reduces to the nil radical,

Rad(J) = Nil(J).
(2) In particular, this holds for algebraic algebras over fields. More gener-

ally, as soon as an individual element of the Jacobson radical is algebraic, it
must be nilpotent:

x ∈ Rad(J) algebraic over a field =⇒ x is nilpotent.

(3) Indeed, if we call an element co-algebraic if it satisfies a co-monic
polynomial (one whose lowest term has coefficient 1), then for an arbitrary
ring of scalars we have

x ∈ Rad(J) co-algebraic over any Φ =⇒ x is nilpotent.

proof. (1) If x ∈ Rad(J) were not nilpotent, then by I-gene it would
generate a nonzero idempotent e ∈ (x] ⊆ Rad(J), contrary to the Radical
Equality Theorem 1.7.2(1).
(3) Whenever we have a co-algebraic relation xn+α1x

n+1+· · ·+αmxn+m =
0 we have 0 = xn • (1̂ +α1x

1+ · · ·+αmxm) = xn • (1̂− z) for z a polynomial
in x with zero constant term, therefore if x is radical so is z, and hence 1̂− z
is invertible. But then [by power-associativity in the commutative associative
subalgebra Φ[x] with 1

2 ∈ Φ] we also have U1̂−zx
n = (1̂− z) •xn • (1̂− z) = 0,

and we can cancel U1̂−z to get nilpotence x
n = 0.

(2) follows from (3) since over a field algebraic is the same as co-algebraic
[we can divide by the lowest nonzero coefficient in any monic polynomial to
make it co-monic, and vice versa]. �

2.4 I-Finiteness

The crucial finiteness condition turns out to be the rather mild one that there
not be an infinite family of orthogonal idempotents.3 We denote orthgonality
e • f = 0 of idempotents by e ⊥ f.

I-Finite Proposition 2.4.1 (1) An algebra J is defined to be idempotent-
finite (I-finite) if it has no infinite orthogonal family e1, e2, . . . of nonzero
idempotents.

3 The I-Finiteness Proposition and I-Finite Capacity Theorem were sketched in I.8.1.
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(2) We order idempotents according to whether one dominates the other
under multiplication,

g ≥ f ⇐⇒ g • f = f ⇐⇒ Ugf = f ⇐⇒ f ∈ J2(g),
g > f ⇐⇒ g ≥ f, g  = f,

equivalently, has larger Peirce 2-space (hence smaller 0-space),

g ≥ f ⇐⇒ J2(g) ⊇ J2(f) =⇒ J0(g) ⊆ J0(f),
g > f ⇐⇒ J2(g) > J2(f) =⇒ J0(g) < J0(f).

An idempotent g is bigger than f iff it is built by adjoining to f an orthogonal
idempotent e :

g ≥ f ⇐⇒ g = f + e for e ⊥ f,

equivalently, if

e := g − f ∈ J2(g) ∩ J0(f).

(3) I-finiteness is equivalent to the a.c.c. on idempotents, since strictly
increasing families of idempotents in J are equivalent to nonzero orthogonal
families:

f1 < f2 < · · · is a strictly increasing family (fi+1 = fi + ei)
⇐⇒ e1, e2, . . . is a nonzero orthogonal family

0  = ei = fi+1 − fi ∈ J2(fi+1) ∩ J0(fi).

(4) I-finiteness implies the d.c.c. on idempotents too, since decreasing
families are equivalent to bounded orthogonal families:

g1 > g2 > · · · is a strictly decreasing family (gi = gi+1 + ei)
⇐⇒ e1, e2, . . . are nonzero orthogonal, bounded above by g1

0  = ei = gi − gi+1 ∈ J2(g1) ∩ J2(gi) ∩ J0(gi+1).

(5) Any algebra with d.c.c. on inner ideals is I-finite.
proof. The first equivalences in (2) follow from the characterizations of

the Peirce space J2(g) in the Eigenspace Laws II.8.1.4, or from the Shirshov–
Cohn Principle: in an associative algebra, 2f = gf+fg =⇒ 4f = 2(gf+fg) =
(g2f + gfg)+ (gfg+ fg2) = gf +2gfg+ fg = 2f +2gfg =⇒ f = fg = gf =
gfg, and conversely f = gfg =⇒ gf = fg = gfg = f =⇒ gf + fg = 2f. For
the second equivalence, f ∈ J2(g)⇐⇒ J2(f) = UfJ ⊆ J2(g) [inner ideal] and
1̂− g ≤ 1̂−f in Ĵ =⇒ J0(f) = Ĵ2(1̂−f)∩J ⊇ Ĵ2(1̂− g)∩J = J0(g). For the
third equivalence, if g = f + e for e ⊥ f then g • f = f • f + e • f = f +0 = f.
Conversely, if g ≥ f then e := g − f ∈ J2(g) is orthogonal to f (lies in
J0(f)) since e • f = g • f − f • f = f − f = 0; it is idempotent since
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e2 = (g − f) • e = e − 0 = e. For the strict inequalities, g > f =⇒ 0  = e ∈
J2(g) ∩ J0(f) =⇒ J2(g) > J2(f) and J0(g) < J0(f).
For (3), by (2) above an ascending chain of fk leads to an orthogonal

family 0  = ek = fk+1 − fk ∈ J2(fk+1) ∩ J0(fk). Indeed, ei, ej are orthogonal
if i < j (i.e., i+1 ≤ j) because ei ∈ J2(fi+1) ⊆ J2(fj) but ej ∈ J0(fj), where
J2(fj),J0(fj) are orthogonal by the Peirce Orthogonality relation II.8.2.1, or
by the Shirshov–Cohn Principle: in an associative algebra eifj = ei, fjej = 0,
so eiej = eifjej = 0, and dually ejei = 0. Conversely, any orthogonal family
of nonzero idempotents {ei} leads to an ascending chain 0 = f1 < f2 < · · ·
for fi+1 = e1 + e2 + · · ·+ ei.
For (4), by (2) again a descending chain of gk leads to an orthogonal family

0  = ek = gk − gk+1 ∈ J2(gk) ∩ J0(gk+1). Indeed, ei, ej are orthogonal if i < j
(i.e., i + 1 ≤ j) because ej ∈ J2(gj) ⊆ J2(gi+1) but ei ∈ J0(gi+1), so are
again orthogonal. Conversely, any othogonal family of nonzero idempotents
{ei} bounded above by g leads to a descending chain g = g1 > g2 > · · · for
gi+1 = g − (e1 + e2 + · · ·+ ei).
For (5), I-finiteness is by (3) equivalent to the a.c.c. on idempotents {fi},

which follows by (2) from the d.c.c. on inner ideals J0(fi). �

Notice that I-finiteness is an “elemental” condition, so it is automatically in-
herited by all subalgebras (whereas I-gene was inherited only by inner ideals).

Exercise 2.4.1* Show that in the presence of a unit the a.c.c. and d.c.c. on idempotents
are equivalent, since {fi} is an increasing (respectively decreasing) family iff {1 − fi} is a
decreasing (respectively increasing) family.

The next step shows that the classical finiteness condition, having a ca-
pacity, is a consequence of our generating property (I-gene) and our bounding
property (I-finiteness).

I-Finite Capacity Theorem 2.4.2 A semiprimitive Jordan algebra which
is I-genic and I-finite necessarily has a capacity.

proof. Semiprimitivity implies that the nil radical vanishes by Radi-
cal Definition 1.3.1(4). In particular, J can’t be entirely nil, so by I-gene
nonzero idempotents exist. From the d.c.c. on idempotents we get mini-
mal idempotents e; we claim that these are necessarily division idempo-
tents. Any non-nilpotent element b of J2(e) generates a nonzero idempo-
tent, which by minimality must be e; from b = Ueb we get (without ex-
plicitly invoking any Peirce facts from Part II) Ub = UeUbUe, UbUe = Ub,
so e ∈ (b] = Ub(Ĵ) = UbUe(Ĵ) = Ub(J2(e)) and by Invertibility Criterion
1.1.1(4)(iii) b is invertible in J2(e). Thus every element of J2(e) is invertible
or nilpotent.
We claim that by semiprimitivity there can’t be any nilpotent elements

at all in J2(e). If z is nilpotent, x, y arbitrary in J2(e), then UxUzy can’t be
invertible [recall that Uab is invertible iff both a, b are invertible], so it must be
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nilpotent. Then the operator UUxUzy = (UxUzUy)(UzUx) is nilpotent too; now
in general ST is nilpotent iff TS is [(ST )n = 0⇒ (TS)n+1 = T (ST )nS = 0],
so (UzUx)(UxUzUy) = UUz(x2)Uy = U

(y)
z′ is nilpotent also. Then the element

z′ := Uz(x2) is nilpotent in the y-homotope for every y, i.e., is properly nilpo-
tent and hence properly quasi-invertible, so by the Elemental Characterization
Theorem 1.5.1(2) it lies in the radical. But J2(e) inherits semiprimitivity by
Hereditary Radical Theorem 1.6.1(4), so z′ = 0. Linearizing x �→ y, 1

2e in
0 = Uz(x2) gives 0 = Uz(e • y) = Uzy for all y ∈ J2(e). Since J2(e) also
inherits nondegeneracy by Hereditary Radical (4)–(5), we get z = 0 again.
Thus there are no nilpotent elements after all: every element of J2(e) is

invertible, J2(e) is a division algebra, and e is a division idempotent.
Once we get division idempotents, we build an orthogonal family of them

reaching up to 1: if e = e1+ · · ·+ en is maximal among all idempotents which
are finite sums of division idempotents ei (such exists by the a.c.c.), we claim
that J0(e) = 0. Indeed, J0(e) inherits the three properties semiprimitivity [by
Hereditary Radical (4) again], I-gene [by I-Gene Inheritance 2.1.2 since J0(e)
is an inner ideal], and I-finiteness [since J0(e) is a subalgebra]. Thus if it were
nonzero we could as above find a nonzero division idempotent en+1 ∈ J0(e)
orthogonal to all the others, and e+en+1 > e would contradict the maximality
of e. Therefore we must have J0(e) = 0, in which case e is the unit by the
Idempotent Unit Theorem II.10.1.2 [stating that iff J is nondegenerate and e
is an idempotent with nothing orthogonal to it, J0(e) = 0, then e = 1 is the
unit for J].
Therefore 1 = e1+· · ·+en for division idempotents ei, and we have reached

our capacity. �

2.5 Problems for Chapter 2

Problem 2.1 Show that nilpotence is symmetric in any associative algebra
A: for elements x, y the product xy is nilpotent iff the product yx is. Show that
x is nilpotent in the homotope Ay (where a ·y b := ayb) iff xy is nilpotent, so
an element is properly nilpotent (nilpotent in all homotopes) iff all multiples
xy (equivalently, all yx) are nilpotent. Conclude that any element of a nil one-
sided ideal is properly nilpotent. Show that a nil ideal I is always properly
nil: I ⊆ Pnil(A) (just as a q.i. ideal is always properly q.i.).

Problem 2.2* If J =�∞
i=1Φei for a field Φ, show that J has d.c.c. on all

principal inner ideals, but not on all inner ideals, and is not I-finite, so we
cannot weaken the condition in the I-Finite Proposition 2.4.1(5) to d.c.c. on
principal inner ideals only.
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Bounded Spectra Beget Capacity

The next stage in the argument shows that having a capacity is a consequence,
for algebras over a suitably big field, of having a finite bound on the spectra
of all the elements: the local finiteness condition of algebraicness appears as
soon as we have a finiteness condition on spectra.1

In this chapter we will adopt an ambivalent attitude to unital hulls: our
basic unital hull will be denoted by J̃ and its unit by 1̃. These are defined to
be the original algebra J̃ := J, 1̃ := 1 if J is already unital, and the formal
unital hull J̃ := Ĵ, 1̃ := 1̂ if J is not unital. This distinction matters only in
deciding whether or not 0 belongs to a spectrum.

3.1 Spectra

Let us recall the definitions, familiar to us from the theory of operators on
Hilbert space. Shimshon Amitsur was once teaching an analysis course on dif-
ferential equations when he realized that the notion of spectrum and resolvent
made perfectly good sense in algebra, and was related to quasi-invertibility.

Φ–Spectrum Proposition 3.1.1 (1) If J is a Jordan algebra over a field
Φ, the Φ–spectrum SpecΦ,J(z) of an element z ∈ J is defined to be the set
of scalars λ ∈ Φ such that λ1̃ − z is not invertible in the unital hull J̃, or
equivalently, the principal inner ideal Uλ1̃−z(J̃) can be distinguished from J̃,

SpecΦ,J(z) := {λ ∈ Φ | λ1̃− z not invertible in J̃}
= {λ ∈ Φ | Uλ1̃−z(J̃) < J̃}.

The spectrum can also be defined by the action of λ1̃− z on J itself,
1 cf. I.8.6–8.8, where bigness and the Φ-,f -, and absorber-spectra were introduced, and

proofs of the basic results (Spectral Relations Proposition, f -Spectral Bound Theorem, Big
Resolvent Trick, Division Evaporation Theorem) were sketched.
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SpecΦ,J(z) = {λ ∈ Φ | Uλ1̃−z(J) < J}.

In the non-unital case J̃ = Ĵ and no z ∈ J is ever invertible, so always
0 ∈ SpecΦ,J(z).
The Φ-resolvent ResΦ,J(z) of z is defined to be the complement of the

spectrum, the set of λ ∈ Φ such that λ1̃− z is invertible in the unital hull.
(2) Spectrum and resolvent are intimately related to quasi-invertibility :

For λ = 0:

{
0 ∈ ResΦ,J(z) ⇐⇒ z is invertible in J,
0 ∈ SpecΦ,J(z) ⇐⇒ z is not invertible in J;

For λ  = 0:
{
λ ∈ ResΦ,J(z) ⇐⇒ λ−1z is q.i.,
λ ∈ SpecΦ,J(z) ⇐⇒ λ−1z is not q.i.

(3) The nonzero part of the spectrum and resolvent are independent of
ideal extensions: If z is an element of an ideal I of J then

SpecΦ,I(z) \ {0} = SpecΦ,J(z) \ {0} and ResΦ,I(z) \ {0} = ResΦ,J(z) \ {0}.
proof. (1) To see the equivalence between non-surjectivity of Uλ1̃−z on

J̃ and on J, for λ  = 0 we can apply the Congruent to 1̂ Lemma 1.2.3(3): for
λ  = 0 in the field Φ we can divide by λ and replace λ1̃− z by 1̃−λ−1z, where
surjectivity on J̃ and J coincide by the Lemma. As usual, it is only λ = 0 that
causes us any trouble; here the equivalence is trivial in the unital case J̃ = J,
and in the nonunital case J̃ = Ĵ equivalence is easy because λ = 0 always
belongs to the spectrum under either criterion: U0−z(Ĵ) ⊆ J is never Ĵ and
U0−z(J) is never J [by the Surjective Unit II.18.1.4, equality would force J to
be unital].
(2) For λ  = 0 in a field Φ, λ1̃− z is invertible iff 1̃−λ−1z is invertible, i.e.,

iff λ−1z is quasi-invertible. Quasi-invertibility doesn’t depend on the hull, or
even on what ideal z belongs to: if z ∈ I  J̃ (e.g., I = J) has a quasi-inverse
w ∈ J̃, then by Basic Q.I. Theorem 1.3.2(4)(iv) w = Uzw−z2−z must belong
to the ideal I too (c.f. Hereditary Radical Theorem 1.6.1(1)), and z is q.i. in
I. This already establishes (3), which finesses the question about λ = 0.
For λ = 0, we have already seen in (1) that in the non-unital case 0 always

belongs to the spectrum and never to the resolvent, and z is never invertible in
J. In the unital case J̃ = J we have by definition that 0 ∈ SpecΦ,J(z)⇐⇒ 0−z
is not invertible in J ⇐⇒ z is not invertible in J. �

Exercise 3.1.1A* Let J be a Jordan algebra over a field Φ. (1) [λ = 0] Show that z ∈ J
is invertible in J̃ iff z is invertible in J̃ = J. (2) [λ �= 0] Show that λ1̃ − z is invertible iff
there is wλ ∈ J with Uλ1̃−zwλ = λz − z2, Uλ1̃−z(wλ)2 = z2. (3) Show that SpecB(z) ⊇
SpecJ(z), ResB(z) ⊆ ResJ(z) for all elements z of all unital subalgebras B of J. (4) Give a
counter-example to equality SpecI(z) = SpecJ(z), ResI(z) = ResJ(z) for an element z of an
ideal I of J (naturally it will be λ = 0 that misbehaves).
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Exercise 3.1.1B Let J be a unital Jordan algebra over a field Φ. (1) If z ∈ J is nilpotent,
show that 1 − z is invertible with inverse given by the (short) geometric series; show that
λ1̃ − z is invertible iff λ �= 0. Conclude that SpecΦ,J(z) = {0}. (2) If 1 = e1 + · · · + en for
orthogonal idempotents ei, show that x =

∑
i xi (xi ∈ J2(ei)) is invertible in J iff each xi is

invertible in J2(ei); show that the spectrum of any x =
∑

i λiei + zi (zi ∈ J2(ei) nilpotent)
is SpecΦ,J(x) = {λ1, . . . , λn}.

f-Spectrum Definition 3.1.2 If f is a Jordan polynomial which does not
vanish strictly on J, the f-spectrum f-SpecΦ,J(z) of z is defined to be the set
of scalars such that the inner ideal Uλ1̃−z(J) can be distinguished from J by
the strict vanishing of f :

f-SpecΦ,J(z) := {λ ∈ Φ | Uλ1̃−z(J) satisfies f strictly} ⊆ SpecΦ,J(z).
Here we say that a Jordan polynomial f(x1, . . . , xn) vanishes strictly on J if
f and all its linearizations f ′ vanish on J, f ′(a1, . . . , an) = 0 for all ai ∈ J.

We often use these concepts when J is a Jordan algebra over a ring of
scalars Ω, and Φ is some subfield of it. When Φ is understood we leave it out
of the notation, writing SpecJ(z), etc.

3.2 Bigness

To a finite-dimensional algebra the real numbers look really big; Amitsur was
the first to discover that amazing things happen whenever you work over a
really big field.

Big Definition 3.2.1 If J is a Jordan algebra over a field Φ, a set of scalars
Φ0 ⊆ Φ will be called big (with respect to Φ and J) if its cardinality is infinite
and greater than the dimension of the algebra

|Φ0| is infinite, and |Φ0| > dimΦ(J).

Because of this infiniteness, we still have

|Φ0 \ {0}| ≥ |Φ0| − 1 > dimΦ(Ĵ).

When Φ and J are understood, we say simply that Φ0 is big. We will be
particularly interested in the case where J is a Jordan algebra over a big
field in the sense that Φ0 = Φ is itself big relative to J.

Because we demand that a big Φ0 be infinite, it won’t be fazed by the fact that
dimΦ(Ĵ) may be 1 larger than dimΦ(J), even if we take 1 away: the number
of nonzero elements in Φ0 is (at least) |Φ0| − 1, and this is strictly bigger
than the dimension of the unital hull (which is where the resolvent inverses
(λ1̃− z)−1 live).
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Amitsur’s Big Resolvent Trick 3.2.2 (1) If J is a Jordan algebra over a
field Φ, any element z ∈ J with big resolvent is algebraic:

|ResΦ,J(z)| big =⇒ z algebraic over Φ,

and an element with small (for example, finite) spectrum over a big field has
big resolvent and is algebraic:

|SpecΦ,J(z)| < |Φ| big =⇒ z algebraic.

(2) In particular, the radical of a Jordan algebra over a big field is always
nil and coincides with the set of properly nilpotent elements:

Rad(J) = Nil(J) = Pnil(J) = PQI(J) (Φ big field).

proof. (1) The reason that a big resolvent forces algebraicness is beauti-
fully simple: bigness 3.2.1 implies that |ResΦ,J(z))| > dimΦ(Ĵ), and there are
too many inverses xλ := (λ1̃ − z)−1 in Ĵ (λ ∈ ResΦ,J(z)) for all of them to
be linearly independent in Ĵ over Φ. Thus there must exist a nontrivial linear
dependence relation over Φ among distinct xλi . By clearing denominators this
gives a nontrivial algebraic dependence relation for z :

∑
i αixλi

= 0 =⇒ 0 =(∏
k Lλk1−z

)(∑
i αi(λi1− z)−1

)
=

∑
i αi

∏
k �=i(λk1− z) = p(z). The reason

that this relation is nontrivial is that if p(t) were the zero polynomial, then for
each j we would have 0 = p(λj) =

∑
i αi

∏
k �=i(λk − λj) = αj

∏
k �=j(λk − λj)

and thus αj would be zero by the distinctness of the λ’s, contradicting the
nontriviality of the original linear dependence relation.
If z has small spectrum over a big field, then its resolvent must be big

because it has the same size as |Φ|: |ResΦ,J(z)| = |Φ| − |SpecΦ,J(z)| = |Φ|
[because |SpecJ(z)| < |Φ| and |Φ| is infinite].
(2) If z ∈ Rad(J), then it is p.q.i. by the Elemental Characterization

1.5.1(2); then all scalar multiples λ−1z are q.i., so by Φ–Spectrum Proposition
3.1.1(2)–(3) all λ  = 0 fall in the resolvent, and |Res(z)| ≥ |Φ\{0}| = |Φ| is big.
By (1) this forces z to be algebraic, and then by Radical Nilness 2.3.1(2) to
be nilpotent. In view of Radical Definition 1.3.1(4), this gives the equality of
the Jacobson and nil radicals. For the last equality, we always have Pnil(J) ⊆
PQI(J) because in any homotope nil implies q.i.; conversely, if z is p.q.i.
it remains p.q.i. in each homotope J(x) [it is q.i. in J(Uxy) =

(
J(x)

)(y) for
all y], which is still an algebra over a big field, so by the first equality z ∈
Rad(J(x)) = Nil(J(x)) is nilpotent in each J(x), i.e., z ∈ Pnil(J) is properly
nilpotent. �
Exercise 3.2.2 (1) For quadratic Jordan algebras we cannot boost a relation among inverses
into an algebraic relation by multiplying by L (and V = 2L is bad in characteristic 2), so
we must do our boosting by a U . (1) If {λ1, . . . , λn} are distinct scalars and {α1, . . . , αn}
are not all zero in the field Φ, show that q(t) =

( ∏n
i=1 Ut−λi

)( ∑
αi(t−λi)−2)

is a nonzero
polynomial in Φ[t] with q(λi) = αi

∏
j �=i(λi − λj)2 for each i. (2) Use this to show that if

there are too many inverses (λi1−z)−2, then z is algebraic over arbitrary Φ (not necessarily
containing 1

2 ).
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3.3 Evaporating Division Algebras

Although Zel’manov gave a surprising classification of all division algebras
(which, you will remember, was an open question in the classical theory), in
his final classification of prime algebras he was able to finesse the problem
of division algebras entirely: if you pass to a suitable scalar extension, they
disappear!

Division Evaporation Theorem 3.3.1 (1) If J is a Jordan division algebra
over Ω containing a big algebraically closed field Φ, |Φ| > dimΦ(J), then
J = Φ1.
(2) Any division algebra of characteristic  = 2 can be split by a scalar ex-

tension: if J > Γ1 is a division algebra over its centroid Γ, and Φ a big alge-
braically closed extension field of Γ, |Φ| > dimΓ(J), then the scalar extension
JΦ = Φ⊗Γ J is central-simple over Φ but not a division algebra.

proof. (1) If x  ∈ Φ1, then x−λ1  = 0 for all λ in Φ and hence [since J is a
division algebra] all Ux−λ1 are invertible and all λ lie in the resolvent of x; by
bigness of Φ with respect to Φ and J, the Big Resolvent Trick 3.2.2 guarantees
that x is algebraic over Φ, so p(x) = 0 for some monic polynomial p(t), which
must factor as p(t) =

∏
i(t − λi) for some λi ∈ Φ by the algebraic closure of

Φ; but then 0 = Up(x)1 =
∏

i Ux−λi11 contradicts the fact that all Ux−λi1 are
invertible [cf. the Invertible Products Proposition II.6.1.8(3)]. Thus J = Φ1.
(2) If J is a proper division algebra over Γ, and Φ an algebraically closed

(hence infinite!) extension field with |Φ| > dimΓ(J), the scalar extension JΦ =
Φ⊗ΓJ remains central-simple over Φ by the Strict Simplicity Theorem II.1.7.1.
But the dimension never grows under scalar extension, dimΦ(JΦ) = dimΓ(J)
[any Γ-basis for J remains a Φ-basis for JΦ], so Φ will still be big for JΦ.
Furthermore, J > Γ1 implies that JΦ > Φ1, so by the first part JΦ cannot
still be a division algebra. �

At first glance it seems a paradox that J = Φ1 instead of J = Ω1, but
a little reflection or exercise will allay your suspicions; we must already have
Ω = Φ = Γ: Φ1 is as far as J can go and remain a division algebra with center
Γ!

3.4 Spectral Bounds and Capacity

Zel’manov showed that getting a bound on the spectra of elements produces
a capacity, and non-vanishing of an s-identity f put a bound at least on the
f -spectra. In retrospect, these two steps doomed all i-exceptional algebras to
a finite-dimensional life.
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Bounded Spectrum Theorem 3.4.1 (1) If x =
∑n

i=1 λiei for a family of
nonzero orthogonal idempotents ei, then SpecΦ,J(x) ⊇ {λ1, . . . , λn}.
(2) If there is a universal bound |SpecΦ,J(x)| ≤ N on spectra, where Φ

contains at least N + 1 distinct elements, then there is a universal bound N
on the size of any family of orthogonal idempotents, in particular, J is I-finite.
(3) If J is a semiprimitive Jordan algebra over a big field with a uniform

bound on all spectra, |SpecJ(z)| ≤ N for some finite N and all z ∈ J, then J
is algebraic with capacity.

proof. (1) Making use of Peirce decompositions of II.1.3.4, we can write
1̂ = e0 +

∑n
i=1 ei, so λ1̃ − x = λe0 +

∑n
i=1(λ − λi)ei is not invertible if

λ = λj because it kills the nonzero element ej , Uλj 1̃−x(ej) = 0 [using
the Peirce multiplication formulas in the commutative associative subalge-
bra Φ[e1, . . . , en] = Φe1 � · · · � Φen].
(2) If there are N + 1 distinct scalars λi, there can’t be N + 1 orthogonal

idempotents ei; otherwise, by (1) x =
∑N+1

i=1 λiei would have at least N + 1
elements in its spectrum, contrary to the bound N , so the longest possible
orthogonal family has length at most N .
(3) Assume now that Φ is big. In addition to I-finiteness (2), by Amitsur’s

Big Resolvent Trick 3.2.2 the finite spectral bound N implies algebraicness,
hence the Algebraic I Proposition 2.2.2 implies that J is I-genic. If we now
throw semiprimitivity into the mix, the I-Finite Capacity Theorem 2.4.2 yields
capacity. �

Zel’manov gave an ingenious combinatorial argument to show that a non-
vanishing polynomial f puts a bound on that part of the spectrum where f
vanishes strictly, the f -spectrum. This turns out to be the crucial finiteness
condition: the finite degree of the polynomial puts a finite bound on this
spectrum.

f-Spectral Bound Theorem 3.4.2 (1) If a polynomial f of degree N does
not vanish strictly on a Jordan algebra J, then J can contain at most 2N
inner ideals Bk where f does vanish strictly and which are relatively prime
in the sense that

J =
∑

i,j Cij for Cij =
⋂

k �=i,j Bk.

(2) In particular, in a Jordan algebra over a field a non-vanishing f pro-
vides a uniform bound 2N on the size of f-spectra,

|f-SpecΦ,J(z)| ≤ 2N.

proof. Replacing f by one of its homogeneous components, we can assume
that f(x1, . . . , xn) is homogeneous in each variable and has total degree N , so
its linearizations f ′(x1, . . . , xn′) are still homogeneous and have total degree
N . By relative primeness we have

f ′(J, . . . ,J) = f ′ (
∑
Cij , . . . ,

∑
Cij) =

∑
f ′′(Ci1j1 , . . . ,Cin′′ jn′′ )
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summed over further linearizations f ′′ of f ′. For any collection {Ci1j1 , . . . ,
Cin′′ jn′′ } (n′′ ≤ N), each Cij avoids at most two indices i, j, hence lies in Bk

for all others, so n′′ of the Cij ’s avoid at most 2n′′ ≤ 2N indices, so when
there are more than 2N of the Bk’s then at least one index k is unavoided,
and Ci1j1 , . . . ,Cin′′ jn′′ all lie in this Bk (which depends on the collection of
C’s), and

f ′′(Ci1j1 , . . . ,Cin′′ jn′′ ) ⊆ f ′′(Bk, . . . ,Bk) = 0

by the hypothesis that f vanishes strictly on each individual Bk. Since this
happens for each f ′′ and each collection {Ci1j1 , . . . ,Cin′′ jn′′ }, we see that
f ′(J, . . . ,J) = 0 for each linearization f ′, contrary to the hypothesis that f
does not vanish strictly on J.
(2) In particular, there are at most 2N distinct λ’s for which the inner

ideals Bλ := Uλ1̃−z(J) satisfy f strictly, since the family {Bλk
}nk=1 is auto-

matically relatively prime: the scalar interpolating polynomials

pi(t) =
∏
k �=i

λk − t

λk − λi

of degree n − 1 have pi(λj) = δij , so p(t) =
∑

i pi(t) has p(λk) = 1 for all k,
p(t) − 1 of degree < n has n distinct roots λk, and so vanishes identically:
p(t) = 1. Substituting z for t yields J = U1̃(J) = U∑

pi(z)(J) =
∑

i,j Jij ,
where Jii := Upi(z)(J) ⊆ ⋂

k �=i Uλk1̃−z(J) =
⋂

k �=iBλk
= Cii, and Jij =

Upi(z),pj(z)(J) ⊆
⋂

k �=i,j Uλk1̃−z(J) =
⋂

k �=i,j Bλk
= Cij . Thus J =

∑
i,j Jij ⊆∑

i,j Cij . �

A good example of such relatively prime inner ideals are the Peirce inner
ideals Bk := J2(

∑
i �=k ei) for a supplementary orthogonal family of idempo-

tents ei in J. Here Cii = J2(ei) = Jii,Cij = J2(ei + ej) = Jii + Jij + Jjj
(in the notation of the Multiple Peirce Decomposition Theorem II.13.1.4), so
J =

∑
i,j Cij is the Peirce decomposition of J with respect to the family.

In nice cases the Bk have faithful Peirce specializations on J1(
∑

i �=k ei), and
therefore are special and strictly satisfy Glennie’s Identity G8. In order for
J to fail globally to satisfy f = G8 of degree N = 8 strictly, the number of
relatively prime Bk would have to be bounded by 2N = 16: as soon as a nice
algebra contains 17 mutually orthogonal idempotents, it is forced to satisfy
Glennie’s identity. Any finite bound from any non-vanishing s-identity will
already be enough to force a nice i-exceptional algebras back to the classical
finite-capacity case, where we know the answer: the only nice i-exceptional
algebras are Albert algebras, so they in fact have at most three orthogonal
idempotents.

We will have to relate the f -spectra to the ordinary spectra. This will
take place only in the heart of the algebra, and will involve yet another kind
of spectrum coming from the absorbers of inner ideals discussed in the next
chapter.
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3.5 Problems for Chapter 3

Problem 3.1 (1) If J is an algebra over a big field, show that |J| = |Φ|. (2)
Show in general that if J has dimension d over a field Φ of cardinality f , then
|J| ≤ ∑∞

n=0(df)
n; if d or f is infinite, show that |J| ≤ max(d, f), while if d and

f are both finite, then |J| = fd. (3) Conclude that always |J| ≤ max(d, f,ℵ0).

Problem 3.2 Let A be a unital algebra over an algebraically closed field
Φ. (1) Show that if a ∈ A has λ1 − a invertible for all λ ∈ Φ, then a is
not algebraic over Φ, and the (λ1 − a)−1 are linearly independent over Φ, so
dimΦ(A) ≥ |Φ|. (2) Conclude that there cannot be a proper field extension
Ω ⊃ Φ such that Φ is big with respect to the algebra Ω, i.e., |Φ| > dimΦ(Ω).

Problem 3.3* Suppose V is a vector space over a field Γ, and let Φ ⊆ Ω ⊆ Γ
be subfields. (1) Show that we have |Γ| ≥ |Ω| ≥ |Φ| and (denoting dimΦ(V )
by [V : Φ], etc.) we have [V : Φ] = [V : Ω][Ω : Φ] ≥ [V : Ω] = [V : Γ][Γ :
Ω] ≥ [V : Γ]. (2) Show that if J is an algebra whose centroid Γ is a field, and
some subfield is big with respect to J, then any larger subfield is even bigger:
if Φ ⊆ Ω ⊆ Γ and |Φ| > [J : Φ], then |Ω| > [J : Ω] too for any intermediate
subfield Φ ⊆ Ω ⊆ Γ.
Problem 3.4* Prove the associative analogue of the f -Spectral Bound The-
orem: (1) If a polynomial f of degree N does not vanish strictly on an
associative algebra A, then A can contain at most N relatively prime left
ideals Bk (A =

∑
iCi for Ci =

⋂
k �=iBk) on which f vanishes strictly.

(2) In particular, in an associative algebra over a field a non-vanishing
f provides a uniform bound |f-SpecΦ,A(z)| ≤ N on the size of f -spectra
f-SpecΦ,A(z) := {λ ∈ Φ | A(λ1̃− z) satisfies f strictly}. (3) Give an elemen-
tary proof of this spectral bound in the special case of the polynomial ring
A = Φ[s].



Second Phase: The Inner Life of Jordan Algebras

The key to Zel’manov’s Exceptional Theorem for prime and simple algebras
is the case of primitive algebras over big algebraically closed fields. Once we
establish this, the final phase will be a mere logical mopping-up operation.
In this Second Phase we examine the Jordan analogues of three associative
concepts: absorber, primitivity, and heart. The absorber of an inner ideal
plays the role of core, the primitizer is an inner ideal which render an algebra
primitive, and the heart is the nonzero minimal ideal.
Chapter 4 focuses on the hero of this phase, the quadratic absorber. The

linear absorber of an inner ideal absorbs linear multiplications by the am-
bient algebra, and by Zel’manov’s specialization contains the i-specializing
ideal consisting of all refugees from special algebras (values of s-identities).
The quadratic absorber absorbs quadratic multiplications; it is the double
linear absorber, and is not much smaller than the linear absorber itself (in a
nondegenerate algebra, if the quadratic absorber vanishes, so must the linear
absorber). It is not quite an ideal, but the ideal it generates is not much bigger
(it is nil modulo the absorber by the Absorber Nilness Theorem); it contains
the cube of the i-specializer (and in nondegenerate algebras, the ideal itself).
As a result, absorberless inner ideals are i-special. The absorber also provides
a new spectrum for an element x, the scalars for which the principal inner
ideal (λ1− x] is so small as to be absorberless.
Chapter 5 develops the basic facts of primitivity. The Semiprimitive

Imbedding Theorem says that every nondegenerate Jordan algebra imbeds
in a subdirect product of primitive algebras satisfying the same strict identi-
ties over a big algebraically closed field. A primitizer is a modular inner ideal
which supplements all nonzero ideals; a modulus is an element c which acts
as “outer unit,” in the sense that 1 − c maps the whole algebra into the in-
ner ideal. A proper inner ideal cannot contain its modulus (or any power or
translate thereof), so the Absorber Nilness Theorem forces a primitizer to be
absorberless.
Chapter 6 brings us to the heart of the matter. Every nonzero ideal in a

primitive algebra contains the i-specializer, so an i-exceptional algebra has the
i-specializer as its heart. A nonvanishing s-identity f puts a global bound on
on f -spectra, absorber spectra, and ordinary spectra of hearty elements; over
a big algebraically closed field, this forces the heart to have a simple capacity,
whence the whole algebra is heart and falls under the control of the Clasical
Structure Theory. Once the division algebras are removed from contention by
the Division Evaporation Theorem over a big field, the only possibility that
remains is an Albert algebra.
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Absorbers of Inner Ideals

A key new concept is that of outer absorbers of inner ideals, analogous to right
absorbers r(L) = {z ∈ L | zA ⊆ L} of left ideals L in associative algebras A.
In the associative case these absorbers are ideals, precisely the cores of the
one-sided ideals. In the Jordan case the quadratic absorber is only an inner
ideal in J, but on the one hand, it is large enough to govern the obstacles to
speciality, and on the other, it is close enough to being an ideal that the ideal
in J it generates is nil modulo the original inner ideal.1

4.1 Linear Absorbers

The quadratic absorber is the double linear absorber, and the linear absorber
has its origins in a specialization. The Peirce specialization of the inner ideals
J2,J0 played an important role in the classical theory. Zel’manov discovered
a beautiful generalization for arbitrary inner ideals.

Z-Specialization Definition 4.1.1 The Z-specialization of an inner ideal
B of J is the map from B into the associative algebra EndΦ(M) of endomor-
phisms of the quotient Φ-module M := J/B defined by

Z(b) := Vb (Vb(x) := Vb(x) = {b, x}).
Note that becauseB is a subalgebra we have Vb(B) ⊆ B; thus each Vb stabilizes
the submodule B, and so induces a well-defined linear transformation Vb on
the quotient module M = J. (Recall our convention that J,B denote spaces
with algebraic structure, but J,B are merely linear spaces.)

1 cf. I.8.2 (also 8.6–8.7), where the concepts (i-specializer, absorber, absorber spectrum)
of this chapter were introduced, and proofs of the results (Quadratic Absorber Theorem,
Absorber Nilness Theorem, Spectral Relations Proposition) were sketched.



398 Inner Absorbers

Z-Specialization Lemma 4.1.2 Let B be an inner ideal of a Jordan algebra
J, and M = J/B the quotient Φ-module.
(1) The Z-specialization is a true specialization, a Jordan homomorphism

of B into the special Jordan algebra EndΦ(M)+:

Vb2 = Vb
2
, VUbc = Vb Vc Vb.

(2) The kernel of this homomorphism is the linear absorber

Ker(Z) = ?a(B) := {z ∈ B | VJz ⊆ B},
which is an ideal of B and an inner ideal of J,

?a(B)  B, ?a(B) inner in J.

proof. (1) It suffices to prove that Z preserves squares, and this follows
from the general formula Vb2 = V 2

b −2Ub together with the fact that Ub disap-
pears in the quotient, since it maps J down into B by definition of inner ideal.
For linear Jordan algebras this implies that Z preserves U -products, but we
can also see this directly for quadratic Jordan algebras from the Specializa-
tion Formula (FFIII)′, VUbc = VbVcVb−Ub,cVb−UbVc, where for b, c ∈ B both
Ub,c, Ub map J into B.
(2) Clearly, the kernel consists of those z ∈ B which act trivially on M

because their V -operator shoves J down into B, VzJ = VJz ⊆ B as in (2).
As the kernel of a homomorphism, ?a(B) is automatically an ideal of B.

But it is also an inner ideal in all of J: if b ∈ ?a(B) and x ∈ J then Ubx ∈ ?a(B).
Indeed, VUbx = Vb,xVb−UbVx [using Triple Switch (FFIV) in the Specialization
Formula (FFIII)′] shoves J down into B because Ub does by innerness of B,
and Vb,xVb does too, since first Vb shoves J down into B [don’t forget that
b ∈ ?a(B)!], and then Vb,x won’t let it escape [Vb,x(B) = Ub,Bx ⊆ B by
innerness]. �

Note that M is just a module, with no further algebraic structure. When
B = J2(e) is the Peirce inner ideal determined by an idempotent, the module
M can be identified with the Peirce complement J1(e) ⊕ J0(e), and the Z-
specialization is essentially the Peirce specialization on J1(e) (with a trivial
action on J0(e) glued on). The linear absorber is the set of b ∈ J2 which
kill J1, which in this case is an ideal in all of J and is precisely the core (cf.
Exercise 4.1.3B).

The linear absorber is overshadowed by its big brother, the quadratic ab-
sorber, which is a user-friendly substitute for the core of an inner ideal: it is
the square of the linear absorber, and is close to being an ideal, since, as we
will see later, the ideal it generates is not too far removed from B.
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Absorbers Definition 4.1.3 (1) The linear absorber ?a(B) of an inner ideal
B in a Jordan algebra J absorbs linear multiplication by J into B:

?a(B) = {z ∈ B | LJz ⊆ B} = Ker(Z).
The double absorber absorbs two linear multiplications by J into B:

?a2(B) := ?a(?a(B)) = {z ∈ B | LJLĴz ⊆ B.}
(2) The quadratic absorber2 qa(B) absorbs quadratic multiplications by

J into B:
qa(B) = {z ∈ B | VJ,Ĵz + UJz ⊆ B}.

(3) The higher linear and quadratic absorbers are defined inductively
by

?an(B) := ?a(?an−1(B)), qan(B) := qa(qan−1(B));

these absorb strings of n linear or quadratic products respectively. The ab-
sorbers of B are the same whether we take them in J or its unital hull Ĵ, so
there is no loss of generality in working always with unital J.

Exercise 4.1.3A Let L be a left ideal and R a right ideal in an associative algebra A. Show
that for the inner ideal B = L ∩R of A+, the linear and quadratic absorbers coincide with
the core of B (the largest associative ideal of A contained in B): >a(B) = qa(B) = {z ∈ B |
zA ⊆ L, Az ⊆ R}.

Exercise 4.1.3B Show that for a Peirce inner ideal B = UeJ = J2(e) determined by an
idempotent in a Jordan algebra, the core of B (the largest Jordan ideal of J contained
in B) is >a(B) = qa(B) = {z ∈ B | z • J1(e) = 0}, which is just the kernel of the Peirce
specialization x �→ Vx of B in EndΦ(J1(e))+, so B/>a(B) ∼= VJ2(e)|J1(e).

The absorbers were born of specialization, and in turn give birth to spe-
ciality: the linear absorber contains all obstacles to speciality and i-speciality.

Specializer Definition 4.1.4 The specializer Specializer (J) of any Jor-
dan algebra J is the smallest ideal of J whose quotient is special ; J is spe-
cial iff Specializer(J) = 0. The i-specializer i-Specializer(J) is the smallest
ideal of J whose quotient is identity-special (i-special); J is i-special iff
i-Specializer(J) = 0. i-Specializer(J) consists precisely of all values f(J, . . . ,J)
on J of all s-identities f(x1, . . . , xn) (all those Jordan polynomials that should
have vanished if J were special, constituting the ideal i-Specializer(X) of all
s-identities in the free Jordan algebra FJ [X] on a countable number of in-
determinates X). Since it is easier to be i-special than to be special, we don’t
need to remove as much of the algebra to create i-speciality, and we always
have i-Specializer(J) ⊆ Specializer(J).

2 Like quasi-inverse qi, quadratic absorber is written aperiodically as qa and pronounced
“kyoo-ay.” In the same way, linear absorber is written >a and pronounced “ell-ay.”
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Exercise 4.1.4* An ideal I is co-special or co-i-special if its quotient J/I is special or
i-special. (1) Show that a smallest co-special ideal always exists: an arbitrary intersection of
co-special ideals is co-special, so that Specializer(J) =

⋂{I | I is co-special}. (2) Show that
a smallest co-i-special ideal always exists: an arbitrary intersection of co-i-special ideals is
co-i-special, so that i-Specializer(J) =

⋂{I | I is co-i-special}.

4.2 Quadratic Absorbers

We can’t obtain the properties of the quadratic absorber quite so easily and
naturally.

Quadratic Absorber Theorem 4.2.1 (1) The linear and quadratic ab-
sorbers of an inner ideal B in a Jordan algebra J are ideals in B, and they
together with all higher absorbers are again inner ideals in J. The linear ab-
sorber also absorbs obstacles to speciality: we have Specializer Absorption

i-Specializer(B) ⊆ Specializer(B) ⊆ ?a(B) (B/?a(B) is special).

(2) The double absorber coincides with the quadratic absorber,

qa(B) = ?a2(B).

(3) The linear absorber already absorbs VJ,B̂,

VJ,B̂(?a(B)) = UJ,�a(B)(B̂) ⊆ B,
and we have an Absorber Boosting Principle: internal multiplications
boost the absorbent power,

i-Specializer(B)3 ⊆ i-Specializer(B)2 ⊆ U�a(B)(B̂) ⊆ qa(B),

Uqa(B)(B̂) ⊆ qa2(B).

(4) If J is nondegenerate and the quadratic absorber of an inner ideal
vanishes, then its i-specializer and linear absorber vanish too, and its Z-
specialization is injective:

qa(B) = 0 ⇒ ?a(B) = i-Specializer(B) = 0.

proof. (2) Since 1
2 ∈ Φ the double and quadratic absorbers coincide:

all Lx, LxLŷ map z into B ⇐⇒ all Vx = 2Lx, VxVy = 4LxLy do ⇐⇒ all
Vx, 2Ux = V 2

x − Vx2 , Vx,y = VxVy − Ux,y do ⇐⇒ all Ux, Vx,ŷ do.
(1) The Jordan algebra B/?a(B) is manifestly special, since by Z-

Specialization 4.1.2(2) Z imbeds B/?a(B) in the special Jordan algebra
EndΦ(J/B)+, and therefore ?a(B) swallows up the obstacle Specializer (B)
and hence i-Specializer(B) as well.
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We saw that the linear absorber is an ideal in B and an inner ideal in J
in Z-Specialization (2). Thus all higher absorbers ?an(B) are also inner [but
only ideals in ?an−1(B), not all of B]. This shows that the quadratic absorber
too, as somebody’s linear absorber by (2), is an inner ideal in J. Thus again
the higher absorbers are inner ideals.
Though it doesn’t arise as a kernel, the quadratic absorber is nevertheless

an ideal in B: if z ∈ qa(B) and b ∈ B then Vbz ∈ qa(B) because it absorbs
V ’s by Vx,ŷ(Vbz) = (VbVx,ŷ + VVx,ŷ(b) − Vb,{ŷ,x})z [from the 5-Linear Identity
(FFV)′ with z, w �→ b, 1] ⊆ Vb(B) +B−B [since z absorbs VJ,Ĵ] ⊆ B, and it
absorbs U ’s by Ux(Vbz) = (UVb(x),x − VbUx)z [from Fundamental Lie (FFV)]
⊆ B − VbB ⊆ B [since z absorbs UJ]. [In contrast to linear absorbers, the
higher quadratic absorbers are ideals in B, see Problem 4.1.]
(3) For the first part, for z ∈ ?a(B) we have {J, 1̂, z} = {J, z} ⊆ B by

absorption and {J,B, z} = {{J,B}, z} − {B,J, z} [by Triple Switch (FFIVe)]
⊆ {J, z}−{B,J,B} ⊆ B by absorption and innerness, so together {J, B̂, z} ⊆
B.
For the second part, to see that products boost the absorptive power, let

z ∈ ?a(B), b̂ ∈ B̂. Then Uz b̂ absorbs Vx,ŷ’s because Vx,ŷ(Uz b̂) = (UVx,ŷ(z),z −
UzVŷ,x)b̂ [by Fundamental Lie again] ⊆ UJ,z(B̂)−UB(J) ⊆ B by the first part
and by innerness of B. Moreover, Uz b̂ also absorbs Ux’s because Ux(Uz b̂) =
(U{x,z} +Ux2,z2 −UzUx −U2

x,z)b̂ [from Macdonald or linearized Fundamental
Ux2 = U2

x ] ⊆ UBJ + UJ,�a(B)b̂ − UBJ − U2
J,�a(B)b̂ ⊆ B by innerness and the

absorption of the first part. Thus Uz b̂ absorbs its way into qa(B) as in the third
inclusion. The first two inclusions then follow from i-Specializer(B) ⊆ ?a(B),
since then i-Specializer(B)3 ⊆ i-Specializer(B)2 ⊆ U�a(B)B̂.
For the third and final inclusion, that w := Uz b̂ ∈ qa2(B) = qa(Q)

is even more absorptive when z ∈ Q := qa(B), note that w absorbs Vx,ŷ
as always from Fundamental Lie by Vx,ŷ(Uz b̂) = (UVx,ŷ(z),z − UzVŷ,x)b̂ ⊆
UB,Q(B̂)−UQ(J) ⊆ Q by idealness and innerness of Q established in (2). But
to show that w absorbs Ux we cannot use our usual argument, because we do
not know that U{x,z}b̂ ∈ Q. So we go back to the definition: Uxw ∈ Q = qa(B)
because it absorbs all Vr,ŝ, Ur for r ∈ J, ŝ ∈ Ĵ. Indeed, it absorbs V ’s be-
cause Vr,ŝ(Uxw) = Vr,ŝ(UxUz b̂) ⊆ (Ux′,xUz − UxUz′,z + UxUzVr,ŝ)b̂ [using
Fundamental Lie twice] ⊆ UJUz(J) − UJUB,z(B̂) + UJUz(J) ⊆ UJQ [by
idealness and innerness of Q again] ⊆ B [since Q absorbs UJ by defini-
tion]. To see that Uxw also absorbs U ’s, note that Ur(Uxw) = Ur(UxUz b̂) ⊆(
U{r,x,z}+UUrUxz,z−UzUxUr−(UVr,x(z),z−UzVx,r)Vx,r

)
b̂ [by Alternate Funda-

mental (FFI)′ and Fundamental Lie] ⊆ UB(Ĵ) + UJ,qa(B)(B̂) [since z absorbs
Vr,x] ⊆ B [by innerness and the first part of (3)]. Thus we can double our
absorption, double our fun, by U -ing.
(4) If J is nondegenerate and qa(B) = 0, we must show that all z ∈ ?a(B)

vanish. By nondegeneracy it suffices if all w = Uzx vanish for x ∈ J, or in turn
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if all Uw = UzUxUz vanish. But here UzUxUz = Uz(U{x,z} + Ux2,z2 − UzUx −
U2
x,z) [by linearized Ux2 = UxUx again] = UzU{x,z} + UzUx2,z2 − Uz2Ux −
(Vz2Vz,x − Vz3,x)Ux,z [using Macdonald to expand UzUz,x]; this vanishes be-
cause z2, z3 ∈ UzB̂ ⊆ qa(B) = 0 by (3), and UzU{x,z}(J) ⊆ UzUB(J) ⊆
U�a(B)(B) [by innerness] ⊆ qa(B) [by (3) again] = 0 too. Thus nondegeneracy
allows us to go from i-Specializer(B)2 = 0 in (3) to i-Specializer(B) = 0 in
(4). �

We emphasize cubes rather than squares of ideals, since the square is not
an ideal but the cube always is. In general, the product B •C of two ideals is
not again an ideal, since there is no identity of degree 3 in Jordan algebras to
re-express x•(b•c), but the Jordan identity of degree 4 is enough to show that
UB(C) is again an ideal, since by Fundamental Lie x•Ubc = Ux•b,bc−Ub(x•c) ∈
UB(C).

Exercise 4.2.1A* Ignore the linear absorber and show directly that the quadratic absorber
is an inner ideal in J: if z ∈ qa(B), r ∈ J, x̂, ŝ ∈ Ĵ, then Uz x̂ absorbs double Vr,s by
Fundamental Lie (FFV), and Ur by U{r,z}+UUrz,z = UrUz++UzUr+(U{r,z},z−UzVr)Vr.

Exercise 4.2.1B* Show that VJ,ĴVB ⊆ VB̂VJ,Ĵ and UJVB ⊆ VB̂UJ.

The new notion of absorber brings with it a new notion of spectrum,
the absorber spectrum consisting of those λ for which Uλ1̃−z(J) is not merely
different from J (as in the ordinary spectrum), or distinguishable from J by
means of some f (as in the f -spectrum), but so far from J that its absorber
is zero. For convenience, we denote the i-specializer of the free Jordan algebra
FJ [X] by i-Specializer(X); it consists of all s-identities in the variables X, all
Jordan polynomials which vanish on all special algebras (equivalently, on all
associative algebras).

Absorber Spectrum Definition 4.2.2 AbsSpecΦ,J(z), the Φ-absorber
spectrum of an element z, is the set of scalars giving rise to an absorberless
inner ideal :

AbsSpecΦ,J(z) := {λ ∈ Φ | qa(Uλ1̃−z(J)) = 0}.
Note that since Uλ1̂−z = Uλ1̃−z on J (and equals Uλ1−z if J is unital), the
absorber spectrum is indifferent to our choice of unit 1, 1̂, or 1̃.

Spectral Relations Proposition 4.2.3 If f is an s-identity in the cube
i-Specializer(X)3 (if J is nondegenerate we can even take any f from the
ideal i-Specializer(X) itself ) which does not vanish strictly on an i-exceptional
algebra J, then we have the following Spectral Relations for any element
z ∈ J:

AbsSpecΦ,J(z) ⊆ f-SpecΦ,J(z) ⊆ SpecΦ,J(z).
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proof. By Quadratic Absorber 4.2.1(3)–(4), an absorberless inner ideal
strictly satisfies all f ∈ i-Specializer(X)3 (even all f ∈ i-Specializer(X) if J is
nondegenerate), so for λ in the absorber spectrum of z the inner ideal Uλ1̃−z(J)
is absorberless, hence it satisfies all such f strictly, so λ ∈ f-SpecΦ,J(z) by the
f -Spectrum Definition 3.1.2. We already know the last inclusion by the f -
Spectrum Theorem. �

Exercise 4.2.3 Show directly from the definitions that AbsSpecΦ,J(z) ⊆ SpecΦ,J(z). (2)
Where does the space EigΦ,J(z) sit in the above chain of spectra?

4.3 Absorber Nilness

We now embark on a long, delicate argument to establish the crucial property
of the quadratic absorber Q = qa(B): that the ideal IJ(Q) it generates is
nil modulo Q in the sense that for every element z of the ideal some power
zn ∈ Q. Notice that if the quadratic absorber is equal to the core (as in
the associative case, and for Peirce inner ideals), then it already is an ideal,
Q = IJ(Q), and the result is vacuous. The import of the result is that the
absorber Q ⊆ I is sufficiently close to being an ideal IJ(Q) that it behaves
like an ideal for many purposes.

Absorber Nilness Theorem 4.3.1 The ideal IJ(qa(B)) in J generated by
the quadratic absorber qa(B) of an inner ideal B is nil mod qa(B), hence nil
mod B.

proof. Throughout the proof we let Q := qa(B) and I := IJ(Q), and T
be the set of all monomial operators T = αUx1 · · ·Uxr

for α ∈ Φ, xi ∈ Ĵ of
length r ≥ 0. We will break the proof into a series of steps.

Step 1: I is spanned by T (Q)
Indeed, the sum of all monomials w = T (z) for z ∈ Q, T ∈ T is a linear
subspace which contains Q, and is closed under arbitrary algebra multiples
since 2Lx = Vx = Ux,1 = Ux+1 − Ux − U1 is a sum of U -operators. Because
they are structural transformations, products of U ’s are much easier to work
with than products of L’s.

Step 2: Boosting nilpotence

We claim that if x ∈ J is properly nilpotent mod qa(B), then it is also properly
nilpotent modulo any higher absorber:

(2.1) x(m,y) ∈ Q =⇒ x(3nm,y) ∈ qan(Q) (y ∈ Ĵ).
This follows by applying to z = x(m,y) the following general result:
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(2.2) z ∈ Q =⇒ z(3n,y) ∈ qan(Q) for all y ∈ Ĵ.
For this we induct on n, n = 0 being trivial, and for the induction step we have
w = z(3n,y) ∈ qan(Q) =: qa(C) =⇒ z(3n+1,y) = w(3,y) = UwUyw ∈ Uqa(C)C
[since w ∈ qa(C) absorbs Uy’s into C] ⊆ qa2(C) [by Absorber Boosting
4.2.1(3) applied to C] = qan+1(Q).

Step 3: Bounding proper nilpotence

Recall that the length of T is the number of factors Uxi
, so by definition

it is absorbed by a suitably high absorber:

(3.1) T
(
qar(Q)

) ⊆ Q (r = length(T )).

We claim that each monomial w = T (z) is properly nilpotent mod Q with
index r which depends only on the length of T :

(3.2) w(3r,y) ∈ Q (r = length(T )).

From Structural Shifting 1.9.3(2) we have that w(3r,y) = T (z)(3
r,y) =

T (z(3r,T∗(y))) ∈ T (qar(Q)) [by (2.2) above] ⊂ Q [from (3.1)], which estab-
lishes (3.2).

Step 4: Modular Interlude.

That wasn’t painful, was it? Now it’s one thing to prove that monomials
are nilpotent mod Q, but quite another to prove that finite sums of such
monomials remain nilpotent: as we raise the sum to higher and higher powers
the number of terms in the expansion proliferates hopelessly. If you want
to get dispirited, just sit down and try to show from scratch that the sum
of two monomial elements is nilpotent. But Zel’manov saw a way out of this
quagmire, finessing the difficulty by showing that the finite sums remain quasi-
invertible mod Q in all extensions, and then using Amitsur’s Polynomial Trick
to deduce nilness mod Q.

Invertible Modulo an Inner Ideal Definition 4.3.2 If C is an inner ideal
in J, we say that two elements x, y are equivalent mod C, written x ≡C y,
if x− y ∈ C. We say that an element u ∈ Ĵ is invertible mod C if there is
an element v ∈ Ĵ such that

Uuv ≡C 1̂.
We say that z is quasi-invertible mod C if 1̂ − z is invertible mod C in
Ĵ (where C remains inner), in which case the element v necessarily has the
form 1̂− w for some w ∈ J:

U1̂−z(1̂− w) ≡C 1̂.
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Invertible Modulo an Absorber Lemma 4.3.3 Let qa(B) be the quadratic
absorber of an inner ideal B in J. Then we have the following general princi-
ples.

• Multiplication of Equivalences Principle: we can multiply an equiva-
lence by U, at the price of one degree of absorption:

(1) x ≡qa(B) y =⇒ Uxa ≡B Uya, Uax ≡B Uay (a ∈ Ĵ).
• Higher Invertibility Principle: invertibility mod an absorber passes to
all higher absorbers,

(2) u invertible mod qa(B) =⇒ u invertible mod qan(B) for any n.

• Cancellation Principle: we can cancel an invertible factor U at the cost
of two degrees of absorbency,

(3) u invertible mod qa(B), Uux ≡qa2(B) Uuy =⇒ x ≡B y.

• Invertibility of Factors Principle: as with ordinary inverses, if a product
is invertible so are its factors,

(4) Uxy invertible mod qa(B) =⇒ x, y invertible mod qa(B).

• Inverse Equivalence Principle: invertibility passes to sufficiently equiv-
alent elements,

(5) u invertible mod qa(B), u′ ≡qa2(B) u =⇒ u′ invertible mod qa(B).

• Nilpotence Implies Quasi-Invertibility Principle: nilpotence modulo
an absorber implies quasi-invertibility,

(6) z nilpotent mod qa(B) =⇒ z q.i. mod qa(B).

proof. For Multiplication of Equivalences (1), if x−y ∈ qa(B) then Uxa−
Uya = (U(x−y)+y−Uy)a = (Ux−y+Ux−y,y)a ∈ Uqa(B)(J)+{qa(B),J,J} ⊆ B,
and Uax− Uay ∈ UJqa(B) ⊆ B.
For Higher Invertibility (2), it suffices to show that if u is invertible mod

qa(C) = qan(B) for some n ≥ 1, then it is also invertible mod the next-higher
absorber qa2(C) = qan+1(B). By invertibility mod qa(C) we have v such that
Uuv = 1̂− c for c ∈ qa(C), so Uu(UvUuU1̂+c1̂) = UUuvU1̂+c1̂ = U1̂−cU1̂+c1̂ =
U1̂−c2 1̂ [by Macdonald] = 1̂− c′ for c′ = 2c2 − c4 = Uc(2̂− c2) ∈ Uqa(C)(Ĉ) ⊆
qa2(C) by Absorber Boosting 4.2.1(3).
For Cancellation (3), set d := x− y; then Uud ∈ qa2(B) and Uuv ≡qa(B) 1̂

together imply that x − y = U1̂d ≡B UUuvd [using Multiplication of Equiva-
lences (1)] = UuUv(Uud) ∈ UuUv(qa2(B)) [by hypothesis] ⊆ B [since qa2(B)
absorbs UJUJ by Higher Absorber Definition 4.1.3(3)].
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For Invertibility of Factors (4), if Uxy is invertible mod qa(B) then by
Higher Invertibility (2) it is also invertible mod qa4(B), so UUxyv ≡qa4(B)

1̂ for some v ∈ Ĵ. Then 1̂ ≡qa4(B) Ux(UyUxv) = Ux(Uyw) for w := Uxv

shows that x is invertible mod qa4(B) too, whence Ux1̂ = U1̂(Ux1̂) ≡qa3(B)

UUxUyw(Ux1̂) [by Multiplication of Equivalences (1)] = UxUy (UwUyUxUx1̂)
[by the Fundamental Formula]. This implies that 1̂ ≡qa(B) Uy(UwUyUxUx1̂)
by Cancellation (3) of Ux, and y is invertible too mod qa(B).
For Inverse Equivalence (5), if Uuv ≡qa(B) 1̂ then Uu′v ≡qa(B) Uuv [by

Multiplication of Equivalences (1)] ≡qa(B) 1̂, so u′ is invertible mod qa(B)
too.
For Nilpotence Implies Quasi-Invertibility (6), if zn ∈ qa(B) then U1̂−z

(
1̂+

z + · · ·+ zn−1
)2 =

(
1̂− zn

)2 ≡qa(B) 1̂, so z is q.i. mod qa(B). �

This Lemma will be so useful in the rest of the proof that instead of calling
it the Invertibility Modulo an Absorber Lemma, we will just call it IMAL.
We have now gathered enough tools concerning modular quasi-invertibility to
resume the proof of the Theorem.

Step 5: Congruence to 1̂

We claim that for every monomial w we can transform 1̂−w to be congruent
to 1̂: we will find a polynomial p(t) with constant term 1 such that

(5.1) Up(w)(1̂− w) ≡qa2(Q) 1̂.

Indeed, from Step 3 w is properly nilpotent mod Q, hence mod any higher
absorber by Step 2, so there is an m such that wm ∈ qa2(Q). Then for all
k ≥ 2m + 1 we have wk ∈ Uwm(J) ⊆ Uqa2(Q)(J) ⊆ qa2(Q) [by innerness].
Now because we have a scalar 1

2 , we can extract square roots: the binomial

series (1−t)−
1
2 =

∑∞
i=0 αit

i has coefficients α0 = 1, αi = (−1)i
(
− 1

2
i

)
[by the

Binomial Theorem] =
(

2i−1
i

)
( 12 )

2i−1 [by virtuoso fiddling, heard in Exercise
4.3.3 below] ∈ Z[ 12 ]1 ⊆ Φ. The partial sum p(t) =

∑2m
i=0 αit

i is a polynomial
of degree 2m with constant term 1, satisfying

p(t)2 = 1 + t+ · · ·+ t2m + β2m+1t
2m+1 + · · ·+ β4mt4m

because p(t)2 is a polynomial of degree 4m which as a formal series is con-
gruent mod t2m+1 to (

∑∞
i=0 αit

i)2 = (1 − t)−1 =
∑∞

i=0 t
i, so it must coin-

cide with that power series up through degree 2m. Thus if we evaluate this
on w in the hull Ĵ, we get Up(w)(1̂ − w) = p(w)2 • (1̂ − w) [by Macdon-
ald] = (1̂ + w + · · · + w2m + β2m+1w

2m+1 + · · · + β4mw4m) • (1̂ − w) =
(1̂ − w2m+1) +

∑4m
k=2m+1 βk(w

k − wk+1) ≡qa2(Q) 1̂ [since we noted that
wk ∈ qa2(Q) for all k ≥ 2m+ 1], establishing (5.1).
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Step 6: Quasi-invertibility Mod Q

We claim that the elements of I are all q.i. modulo Q. In view of Step 1 this
means that every finite sum vn = w1+ · · ·wn of monomials is q.i. mod Q.We
of course prove this by induction on n, the case n = 1 being settled by Step 3
and the Nilpotent-Implies-Q.I. Principle IMAL(6). Assume the result for sums
of n monomials, and consider a sum vn+1 = w1 + · · ·wn + wn+1 = vn + w
of n + 1 monomials. We must show that 1̂ − vn+1 is invertible mod Q. We
squash it down to a shorter sum (which is therefore invertible by induction),
using the multiplier p of Step 5 to “eliminate” the last term: if p = p(w) as
in (5.1) then

(6.1) Up(1̂− vn+1) ≡qa2(Q) 1̂− v′n

since Up(1̂ − vn+1) = Up((1̂ − w) − vn) ≡qa2(Q) 1̂ − v′n [by (5.1)], where
v′n := Upvn again a sum of n monomials w′i := Upwi. Now by induction v′n is
q.i. and 1̂ − v′n is invertible mod Q, so by the Inverse Equivalence Principle
IMAL(5) [here’s where we need congruence mod qa2(Q)] Up(1̂ − vn+1) is
invertible mod Q too, so by the Invertibility of Factors Principle IMAL(4)
1̂− vn+1 is too, completing our induction.
Now we come to Amitsur’s magic wand, which turns quasi-invertibility

into nilpotence.

Step 7: Modular Amitsur Polynomial Trick

We claim that if x ∈ J has tx q.i. mod Q[t] in J[t], then x is nilpotent mod
Q = qa(B). Indeed, tx q.i. means that 1̂− tx is invertible mod Q[t], so by the
Higher Invertibility Principle IMAL(2) we can find v̂ with U1̂−txv̂ ≡qa3(B)[t] 1̂.
We claim that we can find ŷ ∈ Ĵ[t] with
(7.1) U1̂−tx(ŷ) ≡qa2(B)[t] 1̂− tx.

By Multiplication of Equivalences IMAL(1) we have 1̂ − tx = U1̂(1̂ −
tx) ≡qa2(B)[t] UU1̂−txv̂

(1̂ − tx) = U1̂−txUv̂U1̂−tx(1̂ − tx) =: U1̂−txŷ. Writing

this ŷ as ŷ =
∑N

i=0 t
iyi for coefficients yi ∈ Ĵ, we will show that this ŷ is

congruent to the geometric series:

(7.2) yi ≡Q xi.

Since the polynomial ŷ must eventually have yi = 0 for all i > N for some N ,
this will imply 0 ≡Q xi for all i > N , and x will be nilpotent mod Q, and the
Trick will have succeeded.
It will be sufficient if

(7.3) c′i := yi − xi ∈ Mxqa
2(B)

for Mx the algebra of multiplication operators involving only the element x.
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At first glance the arbitrarily long strings of multiplications by x in Mx

look frightening, since we are down to our last qa and our absorption is re-
duced by 1 each time we multiply by Multiplication of Equivalences IMAL(1).
Luckily, the crucial fact is that no matter how long a string of multiplications
by x we have, it can always be shortened to sums of monomials Up(x) ∈ UΦ[x]
of length 1:

(7.4) Mx = UΦ[x].

The reason is that this span of U -operators absorbs any further multiplications
by x, in view of the relation LxkUp(x) = Uxk•p(x),p(x) by Macdonald’s Principle
[cf. the Operator Power-Associativity Rules II.5.2.2(2)], where Ur(x),p(x) =
Ur(x)+p(x) − Ur(x) − Up(x) ∈ UΦ[x].
Once we have cut Mx down to a reasonable length 1 by (7.4), we can

show why (7.3) is sufficient to establish (7.2): yi − xi = c′i ∈ Mxqa
2(B) [by

(7.3)] = UΦ[x]qa
2(B) [by (7.4)] ⊆ UJqa

2(B) ⊆ qa(B) = Q [by definition of
absorption] as in (7.2).
Thus we are finally reduced to showing that c′i ∈ Mxqa(Q) as in (7.3).

For this, we start from the definition of the yi as coefficients of ŷ, where
1̂ − tx is equivalent mod qa2(B)[t] = qa(Q)[t] to U1̂−txŷ = (1J[t] − tVx +
t2Ux)(

∑N
i=0 t

iyi) =
∑N+2

j=0 tj(yj − Vxyj−1 + Uxyj−2). Identifying coefficients
of like powers of t, we obtain elements ck ∈ qa(Q) such that

1̂ + c0 = y0,

−x+ c1 = y1 − Vxy0,

0 + cj = yj − Vxyj−1 + Uxyj−2 for all j ≥ 2.

Solving this recursively, we get y0 = 1̂+c′0 for c
′
0 := c0 ∈ qa(Q) ⊆ Mx(qa(Q)),

then y1 = Vx(1̂ + c′0) − x + c1 = x + c′1 for c
′
1 := Vxc

′
0 + c1 ∈ Mx(qa(Q)),

and if the assertion is true for consecutive j, j + 1, then yj+2 = Vx(yj+1) −
Ux(yj) + cj+2 = Vx(xj+1+ c′j+1)−Ux(xj + c′j) + cj+2 = (2xj+2+ Vx(c′j+1))−
(xj+2+Ux(c′j))+cj+2 = xj+2+c′j+2, where the error term c′j+2 := Vx(c′j+1)−
Ux(c′j)+ cj+2 ∈ Mx(Mx(qa(Q)) ⊆ Mx(qa(Q)). This completes the recursive
construction of the c′i ∈ Mxqa(Q) as in (7.3), establishing the Amitsur Trick.

Step 8: Q.I. Implies Nil

We claim that if IJ(Q) is quasi-invertible mod Q for all Q = q(B) for all
inner ideals B in all Jordan algebras J, then IJ(Q) is nil mod Q for all
B and J. Indeed, B̃ = B[t] remains an inner ideal in the Jordan algebra
J̃ = J[t] = J ⊗Φ Φ[t] of polynomials in the scalar indeterminate t with co-
efficients in J, and Q̃ := qa(B̃) = qa(B)[t] = Q[t]. [This holds because a
polynomial

∑
i t

izi belongs to qa(B̃) iff it absorbs VJ,J, UJ into B[t] since Φ[t]
is automatically absorbed into B[t], and by equating coefficients of ti this hap-
pens iff each coefficient zi absorbs VJ,J, UJ into B, i.e., belongs to Q = qa(B).]
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Thus I J̃(Q̃) = IJ(Q)[t], so if x ∈ IJ(Q) then x̃ := tx ∈ I J̃(Q̃) must remain
q.i. modulo Q̃ by Step 6. But this implies that x is actually nilpotentmoduloQ
by the Modular Amitsur Polynomial Trick Step 7. Thus every x ∈ I = IJ(Q)
is nilpotent mod Q, and Absorber Nilness is established. �
This is the crucial result which will make the absorber vanish and create

an exceptional heart in primitive algebras.

Exercise 4.3.3* Fiddle with binomial coefficients to show that we have a binomial indentity
(−1)i

(
− 1

2
i

)
=

( 2i−1
i

)
( 1
2 )2i−1.

4.4 Problems for Chapter 4

Problem 4.1 Let B be an inner ideal in J. (1) Show that J • ?an(B) ⊆
?an−1(B) for all n. (2) If ?an−1(B) is an ideal in B, show that ?an(B) is an
ideal in B iff {B,J, ?an(B)} ⊆ ?an−1(B) iff {J,B, ?an(B)} ⊆ ?an−1(B) iff
{B, ?an(B),J} ⊆ ?an−1(B). (3) Show that if C is an ideal of B and an inner
ideal of J, then qa(C) is again an ideal of B and an inner ideal of J. (4)
Conclude that qan(B) is always an ideal of B.

Problem 4.2 (1) We say that z is properly quasi-invertible mod C if 1(y)−z is
invertible modC in Ĵ(y) (where C remains inner) for each y ∈ J: U (y)

1(y)−z(1
(y)−

w(y)) ≡C 1(y) for each y and some w(y) ∈ J. Show that z p.n. mod qa(B) =⇒ z
p.q.i. mod qa(B). (2) Show that x ≡qa(B) y =⇒ Bx,a(b) ≡B By,a(b).

Problem 4.3 Repeat the argument of the Absorber Nilness Theorem to
show that the ideal IJ(qa(B)) is properly nil mod qa(B). (Step 1) Modify the
definition of monomial T (z) for T = T1 · · ·Ts to include Bergman operators
Bxi,yi

(xi, yi ∈ Ĵ) among the Ti; instead of length of T we work with width
of T , defined to be the sum of the widths of its constituent Ti, where Uxi

has width 1 and Bxi,yi width 2. (Step 3) Show that equation (3.1) in the
proof holds for these more general T if we replace length by width. (Step 4)
Show that for every y we can transform every 1(y) −w for monomial w to be
congruent to 1(y): we can find a polynomial p(t) with constant term 1 such that
U

(y)
p(y)(w)(1

(y) − w) ≡qa2(Q) 1(y). (Step 5) Show that U
(y)
p (1(y) − vn+1) ≡qa2(Q)

1(y) − v′n where v
′
n is a sum of n new monomials w′i = U

(y)
p wi = Bs,ywi by the

inclusion of Bergmann B’s in our monomials (w′i has width 2 greater than
the original wi) [recall that p had constant term 1, so we can write p = 1(y)−s
for s = s(w, y) ∈ J]. (Step 5) Show that from Amitsur’s Polynomial Trick that
if tx remains p.q.i. modulo qa(B)[t] in J[t], then x is p.n. modulo qa(B).



5

Primitivity

The next new concepts are those of modular inner ideal and primitivity, which
again have an illustrious associative pedigree but require a careful formulation
to prosper in the Jordan setting.1

5.1 Modularity

In his work with the radical, Zel’manov had already introduced the notion of
modular inner ideal and primitive Jordan algebra. In the associative case a
left ideal L is modular if it has a modulus c, an element which acts like a right
unit (“modulus” in the older literature) for A modulo L: ac ≡ a modulo L
for each a ∈ A, or globally A(1̂ − c) ⊆ L. If A is unital, then all left ideals
are modular with modulus c = 1. Such c remains a modulus for any larger
L′ ⊇ L, any translate c + b by b ∈ L is another modulus, and as soon as L
contains one of its moduli, then it must be all of A.
The concept of modularity was invented for the Jacobson radical in non-

unital algebras: in the unital case Rad(A) is the intersection of all maximal
left ideals, in the non-unital case it is the intersection of all maximal modular
left ideals. To stress that the moduli are meant for nonunital situations, we
consistently use 1̂ to indicate the external nature of the unit. (If an algebra
already has a unit, we denote it simply by 1.)
In Jordan algebras we don’t have left or right, we have inner and outer.

The analogue of a left ideal L is an inner ideal B, and the analogue of a right
unit is an outer unit for J modulo B, U1̂−c(J) ⊆ B. This turns out not to be
quite enough to get a satisfactory theory.

1 cf. I.8.3–8.4 for the concepts of this chapter (modulus, modular exclusion, primitivity),
and sketches of the results (Absorberless Primitivity Proposition, Semiprimitivity Theo-
rem).
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Modularity Definition 5.1.1 An inner ideal B in a Jordan algebra J is
modular with modulus c if it satisfies the Modulus Conditions

(Mod 1) U1̂−c(J) ⊆ B, (Mod 2) c− c2 ∈ B, (Mod 3) {1̂− c, Ĵ,B} ⊆ B.
The last condition can be written in terms of J as

(Mod 3a) {1̂− c,J,B} ⊆ B, (Mod 3b) {c,B} ⊆ B.

Exercise 5.1.1* (1) Check that if J is unital, then indeed all inner ideals are modular
with modulus 1. (2) Show that all inner B in J remain inner in Ĵ with modulus 1̂, but as
an inner ideal in Ĵ it never has a modulus c ∈ J. (3) Show that an inner ideal B in J has
modulus c ∈ J iff its “c-hull” B̂

c
:= Φ(1̂− c) +B is inner in Ĵ with modulus 1̂ and modulus

c, in which case B̂
c ∩J = B. (4) Show that if B′ is an inner ideal in Ĵ with a modulus c ∈ J,

then its “contraction” B := J ∩ B′ is an inner ideal in J with modulus c, and B̂
c

= B′. (5)
Conclude that hull and contraction are inverse bijections between c-modular inner ideals in
J and Ĵ, in particular, B = J⇐⇒ B̂

c
= Ĵ⇐⇒ c ∈ B. (6) Conclude that the modular ideals

are precisely the traces (intersections) on J of those inner ideals of the immortal hull which
have a mortal modulus c ∈ J in addition to their immortal modulus 1̂.

It is important that we can adjust the modulus to adapt to circumstances.

Modulus Shifting Lemma 5.1.2 (1) If c is a modulus for an inner ideal B
in a Jordan algebra J, so is any translate or power of c:

c+ b, cn are moduli for any b ∈ B, n ≥ 1.
Indeed, powers are merely translates:

c− cn ∈ B for all n ≥ 1.
(2) A modulus c remains a modulus for a larger inner ideal B′ ⊇ B only if

{1̂− c, Ĵ,B′} ⊆ B′, which may not happen for all enlargements B′, but does
happen for ideals. We have the Ideal Enlargement Property:

c remains a modulus for any B′ = B+ I for I  J.

(3) The Modulus Exclusion Property says that a proper inner ideal
cannot contain its modulus:

If B has a modulus c ∈ B, then B = J.
(4) The Strong Modulus Exclusion Property says that the ideal gen-

erated by the quadratic absorber of a proper inner ideal cannot contain a mod-
ulus either :

If B has a modulus c ∈ IJ(qa(B)), then B = J.
proof. (1) For translation shifting from c to c′ = c + b, we must

use the Modularity conditions (Mod 1)–(Mod 3) of 5.1.1 for c to verify
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the corresponding conditions (Mod 1)′–(Mod 3)′ for c′. (Mod 1)′ holds be-
cause U1̂−c′ = U1̂−c−b = U1̂−c − U1̂−c,b + Ub, where each piece maps J
into B by (Mod 1), (Mod 3), and innerness of B. (Mod 2)′ holds because
c′ − (c′)2 = (c− c2) + (b− {c, b} − b2), where the first term is in B by (Mod
2) and the second term by (Mod 3b) and the fact that inner ideals are subal-
gebras. (Mod 3)′ holds because U1̂−c′,B = U1̂−c,B −Ub,B maps Ĵ into B, since
the first term does by (Mod 3) and the second term by innerness of B.
For power shifting from c to cn, we use recursion on n, n = 1 being

trivial, n = 2 being (Mod 2), and for the recursion step to n+2 we note that
(cn+2−c)−2(cn+1−c)+(cn−c) = cn+2−2cn+1+cn = U1̂−cc

n ∈ B by (Mod
1); since cn+1 − c and cn − c lie in B by the recursion hypothesis, we see that
cn+2 − c does too, completing the recursion step.
(2) Indeed, note that (Mod 1)–(Mod 2) certainly hold in any enlargement,

and (Mod 3) holds in any ideal enlargement since {1̂− c, Ĵ,B} ⊆ B by (Mod
3) for B and {1̂− c, Ĵ, I} ⊆ I by definition of ideal.
(3) follows because if c ∈ B, then by (1) the translate c′ = c− c = 0 would

be a modulus, which by (Mod 1) clearly implies that J = B. �

Exercise 5.1.2 Verify that for a left ideal L of an associative algebra A with associative
modulus c (1) any translate or power of c is again a modulus; (2) the inner ideal B = L in
J = A+ is modular with Jordan modulus c.

An important source of modular inner ideals is structural transformations.

Structural Inner Ideal Example 5.1.3 If T is a structural transformation
on J with T ∗ (as in the Structural Transformation Definition 1.2.1) which are
both congruent to 1̂ mod J (as in the Congruent to 1̂ Lemma 1.2.3),

(1̂ − T )(Ĵ) + (1̂ − T ∗)(Ĵ) ⊆ J.
then the structural inner ideal T (J) is a modular inner ideal :

(1) T (J) is inner with modulus c = 1̂− T (1̂) ∈ J.
In particular,

(2) Bx,y(J) is inner with modulus c = {x, y} − Uxy
2,

U1̂−x(J) is inner with modulus c = 2x− x2.

proof. (1) Acting separately on 1̂, J, the congruence condition in (1)
reduces to

(1′) T (1̂) = 1̂− c, T ∗(1̂) = 1̂− c∗, T (J) + T ∗(J) ⊆ J.
for some c, c∗ ∈ J. The linear subspace B := T (J) is an inner ideal [cf.
Structural Innerness II.18.2.2] since UTx(Ĵ) = TUxT

∗(Ĵ) [by structurality]
⊆ T (J) = B. To check that c is a modulus as in the Definition 5.1.1, for (Mod
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1) we have U1̂−c(J) = UT (1̂)(J) = TT ∗(J) [by structurality] ⊆ T (J) = B;
for (Mod 2) we have c2 − c = (1̂ − c) − (1̂ − c)2 = T (1̂) − T (1̂)2 [by (1′)]
= T (1̂) − UT (1̂)(1̂) = T (1̂ − T ∗(1̂)) [by structurality] = T (c∗) ∈ T (J) [by

(1′)] = B; and for (Mod 3) we have {1̂ − c, Ĵ,B} = {T (1̂), Ĵ, T (J)} [by (1′)]
= TU1̂,J(T

∗(Ĵ)) [by structurality] ⊆ T (J) = B. Applying (1) to T = Bx,y, c =
1−Bx,y(1) = {x, y}−UyUy1 and T = U1̂−x = Bx,1̂, c = 1−U1̂−x(1) = 2x−Ux1
gives (2). �

Exercise 5.1.3 Show that T = 1̂ − S is structural with T ∗ = 1̂ − S∗ on Ĵ iff S, S∗ satisfy
Ux,Sx − (SUx +UxS∗) = US(x) − SUxS∗, and show that T (J) ⊆ J iff S(J) ⊆ J, and dually
for T ∗, S∗.

5.2 Primitivity

An associative algebra A is primitive if it has a faithful irreducible represen-
tation, or in more concrete terms if there exists a left ideal such that A/L is
a faithful irreducible left A-module. Irreducibility means that L is maximal
modular, while faithfulness means that L has zero core (the maximal ideal
of A contained in L, which is just its right absorber {z ∈ A | zA ⊆ L});
this core condition (that no nonzero ideal I is contained in L) means that
I + L > L, hence in the presence of maximality means that I + L = A, and
L supplements all nonzero ideals. Once a modular L0 has this property, it
can always be enlarged to a maximal modular left ideal L which is even more
supplementary.
In the Jordan case A/L is not going to provide a representation anyway,

so there is no need to work hard to get the maximal L (the “irreducible”
representation), any supplementary L0 will do. In the Jordan case we may
not have representations on modules, but we do still have maximal modular
inner ideals and cores. The core Core(S) of any subset S is the maximal
two-sided ideal contained in B (the sum of all such ideals).

Primitivity Definition 5.2.1 A Jordan algebra is primitive if it has a
primitizer P, a proper modular inner ideal P  = J which has the Supple-
mentation Property:

I+P = J for all nonzero ideals I of J.

Another way to express this is the Modulus Containment Property:

every nonzero ideal I contains a modulus for P.

Indeed, if I + P = J we can write the modulus for P as c = i + p, in which
case the translate i = c − p remains a modulus and lies in I. Conversely, if I
contains a modulus c for P, then by the Ideal Enlargement Property 5.1.2(2)
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it remains a modulus for the inner ideal I + P, which then by the Modulus
Exclusion Property 5.1.2(3) must be all of J.

The terminology “semiprimitive” for Jacobson-radical-less algebras means
“subdirect product of primitives,” so we certainly want to be reassured that
totally-primitive algebras are always semi-primitive!

Primitive Proposition 5.2.2 (1) Any primitive Jordan algebra is semiprim-
itive, hence nondegenerate:

J primitive =⇒ Rad(J) = 0 =⇒ J nondegenerate.

(2) In particular, primitive algebras have no nil ideals; indeed, they have
no ideals nil modulo P,

I  J, I nil mod P =⇒ I = 0.

(3) Although quadratic absorber and core do not coincide for general inner
ideals, the core, absorber, and s-identities all vanish on the primitizer. We
have the Absorberless Primitizer Property:

Core(P) = qa(P) = i-Specializer(P) = 0.

proof. (1) If I = Rad(J)  = 0, then I contains a modulus c for P by the
Modulus Containment Property 5.2.1; then U1̂−c(J) ⊆ P < J by (Mod 1),
yet 1̂ − c is invertible in Ĵ because the radical c is quasi-invertible, forcing
U1̂−c(J) = J, a contradiction. Once J is semiprimitive, Rad(J) = 0, it is
nondegenerate by Hereditary Radical Theorem 1.6.1(5).
(2) If I were nonzero, it would contain a modulus c for P by Modulus

Containment, hence by nilness modulo P some power cn would fall in P, yet
remain a modulus for P by Modulus Shifting 5.1.2(1), contrary to Modulus
Exclusion 5.1.2(3).
(3) We introduced Modulus Containment as a surrogate for corelessness;

note that if I = Core(P) ⊆ P were nonzero, then the Supplementation Prop-
erty in Definition 5.2.1 would imply P = P + I = J, contrary to its assumed
properness, so I must vanish. The vanishing of qa(P) is much deeper: the
ideal I = IJ(qa(P)) is usually not contained in P, but it is nil mod P by the
Absorber Nilness Theorem 4.3.1, so from (2) we see that I = 0 and hence the
generator of I vanishes, qa(P) = 0 too. Once the absorber vanishes, Quadratic
Absorber 4.2.1(4) says that i-Specializer(P) = 0 by nondegeneracy (1). �

Recall that if M is a maximal modular left ideal in an associative algebra
A, then removing the core K = Core(M) produces a primitive algebra A/K
with faithful irreducible representation on the left module A/M. Primitizers
always have zero core, and once again removing the core from a maximal
modular inner ideal is enough to create primitivity.
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Coring Proposition 5.2.3 If B is maximal among all proper c-modular
inner ideals, then removing its core creates a primitive algebra: J/Core(B) is
primitive with primitizer B/Core(B).
proof. We have K = Core(B) ⊆ B < J, so the image B := B/K <

J/K =: J remains a proper inner ideal in J with modulus c̄ by taking images
of (Mod 1)–(Mod 3), but now it also has the Supplementation Property 5.2.1
for a primitizer. Indeed, if I is nonzero in J, then its pre-image is an ideal
I > K in J which is not contained in the core, hence not entirely contained
in B; then the ideal enlargement I + B > B is still a c-modular inner ideal
by Ideal Enlargement 5.1.1(2), so by maximality of B it must not be proper,
so I + B = J and therefore I + B = J as required for the Supplementation
Property. �

5.3 Semiprimitivity

We are finally ready to connect the Jacobson radical to primitivity, showing
that the radical vanishes iff the algebra is a subdirect product of primitive
algebras, thereby justifying our use of the term “semiprimitive” for such al-
gebras. Recall that the Jacobson radical of an associative algebra A is the
intersection of all maximal modular left ideals M, and also the intersection of
their cores K = Core(M). In the Jordan case we have a similar core charac-
terization.

Semiprimitivity Theorem 5.3.1 (1) The Jacobson radical is the intersec-
tion of the cores of all maximal modular inner ideals: Rad(J) = ⋂{Core(B)},
where the intersection is taken over all inner ideals B which are maximal
among all c-modular inner ideals for some c = c(B) depending on B.
(2) J is semiprimitive iff it is a subdirect product J =

∏
α Jα of primitive

Jordan algebras Jα = J/Kα, i.e., iff the co-primitive ideals Kα  J separate
points,

⋂
Kα = 0.

proof. (1) Rad(J) ⊆ ⋂
Kα since for each K = Core(B) we have J = J/K

primitive by the Coring Proposition 5.2.3, and therefore semiprimitive by the
Primitive Proposition 5.2.2(1). Thus the image of Rad(J), as a q.i. ideal in
the semiprimitive J/K, must vanish, and Rad(J) ⊆ K.
The converse Rad(J) ⊇ ⋂

Kα is more delicate: if z  ∈ Rad(J), we must
construct a maximal modular B (depending on z) with z  ∈ Core(B). Here
the Elemental Characterization Theorem 1.5.1(2) of the radical as the p.q.i.
elements comes to our rescue: z  ∈ Rad(J) =⇒ z not p.q.i. =⇒ some (z, y) not
q.i., B0 = Bz,y(J) < J [by non-surjectivity Criterion 1.4.2(4iii)] with modulus
c = {z, y}−Uzy

2 [by Bergmann Modularity 5.1.3(2)]. Properness B < J of a c-
modular inner ideal is equivalent [by the Modulus Exclusion Property 5.1.2(3)]
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to c  ∈ B, so we can apply Zorn’s Lemma to find a maximal c-modular (proper)
inner ideal B containing B0, and we claim that z  ∈ Core(B): if z belonged to
the ideal Core(B) ⊆ B, so would c = {z, y} − Uzy

2, a contradiction.
(2) J semiprimitive ⇐⇒ ⋂

Kα = Rad(J) = 0 [by definition and (1)] ⇐⇒
the co-primitive ideals Kα [by the Coring Proposition again] separate points,
and in this case J is a subdirect product of the primitive Jα = J/Kα. If
J =

∏
α Jα is the subdirect product of some primitive algebras Jα = J/Kα

(perhaps unrelated to maximal modular inner ideals), then [by the Primitive
Proposition (1) again] the radical image πα(Rad(J)) in each primitive Jα is
zero, Rad(J) ⊆ ⋂

Ker(πα) =
⋂
Kα = 0 by definition of semi-direct product,

and J is semiprimitive. �

We remark that also in the Jordan case the radical is the intersection of
all maximal modular inner ideals, not just their cores (see Problem 2).

5.4 Imbedding Nondegenerates in Semiprimitives

There are standard methods, familiar from associative theory, for shrinking
the Jacobson radical into the degenerate radical. We will show that we can
imbed any nondegenerate algebra into a semiprimitive algebra, a subdirect
product of primitive algebras, by a multi-step process passing through various
scalar extensions and direct products. In the end we want to apply this result
to prime algebras, and assuming primeness from the start saves a few steps,
so we will only imbed prime nondegenerate algebras (the general case is left
to Problem 6). Each imbedding step creates a larger algebra where more of
the radical vanishes, starting from an algebra where the degenerate radical
vanishes and eventually reaching an algebra where the entire Jacobson radical
vanishes. Furthermore, at each step in the process the strict identities are
preserved, so that the final semiprimitive algebra satisfies exactly the same
strict identities as the original, and each primitive factor of the subdirect
product inherits these identities (but might satisfy additional ones).
Recall that a polynomial is said to vanish strictly on J if it vanishes on all

scalar extensions ΩJ. This happens iff it vanishes on the “generic” extension
Φ[T ] ⊗ J = J[T ] of polynomials (with coefficients from J) in a countable set
of indeterminates T. A polynomial which vanishes on J but not all extensions
vanishes only “fortuitously” on J, due to a lack of sufficient scalar power; only
the polynomials which vanish strictly are “really” satisfied by J. For example,
the identity x2 = x defining Boolean algebras does not hold strictly; indeed,
the only scalars that Boolean algebras can tolerate are those in Z2; Boolean
algebras have a fleeting existence over the scalars Z2, then disappear.
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Semiprimitive Imbedding Theorem 5.4.1 Every prime nondegenerate
Jordan algebra J can be imbedded in a semiprimitive Jordan algebra J̃ over a
big algebraically closed field Ω, |Ω| > dimΩ J̃, in such a way that J and J̃ sat-
isfy exactly the same strict identities. In particular, J is i-exceptional iff J̃ is.
Here J̃ =∼ ∏

α J̃α is a subdirect product of primitive algebras J̃α, where the
J̃α are also algebras over the big algebraically closed field Ω, |Ω| > dimΩ J̃α.
We may also imbed J in a larger PJ :=

∏
α J̃α which is the full direct product

of the J̃α, still satisfying exactly the same strict identities as J (through now
Ω may no longer be big for PJ).
proof. As usual, we break this long proof into small steps.2

Step 1: Avoiding Degeneracy

We first imbed J in an algebra J1 over a field Ω0 where no element of J is
trivial in J1. By primeness of J its centroid Γ is an integral domain acting
faithfully on J [by the Centroid Theorem II.1.6.3]. The usual construction of
the algebra of fractions Γ−1J leads (just as in the “scalar case” constructing
the field of fractions of an integral domain) to a Jordan algebra over the field
of fractions Ω0 = Γ−1Γ. The fact that the action of Γ is faithful guarantees
that J is imbedded in J1 := Γ−1J, and we claim that

(1.1) there is no nonzero z ∈ J which is trivial in J1.

Certainly, by nondegeneracy of J none of its elements can be trivial in this
larger algebra, UzJ1 ⊇ UzJ  = 0. Thus we can pass from a prime nondegenerate
algebra to an algebra over a field where J avoids any possible degeneracy in
J1. Primeness is used only to get to a field quickly. In fact, J1 remains prime
and nondegenerate (see Problem 5.7 at the end of the chapter), but from this
point on we discard primeness and use only nondegeneracy.

Step 2: Avoid Proper Nilness of Bounded Index

We next imbed J1 in an Ω0-algebra J2 where no element of J is properly
nilpotent of bounded index (p.n.b.i.) in J2. Let J2 := J1[T ] = J⊗Ω0 Ω0[T ] = J̃
be the algebra of polynomials in an infinite set of scalar indeterminates T . In
fact, in a pinch you can get by with just one indeterminate (see Problem 5.5
below). We claim that

(2.1) there is no 0  = z ∈ J such that z(n,J̃) = 0 for some n = n(z).

Indeed, if some nth power vanished for all ỹ ∈ J̃, then all mth powers for
m ≥ n would vanish because z(n+k,ỹ) = z(n,ỹ) •ỹ z(k,ỹ) = 1

2{z(n,ỹ), ỹ, z(k,ỹ)}
= 0. The p.n.b. index of z is the smallest n such that z(m,J̃) = 0 for all m ≥ n.
We claim that no nonzero z can have proper index n > 1. Suppose that

z(m,J̃) = 0 for all m ≥ n > 1, but that some z(n−1,ỹ)  = 0. Because T is infinite
2 cf. the proof sketch in I.8.9.
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we can choose a t ∈ T which does not appear in the polynomial ỹ. For any
x ∈ J set w̃ := ỹ+tx. Since n > 1, we have m := 2n−2 = n+(n−2) ≥ n, and
therefore by definition of the p.n.b. index we have z(2n−2,w̃) = z(m,w̃) = 0.
Then the coefficients of all powers of t in the expansion of z(2n−2,w̃) = 0
must vanish, in particular, that of t itself. The coefficient of t1 in z(2n−2,w̃) =(
U

(w̃)
z

)n−2
z(2,w̃) = (UzUw̃)n−2Uzw̃ consists of all terms with a single factor

tx and the rest of the factors z and ỹ, namely,

0 =
(
UzUỹ

)n−2
Uzx +

∑n−2
k=1

(
UzUỹ

)n−2−k(
UzUỹ,x

)(
UzUỹ

)k−1
Uz ỹ

= Uz(n−1,ỹ) x +
∑n−2

k=1{z(n+k−1,ỹ), x, z(n−k−1,ỹ)}
= Uz(n−1,ỹ)x,

since z(n+k−1,ỹ) = 0 for k ≥ 1 by hypothesis that n is a proper nilpotence
bound.
Here we have used Macdonald to write the sum in terms of ỹ-homotope

powers, since the kth term can be written in associative algebras as

{
n−1−k︷ ︸︸ ︷

z, ỹ, . . . , z, ỹ, z, ỹ,

2k︷ ︸︸ ︷
z, ỹ, . . . , ỹ, z, x,

n−1−k︷ ︸︸ ︷
z, ỹ, z, . . . , ỹ, z}

= {
n+k−1︷ ︸︸ ︷

z, ỹ, . . . , ỹ, z, x,

n−k−1︷ ︸︸ ︷
z, ỹ, . . . , ỹ, z})

(where the label on the brace tells the number of factors z in the alternating
list).
If we order the variables in T , and the lexicographically leading term of

0  = z(n−1,ỹ) ∈ J̃ is 0  = z′ ∈ J, then the lexicographically leading term of
Uz(n−1,ỹ)x is Uz′x. Thus we have Uz′x = 0 for all x ∈ J, so 0  = z′ is trivial in
J, contradicting nondegeneracy of J. Thus n > 1 is impossible, as we claimed.
Thus the only possible index is n = 1; but then z = z(1,ỹ) = 0 anyway.

This establishes (2). Thus we can pass to an algebra over a field where J
avoids any proper nilpotence of bounded index in J2.

Step 3: Avoid Proper Nilpotence Entirely

We imbed J2 in an Ω0-algebra J3 such that no element of J is properly nilpotent
in J3. An algebra J always imbeds as constant sequences z �→ (z, z, . . . ) in the
sequence algebra Seq(J) = ∏∞

1 J. Let J3 := Seq(J2) consist of all sequences
from J2, where J2 is identified with the constant sequences. We claim that

(3.1) there is no nonzero z ∈ J which is properly nil in J3.

Indeed, by Step 2 there is no global bound on the index of nilpotence of z in the
various J(y)’s for y ∈ J2: for each n there is a yn ∈ J2 with z(n,yn)  = 0; then the
element Py = (y1, y2, y3, . . . ) and the copy Pz = (z, z, z, . . . ) live in the sequence
algebra J3, but for any n we have Pz(n,Cy) = (z(n,y1), z(n,y2), . . . , z(n,yn), . . . )  =
(0, 0, . . . , 0, . . . ) because it differs from zero in the nth place, so z is not nil in
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the homotope J(Cy)
3 , i.e., z is not properly nilpotent. Thus we can pass to an

algebra over a field where J avoids all proper nilpotence whatsoever in J3.

Step 4: Avoid Proper Quasi-Invertibility

We imbed J3 in an algebra J4 over a big algebraically closed field such that
no element of J is properly quasi-invertible in J4. If J4 := Ω ⊗Ω0 J3 for Ω
algebraically closed with |Ω| > dimΩ0 J3 = dimΩ J4, then J4 is an algebra over
a big algebraically closed field. [Recall that, as in our discussion of bigness,
dimension stays the same under scalar extension: if the xi form a basis for
J3 over Ω0, then the 1 ⊗ xi form a basis for J4 = Ω ⊗Ω0 J3 over Ω, so
dimΩ0 J3 = dimΩ J4.] We claim that

(4.1) no nonzero z ∈ J is properly quasi-invertible in J4

because any such z would be properly nilpotent in J4 (hence even more prop-
erly in J3) since by Amitsur’s Big Resolvent Trick 3.2.2(2) the Jacobson radical
of the Jordan algebra J4 over the big field Ω is properly nil, and by Step 3
there aren’t any such elements in J. Thus we can pass to an algebra over a
big algebraically closed field where J avoids all proper quasi-invertibility in
J4.

Step 5: Obtain Semiprimitivity with the Same Identities

Finally, we imbed J4 in a semiprimitive algebra J5 which satisfies exactly
the same strict identities as J. Once we have passed to an algebra J4 where
J avoids all proper quasi-invertibility, we can surgically remove the proper
quasi-invertibility to create a semiprimitive algebra, yet without disturbing
the original algebra J: (4) and the Elemental Characterization 1.5.1(2) guar-
antee that

(5.1) J ∩Rad(J4) = 0,

so J remains imbedded in the semiprimitive Ω-algebra J5 := J4/Rad(J4)
[by the Radical Surgery Theorem 1.7.1]. Moreover, the scalar extension J1
inherits all strict identities from J; the scalar extension J2 inherits all strict
identities from J1; the direct product J3 inherits all identities from J2; the
scalar extension J4 inherits all strict identities from J3; and the quotient J5
inherits all identities from J4. Thus J5 inherits all strict identities from J.
Conversely, the subalgebra J ⊆ J5 inherits all identities from J5, so they have
exactly the same strict identities.
At last we have shrunk the Jacobson radical away to zero, and the Ω-

algebra J̃ := J5 now fulfills all the requirements of our theorem: it is semiprim-
itive and has the same strict identities as J. By Semiprimitivity 5.3.1(2),
semiprimitive Ω-algebras are subdirect products J̃ =∼ ∏

α J̃α for primitive Ω-
algebras J̃α = J̃/K̃α for Ω-ideals K̃α in J̃ with

⋂
α K̃α = 0. Here the primitive

J̃α inherit all strict identities from J5, hence from the original J, and the
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algebraically closed field Ω remains big for J̃ and even bigger for each J̃α:
|Ω| > dimΩ J4 ≥ dimΩ J5 = dimΩ J̃ ≥ dimΩ J̃α. J is also imbedded in the full
direct product PJ :=

∏
α J̃α, which inherits all strict identities of J from the

individual J̃α (but we no longer know whether |Ω| > dimΦ PJ). �

Exercise 5.4.1* In quadratic Jordan algebras z(n,ỹ) = 0 does not imply z(m,ỹ) = 0 for
all m ≥ n. Show instead (in a pacific manner, with no bullets, only U ’s) that z(n,ỹ) = 0
implies that z(k,ỹ) = 0 for all m ≥ 2n.

5.5 Problems for Chapter 5

Problem 5.1 (1) Show that if J is unital with unit e, so Ĵ = Φe′ � J, then
all structural transformations T on J extend to T̂ := 1

′ � T, T̂ ∗ := 1
′ � T ∗,

which are congruent to 1̂ mod J via c = e− T (e). [Since all inner ideals of J
are modular with modulus e, by the Modulus Shifting Lemma 5.1.2 it is not
surprising that c = e−T (e) is a modulus for T (J)!] (2) Show that a structural
transformation T is congruent to 1̂ mod J iff S := 1̂− T, S∗ := 1̂− T ∗ satisfy
S(J) + S∗(J) ⊆ J, S(1̂) := c, S∗(1̂) := c∗ ∈ J. (3) Show that the set S of
structural transformations congruent to 1̂ mod J forms a monoid: 1J ∈ S with
c = c∗ = 0, and if T1, T2 ∈ S with Si(1̂) = ci, then T1T2 ∈ S with S12(1̂) =
c1+T1(c2) = c1+c2−S1(c2). (3) Conclude that if Ti ∈ S with Si(1̂) = ci, then
T1 · · ·Tn ∈ S with S1...n(1̂) = c1 + T1(c2) + T1T2(c3) + · · ·+ T1 · · ·Tn−1(cn) =∑

i ci −
∑

i<j Si(cj) +
∑

i<j<k SiSj(ck) + · · · ± S1 · · ·Sn−1(cn).

Problem 5.2* Show that in fact, as in the associative case, Rad(J) = ⋂
B is

the intersection of all maximal-modular inner ideals (not merely their cores).
The inclusion Rad(J) ⊆ ⋂

B is clear from the core result; for the reverse
inclusion Rad(J) ⊇ ⋂

B, we must show that for each z  ∈ Rad(J) there exists
a maximal modular B (depending on z) with z  ∈ B. This involves a tricky
dichotomy, considering separately the two cases (1) z2 ∈ Rad(J) and (2)
z2  ∈ Rad(J). In case (1) choose B containing B0 = Bz,y(J) < J maximal with
modulus c = {z, y} −Uzy

2 as in the above proof, and show that z ∈ B would
lead to a contradiction c = Bz,y(c)−U1̂−c,zy+{z,Bz,y(y)}+Uz(2y2−Vzy

3−
Uyc)+{z2, y2} ∈ B. In case (2) show that there is y which is not q.i. in J(Uz 1̂),
hence Uzy which is not q.i. in J. Therefore B0 = U1̂−Uzy

J < J with modulus
c = 2Uzy − (Uzy)2 ∈ [z] imbeds in a maximal c-modular B; show that z ∈ B
would lead to a contradiction c ∈ [z] ⊆ B.
Problem 5.3* Establish the beautiful Amitsur Polynomial Trick for asso-
ciative algebras A: If z ∈ A and the element tz is q.i. in A[t], then z must be
nilpotent in A.

Problem 5.4* Establish the equally beautiful Zel’manov Polynomial Trick
for Jordan algebras J: If z ∈ J is properly nil of bounded index in J̃ := J[T ]



5.5 Problems for Chapter 5 421

for an infinite set of indeterminates, then z must be degenerate in J (in the
sense of belonging to the degenerate radical Deg(J), the smallest ideal I such
that J/I is nondegenerate). (1) Use radical surgery to reduce the problem
to the case of showing that z = 0 when J is nondegenerate. (2) Show that
if J is nondegenerate, so is any polynomial extension J[T ]. (3) When J is
nondegenerate, show that no z can have bounded proper nilpotence index
n > 1 (z(m,J̃) = 0 for all m ≥ n but some z(n−1,ỹ)  = 0). (4) Conclude that
if z is properly nilpotent of bounded degree, then its index must be 1, and
z = 0.

Problem 5.5 Tie all but one indeterminate behind your back and prove the
Zel’manov Polynomial Trick for a single indeterminate: if z ∈ J is properly nil
of bounded index in J̃ := J[t], then z must be degenerate in J. Even extend the
result to showing that if J is nondegenerate, then there are no elements z̃ ∈ J̃
(not just in J ) which are properly nilpotent of bounded index in J̃. Here you
will have to get downright combinatorial to keep the powers of t separate. (1)
Let x ∈ J and let d be the maximum of 1 and the degrees in t of z̃, ỹ ∈ J̃. Show
that if s ∈ Φ[t] is a scalar, then z̃(2n,ỹ+sx) =

∑2n−1
k=0 skpk(z̃; ỹ;x), where each

pk(z̃; ỹ;x) is homogeneous of degree 2n, 2n − 1 − k, k, respectively, in z̃, ỹ, x.
Conclude that pk is a polynomial in t of degree ≤ (2n)d+(2n−1−k)d+(k)0 ≤
(4n− 1)d < 4nd. (2) If z̃ is p.n.b. of index n > 1, z̃(m,J̃) = 0 but z̃(n−1,ỹ)  = 0,
and set s = tf , f = 4nd and show that 0 = z̃(2n,ỹ+sx) =

∑2n−1
k=0 skpk(z̃; ỹ;x),

where each skpk(z̃; ỹ;x) is a sum of powers tj whose exponents lie in the range
fk ≤ j < f(k + 1). Since the ranges are non-overlapping, identify coefficients
in the range f ≤ j < 2f to conclude that Uz̃(n−1,ỹ)x = 0. (3) Show that
nondegeneracy of J̃ leads to a contradiction z̃(n−1,ỹ) = 0, so again the only
possibility is n = 1, z̃ = 0.

Problem 5.6 Strengthen the Semiprimitive Imbedding Theorem 5.4.1 to
show that any nondegenerate Jordan algebra J (prime or not) is imbedded in
a semiprimitive algebra which satisfies exactly the same strict identities as J
does. (1) If J2 := J[T ] for a countable set of indeterminates T , and PNBI(J)
denotes the set of all p.n.b.i. elements of J, show that J∩PNBI(J2) ⊆ Deg(J).
(2) If J3 := Seq(J2), show that J2 ∩ Pnil(J3) ⊆ PNBI(J2). (3) If J4 := J3[t],
show that J3 ∩ PQI(J4) ⊆ Pnil(J2). (4) Conclude that J is imbedded in
J̃ = J4/Rad(J4) having exactly the same strict identities as J.

Problem 5.7 Show that the algebra of fractions J1 = Γ−1J of a prime
nondegenerate algebra J by its centroid Γ (appearing in Step 1 of the proof
of Semiprimitive Imbedding 5.4.1) is again prime nondegenerate.
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The Primitive Heart

The final concept is that of the heart. It is difficult to have a heart: for nice alge-
bras, there must be a simple ideal at the algebra’s core, which makes the whole
algebra but a heartbeat away from simplicity. Zel’manov made the amazing
anatomical discovery that i-exceptional algebras (like Tin Woodsmen) always
have hearts, consisting of the values taken on by all special identities. This is
the key to the classification of primitive exceptional algebras over big fields
(after which it is just a mopping-up operation to classify prime exceptional
algebras in general).1

6.1 Hearts and Spectra

Just as in the associative case, the heart is the minimal nonzero ideal.

Heart Definition 6.1.1 The heart of a Jordan algebra is its smallest nonzero
ideal, if such exists: 0  = ♥(J) = ⋂{I  J | I  = 0}.
Of course, most algebras are heartless, and many hearts are trivial (for

A = ΦE11 + ΦE12 ⊆ M2(Φ) over a field, the heart ♥ = ΦE12 is trivial).
But if there happens to be a semiprimitive heart, bounding the spectra of its
elements forces simplicity of the heart.

Heart Principles 6.1.2 Hearts have the following influences on the ambient
algebra.

(1) Heart Indecomposability Principle: If J has a heart ♥(J), then J
is indecomposable, J  = J1 � J2.

(2) Unital Heart Principle: If ♥(J) has a unit element, then J is all
heart, ♥(J) = J.

1 cf. I.8.5, 8.7, and 8.8, where hearts were discussed and sketches were given of the Prim-
itive Exceptional Heart Theorem, Hearty Spectral Relations Theorem, and Big Primitive
Exceptional Theorem.
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(3) Nontrivial Heart Principle: J is all nontrivial heart (J = ♥(J)
nontrivial) iff J is simple.

(4) Capacious Heart Principle: If ♥(J) has a capacity (in particular,
if J is semiprimitive and the elements of ♥(J) have bounded spectra over a
big field), then J is simple with capacity.

proof. (1) If J = J1 � J2 for Ji  = 0, we would have ♥ ⊆ J1 ∩ J2 = 0,
resulting in heartlessness.
(2) If ♥ has a unit e, then ♥ ⊆ J2(e) ⊆ J2(e)+J1(e) = Ue(J)+Ue,1̂−e(J) ⊆

♥ because ♥ is an ideal, which implies that ♥ = J2(e), J1(e) = 0, J =
J2(e)� J0(e), so by (1), J0(e) = 0 and J = J2(e) has unit e.
(3) Here⇐= is clear, and =⇒ holds because any ideal I  = 0 has I ⊇ ♥ = J,

so J has no proper ideals and by hypothesis is nontrivial, i.e., is simple.
(4) If ♥ has capacity, then by the Capacity Definition II.20.1.1 it has a

unit, so by (2), ♥ = J is all heart with a nontrivial idempotent, hence by (3)
is simple.
To see the “in particular” statement, if J is semiprimitive over a big field

the ideal ♥ inherits semiprimitivity by Ideal Inheritance 1.6.1(4), and the field
is still just as big for ♥, so by Bounded Spectrum 3.4.1(3) the ideal ♥ has a
capacity. �

For elements of the heart, the absorber spectrum and ordinary spectrum
are practically the same.

Hearty Spectral Relations Proposition 6.1.3 If z is an element of the
heart ♥(J) of a Jordan algebra J over a field Φ, then its absorber spectrum
almost coincides with its spectrum,

SpecΦ,J(z) ⊆ AbsSpecΦ,J(z) ∪ {0} ⊆ SpecΦ,J(z) ∪ {0}.

proof. We already recalled that AbsSpec(z) ⊆ Spec(z) in the Spectral
Relations Proposition 4.2.3, so the last inclusion is clear. For the first, consider
any 0  = λ in Spec(z); then J > B = Uλ1̂−z(J) = Uλ(1̂−w)(J) = U1̂−w(J) for
w = λ−1z [it is important here that Φ is a field]. B is an inner ideal with
modulus c = 2w−w2 ∈ ♥(J) [since z, w ∈ ♥(J)] by Structural Inner Example
5.1.3(2). To show that λ ∈ AbsSpec(z) we must show that qa(B) = 0. But
J > B =⇒ c  ∈ IJ(qa(B)) [by the Strong Modulus Exclusion Property
5.1.2(4)] =⇒ ♥(J) � IJ(qa(B)) [since c ∈ ♥(J)] =⇒ IJ(qa(B)) = 0 [by
definition of heart] =⇒ qa(B) = 0. �
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6.2 Primitive Hearts

Zel’manov opened up a primitive i-exceptional algebra and found a very nat-
ural heart.

Primitive Exceptional Heart Theorem 6.2.1 A primitive i-exceptional
Jordan algebra has heart ♥(J) = i-Specializer(J) consisting of all values on J
of all s-identities.

proof. i-Specializer (J) is an ideal, and it is a nonzero ideal since J is
i-exceptional, i.e., not i-special, and therefore does not satisfy all s-identities.
We need to show that each nonzero ideal I contains i-Specializer (J). Now
containment I ⊇ i-Specializer (J) is equivalent to 0 = i-Specializer (J)/I =
i-Specializer(J/I) in J/I. But from the Supplementation Property 5.2.1(1) of
the primitizer P of J we have J/I = (I+P)/I ∼= P/P∩ I where we know that
i-Specializer(P/P ∩ I) = i-Specializer(P)/P ∩ I = 0 from i-Specializer(P) = 0
by the Primitive Proposition 5.2.2(3). �

The key to the entire classification of i-exceptional algebras turns out to
be the case of primitive algebras over big fields.

Big Primitive Exceptional Theorem 6.2.2 A primitive i-exceptional Jor-
dan algebra over a big algebraically closed field Φ is a simple split Albert al-
gebra Alb(Φ). A primitive Jordan algebra over a big algebraically closed field
is either i-special or a split Albert algebra.

proof. Since every algebra is either i-special or i-exceptional, it suffices
to prove the first assertion. We break the proof for a primitive i-exceptional
algebra J into a few dainty steps.
Step 1: The heart ♥ = i-Specializer(J)  = 0 exists by the Primitive Excep-

tional Heart Theorem 6.2.1, so there exists an f ∈ i-Specializer(X) of some
finite degree N which does not vanish strictly on J. By f -Spectral Bound
3.4.2(2) there is a uniform bound 2N on f–spectra of elements of J.
Step 2: Since the absorber spectrum is contained in the f -spectrum for all

nonvanishing f ∈ i-Specializer(X) by the Spectral Relations Proposition 4.2.3
[since J primitive implies nondegenerate by Primitive Proposition 5.2.2(1)],
there is a bound 2N on the size of absorber spectra of elements of J.
Step 3: Since the spectrum and absorber spectrum for a hearty element

differ in size by at most 1 by the Hearty Spectral Relations Proposition 6.1.3,
there is a bound 2N + 1 on ordinary spectra of hearty elements.
Step 4: Once the heart has a global bound on spectra over a big field, by

the Capacious Heart Principle 6.1.2(4) ♥ has capacity and J = ♥ is simple
with capacity.
Step 5: Once J has simple capacity, by the Classical Structure Theorem

II.23.1.2, the only i-exceptional simple algebra it can be is an algebraH3(O,Γ)
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of Albert Type: it is not of Division Type by Division Evaporation 3.3.1 over
the big field Φ. But over an algebraically closed fieldO must be split, hence J is
a split Albert algebra Alb(Ω) over its center Ω ⊇ Φ. But Division Evaporation
forces Ω = Φ by bigness Φ > dimΦ(J). �
It is not surprising that students of Jordan algebras can often be found

humming to themselves the song “You’ve got to have heart, All you really
need is heart . . . .”

6.3 Problems for Chapter 6

Question 6.1* Let A =M∞(∆) be the primitive unital associative algebra
of all row-and-column-finite∞×∞ matrices (the matrices having only a finite
number of nonzero entries from ∆ in each row and column) over an associative
division algebra ∆. Does A have an associative heart, or A+ a Jordan heart?

Question 6.2* (1) Let A = End(V∆) be the primitive unital associative
algebra of all linear transformations on an infinite-dimensional left vector
space V over a division ring ∆. Does A have an associative heart, or A+ a
Jordan heart? (2) Answer the same question for A the column-finite ∞×∞
matrices (the matrices having only a finite number of nonzero entries from ∆
in each column, but no restriction on the row entries).

Question 6.3* Let A = B(H) be the unital associative algebra of all
bounded linear operators on a (real or complex) Hilbert space H. Does A
have a closed heart? In the topological category, only closed ideals are con-
sidered; although there are several different important topologies on bounded
operators, we mean here the norm topology, with metric d(T, S) := ‖T−S‖ for
‖T‖ := sup‖x‖≤1 ‖T (x)‖. The closed heart would be the nonzero intersection
of all nonzero closed ideals.

Question 6.4* If an associative algebra A has a simple ideal H, under what
conditions is H the heart of A?
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In this final phase we bring in ultrafilters to show that, from purely logical
considerations, our classification of i-exceptional primitive algebras over big
fields is sufficient to classify i-exceptional prime nondegenerate algebras over
arbitrary scalars. A nondegenerate algebra imbeds in a subdirect product of
primitive algebras over big algebraically closed fields, and by our classification
we know that these factors are i-special or split Albert algebras. Prime alge-
bras face a Dichotomy: they must either imbed entirely in an ultraproduct of
i-special algebras (which is itself i-special, as is any subalgebra), or they imbed
entirely in an ultraproduct of split Albert algebras (which is itself a split Al-
bert algebra over a field). The prime i-exceptional algebras opt for Albert,
and we show that they actually imbed as forms of split Albert algebras.
We begin in Chapter 7 with the basic facts about filters, which we can think

of as the collection of neighborhoods of a point. The filters we will be interested
in are filters on the index set of a direct product of algebras. In general, any
filter can be restricted to a subset, and any downward-directed collection of
nonempty subsets can be enlarged to a filter; an important example of such
a collection is the support sets of nonzero elements of a prime subalgebra of
a direct product. Ultrafilters are maximal filters, satisfying the immeasurably
powerful condition that for any subset, either it or its complement belongs to
the filter.
In Chapter 8 we use ultrafilters to construct filtered products, quotient

algebras of the direct product where two elements are equivalent if they agree
on a set in the filter (“agree in a neighborhood of the point”); this is the usual
quotient by the filter ideal (consisting of all elements which vanish on a set
of the filter). An ultraproduct is just the filtered product by an ultrafilter.
It inherits all the “elementary” algebraic properties satisfied by all the fac-
tors. Thus ultraproducts of division algebras, fields, algebraically closed fields,
quadratic forms, quadratic or cubic factors, or split Albert algebras are again
such.
In Chapter 9 we the examine the consequences for prime Jordan algebras.

The Finite Dichotomy Principle says that an ultraproduct of algebras of a
finite number of flavors must itself have one of those flavors. In particular, the
Prime Dichotomy Theorem says that a prime nondegenerate Jordan algebra
must either be i-special or a form of an Albert algebra, and a simple algebra
must either be i-special or itself a 27-dimensional Albert algebra. This estab-
lishes Zel’manov’s Exceptional Theorem: the only simple (or prime) nonde-
generate i-exceptional Jordan algebras are Albert algebras (or forms thereof).
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Filters and Ultrafilters

We have actually done all the structural work for classifying simple and prime
exceptional algebras. The rest of the book will show how the (seemingly re-
strictive) classification over big algebraically closed fields can be spruced up
to apply in complete generality.

7.1 Filters in General

We begin with the concept of filter.1 Ultimately we will be concerned only
with ultrafilters on the set of indices for a direct product, but we will start
from basics with the general concepts. For any set X we denote by P(X) the
power set of X, the set of all subsets of X. For any such subset Y ⊆ X we
denote by Y ′ := X \ Y the set-theoretic complement of Y in the ambient set
X.

Filter Definition 7.1.1 A nonempty collection F ⊆ P(X) of subsets of a
given set X is called a filter on X if it has the following three properties:
(Filt1) it is closed under intersections: Y1, Y2 ∈ F =⇒ Y1 ∩ Y2 ∈ F ;
(Filt2) it is closed under enlargement: Z ⊇ Y ∈ F =⇒ Z ∈ F ;
(Filt3) it is proper: ∅  ∈ F .

(Filt1) is equivalent to closure under finite intersections,

(Filt1)′ Y1, . . . , Yn ∈ F =⇒ Y1 ∩ · · · ∩ Yn ∈ F .

(Filt2) is equivalent to closure under unions,

(Filt2)′ Y ∈ F , Z ⊆ X =⇒ Y ∪ Z ∈ F ,

and in particular, implies

(Filt2)′′ X ∈ F .

1 Filters, ultrafilters, and support filters were introduced in I.8.10–8.11.
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(Filt3) is equivalent, in view of (Filt2), to

(Filt3)′ F  = P(X).
Filters are “dual ideals” in the lattice P(X); just as an ideal I  A has

y1, y2 ∈ I =⇒ y1 + y2 ∈ I and y ∈ I, z ∈ A =⇒ y · z ∈ I, F satisfies the
corresponding properties (Filt1), (Filt2) with +, · replaced by ∩,∪.
Principal Example 7.1.2 The principal filter FX0 on X determined by a
subset X0 ⊆ X consists of all subsets Y ⊇ X0 containing X0. �

Restriction and Intersection Proposition 7.1.3 The restriction filter
F|Y on Y determined by a subset Y ∈ F consists of all subsets of F contained
in Y ,

F|Y = {Z ∈ F | Z ⊆ Y } = F ∩ P(Y ).
This coincides with the intersection filter F ∩ Y consisting of all intersec-
tions of elements of F with Y ,

F ∩ Y = {Z ∩ Y |Z ∈ F}.
proof. F|Y effortlessly inherits (Filt1), (Filt2), (Filt3) from F , hence is

a filter on Y ; it is equal to F ∩ Y because Z ∈ F|Y =⇒ Z = Z ∩ Y ∈ F ∩ Y,
and Z ∩ Y ∈ F ∩ Y for Z ∈ F =⇒ Z ∩ Y ∈ F [by (Filt1) for Z, Y ∈ F ]
=⇒ Z ∩ Y ∈ F|Y . �

Exercise 7.1.3 Let X0 ⊆ X be a subset, and F a filter on X. (1) Show that F|X0

automatically satisfies (Filt1), (Filt2), (Filt3), but is nonempty iff X0 ∈ F . (2) Show that
F ∩ X0 automatically satisfies (Filt1), (Filt2), and is nonempty, but satisfies (Filt3) iff
X \X0 �∈ F .

Enlargement Proposition 7.1.4 Every nonempty collection F0 of nonempty
subsets of X which is directed downwards (Y1, Y2 ∈ F0 =⇒ Y1 ∩ Y2 ⊇ Y3 for
some Y3 ∈ F0) generates on X an enlargement filter

F0 = {Z | Z ⊇ Y for some Y ∈ F0}.
proof. (Filt2) is trivial [anything larger than something larger than Y ∈

F0 is even larger than that same Y ], (Filt3) is easy [if ∅ wasn’t in the collection
before, you won’t get it by taking enlargements: ∅  ∈ F0 =⇒ ∅  ∈ F0], while
(Filt1) uses downward directedness [Zi ⊇ Yi ∈ F0 =⇒ Z1 ∩ Z2 ⊇ Y1 ∩ Y2 ⊇
Y3 ∈ F0]. �

7.2 Filters from Primes

In algebra, the most important way to construct downwardly directed collec-
tions F0 (hence filters F0) is through prime subalgebras of direct products.
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Recall from the Direct Sum Definition II.1.2.6 the direct product
∏

x∈X Ax

of algebraic systems Ax consists of all “X-tuples” a =
∏

x ax of elements
ax ∈ Ax, or more usefully all functions on X whose value a(x) := ax at any
x lies in Ax, under the pointwise operations on functions.

Support Set Definition 7.2.1 (1) If A =
∏

x∈X Ax is a direct product of
linear algebraic systems (additive abelian groups with additional structure),
for a ∈ A let the zero set and the support set of a be

Zero(a) = {x ∈ X | a(x) = 0}, Supp(a) = {x ∈ X | a(x)  = 0},
so

Zero(a) = X ⇐⇒ Supp(a) = ∅ ⇐⇒ a = 0.

(2) If IA(a) denotes the ideal in A generated by a, we have
b ∈ IA(a) =⇒ Zero(b) ⊇ Zero(a), Supp(b) ⊆ Supp(a),

since if πx(a) = a(x) denotes the projection of A onto the xth coordinate
Ax, x ∈ Zero(a) ⇐⇒ πx(a) = 0 ⇐⇒ a ∈ Ker(πx) =⇒ b ∈ IA(a) ⊆
Ker(πx) =⇒ πx(b) = 0 =⇒ x ∈ Zero(b).
Prime algebras are precisely the algebraic creatures who benefit most from

filtration.

Prime Example 7.2.2 An algebraic system is prime if the product of two
nonzero ideals is again nonzero. For linear algebras the product is taken to
be the usual bilinear product Prod(I1, I2) := I1I2, but for Jordan algebras
the correct product is the quadratic product Prod(I1, I2) := UI1(I2). In either
case, two nonzero ideals have nonzero intersection I1 ∩ I2 ⊇ Prod(I1, I2)  = 0.
If A0  = 0 is a prime nonzero subsystem of the direct product A =

∏
x∈X Ax,

then
Supp(A0) = {Supp(a0) | 0  = a0 ∈ A0}

is a nonempty collection [since A0  = 0] of nonempty subsets [by the Support
Set Definition 7.2.1(2), since a0  = 0] which is directed downwards: if a1, a2  = 0
in A0, then by primeness IA(a1) ∩ IA(a2)  = 0 contains some a3  = 0, hence
Supp(a3) ⊆ Supp(a1) ∩ Supp(a2) by Support Set (2) again. Therefore by the
Enlargement Proposition 7.1.4 we always have the support filter F(A0) of
A0, the enlargement filter

F(A0) := Supp(A0) = {Z | Z ⊇ Supp(a0) for some 0  = a0 ∈ A0}.

Recall that we are trying to analyze prime Jordan algebras A0. We will
eventually imbed these in such a direct product A =

∏
x∈X Ax (which is very

far from being prime, since any two of its factors Ax,Ay are orthgonal), and
will use the support sets of A0 to generate a filter as above, and then return
to primeness via an ultraproduct. We now turn to these mysterious beasts.
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7.3 Ultimate Filters

An ultrafilter is just a filter which is as big as it can be (and still remain a
filter). We will use filters to chop down a direct product; to get the result as
tight as possible, we must make the filter as large as possible. Ultrafilters are
so large that their power is almost magical.

Ultrafilter Definition 7.3.1 An ultrafilter is a maximal filter.

Principal Ultrafilter Example 7.3.2 Any element x0 ∈ X determines a
principal ultrafilter Fx0 consisting of all subsets containing the point x0.

It is useful to think of an ultrafilter as the collection Fx∞ of all neighbor-
hoods of an ideal point x∞ of some logical “closure” or “completion” X of X.
The case of a principal ultrafilter is precisely the case where this ideal point
actually exists inside X, x∞ = x0. We will see that these are the uninteresting
ultrafilters.

Just as every proper ideal in a unital algebra can be imbedded in a maximal
ideal, we have an analogous result for filters.

Ultra Imbedding Theorem 7.3.3 Every filter is contained in an ultrafilter.

proof. We apply Zorn’s Lemma to the collection of filters containing a
given filter F0. Notice that the union F of a chain (or even upwardly directed
set) of filters {F i} is again a filter. Indeed, (Filt1) holds by directedness: if
Y1, Y2 ∈ F then Y1 ∈ F i, Y2 ∈ Fj for some i, j =⇒ Y1, Y2 ∈ Fk for some k by
directedness, so Y1 ∩Y2 ∈ Fk [by (Filt1) for Fk], hence Y1 ∩Y2 ∈ F . (Filt2) is
obvious. (Filt3) holds because properness can be phrased in terms of avoiding
a specific element ∅. Thus the hypotheses of Zorn’s Lemma are met, and it
guarantees the existence of a maximal filter, i.e., an ultrafilter, containing F0.
�

Outside of the rather trivial principal ultrafilters, all ultrafilters arise by
imbedding via Zorn’s Lemma, and so have no concrete description at all!
Indeed, one can show that to require that a countable set of natural numbers
N have a non-principal ultrafilter on it is a set-theoretic assumption stronger
than the Countable Axiom of Choice!

Prime ideals in a commutative associative ring are characterized by the
property y1y2 ∈ I =⇒ y1 ∈ I or y2 ∈ I. Ultrafilters have an analogous charac-
terization.
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Ultrafilter Characterization Theorem 7.3.4 The following conditions on
a filter F are equivalent:
(UFilt1) F is an ultrafilter ;
(UFilt2) Y1 ∪ Y2 ∈ F =⇒ Y1 ∈ F or Y2 ∈ F ;
(UFilt3) Y1 ∪ · · · ∪ Yn ∈ F =⇒ some Yi ∈ F ;
(UFilt4) for all Y ⊆ X, either Y ∈ F or Y ′ ∈ F .

proof. (UFilt1) =⇒ (UFilt2): if Y1∪Y2 ∈ F but Y1, Y2  ∈ F , we claim that
G = {Z|Z ⊇ W ∩ Y1 for some W ∈ F} > F is a strictly larger filter (which
will contradict the maximality (UFilt1)). Certainly, G ⊇ F : any W ∈ F
contains W ∩ Y1, and so falls in G. The containment is strict because Y1  ∈ F
by hypothesis, but Y1 ∈ G because Y1 = (Y1 ∪ Y2) ∩ Y1 = W ∩ Y1 for W =
Y1 ∪ Y2 ∈ F by hypothesis. Thus G is strictly larger.
Now we check that G is a filter: (Filt2) is trivial; (Filt1) holds because

Zi ⊇ Wi ∩ Y1 for Wi ∈ F =⇒ Z1 ∩ Z2 ⊇ W1 ∩ W2 ∩ Y1 for W1 ∩ W2 ∈ F
[by (Filt1) for F ]; and (Filt3) must hold or else for some W ∈ F we would
have W ∩ Y1 = ∅ =⇒ W ⊆ Y ′

1 =⇒ Y ′
1 ∈ F [by (Filt2) for F ] =⇒ Y ′

1 ∩ Y2 =
Y ′

1 ∩ (Y1 ∪ Y2) ∈ F [by (Filt1) for F because Y1 ∪ Y2 ∈ F by hypothesis]
=⇒ Y2 ∈ F [by (Filt2) for F ], contrary to hypothesis.
(UFilt2)⇐⇒ (UFilt3):⇐= is clear, and =⇒ follows by an easy induction.

(UFilt2) =⇒ (UFilt4): apply (UFilt2) with Y1 = Y, Y2 = Y ′, since Y ∪Y ′ =
X is always in F by (F2′′).

(UFilt4) =⇒ (UFilt1): if F were properly contained in a filter G there
would exist Z ∈ G with Z  ∈ F ; then Z ′ ∈ F ⊆ G by (UFilt4), and so
∅ = Z ∩ Z ′ ∈ G by (Filt1) for G, contradicting (Filt3) for G. �

Exercise 7.3.4 Show that a collection of subsets of X is an ultrafilter on X iff it satisfies
(Filt1), (UFilt4), (Filt3) (i.e., (Filt2) is superceded by (UFilt4)).

Ultrafilter Restriction Example 7.3.5 The restriction F|Y of an ultrafilter
F on a set X to a set Y ∈ F is an ultrafilter on Y.

proof. F|Y is a filter on Y by the Restriction and Intersection Proposition
7.1.3; we verify that F|Y has the complementation property (UFilt4) of an
ultrafilter: Z ⊆ Y, Z  ∈ F|Y =⇒ Z  ∈ F =⇒ Z ′ ∈ F [by (UFilt4) for F ] =⇒
Y \ Z = Y ∩ Z ′ ∈ F =⇒ Y \ Z ∈ F|Y . �
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7.4 Problems for Chapter 7

Problem 7.1* (1) Show that the collection of all subsets of N with finite
complement, or of R+ with bounded complement, forms a filter F0. Show that
F0 can be described as the enlargement filter (as in Enlargement Proposition
7.1.4) of the collection of intervals (N,∞). If F is an ultrafilter containing F0,
show that F cannot be principal. (2) Let X be the set Z of all integers or the
set R of all real numbers. Show similarly that the collection of all subsets of X
with finite complement forms a filter F0; if F is an ultrafilter which contains
F0, show that F is not principal. Show that F0 is contained in the filter F1
of all subsets with bounded complement.

Problem 7.2* Show that if an ultrafilter contains a finite subset Y , it must
be a principal ultrafilter.

Problem 7.3* Let F be the set of neighborhoods of a point x0 of a topo-
logical space X (the subsets Y ⊇ U F x0 containing an open set U around
x0); show that F is a filter.
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Ultraproducts

The chief use made of ultrafilters in algebra is in the construction of ultraprod-
ucts, which are quotients of direct products. We will show that every prime
subalgebra of a direct product imbeds in an ultraproduct. Ultraproducts are
logical “models” of the original algebra, retaining all its elementary algebraic
properties.1

8.1 Ultraproducts

We begin with the basic facts about filtered products in general.

Filtered Product Definition 8.1.1 (1) Let A =
∏
Ax be a direct product

of algebraic systems indexed by a set X, and let F be a filter on X. The
congruence ≡F determined by F is

a ≡F b iff a agrees with b on some Y ∈ F (a(x) = b(x) for all x ∈ Y );

equivalently, (in view of the enlargement property (Filt2) of filters), their
agreement set belongs to F :

Agree(a, b) := {x ∈ X | a(x) = b(x)} ∈ F .

The filtered product (
∏
Ax)/F is the quotient A/ ≡F , under the induced

operations. Intuitively, this consists of “germs” of functions (as in the the-
ory of varieties or manifolds), where we identify two functions if they agree
“locally” on some “neighborhood” Y .
(2) When the Ax are linear algebraic systems with underlying additive

abelian groups, then the agreement set can be replaced by the zero set of the
difference, Agree(a, b) = Zero(a − b), and the congruence can be replaced by
the filter ideal

1 The definitions and basic facts about ultraproducts were sketched in I.8.10.
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I(F) = {a ∈ A | a ≡F 0} = {a ∈ A | Zero(a) ∈ F}
(where a ≡F b iff a−b ≡F 0 iff a−b ∈ I(F)). Then the filtered product modulo
the congruence ≡F can be replaced by the quotient modulo the filter ideal :

(
∏
Ax)/F = (

∏
Ax)/I(F).

Ultraproduct Definition 8.1.2 An ultraproduct is just a product filtered
by an ultrafilter.

In the ultraproduct we are identifying two functions if they agree “on
a neighborhood of the ideal point x∞,” and the resulting quotient can be
thought of as an “ideal factor Ax∞ .” Note that if F is the principal ultrafilter
Fx0 , then the ultraproduct (

∏
Ax)/F ∼= Ax0 is precisely the x0th factor.

From this point of view, the principal ultrafilters are worthless, producing no
new ultraproducts.

Filter Restriction Theorem 8.1.3 Let A =
∏

x∈X Ax be a direct product
of linear algebraic systems.
(1) The bigger the filter on X, the smaller the filtered product : if F ⊆ G

are filters on X, then I(F) ⊆ I(G) induces a canonical projection
A/F −→ A/G.

(2) If X0 ∈ F , then for the direct product A0 =
∏

x∈X0
Ax and the restric-

tion filter F0 = F|X0 on X0, we have a natural isomorphism

A/F ∼= A0/F0

so that for any X0 ∈ F we can discard all factors Ax for x  ∈ X0.

(3) If A0 is a prime subalgebra of A, then A0 remains imbedded in the
filtered product A/F for any filter F ⊇ F(A0) containing the support filter of
A0.

(4) In particular, any prime subalgebra A0 of A imbeds in an ultraproduct
A/F for F ⊇ F(A0).

proof. (1) is clear from the Filtered Product Definition 8.1.1(1), since
a ≡F b =⇒ a ≡G b.
(2) We have a canonical inclusion in: A0 ↪→ A by in(a0)(x) = a0(x)

if x ∈ X0, in(a0)(x) = 0 if x  ∈ X0. This induces an epimorphism f =
π ◦ in: A0 −→ A/F , since if a ∈ A then its restriction a0 ∈ A0 to X0 has
in(a0) = a on X0 ∈ F , in(a0) ≡F a, f(a0) = π(in(a0)) = π(a). The kernel
of f consists of all a0 with in(a0) = 0 on some Y ∈ F , i.e., a0 = 0 on
Y ∩X0 ∈ F ∩X0 = F|X0 [by the Restriction Filter Proposition 7.1.3] = F0,
i.e., a0 ∈ I(F0), so f induces an isomorphism A0/F0 = A0/I(F0) −→ A/F .
(3) No nonzero a0 is killed by the imbedding, because if 0  = a0 ∈ A0

has a0 ≡F 0, then Zero(a0) ∈ F by the Filtered Product Definition of the
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congruence, yet Supp(a0) ∈ F0 ⊆ F by hypothesis on F , so ∅ = Zero(a0) ∩
Supp(a0) ∈ F by (Filt2) for F , which would contradict (Filt3).
(4) follows because every filter F0 imbeds in an ultrafilter F , and we apply

(3). �

Though we will not take the long detour necessary to prove it, we want to
at least state the result which guarantees that ultraproducts are tight models.

Basic Ultraproduct Fact 8.1.4 Any elementary property true of all factors
Ax is inherited by any ultraproduct (

∏
Ax)/F . �

Elementary is here a technical term from mathematical logic. Roughly, it
refers to a property describable (using universal quantifiers) in terms of a finite
number of elements of the system. For example, algebraic closure of a field
requires that each nonconstant polynomial have a root in the field, and this is
elementary [for each fixed n > 1 and fixed a0, . . . , αn in Φ there exists a λ ∈ Φ
with

∑n
i=0 αiλ

i = 0]. However, simplicity of an algebra makes a requirement
on sets of elements (ideals), or on existence of a finite number n of elements
without any bound on n [for each fixed a  = 0 and b in A there exists an n and
a set c1, . . . , cn; d1, . . . , dn of 2n elements with b =

∑n
i=1 ciadi]. The trouble

with such a condition is that as x ranges over X the numbers n(x) may tend
to infinity, so that there is no finite set of elements ci(x), di(x) in the direct
product with b(x) =

∑n
i=1 ci(x)a(x)di(x) for all x.

8.2 Examples

Rather than give a precise definition of “elementary,” we will go through some
examples in detail, including the few that we need.

Identities Example 8.2.1 The property of having a multiplicative unit
or of satisfying some identical relation (such as the commutative law, anti-
commutative law, associative law, Jacobi identity, Jordan identity, left or right
alternative law) is inherited by direct products and homomorphic images, so
certainly is inherited by the ultraproduct (

∏
Ax)/F . �

Division Algebra Example 8.2.2 Any ultraproduct of division algebras is a
division algebra. In particular, any ultraproduct of fields is a field. Moreover,
any ultraproduct of algebraically closed fields is again an algebraically closed
field.

proof. The division algebra condition is that every element a  = 0 has
a multiplicative inverse b (ab = ba = 1 in associative or alternative alge-
bras, a • b = 1 and a2 • b = a in Jordan algebras, or Uab = a, Uab

2 = 1
in quadratic Jordan algebras). Here the direct product

∏
Ax most definitely

does not inherit this condition – there are lots of nonzero functions having
many zero values, whereas an invertible element of the direct product must
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have all its values invertible (hence nonzero). However, if a function a ∈ A
is nonzero in the ultraproduct A/I(F), then most of its values are nonzero:
a  ∈ I(F) =⇒ Zero(a)  ∈ F by Filtered Product Definition 8.1.1(2). Then the
complement Y = Supp(a) must be in F by ultrafilter property (UFilt4). Since
a is nonzero on Y , for each y ∈ Y the element a(y)  = 0 has an inverse b(y) in
the division algebra Ay, and we can define an element b of the direct product
by b(x) = b(y) if x = y ∈ Y and b(x) = 0 if x  ∈ Y ; then the requisite rela-
tions (ab = 1 or whatever) hold at each y ∈ Y , therefore hold globally in the
quotient A/F (ab ≡F 1 or whatever), and b is the desired inverse of a.
Now consider algebraic closure. Recall that a field Ω is algebraically closed

if every monic polynomial of degree ≥ 1 has a root in Ω (this guarantees
that all non-constant polynomials split entirely into linear factors over Ω). If
Ω =

(∏
x∈X Ωx

)
/F is an ultraproduct of algebraically closed fields Ωx, we

know that Ω is itself a field; to show that it is algebraically closed, we must
show that any monic polynomial π(t) = α0 + α1t + α2t

2 + · · · + tn ∈ Ω[t]
of degree n ≥ 1 over Ω has a root β ∈ Ω. This is easy to do, since it is
already true at the level of the direct product (the filter F is superfluous).
Choose pre-images ai ∈ ∏

Ωx of the αi ∈ Ω, and consider the polynomial
p(t) = a0+ a1t+ a2t

2+ · · ·+ tn ∈ (∏Ωx)[t] over the direct product. For each
fixed x the x-coordinate or value p(t)(x) = a0(x)+a1(x)t+a2(x)t2+ · · ·+tn ∈
Ωx[t] is a monic polynomial of degree n ≥ 1, so by the hypothesis that Ωx is
algebraically closed it has a root b(x) ∈ Ωx. These b(x) define an element b of
the direct product which is a root of p(t): p(b) = a0+a1b+a2b

2+ · · ·+ bn = 0
in

∏
Ωx because p(b(x)) = a0(x) + a1(x)b(x) + a2(x)b(x)2 + · · · + b(x)n = 0

in Ωx for each x. Then the image β of b in Ω is the desired root of π(t).2 �

Quadratic Form Example 8.2.3 Any ultraproduct of quadratic forms over
fields is again a quadratic form over a field. If the individual quadratic forms
are nondegenerate, so is the ultraproduct.

proof. If Qx are quadratic forms on vector spaces Vx over fields Φx,
set V :=

∏
Vx, Φ :=

∏
Φx, Q :=

∏
Qx; then it is easy to check that Q is

a quadratic form on V over the ring Φ of scalars. If F is an ultrafilter on
X, set V ′ := V/F , Φ′ := Φ/F ; by the previous Division Algebra Example
8.2.2 Φ′ is a field, and it is routine to check that V ′ remains a vector space
over Φ′. We claim that Q induces a quadratic form Q′ = Q/F on V ′ over
Φ′ via Q′(a′) := Q(a)′ (where ′ denotes coset mod I(F) as in the Filtered
Product Definition 8.1.1). It suffices if this is a well-defined map, since it
automatically inherits the identities which characterize a quadratic form. But
if a ≡F b in V, then for some Y ∈ F and all y ∈ Y we have a(y) = b(y) in
Vy, Q(a)(y) = Qy(a(y)) = Qy(b(y)) = Q(b)(y) in Φy, therefore Q(a) ≡F Q(b)
in Φ/F , and Q′(a′) = Q′(b′) in Φ′ = Φ/F .

2 Note that at each x there are n choices for b(x) in Ωx, so there are usually infinitely
many roots b in the direct product. But since the ultrafilter creates a field, magically it
must reduce this plethora of roots to exactly n, counting multiplicities!
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It remains only to check that Q′ is nondegenerate as a quadratic form if
each Qx is. If z′ = zF  = 0′ in V ′, then Zero(z)  ∈ F =⇒ Y = Supp(z) ∈ F by
(UFilt4) as always; since each Qx is nondegenerate, once zy  = 0 there exists
ay with Qy(zy, ay)  = 0 [here we are using the fact that 1

2 ∈ Φ; for general
Φ the argument is a bit longer]. The element a ∈ V defined by a(x) = ay if
x = y ∈ Y , and a(x) = 0 if x  ∈ Y , has Q(z, a)(y)  = 0 for all y ∈ Y ∈ F , so
Q′(z′, a′)  = 0′ in Φ′ = Φ/F , and Q′ is nondegenerate. �

Exercise 8.2.3* (1) Argue a bit longer in the nondegeneracy argument to show that over ar-
bitrary fields (allowing characteristic 2) an ultraproduct Q′ = Q/F on V ′ over Φ′ of nonde-
generate quadratic forms remains nondegenerate. As above, show that if z′ �= 0′ in V ′, then
Supp(z) = Y = Y1 ∪ Y2 ∈ F for Y1 := {y ∈ Y | there exists a(y) with Qy(z(y), a(y)) �= 0},
and Y2 := {y ∈ Y | Qy(z(y)) �= 0}, and use the properties of ultraproducts to show that ei-
ther Q′(z′) �= 0′ or Q′(z′, a′) �= 0′ for some a′, hence z′ �∈ Rad(Q′). (2) Show more generally
that Rad(Q′) ∼=

( ∏Rad(Qx)
)
/F .

A similar result holds for cubic factors constructed by the Freudenthal–
Springer–Tits Constructions in Chapter II.4 from Jordan cubic forms N with
adjoints # and basepoints c.

Split Albert Example 8.2.4 Any ultraproduct of split Albert algebras over
fields is a split Albert algebra over a field. If the factors are split over alge-
braically closed fields, so is the ultraproduct.

proof. Recall the Split Albert Algebra Alb(Φ) over any scalar ring Φ in
the Reduced Albert Algebra Theorem II.4.4.2. If we set Ax := Alb(Φx), A :=∏
Ax, Φ :=

∏
Φx then A :=

∏Alb(Φx) ∼= Alb(∏Φx) = Alb(Φ), and for any
ultrafilter on X we have A/F ∼= Alb(Φ/F) [the ideal I(F) in the direct prod-
uct A as in Filtered Product Definition 8.1.1(2) consists of all hermitian 3×3
matrices with entries in the corresponding ideal O(

IΦ(F)
)
of split octonion el-

ements of the direct product O(
Φ
)
, which by abuse of language we may write

as I(F) = Alb(IΦ(F)), and we have Alb(Φ)/Alb(IΦ(F)) = Alb(Φ/IΦ(F))]. By
the Division Algebra Example 8.2.2, Φ/IΦ(F) is a field of the required type.
�

We remark that the same argument will work for any functor from rings of
scalars to any category, as long as the functor commutes with direct products
and quotients.

Quadratic Factor Example 8.2.5 Any ultraproduct of Jordan quadratic
factors over fields is a quadratic factor over a field. If the factors are all
nondegenerate, so is the ultraproduct.

proof. If Ax = Jord(Qx, cx) is a Jordan algebra determined by a
quadratic form Qx with basepoint cx over a field Φx, the Jordan struc-
ture is determined by having cx as unit and Uab = Qx(a, b̄)a − Qx(a)b̄ for
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b̄ = Qx(b, cx)cx − b. Set A =
∏
Ax, Φ =

∏
Φx, Q =

∏
Qx, c =

∏
cx; then

we noted in the Quadratic Form Example 8.2.3 that Q is a quadratic form
on A over the ring Φ of scalars, and it is easy to check that c is a basepoint
which determines the pointwise Jordan structure of A: A = Jord(Q, c).
If F is an ultrafilter on X, then by the Quadratic Form Example Q′ :=

Q/F is a (respectively nondegenerate) quadratic form on A′ := A/F over
the field Φ′ := Φ/F . It is easy to check that c′ := cF is a basepoint for Q′

determining the quotient Jordan structure of A′: A′ = Jord(Q′, c′). Thus the
ultraproduct A/F is just the quadratic factor Jord(Q′, c′). �

We noted in the case of simplicity that not all algebraic properties carry
over to ultraproducts: properties of the form “for each element a there is
an n = n(a) such that . . . holds” usually fail in the direct product and the
ultraproduct because in an infinitely long string (a1, a2, . . . ) there may be no
upper bound to the n(ai). Another easy example is provided by a countably
infinite ultrapower AX/F = (

∏
x∈X A)/F (ultraproduct based on the direct

power, where all the factors are the same, instead of the direct product of
different factors).

Nil Algebra Non-Example 8.2.6 A countable ultrapower AN/F of a nil
algebra A is a nil algebra if and only if either (1) A is nil of bounded index,
or (2) the ultrafilter F is principal.
proof. If the algebra is nil of bounded index as in (1), it satisfies a poly-

nomial identity an = 0 for some fixed n independent of a, hence the di-
rect product and its quotient ultrapower do too. If the ultrafilter is principal
F = F(x0) as in (2), then the ultraproduct is just the x0th factor A ∼= Ax0 ,
which is certainly nil. All of this works for any ultrapower AX/F .
The harder part is the converse; here we require X = N to be countably

infinite. Assume that (1) fails, butAN/F is nil; we will show that the ultrafilter
is principal, equivalently (cf. Problem 7.2) that F contains some finite set Y .
Since A does not have bounded index, there are elements ak ∈ A with akk  = 0.
Let a = (a1, a2, . . . ) ∈ AN result from stringing these ak’s together. If the
image π(a) of a is nilpotent in AN/F , π(a)n = 0 for some fixed n, then back
in AN we have an(k) = 0 on some subset Y ∈ F , i.e., ank = 0, and therefore
n > k for all k ∈ Y . But then Y ⊆ {1, 2, . . . , n− 1} is the desired finite set in
the filter F . �
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8.3 Problems for Chapter 8

Problem 8.1* (1) Show that if a prime algebra A0 is imbedded in a direct
sum A = A1 � A2, then it is already imbedded in one of the summands
A1 or A2. Generalize this to A0 ↪→ Ai for some i in any finite direct sum
A := A1 � · · · � An. (2) Show that if a prime algebra A0 is imbedded in a
direct product

∏
x∈X Ax and X = X1 ∪X2 is a disjoint union of two subsets,

then A0 is imbedded in
∏

xi∈Xi
Axi

for i = 1 or i = 2. Extend this to the case
of a finite disjoint union X = X1 ∪ · · · ∪Xn.

Question 8.1* How is the dimension of the ultraproduct related to the
dimensions of the individual factors Ax? Is an ultraproduct of composition
algebras again a composition algebra? What about split composition algebras?
Quaternion algebras? Octonion algebras? Split octonion algebras?
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The Final Argument

We are finally ready to analyze the structure of prime algebras. The game
plan is (1) to go from prime nondegenerate algebras to semiprimitive algebras
over big fields by an imbedding process, (2) pass via subdirect products from
semiprimitive to primitive algebras over big fields where the true classification
takes place, then (3) form an ultraproduct to get back down to a “model” of
the original prime algebra. Note that we go directly from primitive to prime
without passing simple, so that the structure of simple algebras follows from
the more general structure of prime algebras. Even if we started with a simple
algebra, the simplicity would be destroyed in the passage from nondegenerate
to semiprimitive (even in the associative theory there are simple radical rings).
We have completed the first two steps of our game plan in the Semiprim-

itive Imbedding Theorem 5.4.1. What remains is the ultraproduct step.1

9.1 Dichotomy

Because ultraproducts provide tight algebraic models of the factors, if the fac-
tors all come in only a finite number of algebraic flavors, then the ultraproduct
too must have exactly one of those flavors.

Finite Dichotomy Principle 9.1.1 If each factor Ax in an ultrafilter be-
longs to one of a finite number of types {T1, . . . , Tn}, then an ultraprod-
uct is isomorphic to a homogeneous ultraproduct of a single type Ti: if
Xi = {x ∈ X | Ax has type Ti}, for some i = 1, 2, . . . , n we have

A =
(∏

x∈X Ax

)
/F ∼= Ai :=

(∏
x∈Xi

Ax

)
/
(F|Xi

)
.

proof. By hypothesis X = X1 ∪ · · · ∪ Xn is a finite union [for any x
the factor Ax has some type Ti, so x ∈ Xi], so by property (UFilt3) of
Ultrafilter Characterization Theorem 7.3.4, some Xi ∈ F . Then by the Filter

1 Prime Dichotomy was described in I.8.11.



9.2 The Prime Dichotomy 441

Restriction Theorem 8.1.3(2)
(∏

x∈X Ax

)
/F ∼= (∏

x∈Xi
Ax

)
/
(F|Xi

)
, where

by Ultra Restriction Example 7.3.5 F|Xi
is an ultrafilter on the homogeneous

direct product
∏

x∈Xi
Ax. �

9.2 The Prime Dichotomy

There are only two options for a primitive Jordan algebra over a big field:
satisfy all s-identities and be an i-special algebra, or be an Albert algebra.
Applying this dichotomy to a prime nondegenerate Jordan algebra yields the
main theorem of Part III.

Prime Dichotomy Theorem 9.2.1 (1) Every prime nondegenerate Jordan
Φ-algebra with 1

2 ∈ Φ is either i-special or a form of a split Albert algebra.
(2) Every simple nondegenerate Jordan algebra of characteristic  = 2 is either
i-special or a 27-dimensional Albert algebra Jord(N, c) over its center.

proof. (1) We have already noted that the first two steps in this argu-
ment, going from prime to semiprimitive to primitive, have been taken: by the
Semiprimitive Imbedding Theorem 5.4.1, a prime nondegenerate J imbeds in
a direct product PJ =

∏
α J̃α for primitive i-exceptional algebras J̃α over one

big algebraically closed field Ω, |Ω| > dimΩ J̃α. Further, we clearly understand
the resulting factors: by the Big Primitive Exceptional Theorem 6.2.2, these
factors are either i-special or split Albert algebras Alb(Ω) over their center Ω.
So far we have an enlargement of J with a precise structure. Now we

must recapture the original J without losing our grip on the structure. To
tighten, we need an ultrafilter, and this is where for the first time primeness
is truly essential. By the Prime Example 7.2.2, any prime subalgebra of a
direct product has a support filter F(J) generated by the supports Supp(a) =
{α | a(α)  = 0} of its nonzero elements, and by the Filter Restriction Theorem
8.1.3(4) J remains imbedded in some ultraproduct PJ/F determined by an
ultrafilter F ⊇ F(J). By the Finite Dichotomy Theorem 9.1.1 we can replace
this ultraproduct by a homogeneous ultraproduct where all the factors are
i-special or all the factors are split Albert algebras.
In the first case the algebra J inherits i-speciality as a subalgebra of a

quotient PJ/F of a direct product PJ =
∏

α J̃α of i-special factors.
In the second case the algebra J is a subalgebra of an ultraproduct of

split Albert factors, which by the Split Albert Example 8.2.4 is itself an 27-
dimensional Albert algebra J = Alb(Ω) over a big algebraically closed field
Ω. Here Ω =

(∏
αΩ

)
/F is an ultrapower of Ω; it remains an algebraically

closed field over Ω by the Division Algebra Example 8.2.2, so it also remains
big since |Ω| ≥ |Ω|.
We claim that in fact J′ = ΩJ is all of the 27-dimensional algebra J,

so J is indeed a form of a split Albert algebra as claimed in the theorem.
Otherwise, J′ would have dimension < 27 over Ω, as would the semisimple
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algebra J′′ := J′/Rad(J′) and all of its simple summands. But by the finite-
dimensional (or finite-capacity) theory, these simple summands of dimensions
< 27 over their centers must all be special, so their direct sum J′′ would be spe-
cial too. But J remains imbedded in J′′ = J′/Rad(J′) since J ∩ Rad(J′) = 0
by the Radical Avoidance Lemma 1.7.3 [J is nondegenerate by hypothesis,
and the finite-dimensional J′ certainly has the d.c.c. on all inner ideals (in-
deed, all subspaces!)],2 so J would be special too, contrary to the assumed
i-exceptionality of J.
(2) This establishes the theorem for prime algebras. If J is simple nonde-

generate i-exceptional, we will show that it is already 27-dimensional over its
centroid, which is a field Φ by the Centroid Theorem 1.6.3, and therefore again
by the finite-dimensional theory it will follow that J = Jord(N, c). Now J is
also prime and nondegenerate, so applying the prime case gives ΩJ = Alb(Ω).
We have a natural epimorphism JΩ := Ω ⊗Φ J � ΩJ = Alb(Ω). In char-
acteristic  = 2 the scalar extension JΩ of the central-simple linear Jordan
algebra J remains simple over Ω by the Strict Simplicity Theorem II.1.7.1,
so this epimorphism must be an isomorphism, and dimΦ(J) = dimΩ(JΩ) =
dimΩ(Alb(Ω)) = 27. �
This completes our proof of this powerful theorem. We can reformulate

it as proving the nonexistence of i-exceptional Jordan algebras which might
provide a home for a non-Copenhagen quantum mechanics.

Zel’manov’s Exceptional Theorem 9.2.2 (1) The only i-exceptional prime
nondegenerate Jordan Φ-algebras with 1

2 ∈ Φ are forms of split Albert algebras.
(2) The only i-exceptional simple nondegenerate Jordan algebras of character-
istic  = 2 are 27-dimensional Albert algebras over their centers. �
We remark that a highly nontrivial proof (which we have chosen not to

include) shows that simple Jordan algebras are automatically nondegenerate.
This is not true for prime algebras: there exist prime degenerate Jordan alge-
bras, known as Pchelintsev Monsters.
This theorem leaves open the slight hope that there exist prime nondegen-

erate Jordan algebras which are i-special but not special, and therefore would
qualify as (perhaps substandard) exceptional housing for non-Copenhagen
quantum mechanics. Perhaps someday there will be a direct proof that all
nondegenerate i-special algebras are in fact special, but at the present time
one has to work hard to show that prime nondegenerate i-special algebras are
special. The only way Zel’manov could do this (and finally dash all hopes for
an exceptional home for quantum mechanics) was to first classify all prime
nondegenerate algebras whatsoever, and then notice that they turn out to be
either special or Albert. But that general structure theory, with epic battles
against the tetrad eaters, is another story, and it’s time to close this Part III
and this taste of Jordan structure theory.

2 This avoidance would have been even easier if we had stopped to prove that Rad(J′)
is nilpotent.
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9.3 Problems for Chapter 9

Problem 9.1* From Dichotomy 9.1.1 we know that an ultraproduct of fields
Φx of characteristics 0, p1, . . . , pn must be a field of characteristic 0 or p = pi
for some i = 1, . . . , n. Explain what happens in an ultraproduct of fields Φx of
infinitely many distinct characteristics — by Division Algebras Example 8.2.2
this must be a field of some characteristic, but where does the characteristic
come from? Consider a very specific case,

(∏
p Zp

)
/F for an ultrafilter F on

the set of prime numbers.

Problem 9.2 (1) If Ω ⊇ Φ is a small extension of a field Φ (dimΦ Ω < |Φ|,
i.e., Φ is big for Ω), show that Ω is algebraic over Φ. Conclude that if Φ is
algebraically closed as well, then Ω = Φ: algebraically closed fields admit no
small extensions. (2) Show that bigness passes to the algebraic closure: if Φ
is big for J, then its algebraic closure Φ remains big for J := Φ⊗Φ J. (3) If J
is an algebra over a field Ω and Φ is a subfield of Ω, use transitivity of degree
[J : Φ] = [J : Ω] [Ω : Φ] to show that if Φ is big for J then Φ is also big for
Ω: |Φ| > [J : Φ] =⇒ |Φ| > [Ω : Φ], and Ω is a small extension of Φ. (4) Show
that a Jordan algebra over a big algebraically closed field Φ whose centroid is
a field (e.g., a simple algebra) is already central over Φ: Γ(J) = Φ.
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Part IV

Appendices



Introduction

These appendices serve as eddies, where we can leisurely establish important
results whose technical proofs would disrupt the narrative flow of the main
body of the text. We have made free use of some of these results, especially
Macdonald’s Theorem, in our treatment, but their proofs are long, combina-
torial, or computational, and do not contribute ideas and methods of proof
which are important for the mainstream of our story. We emphasize that these
are digressions from the main path, and should be consulted only after the
reader has gained a global picture. A hypertext version of this book would
have links at this point to the appendices which could be opened only after
the main body of text had been perused at least once.



A

Cohn’s Special Theorems

In this chapter we obtain some purely associative results due to P.M. Cohn
in 1954, relating the symmetric elements and the Jordan elements in a free
associative algebra, providing a criterion for the homomorphic image of a
special algebra to be special. For convenience, we will work entirely within the
category of unital algebras. The corresponding non-unital theory will be left
as a worthwhile project for the reader at the end of the appendix.

A.1 Free Gadgets

Let FA[X] denote the free unital associative algebra on the set X,
the free Φ-module spanned by all monomials x1 · · ·xn for all n ≥ 0 (the
empty product for n = 0 serving as unit) and all xi ∈ X (not neces-
sarily distinct), with product determined by linearity and “concatenation”
(x1 · · ·xn)(xn+1 · · ·xn+m) = x1 · · ·xnxn+1 · · ·xn+m. We think of the elements
of the free algebra as free or generic associative polynomials p(x1, . . . , xn) in
the variables x ∈ X. Let ι be the canonical set-theoretic imbedding of X in
FA[X]. The free algebra has the universal property that any set-theoretic
mapping ϕ of X into a unital associative algebra A factors uniquely through
the canonical imbedding ι:X → FA[X] via a homomorphism ϕ̃ : FA[X]→ A
of unital associative algebras; we say that ϕ extends uniquely to a unital as-
sociative algebra homomorphism.

X
ϕ ��

ι

����
��

��
��

� A

FA[X]

ϕ̃

�����������

This universal property completely characterizes the free algebra. Indeed,
rather than single out one construction as the free algebra, most authors define
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a free algebra to be anything satisfying the universal property, then show that
any two such are naturally isomorphic. If we wish to stress the functoriality of
the free algebra, we denote the extension ϕ̃ by FA[ϕ]. You should think of this
as an evaluation map p(x1, . . . , xn) �→ p(a1, . . . , an), obtained by substituting
the ai = ϕ(xi) ∈ A for the variables xi. Free associative polynomials were
born to be evaluated on associative Φ-algebras, in the same way that ordinary
commutative polynomials in Φ[X] were born to be evaluated on commutative
Φ-algebras.

The free algebra FA[X] also has a unique reversal involution ρ fixing the
generators x ∈ X: ρ(x1x2 · · ·xn) = xn · · ·x2x1. The ∗-algebra (FA[X], ρ) has
the universal property that any set-theoretic mapping of X into the hermitian
part H(A, ∗) of a unital associative ∗-algebra (A, ∗) extends uniquely to a ∗-
homomorphism (FA[X], ρ) → (A, ∗) of unital ∗-algebras factoring through
the canonical ∗-imbedding X → H(FA[X], ρ).
The reversible elements ρ(p) = p in FA[X] form a unital Jordan algebra

H(FA[X], ρ) containing X; the Jordan subalgebra generated by X is called
the free special unital Jordan algebra FSJ [X]. We will call an element of
FSJ [X] a free special or generic special Jordan polynomial onX. FSJ [X] has
the universal property that any set-theoretic mapping ϕ of X into a special
unital Jordan algebra J extends uniquely to a homomorphism ϕ̃ : FSJ [X]→
J of unital Jordan algebras factoring through the canonical imbedding ι:X →
FSJ [X].

X
ϕ ��

ι

����������� J

FSJ [X]

ϕ̃

�����������

The map ϕ̃ (denoted by FSJ [ϕ] if we wish to stress the functoriality of the
free gadget) is again evaluation p(x1, . . . , xn) �→ p(a1, . . . , an) at ai = ϕ(xi)
for all Jordan polynomials p in the x’s. Again, special Jordan polynomials were
born to be evaluated (though only on special Jordan algebras).

We obtain a free associative or free special Jordan functor F
(F = FA or FSJ ) from the category of sets to the category of unital as-
sociative or special Jordan algebras, sending a set X to the algebra F [X],
and a map f :X → Y to the homomorphism F [f ]:F [X] → F [Y ] induced by
X → Y → F [Y ]. In particular, for X ⊆ Y the natural set inclusion X ↪→ Y
induces a canonical homomorphism F [X]→ F [Y ], and it is clear that this is
a monomorphism, so we will always identify FA[X] with the subalgebra of
FA[Y ] generated by X. Under this associative homomorphism, Jordan prod-
ucts go into Jordan products, inducing an identification of FSJ [X] with the
Jordan subalgebra of FSJ [Y ] generated by X.
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A.2 Cohn Symmetry

Clearly, FSJ [X] ⊆ H(FA[X], ρ), and the question is how close these are.
As long as Φ contains a scalar 1

2 , this is easy to answer: on the one hand,
the tetrads {x1, x2, x3, x4} := x1x2x3x4 + x4x3x2x1 are reversible elements
but not Jordan products in FSJ [X]. Indeed, in the exterior algebra Λ[X]
the subspace ΦX (which, by convention, means all Φ-linear combinations of
generators, consisting of wedges of length 1) forms a special Jordan subalgebra
with trivial products x∧x = x∧y∧x = x1∧x2+x2∧x1 = x1∧x2∧x3+x3∧x2∧
x1 = 0, but not containing tetrads because x1∧x2∧x3∧x4+x4∧x3∧x2∧x1 =
2x1∧x2∧x3∧x4  ∈ ΦX. On the other hand, as soon as we adjoin these tetrads
to the generators X we can generate all reversible elements.

Cohn Reversible Theorem A.2.1 The Jordan algebra H(FA[X], ρ) of
reversible elements of the free associative algebra over Φ F 1

2 is precisely the
Jordan subalgebra generated by FSJ [X] together with all increasing tetrads
{x1, x2, x3, x4} for distinct x1 < x2 < x3 < x4 (in some ordering of X).

proof. Let B denote the subalgebra generated by X and the increasing
tetrads. Since 1

2 ∈ Φ, the reversible elements are all “traces” tr(a) := a+ρ(a),
hence are spanned by the traces of the monomials, which are just the n-tads
{x1, x2, . . . , xn} := tr(x1x2 · · ·xn) = x1x2 · · ·xn + xn · · ·x2x1 for xi ∈ X.
[WARNING: for n = 0, 1 we fudge and decree that the 0-tad is 1 and the
1-tad is {x1} = x1 (not x1 + ρ(x1) = 2x1!!)] We will prove that all n-tads are
≡ 0 modulo B by induction on n. The cases n = 0, 1, 2, 3 are trivial (they are
Jordan products of x’s).
For n = 4 the tetrads can all be replaced by ± tetrads with distinct x’s

arranged in increasing order, since {x1, x2, x3, x4} is an alternating function
of its arguments mod B (note that a tetrad with two adjacent elements equal
reduces to a Jordan triad in FSJ [X] ⊆ B, e.g., {x1, x, x, x4} = {x1, x

2, x4}).
Now assume that n > 4 and that the result has been proven for all m < n,

and consider an n-tad xI := {x1, x2, . . . , xn} determined by the n-tuple I =
(1, 2, . . . , n). By induction we have mod B that 0 ≡ {x1, {x2, x3, . . . , xn}} =
{x1, x2, . . . , xn} + {x2, . . . , xn, x1} = xI + xσ(I), where σ is the n-cycle
(12 . . . n). Thus

(1) xσ(I) ≡ −xI mod B.

Applying this repeatedly gives xI = xσn(I) ≡ (−1)nxI , so that when n is odd
we have 2xI ≡ 0, hence xI ≡ 0 mod B in the presence of 1

2 .
From now on assume that n is even, so the n-cycle σ is an odd permutation,

so (1) becomes

(2) xσ(I) ≡ (−1)σxI mod B

(where (−1)π denotes the signature of the permutation π). We have the same
for the transposition τ = (12): by induction 0 ≡ {x1, x2, {x3, x4, . . . , xn}} =
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{x1, x2, x3, . . . , xn}+{x3, x4, . . . , xn, x2, x1} = xI+xσ2τ(I) ≡ xI+(−1)2xτ(I)
and

(3) xτ(I) ≡ (−1)τxI mod B.

Putting (2), (3) together gives

(4) xπ(I) ≡ (−1)πxI mod B

for all permutations π in Sn, since the transposition τ and the n-cycle σ
generate Sn.
Now we bring in the tetrads. Since B contains the tetrads and is closed

under Jordan products, we have by induction

0 ≡ {{x1, x2, x3, x4}, {x5, . . . , xn}}
= {x1, x2, x3, x4, x5, . . . , xn}+ {x4, x3, x2, x1, x5, . . . , xn}
+ {x5, . . . , xn, x1, x2, x3, x4}+ {x5, . . . , xn, x4, x3, x2, x1}

= xI + xτ(14)τ(23)(I) + xσ4(I) + xτ(14)τ(23)σ4(I)

≡ xI + (−1)2xI + (−1)4xI + (−1)2(−1)4xI
= 4xI ,

[using (4)], so again in the presence of 1
2 we can conclude that xI ≡ 0. This

completes the induction that all n-tads fall in B. �

When | X |≤ 3, there are no tetrads with distinct variables, so we have
no need of tetrads. Here we will break our long-standing policy of using the
word hermitian in place of symmetric, and will speak colloquially of symmetric
elements or symmetric expressions in the variables x, y, z.

Cohn Symmetry Theorem A.2.2 (1) We have equality H(FA[X], ρ) =
FSJ [X] when |X| ≤ 3: any symmetric associative expression in at most
three variables is a Jordan product. In particular, we have:

(2) Cohn 2-Symmetry: FSJ [x, y] = H(FA[x, y], ρ);
(3) Cohn 3-Symmetry: FSJ [x, y, z] = H(FA[x, y, z], ρ).

A.3 Cohn Speciality

Now we turn to the question of which images of the free special Jordan algebra
remain special. Surprisingly, speciality is not inherited by all images: the class
of special algebras does not form a variety defined by identities, only the
larger class of homomorphic images of special algebras (the identity-special or
i-special algebras) can be defined by identities (namely, the s-identities, those
that vanish on all special algebras).
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Cohn Speciality Criterion A.3.1 Any homomorphic image of a special
algebra is isomorphic to FSJ [X]/K for some set of generators X and some
ideal K  FSJ [X]. Such an image will be special iff the kernel K is “closed,”
in the sense that the associative ideal K it generates still intersects FSJ [X]
precisely in the original kernel :

(1) K ∩ FSJ [X] = K (K := IFA[X](K)).

Put in seemingly more general terms,

(2) FSJ [X]/K special iff K = I ∩ FSJ [X] for some I  FA[X].
proof. Every special Jordan algebra J is a homomorphic image of some

FSJ [X]: by the universal property of the free special Jordan algebra there is a
homomorphism of FSJ [X] to J for any set X of generators of J as Φ-algebra
[at a pinch, X = J will do], which is an epimorphism because the image
contains the entire generating set X. Thus every image of a special algebra is
also an image of some FSJ [X] and thus is isomorphic to FSJ [X]/K for K
the kernel of the epimorphism.
We now investigate speciality of such an FSJ [X]/K. The seeming gen-

erality of (2) is illusory: the trace conditions in (1) and (2) are equivalent,
since as soon as K = I ∩ FSJ [X] is the trace on FSJ [X] of some ideal it is
immediately the trace of its closure: K ⊆ I  FA[X] =⇒ K ⊆ K ⊆ I =⇒ K ⊆
FSJ [X] ∩K ⊆ FSJ [X] ∩ I = K forces K = FSJ [X] ∩K.
Thus it suffices to prove (2). For the direction ⇐=, as soon as K is the

trace of some associative ideal as in (2), the quotient is immediately seen to
be special by the Third Fundamental Homomorphism Theorem:

FSJ [X]/K = FSJ [X]/(I∩FSJ [X]) ∼= (FSJ [X]+I)/I ⊆ (FA[X]/I)+

is imbedded in the associative algebra FA[X]/I.
For the converse direction =⇒, we suppose that the quotient is special,

so there exists a faithful specialization FSJ [X]/K φ→ A+. The map σ:

X
ι
↪→ FSJ [X] π� FSJ [X]/K φ−→ A+ is a map of sets, hence induces a unital

associative homomorphism σA: FA[X]→ A by the associative universal prop-
erty. Moreover, since σA|FSJ [X] and φ ◦ π are both Jordan homomorphisms
on FSJ [X] which agree with σ on the generators X, they must agree every-
where by the uniqueness in the Jordan universal property: σA|FSJ [X] = φ◦π.
Thus ker(σA) ∩ FSJ [X] = ker(σA|FSJ [X]) = ker(φ ◦ π) = K exhibits K as
the trace of an associative ideal. �
When X consists of at most two variables, all homomorphic images are

special.

Cohn 2-Speciality Theorem A.3.2 If |X| ≤ 2, then every homomorphic
image of FSJ [X] is special: every i-special algebra on at most two generators
is actually special, indeed, is isomorphic to H(A, ∗) for an associative algebra
A with involution ∗.
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proof. For convenience, we work only with the case of two generators
X = {x, y} (for one generator, just replace all y’s by x’s). We may represent
our two-generator unital algebra as

(1) J ∼= FSJ [x, y]/K

for a Jordan ideal K FSJ [x, y] ∼= H(FA[x, y], ρ) (using Cohn 2–Symmetry).
The associative closure K is spanned by all pkq for associative monomials p, q
in x, y and k ∈ K, and is thus automatically a ∗-ideal invariant under the
reversal involution ρ (remember that k ∈ FSJ [x, y] is reversible, and it is a
general fact that if the generating set S is closed under an involution, S∗ ⊆ S,
then the ideal IA(S) generated by S in A is automatically a ∗-ideal invariant
under the involution).
By the Cohn Speciality Criterion A.3.1, the homomorphic image (1) is

special iff

(2) K ∩ FSJ [x, y] = K.

By Cohn 2–Symmetry the trace K∩FSJ [x, y] = K∩H(FA[x, y], ρ) consists
precisely of all reversible elements of K, and due to the presence of 1

2 the
reversible elements are all traces tr(u) = u + ρ(u) of elements of K, which
are spanned by all m(k) := pkq + ρ(q)kρ(p). We claim that each individual
m(k) lies in K. In the free associative algebra FA[x, y, z] on three generators
the element m(z) := pzq + ρ(q)zρ(p) is reversible, so by Cohn 3–Symmetry
it is a Jordan product which is homogeneous of degree 1 in z, thus of the
form m(z) =Mx,y(z) for some Jordan multiplication operator in x, y. Under
the associative homomorphism FA[x, y, z] → FA[x, y] induced by x, y, z �→
x, y, k, this Jordan polynomial is sent to m(k) = Mx,y(k), so the latter is a
Jordan multiplication acting on k ∈ K and hence falls back in the ideal K,
establishing (2) and speciality. Recall from Cohn Speciality A.3.1 the explicit
imbedding J ∼= FSJ [x, y]/K [by (1)] = FSJ [x, y]/(FSJ [x, y] ∩K) [by (2)]
∼= (FSJ [x, y] +K)/K ⊆ FA[x, y]/K =: A.
But we are not content with mere speciality. Since K is invariant under ρ,

the associative algebra A inherits a reversal involution ∗ from ρ on FA[x, y],
whose symmetric elements are (again thanks to the presence of 1

2 ) precisely
all traces a + a∗ = π(u) + π(ρ(u)) (π the canonical projection of FA[x, y]
on A) = π(u + ρ(u)) = π(h) for h ∈ H(FA[x, y], ρ) = FSJ [x, y] (by Cohn
2–Symmetry), so H(A, ∗) = π(FSJ [x, y]) = (FSJ [x, y] +K)/K ∼= J. Thus
J arises as the full set of symmetric elements of an associative algebra with
involution. �

This result fails as soon as we reach three variables. We can give our first
example of a homomorphic image of a special algebra which is not special,
merely i-special.
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i-Special-but-Not-Special Example A.3.3 If K is the Jordan ideal gener-
ated by k = x2 − y2, the homomorphic image FSJ [x, y, z]/K is not special.
proof. By Cohn’s Criterion we must show that K ∩ FSJ [X] > K.

The reversible tetrad k̄ := {k, x, y, z} = {x2, x, y, z} − {y2, x, y, z} falls in
FSJ [x, y, z] by Cohn 3–Symmetry, and it certainly lies in the associative
ideal K generated by K, but we claim that it does not lie in K itself. In-
deed, the elements of K are precisely all images M(k) of M(t) for Jordan
multiplications M by x, y, z acting on FSJ [x, y, z, t]. Since M(t) of degree
i, j, ? in x, y, z maps under t �→ x2 − y2 to an element with terms of degrees
i+2, j, ? and i, j+2, ? in x, y, z, it contributes to the element k̄ with terms of
degrees 3, 1, 1 and 1, 3, 1 only when i = j = ? = 1. Thus we may assume that
M =M1,1,1 is homogeneous of degree 1 in each of x, y, z.
As elements of H[x, y, z, t] (which, as we’ve noted, in four variables is

slightly larger than FSJ [x, y, z, t]), we can certainly write such an M(t) as a
linear combination of the 12 possible tetrads of degree 1 in each of x, y, z, t:

M(t) =α1{txyz}+ α2{tyxz}+ α3{xtyz}+ α4{xytz}
+ α5{yxtz}+ α6{ytxz}+ α7{txzy}+ α8{xtzy}
+ α9{tyzx}+ α10{ytzx}+ α11{xyzt}+ α12{yxzt}.

By assumption this maps to

{x3yz}−{y2xyz} = k̄ =M(k)
=α1

({x3yz} − {y2xyz})+ α2
({x2yxz} − {y3xz})

+ α3
({x3yz} − {xy3z})+ α4

({xyx2z} − {xy3z})
+ α5

({yx3z} − {yxy2z})+ α6
({yx3z} − {y3xz})

+ α7
({x3zy} − {y2xzy})+ α8

({x3zy} − {xy2zy})
+ α9

({x2yzx} − {y3zx})+ α10
({yx2zx} − {y3zx})

+ α11
({xyzx2} − {xyzy2})+ α12

({yxzx2} − {yxzy2})
=

(
α1 + α3

){x3yz} − α1{y2xyz} − (
α2 + α6

){y3xz}
+

(
α5 + α6

){yx3z} − (
α3 + α4

){xy3z}+ (
α8 + α7

){x3zy}
− (

α10 + α9
){y3zx}+ α2{x2yxz}+ α9{x2yzx} − α7{y2xzy}

+ α4{xyx2z} − α5{yxy2z} − α8{xy2zy}+ α10{yx2zx}
+ α11{xyzx2}+ α12{yxzx2} − α11{xyzy2} − α12{yxzy2}.

Identifying coefficients of the 18 independent 5-tads on both sides of the equa-
tion gives α1+α3 = α1 = 1, α2+α6 = α3+α4 = 0, all nine single-coefficient αi

for i = 2, 9, 7, 4, 5, 8, 10, 11, 12 vanish, which in turn implies from the double-
coefficient terms that the two remaining αi for i = 3, 6 vanish, leaving only
α1 = 1 nonzero. But then M(t) = {t, x, y, z} would be a tetrad, contradicting
the fact that M(t) is a Jordan product. �
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We remark that this argument fails if we take k = x2 instead of k =
x2 − y2: then k̄ := {x, y, z, k} = {xyzx2} = 1

2

(
V{x,y,z} −Ux,zVy + Vx,yVz

)
(x2)

is a Jordan product back in K. Of course, this by itself doesn’t prove that
FSJ [x, y, z]/I(x2) is special — I don’t know the answer to that one.

A.4 Problems for Appendix A

Problem A.1 As good practice in understanding the statements and proofs
of the basic results in this appendix, go back and develop a completely analo-
gous non-unital theory, starring the free (unit-less) associative algebra FA0[X]
and the free special Jordan algebra FSJ 0[X], dressed in their universal prop-
erties. The plot should involve finding a Cohn Reversible Theorem, Cohn Sym-
metry Theorem, Cohn Speciality Criterion, and Cohn 2-Speciality Theorem
for algebras without units.

Question A.1 Is there a way to quickly derive the unit-less theory from
the unital theory, and vice versa? For these unit-less free gadgets F0 (=
FA0, FSJ 0), to what extent is it true that F [X] = F̂0[X] := Φ1 ⊕ F0[X]?
Is it true that F0[X] can be identified with the ideal in F [X] spanned by all
monomials of codegree ≥ 1 (equivalently, those with zero “constant term”, i.e.,
those that vanish under the specialization F [X]→ F [X] sending all x �→ 0)?
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Macdonald’s Theorem

In this appendix we will descend into the combinatorics of the free Jordan
algebra on three generators in order to obtain Macdonald’s Principle. Once
more, all algebras in this chapter will be unital. Because we have so many
formulas in this appendix, we will omit the chapter designation: the notation
1.2.356 will mean Section 1, Statement 2, Formula 356.1

B.1 The Free Jordan Algebra

We have heretofore been silent about the free (unital) Jordan Φ-algebra
on a set of generators X, consisting of a unital Jordan Φ-algebra2 FJ [X]
with a given mapping ι: X → FJ [X] satisfying the following universal
property: any mapping ϕ: X → J of the set X into a unital Jordan Φ-
algebra J extends uniquely to a homomorphism (or factors uniquely through
ι via) ϕ̃ : FJ [X]→ J of unital Jordan Φ-algebras.

X
ϕ ��

ι

����
��

��
��

� J

FJ [X]

ϕ̃

�����������

The condition that the extension be unique just means that the free algebra
is generated (as unital Φ-algebra) by the set X; if we wish to stress the func-
toriality of the free gadget, we denote ϕ̃ by FJ [ϕ]. The explicit construction
indicated below shows that ι is injective (we can also see this by noting that

1 The concepts of speciality and exceptionality were introduced in II.3.1.2, the Macdon-
ald, Shirshov, and Shirshov–Cohn Theorems in II Section 5.1.

2 Note that we don’t bother to indicate the base scalars in the notation; a more precise
notation would be FJΦ[X], but we will never be this picky, relying on the reader’s by now
finely-honed common sense.
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the map X → �x∈XΦ1x (each Φ1x a faithful copy of Φ+) via x �→ 1x is
injective, and if it factors through ι, then ι must also be injective). We will
always assume that X is contained in FJ [X].
Like all free gadgets, the free algebra is determined up to isomorphism by

its universal property: an algebra that acts like a free algebra with respect to
X is a free algebra. Although by this approach we cannot speak of the free
algebra, there is a canonical construction which we always keep in the back
of our minds as “the” free algebra: FJ [X] := FL[X]/K, where FL[X] =
Φ[M[X]] is the free unital linear Φ-algebra generated by X, and K is the
ideal of “Jordan relations.” Here the free monad M[X] on the set X is a
nonassociative monoid (set with unit and closed under a binary product); it
has the universal property that any set-theoretic mapping ϕ : X → M into a
monad M extends uniquely to a homomorphism ϕ̃ : M[X]→ M of monads.
This is a graded set which can be constructed recursively as follows: the only
monomial of degree 0 is the unit 1; the monomials of degree 1 are precisely the
elements x of X; and if the monomials of degree < n have been constructed,
the monomials of degree n are precisely all m = (pq) (an object consisting
of an ordered pair of monomials p, q surrounded by parentheses) for p, q
monomials of degrees p, q > 0 with p + q = n. For example, the elements of
degree 2, 3 are all (xy), ((xy)z), (x(yz)). The mapping (p,q) �→ (pq) for
p,q  = 1, (1,p) �→ p, (p,1) �→ p gives a “totally nonassociative” product on
M[X] with unit 1.
The free (unital) linear algebra FL[X] = Φ[M[X]] is the monad al-

gebra generated by the free monad M[X], i.e., the free Φ-module spanned by
all monomials m, consisting of all a =

∑
m αmm with bilinear multiplication

a ·b = (∑
m αmm

)(∑
n βnn

)
:=

∑
m,n αmβn(mn), with canonical inclusion

ι: x �→ x of X ↪→ M[X] ↪→ Φ[M[X]]. This has the universal property that
every set-theoretic map ϕ: X → A into an arbitrary unital linear Φ-algebra
extends uniquely (factors through ι) to a homomorphism ϕ̃: FL[X] → A of
unital Φ-algebras.

X
ϕ ��

ι

����
��

��
��

� A

FL[X]

ϕ̃

�����������

Namely, ϕ̃ is the unique linear map whose values on monomials are defined
recursively on degree 0 by ϕ̃(1) := 1A, on degree 1 by ϕ̃(x) := ϕ(x) for the
generators x ∈ X, and if defined up to degree n, then ϕ̃((pq)) := ϕ̃(p)ϕ̃(q).

The ideal K of relations which must be divided out is the ideal generated
by all (ab)−(ba), (((aa)b)a)−((aa)(ba)) for polynomials a, b ∈ FL[X],
precisely the elements that must vanish in the quotient in order for the commu-
tative law and Jordan identity II.1.8.1(JAX1)–(JAX2) to hold. Thus we have
a representation of the free Jordan algebra in the form FJ [X] = FL[X]/K.
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Exercise B.1.0A Show that the ideal K is generated in terms of monomials m, n, p, q
∈ M[X] by all (1) (mn) - (nm), (2) (((mm)n)m) - ((mm)(nm)), (3) (((mm)n)p)

+ 2(((mp)n)m) - ((mm)(np)) - 2((mp)(nm)), (4) 2(((mq)n)p) + 2(((mp)n)q) +
2(((qp)n)m) - 2((mq)(np)) - 2((qp)(nm)) - 2((mp)(nq)).

Exercise B.1.0B* Show that the free linear algebra FL[X] carries a reversal involution
ρ (involutory isomorphism from FL[X] to its opposite FL[X]op) uniquely determined by
ρ(x) = x for all x ∈ X. Show that the Jordan kernel K is invariant under the involution,
ρ(K) ⊆ K, so that FJ [X] inherits a reversal involution. Why is this involution never
mentioned in the literature?

Irrespective of how we represent the free algebra, we have a standard result
that if X ⊂ Y then FJ [X] can be canonically identified with the Jordan
subalgebra of FJ [Y ] generated by Y : the canonical epimorphism of FJ [X]
onto this subalgebra, induced by X → Y → FJ [Y ], is an isomorphism (it is
injective because it has as left inverse the homomorphism FJ [Y ] → FJ [X]
induced by Y → X∪{0} via x �→ x (x ∈ X), y �→ 0 (y ∈ Y \X)). In particular,
we will always identify FJ [x, y] with the elements of FJ [x, y, z] of degree 0
in z.

A Jordan polynomial or Jordan product f(x, y, z) in three variables
is just an element of the free Jordan algebra FJ [x, y, z]. Like any polynomial,
it determines a mapping (a, b, c) �→ f(a, b, c) of J3 → J for any Jordan algebra
J by evaluating the variables x, y, z to specific elements a, b, c. This, of course,
is just the universal property: the map ϕ : (x, y, z) �→ (a, b, c) induces a
homomorphism ϕ̃ : FJ [x, y, z]→ J, and f(a, b, c) is just ϕ̃(f(x, y, z)). Such a
polynomial vanishes on J iff f(a, b, c) = 0 for all elements a, b, c ∈ J, i.e., iff
all evaluations in J produce the value 0.3

We have a canonical specialization FJ [x, y, z] → FSJ [x, y, z] (in the
Jordan sense of homomorphism into a special algebra) onto the free special
Jordan algebra (inside the free associative FA[x, y, z]) fixing x, y, z; the kernel
of this homomorphism is the ideal of s-identities, those Jordan polynomials
in three variables that vanish on (x, y, z) in FSJ [X] and therefore, by the
universal property of the free special algebra, on any (a, b, c) in any special
Jordan algebra J ⊆ A+.

3 This standard process of evaluating polynomials is called specializing the indetermi-
nates x, y, z to the values a, b, c, going from general or “generic” values to particular or
“special” values. But here the Jordan polynomial can be “specialized” to values in any Jor-
dan algebra, not just special Jordan algebras in the technical sense, so to avoid confusion
with “special” in the Jordan sense we will speak of evaluating f at a, b, c.
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B.2 Identities

Remember that we have used The Macdonald4 for simply everything we have
done so far, so to prove The Macdonald itself we have to go back to the very
beginning, to the Basic Identities

Basic Identities Lemma B.2.1 From the Jordan identity we obtain the
following operator identities:

(2.1.1) [Lx, Lx2 ] = [Vx, Ux] = 0,
(2.1.2) Lx2•y = −2LxLyLx + Lx2Ly + 2Lx•yLx

= −2LxLyLx + LyLx2 + 2LxLx•y,
(2.1.3) L(x•z)•y = −LxLyLz − LzLyLx + Lz•xLy + Lx•yLz + Lz•yLx

= −LxLyLz − LzLyLx + LyLz•x + LzLx•y + LxLz•y,

(2.1.4) Ux = L2
x − Lx2 , Ux,y = 2

(
LxLy + LyLx − Lx•y

)
,

(2.1.5) {x, y, y} = {x, y2}, Vx,y = VxVy − Ux,y, Vx := 2Lx.

proof. (1) The Jordan identity (JAX2) [x2, y, x] = 0 in operator form says
Lx commutes with Lx2 , hence also with Ux = 2L2

x−Lx2 . (2) The linearization
(c.f. the Linearization Proposition II.1.8.5) (JAX2)′ [x2, y, z]+2[x•z, y, x] = 0
acting on z becomes

(
Lx2•y − Lx2Ly

)
+ 2

(
LxLy − Lx•y

)
Lx = 0, while the

linearization (JAX2)′′ x �→ x, 1
2z of (2) yields (3). The second equality in (2),

(3) follows from linearizing LxLx2 = Lx2Lx. (4) is just the definition of the
U -operators. For the first part of (5), note by (4) that {x, y, y} = Ux,yy =
2(x • y2 + y • (x • y) − (x • y) • y) = 2x • y2 = {x, y2}. Linearizing y �→ y, z
gives {x, y, z} + {x, z, y} = {x, {y, z}}; interpreting this as an operator on z
yields Vx,y + Ux,y = VxVy as required for the second part of (5). �

The reader will notice that we have abandoned our practice of giving
mnemonic mnicknames to results and formulas; this appendix in particular
is filled with technical results only a lemma could love, and we will keep our
acquaintance with them as brief as possible and fasten our attention on the
final goal.

From Basic (2.1.3) we can immediately establish operator-commutativity
and associativity of powers.

4 As Ivanna Trump would have said. In the old Scottish clan of MacDonalds, the current
clan chief or principal would be referred to simply as “The MacDonald.” And so it is in the
Jordan clan, where we refer to our chief principle as The Macdonald.
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Power Associativity Lemma B.2.2 (1) If the powers of an element x in
a (unital) Jordan algebra are defined recursively by x0 := 1, x1 := x, and
xn+1 := x • xn, then all the multiplication operators Lxn are polynomials in
the commutating operators Lx, Lx2 , and therefore they all commute with each
other.

(2) The element x generates a commutative associative subalgebra Φ[x]:
we have power-associativity

xn • xm = xn+m.

proof. We prove (1) by recursion on n, the cases n = 0, 1, 2 being trivial.
Assuming it for powers < n + 2 we have for the (n + 2)nd power (setting
y = x, z = xn in Basic (2.1.3) the result that Lxn+2 = L(x•xn)•x = Lxn+1Lx+(
Lxn+1 − LxnLx

)
Lx +

(
Lx2 − LxLx

)
Lxn , where by recursion Lxn , Lxn+1 are

polynomials in Lx, Lx2 and hence Lxn+2 is too.

(2) then follows easily by recursion on n + m; the result is trivial for
n + m = 0, 1, 2, and assuming it for degrees < n + m, with m ≥ 2, we
obtain xn • xm = Lxn(Lxx

m−1) = Lx(Lxnxm−1) [by commutativity (1)] =
Lx(xn+m−1) [by the recursion hypothesis on (2)] = xn+m [by definition of the
power]. �

In fact, B.2.2(1) is just the special case X = {x} of the following result
about generation of multiplication operators, which again flows out of Basic
(2.1.3).

Generation Theorem B.2.3 If X generates a unital subalgebra B of unital
Jordan algebra J, then the multiplication algebra5 MB(J) of B on J(generated
by all multiplications Lb for elements b ∈ B) is generated by all the operators
Lx, Lx2 , Lx•y (or, equivalently, by all the Vx, Ux, Ux,y) for x, y ∈ X.

proof. In view of Basic (2.1.4), Ux, Ux,y are equivalent mod Vx, Vy to
Lx2 , Lx•y, so it suffices to prove the L-version. For this, it suffices to generate
Lb for all monomials b of degree ≥ 3 in the elements from X. [Note that
by convention the unit 1 is generated as the empty monomial on X, so the
operator 1J = L1 is considered to be generated from X.] Such b may be
written as b = (p • q) • r for monomials p, q, r, which by Basic (2.1.3) can be
broken down into operators Ls of lower degree, so by repeating we can break
all Lb down into a sum of products of Lc’s for c of degree 1 or 2, each of which
is x, x2, or x • y for generators x, y ∈ X. �

We need the following general identities and identities for operator-
commuting elements.

5 The multiplication algebra of B on J is sometimes denoted by MJ(B) or M(B)|J or
just by M(B) (if J is understood), but we will use a subscript for B, since that is where
the multipliers live in the operators Lb, Vb, Ub, Ub,c.
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Operator Commuting Lemma B.2.4 (1) Let x, y be arbitrary elements of
a Jordan algebra. Then we have Commuting Formulas

(2.4.1) Ux2,x = VxUx = UxVx,

(2.4.2) Ux2,y = VxUx,y − UxVy = Ux,yVx − VyUx,

(2.4.3) 2Ux•y,x = VyUx + UxVy.

(2) More generally, if x′ is an element which operator-commutes with x
(all the operators Lx, Lx′ , Lx2 , Lx′2 , Lx•x′ commute), then we have

(2.4.4) Ux′•x,x = Vx′Ux = UxVx′ ,

(2.4.5) Ux•x′ = UxUx′ ,

(2.4.6) Ux2•x′,y = VxUx•x′,y − UxUx′,y = Ux•x′,yVx − Ux′,yUx,

(2.4.7) Ux2•x′,y = Vx•x′Ux,y − UxVx′,y.

proof. (2.4.1) follows from (2.4.2) with y = x, in view of Basic (2.1.1).
The first equality in (2.4.2) holds because Ux2,y−VxUx,y+UxVy = 2

(
Lx2Ly+

LyLx2 −Lx2•y
)−(

2Lx

)
2
(
LxLy+LyLx−Lx•y

)
+
(
2L2

x−Lx2

)
2Ly [using Basic

(2.1.4)] = 2
(
LyLx2 − Lx2•y − 2LxLyLx + 2LxLx•y

)
= 0 [by Basic (2.1.2)].

The second equality in (2.4.2) holds by linearizing x �→ x, y in Basic (2.1.1),
VxUx = UxVx. (2.4.3) is equivalent to (2.4.2), since their sum is just the
linearization x �→ x, x, y in (2.4.1) Ux2,x = VxUx. Notice that (2.4.1)–(2.4.3)
are symmetric under reversal of products.
The first equality in (2.4.4) follows by linearizing x �→ x, x′ in Commuting

(2.4.2) and setting y = x to get 2Ux•x′,x = VxUx′,x + Vx′Ux,x − Ux,x′Vx =
Vx′(2Ux) by the assumed commutativity of Lx with Lx′ , Lx•x′ (hence Ux,x′ , in
view of Basic (2.1.4)), then canceling 2’s. The second equality holds similarly
by commutativity of Lx′ with Lx, Lx2 (hence Ux, in view of Basic (2.1.4)).
Applying this thrice yields (2.4.5): 2UxUx′ =

(
V 2
x − Vx2

)
Ux′ [by Basic

(2.1.4)] = VxUx•x′,x′ − Ux2•x′,x′ [by (4) twice, noting that our hypotheses
apply to x2, x′ in place of x′, x since all multiplications by b, c ∈ B =
Φ[x, x′] commute by the hypotheses and the Generation Theorem B.2.3]
= Ux•(x•x′),x′ + Ux•x′,x•x′ − Ux2•x′,x′ [using linearized (2.4.4)] = Ux•x′,x•x′

[since x • (x •x′) = x2 •x′ by commutativity of Lx, Lx′ acting on x] = 2Ux•x′ ,
and we again divide by 2.
For the first equality in (2.4.6), we calculate 2

(
VxUx•x′,y − Ux2•x′,y −

UxUx′,y
)
= Vx

(
VxUx′,y+Vx′Ux,y−Ux,x′Vy

)−(
Vx2Ux′,y+Vx′Ux2,y−Ux2,x′Vy

)−(
V 2
x − Vx2

)
Ux′,y [by linearizing x �→ x, x′ and also x �→ x2, x′ in (2.4.2), and

using Basic (2.1.4)] =
(
Ux2,x′ − VxUx,x′

)
Vy + Vx′

( − Ux2,y + VxUx,y

)
[since

Vx ↔ Vx′ ] =
(−UxVx′

)
Vy+Vx′

(
UxVy

)
[by (2.4.2) with y �→ x′, and by (2.4.2)

itself] = 0 [by Vx′ ↔ Ux]. The second equality in (2.4.6) follows by the dual
argument (reversing all products, noting symmetry in (2.4.2)).
(2.4.7) is equivalent to the first equality in (2.4.6), since the sum of

their right sides minus their left sides is Vx•x′Ux,y + VxUx•x′,y − Ux•x′,xVy −
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2Ux•(x•x′),y [by Basic (2.1.5) and (2.4.4), and noting that x • (x •x′) = x2 •x′
by the assumed commutativity of Lx, Lx′ acting on x] = 0 [as the linearization
x �→ x, x • x′ of (2.4.2)]. �

Exercise B.2.4A Derive the first equality in (2.4.4) directly from (2.1.3).

Macdonald Tools Lemma B.2.5 For any elements x, y in a unital Jordan
algebra and k, i ≥ 1 with m = min{k, i}, we have the following operator
identities:

(2.5.1) UxkUxi =Uxk+i ,

(2.5.2) Uxk,yUxi =Uxk+i,yVxi − Uxk+2i,y,

(2.5.3) VxkUxi,y =Uxk+i,y + UxmΞk,i

for Ξk,i :=

{
Uxi−k,y if i ≥ k, m = k,

Vxk−i,y if k ≥ i, m = i,

(2.5.4) VxkVxi =Vxk+i + UxmUxk−m,xi−m = Vxk+i + Uxk,xi .

proof. By the Power-Associativity Lemma B.2.2(1) any xn, xm operator-
commute with xn • xm = xn+m, and we apply the results of Commuting
B.2.4. (2.5.1) is a special case of Commuting (2.4.5) [replacing x �→ xk, x′ �→
xi, x • x′ �→ xk+i]; (2.5.2) is a special case of the second part of Commuting
(2.4.6) [with x �→ xi, x′ �→ xk, x • x′ �→ xk+i, x2 • x′ �→ xk+2i]; while (2.5.3)
follows from the first part of Commuting (2.4.6) [with x �→ xk, x′ �→ xi−k, x•
x′ �→ xi, x2 • x′ �→ xk+i] when i ≥ k, and from Commuting (2.4.7) [with
x �→ xi, x′ �→ xk−i, x • x′ �→ xk, x2 • x′ �→ xk+i] when k ≥ i. Since Uxn,1 =
U1,xn = Vxn,1 = Vxn , (2.5.4) is just the special case y = 1 of (2.5.3) [using
linearized Commuting (2.4.5) for the last equality]. �

B.3 Normal Form for Multiplications

For convenience, we will denote the reversal involution ρ(p) on FA[x, y] by the
generic involution symbol p∗. In order to show that the free and free special
multiplications in two variables are isomorphic, we put them in a standard
form of operatorsMp,q which produce, acting on the element z ∈ FSJ [x, y, z],
the basic reversible elements m(p; z; q) := pzq∗+ qzp∗ homogeneous of degree
1 in z (p, q monomials in FA[x, y]).
We define the operators and verify their action recursively, where the re-

cursion is on the weight ω(p) of monomials p, defined as the number of alter-
nating powers xi, yj (i, j > 0). If X,Y denote all monomials beginning with
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a positive power of x, y respectively, then ω(1) = 0, ω(xi) = ω(yj) = 1, and
ω(p) = 1 + ω(p′) if p = xip′ for p′ ∈ Y (respectively, p = yjp′ for p′ ∈ X).
We define the weight of a pair of monomials to be the sum of the individual
weights, ω(p, q) := ω(p) + ω(q).

Mp,q Definition B.3.1 In MultFJ [x,y](FJ [x, y, z]), we recursively define
multiplication operators Mp,q =Mq,p parameterized by associative monomials
p, q ∈ FA[x, y] in terms of their weight ω(p, q) as follows (where i, j > 0) :

(3.1.1) M1,1 = 2 1FJ , Mxi,1 := Vxi , Myj ,1 := Vyj , Mxi,yj := Uxi,yj ;
(3.1.2x) Mxip′,xjq′ := UxiMp′,xj−iq′ (if j ≥ i, p′, q′ ∈ Y ∪ {1}),
(3.1.2y) Myip′,yjq′ := UyiMp′,yj−iq′ (if j ≥ i, p′, q′ ∈ X ∪ {1}),
(3.1.3) Mxip′,yjq′ := Uxi,yjMp′,q′ −Myjp′,xiq′

(p′ ∈ Y ∪ {1}, q′ ∈ X ∪ {1}, not p′ = q′ = 1),
(3.1.4x) Mxip′,1 := VxiMp′,1 −Mp′,xi (p′ ∈ Y ),
(3.1.4y) Myip′,1 := VyiMp′,1 −Mp′,yi (p′ ∈ X). �

Note that the Mp,q are operators on the free Jordan algebra which are
parameterized by elements of the free associative algebra. We now verify that
they produce the reversible elements m(p; z; q) in the free associative alge-
bra. (Recall by Cohn 3-Symmetry A.2.2(3) that for ∗ := ρ, FSJ [x, y, z] =
H(FA[x, y, z], ∗) consists precisely of all reversible elements of the free asso-
ciative algebra.)

Mp,q Action Lemma B.3.2 The multiplication operators Mp,q act on the
element z in the free special algebra FSJ [x, y, z] by

Mp,q(z) = m(p; z; q) = pzq∗ + qzp∗.

proof. We will prove this by recursion on the weight ω(p, q). For weights
0, 1, 2 as in (3.1.1), we have M1,1(z) = 2 1FJ [x,y,z](z) = 2z = 1z1∗ +
1z1∗, Mxi,1(z) = Vxi(z) = xiz + zxi = xiz1∗ + 1z(xi)∗ [analogously for
Myj ,1], and Mxi,yj (z) = Uxi,yj (z) = xizyj + yjzxi = xiz(yj)∗ + yjz(xi)∗.
For (3.1.2x) [analogously (3.1.2y)], if j ≥ i, p′, q′ ∈ Y ∪ {1} we have
Mxip′,xjq′(z) = UxiMp′,xj−iq′(z) = xi

(
p′z(q′)∗xj−i + xj−iq′z(p′)∗

)
xi [by re-

cursion, since ω(p′, xj−iq′) ≤ ω(p′) + ω(q′) + 1 < ω(p′) + ω(q′) + 2 = ω(p, q)],
which is just pzq∗ + qzp∗.
For (3.1.3), if p′ ∈ Y ∪ {1}, q′ ∈ X ∪ {1}, not p′ = q′ = 1, then

Mxip′,yjq′(z) = Uxi,yjMp′,q′(z)−Myjp′,xiq′(z) = Uxi,yj

(
p′z(q′)∗ + q′z(p′)∗

)−(
yjp′z(q′)∗xi + xiq′z(p′)∗yj

)
[by recursion, since (p′, q′) and (yjp′, xiq′) have

lower weight than (p, q) as long as one of p′, q′ is not 1 (e.g., if 1  = p′ ∈ Y then
ω(yjp′) = ω(p′))], which reduces to xip′z(q′)∗yj + yjq′z(p′)∗xi = pzq∗+ qzp∗.
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Finally, for (3.1.4x) [analogously (3.1.4y)] if p′ ∈ Y then Mxip′,1(z) =
VxiMp′,1(z) − Mp′,xi(z) = Vxi

(
p′z1∗ + 1z(p′)∗

) − (
p′zxi + xiz(p′)∗

)
[by re-

cursion, since (p′, 1) has lower weight than (p, 1), and (p′, xi) ∈ (Y,X) has
the same weight as (xip′, 1) but falls under case (3.1.3) handled above], which
becomes xip′z1 + 1z(p′)∗xi = pz1∗ + 1zp∗. �

The crux of The Macdonald is the following verification that these opera-
tors span all free multiplications by x and y; from here it will be easy to see
that these map onto a basis for the free special multiplications by x and y,
and therefore they must actually form a basis for the free multiplications.

Mp,q Closure Lemma B.3.3 The span M of all the Macdonald operators
Mp,q∈ MultFJ [x,y](FJ [x, y, z]) (p, q monomials in FA[x, y]) is closed under
left multiplication by all multiplication operators in x, y : for all monomials
p, q in FA[x, y] and all k, ? ≥ 0 we have6

(3.3.1) UxkMp,q =Mxkp,xkq, UykMp,q =Mykp,ykq,

(3.3.2) Uxk,y�Mp,q =Mxkp,y�q +My�p,xkq,

(3.3.3) VxkMp,q =Mxkp,q +Mp,xkq, VykMp,q =Mykp,q +Mp,ykq.

Hence M is the entire multiplication algebra MΦ[x,y] (FJ [x, y, z]).
proof. (1) By symmetry in x, y we need only prove the x-version of (1),

and we give a direct proof of this. If p or q lives in Y ∪ {1}, then xk is all the
x you can extract simultaneously from both sides of (xkp, xkq), so the result
follows directly from Definition (3.1.2x). If both p, q live in X, p = xip′, q =
xjq′ for j ≥ i > 0, p′, q′ ∈ Y ∪{1}, then UxkMp,q−Mxkp,xkq = UxkMxip′,xjq′−
Mxk+ip′,xk+jq′ = UxkUxiMp′,xj−iq′ − Uxk+iMp′,xj−iq′ [by Definition (3.1.2x)]
= 0 [by Tool (2.5.1)].
(2) and (3) are considerably more delicate; we prove them by recursion

on the total weight ω(p, q), treating three separate cases. The first case,
where p = q = 1, is easy, since M1,1 = 2 1FJ [x,y,z] and Mxk,y� +My�,xk =
2Uxk,y� , Mxk,1 +M1,xk = 2Vxk by Definition (3.1.1). Assume that we have
proven (2), (3) for all lesser weights. Note that no limits are placed on k, ?;
this will allow us to carry out a sub-recursion by moving factors outside to
increase k, ? and reduce the (p′, q′) left inside.
For the second case, when p, q both lie in X (dually Y ), we can handle

both (2) and (3) together by allowing k, ? to be zero: p = xip′, q = xjq′, for
i, j ≥ 1, p′, q′ ∈ Y ∪ {1}, where by symmetry we may assume j ≥ i. Then the
difference at issue is

6 Note that by the Generation Theorem we need only prove closure in (1)–(3) for k =
> = 1, but our inductive proof of (2)–(3) requires k, > to be able to grow. The proof for (1)
is just as easy for general k as it is for k = 1, so we may as well do the general case for all
three parts.
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∆k,�(p, q) := Uxk,y�Mxip′,xjq′ −Mxk+ip′,y�xjq′ −My�xip′,xk+jq′

= Uxk,y�

(
UxiMp′,xj−iq′

)− (
Uxk+i,y�Mp′,xjq′ −My�p′,xk+i+jq′

)
−My�xip′,xk+jq′

=
(
Uxk+i,y�Vxi − Uxk+2i,y�

)
Mp′,xj−iq′ − Uxk+i,y�Mp′,xjq′

+My�p′,xk+i+jq′ −My�xip′,xk+jq′

= Uxk+i,y�

(
VxiMp′,xj−iq′ −Mp′,xjq′

)
−(

Uxk+2i,y�Mp′,xj−iq′ −My�p′,xk+i+jq′
)−My�xip′,xk+jq′

= Uxk+i,y�

(
Mxip′,xj−iq′

)− (
Mxk+2ip′,y�xj−iq′

)−My�xip′,xk+jq′

= ∆k+i,�(xip′, xj−iq′),
using, for each = in succession: the definition of ∆; Definitions (3.1.2x, 3);
Tool (2.5.2); rearrangement; recursion on (3) and (2) [since (p′, xj−iq′) has
lesser weight than (p, q)]; the definition of ∆.
If j = i then the pair (xip′, xj−iq′) has lesser weight than (p, q); otherwise,

if j > i it has the same weight but lower total x-degree i + (j − i) < i + j
in the initial x-factors of p′ and q′, so by recursion on this degree we can
reduce to the case where at least one of the initial factors vanishes and we
have lower weight. Thus in the second case, both subcases lead by recursion
on total weight to ∆k,�(p, q) = 0.
For the remaining third case, where p, q lie in different spaces, by symmetry

we can assume that (p, q) is contained in either (1, Y ) or (X,Y ) or (X, 1). The
result is easy when k, ? > 0 (i.e., for (2)): ∆k,�(p, q) := Uxk,y�Mp,q−Mxkp,y�q−
My�p,xkq = 0 because in all three subcases (y�p, xkq) begin with exactly ? y’s
and k x’s, so the result follows directly from the definition (3.1.3) ofMy�p,xkq.
This finishes all cases of (2).
For (3) in this third case, it suffices by symmetry to consider only the

x-version. We must consider the three subcases separately. The first subcase
(p, q) ∈ (1, Y ) is easiest: here p = 1, q = yiq′, and ∆k,0(p, q) := VxkM1,yiq′ −
Mxk,yiq′ −M1,xkyiq′ = 0 by Definition (3.1.4x) of M1,xkyiq′ =Mxkyiq′,1.
The second subcase (p, q) ∈ (X,Y ) is messiest, since it depends on which

of i or k is larger. Here p = xip′, q = yjq′ (p′ ∈ Y ∪ {1}, q′ ∈ X ∪ {1}),
m := min{i, k}, and the relevant difference becomes
∆k,0(p, q) = VxkMxip′,yjq′ −Mxk+ip′,yjq′ −Mxip′,xkyjq′

= Vxk

(
Uxi,yjMp′,q′ −Myjp′,xiq′

)− (
Uxi+k,yjMp′,q′ −Myjp′,xk+iq′

)
−UxmMxi−mp′,xk−myjq′

=
(
VxkUxi,yj − Uxi+k,yj

)
Mp′,q′ − (

VxkMyjp′,xiq′ −Myjp′,xk+iq′
)

−UxmMxi−mp′,xk−myjq′

= Uxm

(
Ξk,iMp′,q′ − Ξ′ −Mxi−mp′,xk−myjq′

)
where

Ξ′ :=

{
Mxk−myjp′,xi−mq′ if (p′, q′)  = (1, 1),
Ξk,i if (p′, q′) = (1, 1),

.
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using, for each = in succession: the definition of ∆; Definitions (3.1.3, 3, 2x);
rearrangement; and, finally, using Tool (2.5.3) on the first term in parenthesis,
and on the second term either Tool (2.5.3) [if (p′, q′) = (1, 1), in view of
Definition (3.1.1)] or recursion [if (p′, q′)  = (1, 1), so that (yjp′, xiq′) has lower
weight, and Mxkyjp′,xiq′ = UxmMxk−myjp′,xi−mq′ by Definition (3.1.2x)].
First consider the case where i is larger, m = k ≤ i, Ξk,i = Uxi−k,yj by

Tool (2.5.3). If (p′, q′)  = (1, 1) the inner term above becomes Uxi−k,yjMp′,q′ −
Myjp′,xi−kq′ − Mxi−kp′,yjq′ = ∆i−k,j(p′, q′) = 0 [by (2) for (p′, q′) of lesser
weight], while if (p′, q′) = (1, 1) it becomes Uxi−k,yjM1,1−Uxi−k,yj −Uxi−k,yj =
0 [M1,1 = 21FJ [x,y,z] by Definition (3.1.1)]. In either case, ∆k,0(p, q) = 0.
Next consider the case where k is larger, m = i ≤ k, Ξk,i = Vxk−i,yj by

Tool (2.5.3). If (p′, q′) = (1, 1) the inner term above becomes Vxk−i,yjM1,1 −
Vxk−i,yj − M1,xk−iyj =

(
Vxk−iVyj − Uxk−i,yj

) − (
Vxk−iM1,yj − Mxk−i,yj

)
[by

Basic (2.1.5), Definition (3.1.4x)] = 0 [by Definition (3.1.1)]. The complicated
case is (p′, q′)  = (1, 1), where the inner term becomes
Vxk−i,yjMp′,q′ −Mxk−iyjp′,q′ −Mp′,xk−iyjq′

=
(
Vxk−iVyj − Uxk−i,yj

)
Mp′,q′ − (

Vxk−iMyjp′,q′ −Myjp′,xk−iq′
)

−(
Vxk−iMp′,yjq′ −Mxk−ip′,yjq′

)
= Vxk−i

(
VyjMp′,q′ −Myjp′,q′ −Mp′,yjq′

)
−(

Uxk−i,yjMp′,q′ −Myjp′,xk−iq′ −Mxk−ip′,yjq′
)

= Vxk−i∆0,j(p′, q′)−∆k−i,j(p′, q′) = 0,
using, for each = in succession: Basic (2.1.5) [since ∆k−i,0 vanishes by (3)
on lower-weight terms ω(yjp′, q′), ω(p′, yjq′) < ω(xip′, yjq′) = ω(p, q)]; re-
arrangement; definition of ∆. Here the final ∆(p′, q′) vanish by the recursion
hypotheses (3), (2) on lesser-weight term (p′, q′). In either case, ∆k,0(p, q) = 0,
finishing the second subcase (p, q) ∈ (X,Y ).
The third and final subcase (p, q) ∈ (X, 1) depends on the previous cases.

Here p = xip′, p′ ∈ Y ∪ 1, q = 1. If p′ = 1 then ∆k,0(p, q) := VxkMxi,1 −
Mxk+i,1 −Mxi,xk = VxkVxi − Vxk+i − UxmUxk−m,xi−m [by Definitions (3.1.1),
(3.1.2x)] = 0 [by Tool (2.5.4)]. Henceforth we assume 1  = p′ ∈ Y and again
set m := min(i, k). The difference is
∆k,0(xip′, 1)
= VxkMxip′,1 −Mxk+ip′,1 −Mxip′,xk

= Vxk

(
VxiMp′,1 −Mp′,xi

)− (
Vxk+iMp′,1 −Mp′,xk+i

)− UxmMxi−mp′,xk−m

=
(
VxkVxi − Vxk+i

)
Mp′,1 −

(
VxkMp′,xi −Mp′,xk+i

)− UxmMxi−mp′,xk−m

=
(
UxmUxk−m,xi−m

)
Mp′,1 −

(
Mxkp′,xi

)− UxmMxi−mp′,xk−m

= Uxm

(
Uxk−m,xi−mMp′,1 −Mxk−mp′,xi−m −Mxi−mp′,xk−m

)
= 0,

using, for each = in succession: the definition of ∆; Definitions (3.1.4x, 4x, 2x);
rearrangement; Tool (2.5.4) and the second subcase above of (3) [on Mp′,xi =
Mxi,p′ ∈ MX,Y , since we are assuming p′ ∈ Y ]; Definition (3.1.2x). The final
term in parentheses vanishes, since if m = i < k the term is ∆k−i,0(p′, 1), and
if m = k < i it is ∆i−k,0(p′, 1), both of which vanish by recursion on weight
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[or straight from Definition (3.1.4x)], while if m = k = i the result is trivial
because U1,1 = 2 1FJ [x,y,z]. This completes the recursion for (3).

M contains all of MΦ[x,y] (FJ [x, y, z]) because it contains 1FJ and by
(3.3.1)–(3.3.3) above is closed under left multiplication by the generators
Vx, Vy, Ux, Uy, Ux,y [by the Generation Theorem B.2.3] for x, y the genera-
tors of B := Φ[x, y] ⊆ J := FJ [x, y, z]. �

B.4 The Macdonald Principles

We are now ready to establish the fundamental Macdonald Theorem of 1958
in all its protean forms.

Macdonald Principles B.4.1 We have the following equivalent versions of
the Macdonald :
(1) There are no s-identities in three variables x, y, z of degree ≤ 1 in z.
(2) The canonical homomorphism of the free Jordan algebra FJ [x, y, z]

onto the free special Jordan algebra FSJ [x, y, z] in three variables is injective
on elements of degree ≤ 1 in z.
(3) Any Jordan polynomial f(x, y, z) which is of degree ≤ 1 in z and

vanishes in all associative algebras A+(equivalently, all special Jordan algebras
J ⊆ A+) vanishes in all Jordan algebras J.
(4) Any multiplication operator in two variables which vanishes on all

special algebras will vanish on all Jordan algebras.
(5) The canonical mappingMΦ[x,y](FJ [x, y, z]) σ−→ MΦ[x,y](FSJ [x, y, z])

of the free multiplication subalgebra to the special multiplication subalgebra is
injective.

proof. Let us first convince ourselves that all five assertions are equiv-
alent. (1) ⇐⇒ (2) because the s-identities are precisely the elements of the
kernel of the canonical homomorphism FJ → FSJ . (2) ⇐⇒ (3) because
f vanishes on all (respectively all special) Jordan algebras iff it vanishes
in FJ (respectively FSJ ) by the universal property for the free algebras:
f(x, y, z) = 0 in FJ [x, y, z] (respectively FSJ [x, y, z]) iff all specializations
f(a, b, c) = 0 for a, b, c in any (respectively any special) J.
The tricky part is the equivalence of (3) and (4). The homogeneous poly-

nomials of degree 1 in z are precisely all f(x, y, z) =Mx,y(z) given by a mul-
tiplication operator in x, y, and [by definition of the zero operator] f(x, y, z)
vanishes on an algebra J iff the operator Mx,y does. Thus (4) is equivalent
to (3) for polynomials which are homogeneous of degree 1 in z. In partic-
ular, (3) =⇒ (4), but to prove (4) =⇒ (3) we must show that the addi-
tion of a constant term doesn’t affect the result. We will do this by sepa-
rating f into its homogeneous components, and reducing each to a multi-
plication operator. Any polynomial of degree ≤ 1 in z can be written as
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f(x, y, z) = f0(x, y, z) + f1(x, y, z) = f0(x, y) + f1(x, y, z) in terms of its ho-
mogeneous components of degree 0, 1 in z. Now, it is a general fact that f
vanishes on all algebras iff each of its homogeneous components does (see
Problem B.2 below), but in the present case we can easily see the stronger
result that our f vanishes on any particular algebra iff its components f0, f1
do: the homogeneous f1(x, y, z) automatically vanishes at z = 0 [f1(x, y, 0)
= f1(x, y, 0 · 0) = 01f1(x, y, 0) = 0 by homogeneity of degree 1 in z], so all
f(a, b, 0) = f0(a, b)+f1(a, b, 0) = f0(a, b), f(a, b, c) = f1(a, b, c)+f0(a, b) van-
ish iff all f0(a, b) and f1(a, b, c) vanish. Thus we have reduced the problem for
f to a problem about its separate components:

(6) f vanishes on J ⇐⇒ f0, f1 vanish on J.

Now we reduce this problem about polynomials to a problem about op-
erators. We have noticed that f1(x, y, z) = Mx,y(z) vanishes as a polynomial
iff the multiplication operator Mx,y vanishes as an operator, and surprisingly
the same holds for f0(x, y): an operator N = La vanishes on a unital alge-
bra iff its value on 1 is zero, so the operator Nx,y := Lf0(x,y) vanishes iff
f0(x, y) = Nx,y(1) vanishes as a polynomial.

(7) f0(x, y), f1(x, y, z) vanish on J⇐⇒ Nx,y, Mx,y do.

From this we can show that (4) =⇒ (3): by (6), (7) f vanishes in all special
algebras iff the operators N,M do; by (4) this happens iff Nx,y,Mx,y vanish on
the free algebra FJ , in which case they vanish at 1, z ∈ FJ and f(x, y, z) =
Nx,y(1) +Mx,y(z) = 0 in FJ .
Finally, (4) ⇐⇒ (5) because a multiplication operator Mx,y is zero as an

element of MΦ[x,y] (FJ [x, y, z]) (respectively, in MΦ[x,y] (FSJ [x, y, z])) iff
it is zero on FJ [x, y, z] (respectively, on FSJ [x, y, z]) [by definition of the
zero operator] iff it is zero on all Jordan algebras (respectively, on all special
Jordan algebras) J [evaluating x, y, z at any a, b, c ∈ J].
So all five forms are equivalent, but are any of them true?
We will establish version (5). The canonical map σ will be injective (as as-

serted by (5)) if its composition τ := εz◦σ with evaluation at z ∈ FSJ [x, y, z]
is an injective map τ : MΦ[x,y] (FJ [x, y, z]) → FSJ [x, y, z]. By the Mp,q

Closure Lemma B.3.3, the algebra MΦ[x,y] (FJ [x, y, z]) is spanned by the
elements Mp,q =Mq,p for associative monomials p, q ∈ FA[x, y], and we have
a general result about linear transformations:

(8) A linear map T :M → N of Φ-modules will be injective
if it takes a spanning set {mi} into an independent set in N
(in which case the original spanning set was already a basis for M).

Indeed, T (m) = T (
∑

αimi) [since the mi span M ] =
∑

i αiT (mi) = 0 =⇒
all αi = 0 [by independence of the T (mi) in N ] =⇒ m = 0.
Thus we need only verify that the τ(Mp,q) =Mp,q(z) = m(p; z; q) [by the

Mp,q Action Lemma B.3.2] are independent. But the distinct monomials pzr
in the free algebra FA[x, y, z] are linearly independent, and two reversible



468 Macdonald’s Theorem

pzq∗ + qzp∗, p′z(q′)∗ + q′z(p′)∗ can share a common monomial only if either
pzq∗ = p′z(q′)∗ [in which case, by the uniqueness of expression in the free
algebra we have p = p′, q = q′,Mp,q = Mp′,q′ ] or else pzq∗ = q′z(p′)∗ [in
which case, p = q′, q = p′,Mp,q = Mq′,p′ = Mp′,q′ by symmetry of the M ’s].
Thus in both cases distinct Mp,q’s contribute distinct monomials, and so are
independent. In view of (8), this completes the proof of (5), and hence of the
entire theorem. �

Exercise B.4.1 (1) Show that a Jordan polynomial f(x1, . . . , xn) in n variables in FJ [X]
(respectively, in FSJ [X]) can be uniquely decomposed into its homogeneous components
of degree ei in each variable xi, f =

∑
e1,... ,en

fe1,... ,en . (2) Show (using indeterminate
scalar extensions Ω = Φ[t1, . . . , tn]) that f vanishes on all algebras (respectively, all spe-
cial algebras) iff each of its homogeneous components fe1,... ,en vanishes on all algebras
(respectively, all special algebras). In particular, conclude that f = 0 in FJ [X] iff each
fe1,... ,en = 0 in FJ [X].

Our version of Macdonald’s Principles has subsumed Shirshov’s earlier
1956 theorem. Actually, Macdonald’s original 1958 theorem concerned only
polynomials homogeneous of degree 1 in z, and thus amounted to the operator
versions (4), (5). The assertion about polynomials homogeneous of degree 0
in z is precisely Shirshov’s Theorem that FJ [x, y] ∼= FSJ [x, y]. The reason
(4)⇒ (3) is tricky is that it is nothing but Macdonald swallowing up Shirshov,
and any herpetologist can tell you that swallowing a major theorem requires
a major distension of the jaws.

Shirshov’s Theorem B.4.2 The free Jordan algebra on two generators is
special: the canonical homomorphism σ2: FJ [x, y] → FSJ [x, y] is an iso-
morphism.

proof. The canonical specialization σ2 (determined by σ2(x) = x, σ2 = y)
is an epimorphism because its image contains the generators x, y. We claim
that it is also a monomorphism. We have noted before that we have a
canonical identification of FJ [x, y],FSJ [x, y] with the subalgebras B ⊆
FJ [x, y, z], Bs ⊆ FSJ [x, y, z] generated by x, y, under which the canoni-
cal projection σ2 corresponds to the restriction of the canonical projection
σ3 : FJ [x, y, z] � FSJ [x, y, z] to B� Bs. By Macdonald’s Principle (2), σ3
is injective on B, i.e., σ2 is injective on FJ [x, y]. This completes the proof
that σ2 is an isomorphism. �
In 1959 Cohn combined Shirshov’s Theorem with his own Speciality The-

orem A.3.2 to obtain the definitive result about Jordan algebras with two
generators.

Shirshov–Cohn Theorem B.4.3 Any Jordan algebra (unital or not) gener-
ated by two elements x, y is special, indeed is isomorphic to an algebra H(A, ∗)
for an associative algebra A with involution ∗.



B.5 Albert i-Exceptionality 469

proof. We may restrict ourselves to unital algebras, since J is isomorphic
to H(A, ∗) iff the formal unital hull Ĵ is isomorphic to H(Â, ∗). In the unital
case any J generated by two elements is a homomorphic image of FJ [x, y] ∼=
FSJ [x, y] [by Shirshov’s Theorem], and by Cohn’s 2-Speciality Theorem any
image of FSJ [x, y] is special of the form H(A, ∗). �

This establishes, once and for all, the validity of the basic principles we
have used so frequently in our previous work.

B.5 Albert i-Exceptionality

We have just seen that any Jordan polynomial in three variables linear in
one of them will vanish on all Jordan algebras if it vanishes on all associative
algebras. This fails as soon as the polynomial has degree at least 2 in all
variables: we can exhibit s-identities of degree 8, 9, 11 which hold in all special
Jordan algebras but not in the Albert algebra. This reproves the exceptional
nature of the Albert algebra; more, it shows that the Albert algebra cannot
even be a homomorphic image of a special algebra, since it does not satisfy
all their identities.

i-Special Definition B.5.1 An s-identity is a Jordan polynomial (element
of the free Jordan algebra) which is satisfied by all special algebras, but not by
all algebras. Equivalently, the polynomial vanishes on all special algebras but
is not zero in the free algebra. A Jordan algebra is i-special if it satisfies all
the s-identities that the special algebras do, otherwise it is i-exceptional.
Thus being i-special is easier than being special: the algebra need only obey

externally the laws of speciality (the s-identities), without being special in its
heart (living an associative life). Correspondingly, being i-exceptional is harder
than being exceptional: to be i-exceptional an algebra can’t even look special
as regards its identities — without any interior probing, it reveals externally
its exceptional nature by refusing to obey one of the speciality laws.

The first s-identities were discovered by Charles Glennie, later a more
understandable one was discovered by Armin Thedy, and recently Glennie’s
original identities have been recast by Ivan Shestakov.

s-Identities Definition B.5.2 Glennie’s Identities are the Jordan poly-
nomials Gn := Hn(x, y, z) − Hn(y, x, z) of degrees n = 8, 9 (degree 3 in x, y
and degrees 2, 3 in z) expressing the symmetry in x, y of the products

H8(x, y, z) := {UxUyz, z, {x, y}} − UxUyUz({x, y}),
H9(x, y, z) := {Uxz, Uy,xUzy

2} − UxUzUx,yUyz.

We may also write G8 as

{[Ux, Uy]z, z, {x, y}} − [Ux, Uy]Uz{x, y}.
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Both G8 and G9 may be written in terms of commutators as Shestakov’s
Identities

X8 := [[x, y]3, z2]− {z, [[x, y]3, z]},
X9 := [[x, y]3, z3]− {z2, [[x, y]3, z]} − Uz[[x, y]3, z],

where the pseudo-derivation ad[[x, y]3, ·] is defined as D3
x,y + 3U[x,y]Dx,y in

terms of the Jordan derivation ad([x, y]) = [[x, y], ·] = Dx,y := Vx,y − Vy,x =
[Vx, Vy] and the pseudo-structural transformation U[x,y] := U{x,y}−2{Ux, Uy}.

Thedy’s Identity T10 is the operator Jordan polynomial

T10(x, y, z) := UU[x,y](z) − U[x,y]UzU[x,y]

of degree 10 (degree 4 in x, y and degree 2 in z) expressing the structurality of
U[x,y]; acting on an element w, this produces an element polynomial

T11(x, y, z, w) := T10(x, y, z)(w) = UU[x,y](z)w − U[x,y]UzU[x,y]w

of degree 11 (degree 4 in x, y, degree 2 in z, and degree 1 in w).

s-Identities Theorem B.5.3 Glennie’s and Thedy’s Identities are s-identities:
they vanish in all special algebras, but not in all Jordan algebras, since they
do not vanish on the Albert algebra H3(O).

proof. The easy part is showing that these vanish in associative algebras:
H8 reduces to the symmetric 8-tad
(xyzyx)z(xy + yx) + (xy + yx)z(xyzyx)− xyz(xy + yx)zyx
= {x, y, z, y, x, z, x, y}+ {x, y, z, y, x, z, y, x} − {x, y, z, y, x, z, y, x}
= {x, y, z, y, x, z, x, y},

and H9 reduces to the symmetric 9-tad
(xzx)

(
y(zy2z)x+ x(zy2z)y

)
+

(
y(zy2z)x+ x(zy2z)y

)
(xzx)

−xz
(
x(yzy)y + y(yzy)x

)
zx

= {x, z, x, y, z, y, y, z, x}+ {x, z, x, x, z, y, y, z, y} − {x, z, x, y, z, y, y, z, x}
= {x, z, x, x, z, y, y, z, y}.

The operator U[x,y] on z in a special algebra reduces to [x, y]z[x, y], involv-
ing honest commutators [x, y] (which make sense in the associative alge-
bra, but not the special Jordan algebra), so acting on w we have T10(w) =
([x, y]z[x, y])w([x, y]z[x, y])− [x, y](z([x, y]w[x, y])z)[x, y] = 0.
The hard part is choosing manageable substitutions which don’t vanish

in the reduced Albert algebra H3(O) for an octonion algebra O (with scalar
involution, i.e., all traces and norms t(d), n(d) lie in Φ1).
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B.5.1 Nonvanishing of G9

Throughout we use the Jacobson box notation and Hermitian Multiplication
Rules II.3.2.4 for H3(D,−) without further comment. For G9 the calculations
are not overly painful: take

(1) x := 1[12], y := 1[23], z := a[21] + b[13] + c[32].

We will not compute the entire value of G9(x, y, z), we will apply the Peirce
projection E13 and show that already its component in the Peirce space J13
is nonzero. We claim that

(2) E13Ux = 0, E13Uy = 0,
Uxz = a[12], Uyz = c[23],

Uzx
2 = n(a)(e1 + e2) + n(b)e3 + n(c)e3 + ab[23] + ca[31],

Uzy
2 = n(c)(e3 + e2) + n(a)e1 + n(b)e1 + bc[12] + ca[31].

The Peirce Triple Product Rules II.13.3.1(2) show that UxJ ⊆ J11+J12+J22,
so E13UxJ = 0, analogously E13Uy = 0, which lightens our burden by killing
off two of the four terms. This establishes the first line of (2). The second line
follows since Uxz = Uxa[21] [by Peirce U -Orthogonality] = 1a1[12] = a[12]
[by Hermitian Multiplication], and analogously for Uyz. The third line follows
from

(
Ua[21] +Ub[13] +Uc[32] +Ua[21],b[13] +Ub[13],c[32] +Uc[32],a[21]

)
(e1 + e2) =

n(a)(e1+e2)+n(b)e3+n(c)e3+ab[23]+0+ca[31], and the fourth line follows
analogously, due to symmetry in the indices 1, 3. From the Peirce relations
we have

(3) E12Ux,y = Ux,yE23, E13Va[21] = Va[21]E23,

E23Ux,y = Ux,yE12, E13Vc[32] = Vc[32]E12.

(For example, {a[21],Jij} = 0 unless i or j links up, and E13{a[21],J2j} = 0
unless j = 3, E13{a[21],J1j} = 0, and dually for c[32].) Using (2), (3), (3),
(2) in succession, we compute

E13
({Uxz, Uy,xUzy

2}) E13
({Uyz, Ux,yUzx

2})
= E13

(
Va[12]Ux,yUzy

2) E13
(
Vc[23]Ux,yUzx

2)
= Va[12]E23

(
Ux,yUzy

2) = Vc[23]E12
(
Ux,yUzx

2)
= Va[12]Ux,yE12

(
Uzy

2) = Vc[23]Ux,yE23
(
Uzx

2)
= Va[12]U1[12],1[23](bc[12]) = Vc[23]U1[12],1[23](ab[23])
= Va[12](bc[23]) = a(bc)[13]. = Vc[23](ab[12]) = (ab)c[13].

Subtracting the second E13 component from the first gives

E13
(
G9(x, y, z)

)
= (a(bc)− (ab)c)[13] = −[a, b, c][13].
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This vanishes on H3(D) iff [a, b, c] = 0 for all a, b, c ∈ D, i.e., iff D is associa-
tive. Thus Glennie’s Identity of degree 9 does not vanish for a non-associative
octonion algebra O. �

B.5.2 Nonvanishing of G8

For G8 the calculations are considerably more painful. We set

(1′) x := e1 − e3, y := a[12] + b[13] + c[23], z := 1[12] + 1[23].

Since {ei, a[ij]} = a[ij], U1[i2]a[i2] = a[2i] = ā[i2], {1[j2], a[i2], 1[i2]} = ā[j2]
we have

(2′) {x, y} = a[12]− c[23], Uz({x, y}) = (a− c̄)[21] + (ā− c)[32].

Thus z, Uz({x, y}) fall in the Peirce spaces J12 + J23, and if we take E :=
E12 + E23, then from Ux = E11 − E13 + E33 we have

UxE = UyUxE = 0, UxUyE = (E11 − E13 + E33)
(
Ua[12] + Ub[13]

+ Uc[23] + Ua[12],b[13] + Ub[13],c[23] + Uc[23],a[12]
)
(E12 + E23)

= (E11Ua[12],b[13]E32 − E13Ua[12],b[13]E12)

+ (E33Ub[13],c[23]E12 − E13Ub[13],c[23]E23),

(3’) E13[Ux, Uy]E = − E13Ua[12],b[13]E21 − E13Ub[13],c[23]E32.

We now examine only the 13-components of G8. On the one hand, by (2′), (3′),

E13
(
[Ux, Uy]Uz{x, y}

)
=

(
E13[Ux, Uy]E

)(
(a− c̄)[21] + (ā− c)[32]

)
= − E13

(
Ua[12],b[13]E12

(
(a− c̄)[21]

)) − E13
(
Ub[13],c[23]E32

(
(ā− c)[32]

))
= − {a[12], (a− c̄)[21], b[13]} − {b[13], (ā− c)[32], c[23]}
=

(− a((a− c̄)b)− (b(ā− c))c
)
[13]

=
(− a2b+

(
at(c̄b)− a(b̄c)

)− (
t(bā)c− (ab̄)c)+ bc2

)
[13] [by alternativity]

=
(− a2b+ at(c̄b)− t(bā)c+ [a, b̄, c] + bc2

)
[13]

=
(
bc2 − a2b+ at(c̄b)− t(bā)c− [a, b, c])[13] [by scalar involution].

On the other hand, by (2′) we have

E13{[Ux, Uy]z, z, {x, y}} = E13{[Ux, Uy]Ez, 1[12] + 1[23], a[12]− c[23]}
= E13{[Ux, Uy]Ez, 1[12], a[12]} − E13{[Ux, Uy]Ez, 1[23], c[23]}
− E13{[Ux, Uy]Ez, 1[12], c[23]}+ E13{[Ux, Uy]Ez, 1[23], a[12]}
= {a[12], 1[21], E13[Ux, Uy]Ez} − {E13[Ux, Uy]Ez, 1[32], c[23]}
− {E11[Ux, Uy]Ez, 1[12], c[23]}+ {a[12], 1[23], E33[Ux, Uy]Ez}
= − {a[12], 1[21], Ua[12],b[13]1[21] + Ub[13],c[23]1[32]} [using (3′)]
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+ {Ua[12],b[13]1[21] + Ub[13],c[23]1[32], 1[32], c[23]}
− {Ub[13],ā[21]1[32], 1[12], c[23]}+ {a[12], 1[23], Uc̄[32],b[13]1[21]}
= − {a[12], 1[21], (ab+ bc)[13]}+ {(ab+ bc)[13], 1[32], c[23]}
− {t(bā)[11], 1[12], c[23]}+ {a[12], 1[23], t(c̄b)[33]}
=

(− a(ab+ bc) + (ab+ bc)c− t(bā)c+ at(c̄b)
)
[13]

=
(− a2b− a(bc) + (ab)c+ bc2 − t(bā)c+ at(c̄b)

)
[13]

=
(
bc2 − a2b+ [a, b, c]− t(bā)c+ at(c̄b)

)
[13].

Subtracting gives E13
(
G8(x, y, z)

)
= 2[a, b, c][13]  = 0, so againH3(D) satisfies

G8 iff D is associative, and the Albert algebra does not satisfy G8. �

B.5.3 Nonvanishing of T11

Now we turn to Thedy’s Identity. For arbitrary a, b, c ∈ O we set

(1′′) x := e1−e2, y := 1[12]+a[23]+b[13], z := 1[13]+c[12], w = e2.

We compute directly

(2′′) Ux = E11 − E12 + E22, {x, y} = b[13]− a[23],

U{x,y} = Ub[13] + Ua[23] − Ub[13],a[23],

U{x,y}(w) = n(a)e3,

U{x,y}(z) = b2[13]− ab[23] + t(b̄ca)e3,

(3′′) Uy = U1[12] + Ua[23] + Ub[13] + U1[12],a[23] + U1[12],b[13] + Ua[23],b[13],

(4′′) Uyw = e1 + n(a)e3 + a[13],

Uy1[13] = b2[13] + t(a)e2 + b[12] + ab[23],

Uyc[12] = c̄[12] + ca[23] + c̄b[13] + t(b̄ca)e3,

(5′′) U[x,y]w = − 4e1 − n(a)e3 − 2a[13],
U[x,y]z = − (

2t(a)
)
e2 + 3t(b̄ca)e3 +

(
2b+ 4c̄

)
[12]

+
(
b2 + 2c̄b

)
[13] +

(
2ca− ab

)
[23],

where for these last two formulas we have used (2′′), (4′′) to compute

U[x,y]e2 = U{x,y}e2 − 2UxUye2 − 2UyUxe2

=
(
n(a)e3

)− 2(e1
)− 2(e1 + n(a)e3 + a[13]

)
= − n(a)e3 − 4e1 − 2a[13] [for the first]
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U[x,y]z = U{x,y}z − 2UxUyz − 2UyUxz

= U{x,y}z − 2UxUy(1[13] + c[12]) + 2Uyc[12]

= U{x,y}z − 2(E11 − E12 + E22)Uy1[13] + 2(E33 + E13 + E23 + 2E12)Uyc[12]

=
(
b2[13]− ab[23] + t(b̄ca)e3

)− 2(t(a)e2 − b[12]
)

+2
(
t(b̄ca)e3 + c̄b[13] + ca[23] + 2c̄[12]

)
=

(
b2 + 2c̄b

)
[13] +

(− ab+ 2ca
)
[23] + (1 + 2)t(b̄ca)e3

+
(− 2t(a))e2 +

(
+ 2b+ 4c̄

)
[12] [for the second].

Again we will examine only the 13-components of T11(x, y, z, w). Now in gen-
eral we have E13

(
Upe2

)
= {E12(p), E23(p)}, so for the left side of Thedy we

get

(6′′) E13
(
UU[x,y](z)w

)
=

(
4b(ca) + 8n(c)a− 2bab− 4c̄(ab))[13],

since by (5′′) {E12(U[x,y](z)), E23(U[x,y](z))} = {(2b+ 4c̄)[12], (2ca− ab)[23]} =(
4b(ca)−2b(ab)+8c̄(ca)−4c̄(ab))[13], and we use the Kirmse Identity to sim-
plify c̄(ca) = n(c)a.
Attacking Thedy’s right side, we start from (5′′) and compute

(7′′) UzU[x,y]w =
(
U1[13] + Uc[12] + U1[13],c[12]

)(− 4e1 − n(a)e3 − 2a[13]
)

=
(− 4e3 − n(a)e1 − 2ā[13]

)
+

(− 4n(c)e2
)
+

(− 4c[32]− 2āc[12])
= − n(a)e1 − 4n(c)e2 − 4e3 − 2āc[12]− 2ā[13]− 4c[32].
(8′′) E13U[x,y] = E13

(
U{x,y} − 2{Ux, Uy}

)
= E13

(
Ub[13] + Ua[23] − Ub[13],a[23]

)− 2E13{(E11 − E12 + E22), Uy}
= E13Ub[13]E13 + 0− Ub[13],a[23]E23 − 0− 2E13Uy(E11 − E12 + E22)

)
= E13Ub[13]E13 − Ub[13],a[23]E23 − 2E13

(
U1[12],a[23]E22 − U1[12],b[13]E12

)
= Ub[13]E13 − Ub[13],a[23]E23 − 2U1[12],a[23]E22 + 2U1[12],b[13]E12.

using (2′′), (3′′). Applying this to (7′′) gives

(9′′) E13U[x,y]
(
UzU[x,y]w

)
= Ub[13](−2ā)[13]− Ub[13],a[23](−4c)[32]

− 2U1[12],a[23](−4n(c)e2) + 2U1[12],b[13](−2āc)[12]
=

(− 2bab+ 4(bc)a+ 8n(c)a− 4(c̄a)b)[13].
Subtracting (9′′) from (6′′) gives E13

(
T11(x, y, z, w)

)
=

(
4b(ca) − 4c̄(ab) −

4(bc)a+4(c̄a)b
)
[13] = (−4[b, c, a]+4[c̄, a, b])[13] = (−4[a, b, c]+4[a, b, c̄])[13] =

−8[a, b, c][13]. Once again, since O is nonassociative, we can find a, b, c for
which this is nonzero, and therefore the Albert algebra does not satisfy T11.
�
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B.6 Problems for Appendix B

Problem B.1 Suppose that for each set nonempty set X we have a free gad-
get FC[X] in some category C of pointed objects (spaces with a distinguished
element 0 or 1), together with a given map ι:X → FC[X] of sets, with the uni-
versal property that any set-theoretic mapping of X into a C-object C extends
uniquely (factors through ι) to a C-morphism FC[X]→ C. (1) Show that we
have a functor from the category of sets to C. (2) Show that if X ↪→ Y is an
imbedding, then the induced FC[X] → FC[Y ] is a monomorphism, allowing
us to regard FC[X] as a subobject of FC[Y ].
Problem B.2 (1) Verify that the free and free special functors are indeed
functors from the category of sets to the category of (respectively, special)
unital Jordan algebras. (2) Modify the constructions to provide (non-unital)
free algebras F0[X] (free Jordan FJ 0[X] or free special Jordan FSJ 0[X]
respectively) with appropriate universal properties, and show that these pro-
vide functors from the category of sets to the category of (respectively special)
non-unital Jordan algebras. (3) Show that the canonical homomorphism from
the free non-unital gadget F0[X] to the free unital gadget F [X] induced by
the map X → F [X] is a monomorphism, with F [X] = Φ1⊕ F0[X] = F̂0[X]
just the unital hull (cf. Question A.1). Conclude that F0[X] is precisely the
ideal of Jordan polynomials in F [X] with zero constant term.
Problem B.3 Show that a multiplication operator Mx1,... ,xn for n < |X|
vanishes on FJ [X] (respectively, on FSJ [X]) iff it vanishes at a “generic
element” z ∈ X \ {x1, . . . , xn}.
Problem B.4 (1) Show that instead of using a heavy dose of parentheses, the
free monadM[X] (and hence the free linear algebra F [X]) on a set X can be
built recursively within the free associative monoid FM[X ∪ {p}] (where the
distinct element p will function as a product symbol): the monomial of degree
0 is the unit 1, the monomials of degree 1 are the x ∈ X, and the monomials
of degree n ≥ 2 are all ppq for monomials p, q of degrees i, j ≥ 1 with
i + j = n. Rather surprisingly, the free associative gadget contains a recipe
for the most highly nonassociative algebra imaginable. (2) Show that the free
associative monoid FM[x, y] on two generators already contains inside it the
free associative monoid FM[x1, x2, . . . ] on countably many generators via
xi �→ yxiy; extend this to show that FA[x1, x2, . . . ] ↪→ FA[x, y].
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Jordan Algebras of Degree 3

In II Chapter 4 we left the messy calculations to an appendix, and here we
are. We will verify in detail that the Jordan identity holds for the Hermitian
matrix algebras H3(D,−) for alternative D with nuclear involution, and for
the algebras Jord(N,#, c) of the general Cubic Construction, and that the
Freudenthal and Tits norms are sharped.

C.1 Jordan Matrix Algebras

Here we will grind out the case of a 3 × 3 Jordan matrix algebra II.3.2.4
whose coordinate algebra is alternative with nuclear involution. Later we will
consider the case of scalar involution in the Freudenthal Construction II.4.4.1,
and show that it is a sharped cubic construction as in II.4.2.2.
Our argument requires a few additional facts about associators in alterna-

tive algebras and general matrix algebras.

Alternative Associator Facts Lemma C.1.1 If A is an arbitrary lin-
ear algebra, then the algebra A+ with brace product {x, y} := xy + yx has
associator

(1.1.1) [x, y, z]+ = ([x, y, z]− [z, y, x]) + ([y, x, z]− [z, x, y])
([x, z, y]− [y, z, x]) + [y, [x, z]].

Any alternative algebra D satisfies the identity

(1.1.2) [w, [x, y, z]] = [w, x, yz] + [w, y, zx] + [w, z, xy].
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proof. (1) We compute

[x, y, z]+ =( xy︸︷︷︸
1

+ yx︸︷︷︸
2

)z + z( xy︸︷︷︸
3

+ yx︸︷︷︸
4

)− x( yz︸︷︷︸
1

+ zy︸︷︷︸
5

)− ( yz︸︷︷︸
6

+ zy︸︷︷︸
4

)x

=

1︷ ︸︸ ︷
[x, y, z]︸ ︷︷ ︸

α

+

2︷ ︸︸ ︷(
[y, x, z]︸ ︷︷ ︸

β

+ y(xz)︸ ︷︷ ︸
λ

)
+

3︷ ︸︸ ︷(−[z, x, y]︸ ︷︷ ︸
γ

+(zx)y︸ ︷︷ ︸
µ

)− 4︷ ︸︸ ︷
[z, y, x]︸ ︷︷ ︸

δ

+

5︷ ︸︸ ︷(
[x, z, y]︸ ︷︷ ︸

ε

−(xz)y︸ ︷︷ ︸
µ

)
+

6︷ ︸︸ ︷(−[y, z, x]︸ ︷︷ ︸
κ

−y(zx)︸ ︷︷ ︸
λ

)

=

α︷ ︸︸ ︷
[x, y, z] +

β︷ ︸︸ ︷
[y, x, z]−

γ︷ ︸︸ ︷
[z, x, y]−

δ︷ ︸︸ ︷
[z, y, x] +

ε︷ ︸︸ ︷
[x, z, y]−

κ︷ ︸︸ ︷
[y, z, x]

+

λ︷ ︸︸ ︷
y(xz − zx)−

µ︷ ︸︸ ︷
(xz − zx)y .

(2) We compute [w, [x, y, z]]−[w, x, yz]−[w, y, zx]−[w, z, xy] = w[x, y, z]+(− [x, y, z]w− [x, yz, w]+[xy, z, w])− [w, y, zx] [by alternativity] = w[y, z, x]+(
x[y, z, w]−[x, y, zw])−[w, y, zx] [by the Teichmüller Identity II.21.1.1(3)] = 0
[linearizing x �→ x,w in the Left Bumping Formula II.21.1.1(2) x[y, z, x] =
[x, y, zx]]. �

Matrix Associator Facts Lemma C.1.2 In the algebra Mn(A) of n × n
matrices over an arbitrary linear algebra A, the matrix associator for A =(
aij

)
, B =

(
bk�

)
, C =

(
cpq

)
, reduces to algebra associators for the entries

aij , bk�, cpq ∈ A:

(1.2.0) [A,B,C] =
∑

r,s

(∑
j,k[arj , bjk, cks]

)
Ers.

In the algebra H3(D,−) of 3 × 3 hermitian matrices X = X
tr
over an al-

ternative algebra D with nuclear involution, the diagonal rr-coordinates and
off-diagonal rs-coordinates (r, s, t a cyclic permutation of 1, 2, 3) of associators
are given by :

(1.2.1) [A,B,C]rr = [ars, bst, ctr] + [crs, bst, atr] = [C,B,A]rr;

(1.2.2) [A2, A]rr = [A,A,A]rr = 2a (a := [a12, a23, a31]);

(1.2.3) [A,B,C]rs = −[ars, brs, crs]− [ars, bst, cst]− [atr, btr, crs];

(1.2.4) [A,A,A]rs = 0.
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proof. Writing A =
∑

ij aijEij , B =
∑

k� bk�Ek�, C =
∑

pq cpqEpq in
terms of the standard (associative) matrix units Ers, we calculate the associ-
ator

[A,B,C] =
∑

i,j,k,�,p,q[aij , bk�, cpq]EijEk�Epq

=
∑

i,j,p,q[aij , bjp, cpq]Eiq =
∑

r,s

(∑
j,k[arj , bjk, cks]

)
Ers.

establishing (1.2.0).
Now assume n = 3 and A = D. For hermitian matrices we have aji = aij ,

and since by hypothesis the symmetric elements ā = a, in particular all traces
a + ā ∈ H(D,−), lie in the nucleus of D, they vanish from associators: any
associator involving aii vanishes, and any aji in an associator may be replaced
by −aij because [. . . , ā, . . . ] = [. . . , (a+ ā)− a, . . . ] = −[. . . , a, . . . ].
For the diagonal entry, we may (by symmetry in the indices) assume r = 1.

Then by (1.2.0) [A,B,C]11 =
∑

j,k[a1j , bjk, ck1]; any terms with j = 1, j = k,
or k = 1 vanish because associators with diagonal terms vanish, so 1, j, k
are distinct indices from among 1, 2, 3, leading to only two possibilities: j =
2, k = 3 and j = 3, k = 2. Thus [A,B,C]11 = [a12, b23, c31] + [a13, b32, c21] =
[a12, b23, c31]+ [−a31,−b23,−c12] [replacing aji by −aij etc.] = [a12, b23, c31]−
[a31, b23, c12] = [a12, b23, c31] + [c12, b23, a31] [by alternativity] as claimed in
(1.2.1), and this expression is clearly symmetric in A,C. In particular, when
A = B = C we get 2[a12, a23, a31] = 2a as in (1.2.2) [note that a is invariant
under cyclic permutation, so a = [ars, ast, atr] for any cyclic permutation r, s, t
of 1, 2, 3].
For the off-diagonal entry, we can again assume r = 1, s = 2 by symmetry.

Then by (1.2.0) [A,B,C]12 =
∑

j,k[a1j , bjk, ck2], where again we can omit
terms with j = 1, j = k, or k = 2. When j = 2 then k  = j, 2 allows two
possibilities k = 1, 3, but when j = 3 then k  = j, 2 allows only one possibility
k = 1. Thus the sum reduces to [a12, b21, c12] + [a12, b23, c32] + [a13, b31, c12] =
[a12,−b12, c12]+[a12, b23,−c23]+[−a31, b31, c12] (again replacing aji by−aij) =
−[a12, b12, c12]−[a12, b23, c23]−[a31, b31, c12] as claimed in (1.2.3). In particular,
when A = B = C we get −[a12, a12, a12]− [a12, a23, a23]− [a31, a31, a12] = 0 as
in (1.2.4), since by alternativity each associator with a repeated term vanishes.
�
Now we can finally establish the general theorem creating a functor from

the category of alternative algebras with nuclear involutions to the category
of Jordan algebras.

3 × 3 Coordinate Theorem C.1.3 A matrix algebra H3(D,−) under the
bullet product A •B = 1

2{A,B} is a Jordan algebra iff the coordinate algebra
(D,−) is alternative with nuclear involution.
proof.We saw in the Jordan Coordinates Theorem II.14.1.1 that the con-

dition on the coordinate algebra was necessary; the sticking point is showing
that it is also sufficient. Since commutativity (JAX1) of the bullet product
is obvious, it remains to prove the Jordan Identity (JAX2) for the brace as-
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sociator: [A,B,A2]+ = 0 for all hermitian A,B. To prove that its diagonal
entries [A,B,A2]rr and off-diagonal entries [A,B,A2]rs all vanish, it suffices
by symmetry in the indices to prove these for r = 1, s = 2.
Using the formula for the brace associator in Alternative Associator Fact

(1.1.1), for C = A2 we have

(1.3.1) [A,B,C]+ = ([A,B,C]− [C,B,A]) + ([B,A,C]− [C,A,B])

+ ([A,C,B]− [B,C,A]) + [B, [A,C]].

For the 11-component, the paired associator terms in (1.3.1) disappear by the
symmetry in Matrix Associator Fact (1.2.1), and since by Matrix Associator
Facts (1.2.2), (1.2.4) the matrix [A,C] = [A,A2] = −[A2, A] is diagonal with
associator entries,

(1.3.1) [A,C] = [A,A2] = −2a13, a = [a12, b23, c31].

It follows that the 11-component is [A,B,A2]+11 = [B, [A,C]]11 = [b11,−2a] ∈
[Nuc(D), [D,D,D]] = 0 by Nuclear Slipping II.21.2.1.
For the 12-component in (1.3.1), let us separate the positive and negative

summands in the above. From Matrix Associator Fact (1.2.3),

[A,B,C]12 + [B,A,C]12 + [A,C,B]12

= − ( 1︷ ︸︸ ︷
[a12, b12, c12] +

2︷ ︸︸ ︷
[a12, b23, c23] +

3︷ ︸︸ ︷
[a31, b31, c12]

)
− ( 1︷ ︸︸ ︷

[b12, a12, c12] +

α︷ ︸︸ ︷
[b12, a23, c23] +

3︷ ︸︸ ︷
[b31, a31, c12]

)
− ( β︷ ︸︸ ︷

[a12, c12, b12] +

2︷ ︸︸ ︷
[a12, c23, b23] +

γ︷ ︸︸ ︷
[a31, c31, b12]

)
= −

α︷ ︸︸ ︷
[b12, a23, c23]−

β︷ ︸︸ ︷
[b12, a12, c12]−

γ︷ ︸︸ ︷
[b12, a31, c31] =: −t12

(by alternativity). This is clearly skew in A and C, so the negative terms
sum to +t12, so their difference is −2t12. The remaining term is the commu-
tator [B, [A,C]]12 = [b12,−2a] (recall (1.3.2)). So far we have [A,B,A2]+12 =
−2([b12, a]+t12) reducing to−2

(
[b12, [a12, a23, a31]]+[b12, a23, c23]+[b12, a12, c12]

+[b12, a31, c31]
)
. Now we have to look more closely at the entries cij of C = A2.

We have cij = aiiaij + aijajj + aikakj = aiiaij + aijajj + ajkaki. Since nu-
clear aii slip out of associators by Nuclear Slipping, and associators with
repeated terms aij , aij vanish by alternativity, only the ajkaki terms sur-
vive; replacing x̄ in the associators by −x shows that [A,B,A2]+12 reduces to
−2([b12, [a12, a23, a31]]−[b12, a23, a31a12]−[b12, a12, a23a31]−[b12, a31, a12a23]

)
.

But this vanishes by Alternative Associator Fact (1.1.2). Thus all entries of
the brace associator [A,B,A2]+ vanish, and the Jordan identity (JAX2) holds.
�
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This establishes the functor (D,−) −→ H3(D,−) from the category of
unital alternative algebras with nuclear involution to the category of unital
Jordan algebras mentioned after Hermitian Matrix Theorem II.3.2.4. Now we
turn to the Jordan matrix algebras coordinatized by alternative algebras with
scalar involution, where the Jordan algebra is a cubic factor determined by a
cubic norm form.

C.2 The General Construction

We begin by verifying that the general construction Jord(N,#, c) creates
unital degree–3 Jordan algebras from any sharped cubic form (N,#, c) on a
module over a general ring of scalars. Let us recall bygone concepts and results
that we have already defined or established in Chapter 4 of Part II for the
general setting, independent of nondegeneracy.

Bygone Definitions C.2.1 (1) A basepoint N(c) = 1 for a cubic form
determines trace linear and bilinear forms and spur quadratic form:

T (x) :=N(c;x), S(x) := N(x; c) (Trace, Spur Definition),
T (x, y) :=T (x)T (y)−N(c, x, y) (Bilinear Trace Definition),
S(x, y) :=N(x, y, c) = T (x)T (y)− T (x, y) (Spur–Trace Formulas),

T (x) =T (x, c) (c–Trace Formula),
T (c) =S(c) = 3 (Unit Values).

(2) A sharp mapping for a cubic form N is a quadratic map on X strictly
satisfying the following :

T (x#, y) =N(x; y) (Trace–Sharp Formula),

x## =N(x)x (Adjoint Identity),
c#y =T (y)c− y (c–Sharp Identity).

A sharped cubic form (N,#, c) consists of a cubic form N with basepoint c
together with a choice of sharp mapping #.

Cubic Consequences Proposition C.2.2 We have the following Cubic
Consequences.
(1) The c–Sharp Identity, Unit Values, and 1

2 ∈ Φ imply
c# = c,

while the Trace–Sharp Formula implies:

S(x) = T (x#), S(x, y) = T (x#y) (Spur Formulas),
T (x#z, y) = T (x, z#y) = N(x, y, z) (Sharp Symmetry),
T (x • y, z) = T (y, x • z) (Bullet Symmetry),
T (Uxy, z) = T (y, Uxz) (U Symmetry).
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(2) The condition that the Adjoint Identity holds strictly is equivalent (as-
suming the Trace–Sharp Formula) to the following linearizations:

x##(x#y) = N(x)y + T (x#, y)x (Adjoint′ Identity),

(x#y)# + x##y# = T (x#, y)y + T (y#, x)x (Adjoint′′ Identity).

proof. The first equality in (1) follows from 2c# = c#c = T (c)c − c =
3c − c = 2c by Bygones C.2.1 c-Sharp Identity and Unit Values. Sharp
Symmetry, Spur Formulas, and Bullet Symmetry were all established in
the Little Reassuring Argument of II.4.3.3. We cannot deduce U Symme-
try from Bullet Symmetry, since we do not yet know that the U–operator
T (x, y)x−x##y coincides with the usual 2x•(x•y)−x2 •y.We argue instead
that T (Uxy, z) = T (x, y)T (x, z)− T (x##y, z) = T (x, y)T (x, z)− T (x#, y#z)
[by Sharp Symmetry] is symmetric in y and z.
In (2), the Adjoint′ and Adjoint′′ Identities are just linearizations of the

Adjoint Identity, replacing x �→ x + ty and equating coefficients of t and t2

respectively. �

Now we go through the General Cubic Construction Theorem II.4.2.2 in
full detail. Since we have been introduced by name twice to these identities
and formulas, we will henceforth call them by their first name and refrain
from using their last names C.2.1(1)–(2) and C.2.2(1)–(2).

Cubic Construction Theorem C.2.3 Any sharped cubic form (N,#, c)
gives rise to a unital Jordan algebra Jord(N,#, c) with unit element c and
U–operator

(2.3.1) Uxy := T (x, y)x− x##y.

The square and bilinear product are defined by

(2.3.2) x2 := Uxc, {x, y} := Ux,yc, x • y := 1
2Ux,yc.

The sharp map and sharp product are related to the square and bilinear product
by the Sharp Expressions

(2.3.3) x# = x2−T (x)x+S(x)c, x#y = {x, y}−T (x)y−T (y)x+S(x, y)c,

and all elements satisfy the Degree–3 Identity

(2.3.4) x3 − T (x)x2 + S(x)x−N(x)c = 0 (x3 := Uxx = x • x2),

(2.3.5) equivalently, x • x# = N(x)c.

proof. Note that here we start with U as the primary operation, and
derive the bullet from it. The formulas (2.3.1), (2.3.2) hold by definition.
Since x2 := Uxc = T (x, c)x − x##c = T (x)x − (

T (x#)c − x#) [by c–Trace
Formula and c–Sharp Identity] = T (x)x− S(x)c+ x# [by Spur Formulas] we
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get the first Sharp Expression in (2.3.3); the second results from linearization,
and the bullet by dividing by 2.
Before we can show that the two versions of the Degree–3 Identity hold,

and that the two definitions of the cube coincide, we need a few more formu-
las. The c–Trace and c–Sharp Identities and the Cubic Consequences (1) are
precisely the conditions that c be the unit of the Jordan algebra Jord(N,#, c):
for U -unitality Ucy := T (c, y)c − c##y = T (y)c − c#y = y, and similarly for
brace unitality {c, y} := Uc,yc = T (y, c)c+ T (c, c)y− (c#y)#c = T (y)c+3y−(
T (y)c− y

)
#c [by c–Trace, c–Sharp] = T (y)c+3y− 2T (y)c# + y#c = 2y; for

bullet unitality, simply scale by 1
2 . Thus we have

(2.3.6) Ucy = y, {c, y} = 2y, c • y = y (Unitality).

Setting z = c in Bullet Symmetry and using c–Trace and Unitality (2.3.6), we
can recover the bilinear from the linear trace:

(2.3.7) T (x, y) = T (x • y) (Bullet Trace).

The Degree–3 Identity, the Jordan axiom, and the composition rules in the
next theorem will require a series of (x#, x)-Identities for the various prod-
ucts of x# and x.

(2.3.8) x#x# = [S(x)T (x)−N(x)]c− T (x)x# − T (x#)x;
(2.3.9) S(x, x#) =S(x)T (x)− 3N(x);
(2.3.10) x • x# =N(x)c, T (x, x#) = 3N(x);
(2.3.11) Uxx

# =N(x)x, UxUx# = N(x)21J;
(2.3.12) {x, x#, y} =2N(x)y.

(Recall that in the nondegenerate case II.4.3.2 we carefully avoided (2.3.9)
by moving to the other side of an inner product!) For (2.3.8), using c–Sharp
twice we have x##x = x##[T (x)c−x#c] = T (x)[T (x#)c−x#]−x##(x#c) =
T (x)S(x)c−T (x)x#− [N(x)c+T (x#, c)x] [using Spur Formula and Adjoint′]
= T (x)S(x)c−T (x)x#−N(x)c−T (x#)x [by c–Trace]. (2.3.9) follows by tak-
ing the trace of (2.3.8) (in view of the Spur Formula). For (2.3.10), we cancel
2 from 2x# • x = {x#, x} = x##x+T (x)x#+T (x#)x−S(x, x#)c [by Sharp
Expressions] = [S(x)T (x)−N(x)]c− [S(x)T (x)− 3N(x)]c [by (2.3.8),(2.3.9)]
= 2N(x)c for the first part; the second part follows by taking traces [using
Bullet Trace (2.3.7)], or directly from Trace–Sharp and Euler. For the first
part of (2.3.11), Uxx

# = T (x, x#)x − x##x# = 3N(x)x − 2(x#)# [by the
second part of (2.3.10)] = 3N(x)x − 2N(x)x = N(x)x by the Adjoint Iden-
tity. For the second part of (2.3.11), UxUx#y = Ux

(
T (x#, y)x# − x###y

)
=

N(x)
(
T (x#, y)x − Ux(x#y)

)
[by the first part of (2.3.11) and the Adjoint

Identity] = N(x)
(
T (x#, y)x− T (x, x#y)x+ x##(x#y)

)
= N(x)

(
T (x#, y)x−

T (x#x, y)x + [N(x)y + T (x#, y)x]
)
[by Sharp Symmetry and Adjoint′] =

N(x)N(x)y. (2.3.12) follows from {x, x#, y} = T (x, x#)y + T (x#, y)x −
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x##(x#y) = [3N(x) − N(x)]y [by the last part of (2.3.10) and Adjoint′]
= 2N(x)y.
This completes our verification of (2.3.8)–(2.3.12). Now we apply them

to establish (2.3.4)–(2.3.5) and the Jordan identity. (2.3.10) includes (2.3.5),
which by the Sharp Expressions yields the Degree–3 Identity (2.3.4) in terms
of x3 := x•x2. To show that (2.3.4) also holds for x3 = Uxx, by the definition
of U and the Sharp Expressions we have

Uxx− T (x)x2 + S(x)x−N(x)c
=

(
T (x, x)x︸ ︷︷ ︸

1

−x##x︸ ︷︷ ︸
2

)− T (x)
(
x#︸︷︷︸
3

+T (x)x︸ ︷︷ ︸
4

−S(x)c︸ ︷︷ ︸
5

)
+ S(x)x︸ ︷︷ ︸

6

−N(x)c︸ ︷︷ ︸
7

=
( 1︷ ︸︸ ︷
T (x, x)−

4︷ ︸︸ ︷
T (x)T (x)+

6︷ ︸︸ ︷
S(x, x)

)
x

+
(− 2︷ ︸︸ ︷

x##x+[

5︷ ︸︸ ︷
S(x)T (x)−

7︷ ︸︸ ︷
N(x)]c−

3︷ ︸︸ ︷
T (x)x# −

6︷ ︸︸ ︷
S(x)x

)
=0 + 0 = 0

by Spur–Trace and (2.38). Thus Jord(N,#, c) is a unital degree 3 algebra,
and the two definitions of cube agree.
The key to Jordanity is the identity

(2.3.13) {x, x, y} = {x2, y},
which metamorphoses out of the linearization of (2.3.8) using Trace–Sharp as
follows:

0 =
(
x#(x#y)︸ ︷︷ ︸

1

+ y#x#︸ ︷︷ ︸
2

)− (
S(x)T (y)︸ ︷︷ ︸

3

+S(x, y)T (x)︸ ︷︷ ︸
4

−T (x#, y)︸ ︷︷ ︸
5

)
c

+
(
T (y)x#︸ ︷︷ ︸

6

+T (x)x#y︸ ︷︷ ︸
7

)
+

(
S(x, y)x︸ ︷︷ ︸

8

+S(x)y︸ ︷︷ ︸
3

)

= +

1︷ ︸︸ ︷
x#(x#y)︸ ︷︷ ︸

α

+
( 2︷︸︸︷
x# +

7︷ ︸︸ ︷
T (x)x−

3︷ ︸︸ ︷
S(x)c︸ ︷︷ ︸

β

)
#y −

4︷ ︸︸ ︷
S(T (x)x, y)c︸ ︷︷ ︸

γ

+
( 5︷ ︸︸ ︷
T (x#)T (y)︸ ︷︷ ︸

δ

−S(x#, y)︸ ︷︷ ︸
ε

)
c+

6︷ ︸︸ ︷
T (y)x#︸ ︷︷ ︸

η

+

8︷ ︸︸ ︷(
T (x)T (y)︸ ︷︷ ︸

κ

−T (x, y)︸ ︷︷ ︸
λ

)
x

+
( 00︷ ︸︸ ︷
T (x2)︸ ︷︷ ︸

µ

−T (x, x)︸ ︷︷ ︸
ν

)
y

[using the Spur–Trace Formula twice, once in each direction, and Bullet Trace]
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=

β︷ ︸︸ ︷
x2#y︸ ︷︷ ︸

a

+T (y)
( η︷︸︸︷
x# +

κ︷ ︸︸ ︷
T (x)x−

δ︷ ︸︸ ︷
S(x)c︸ ︷︷ ︸

b

)
+

µ︷ ︸︸ ︷
T (x2)y︸ ︷︷ ︸

c

− S(

ε︷︸︸︷
x# +

γ︷ ︸︸ ︷
T (x)x−

δ︷ ︸︸ ︷
S(x)c, y︸ ︷︷ ︸

d

)c+
( α︷ ︸︸ ︷
x#(x#y)−

λ︷ ︸︸ ︷
T (x, y)x−

ν︷ ︸︸ ︷
T (x, x)y︸ ︷︷ ︸

e

)

[using Sharp Expressions for β, for δ using Spur Formula and S(c, y) =
T (c)T (y)−T (c, y) = 2T (y) by Spur–Trace and c–Trace], which then becomes

=
( a︷ ︸︸ ︷
x2#y+

b︷ ︸︸ ︷
T (y)x2+

c︷ ︸︸ ︷
T (x2)y−

d︷ ︸︸ ︷
S(x2, y) c

)
+
( e︷ ︸︸ ︷
(x#y)#x− T (y, x)x− T (x, x)y

)
=

({x2, y})+ (− Ux,yx
)
= {x2, y} − {x, x, y}

using the Sharp Expressions for (a,b,c,d) and the definition of U for (e).
This identity (2.3.13) has some immediate consequences relating the U–

operator and triple product to the bilinear products:

(2.3.14) {{x, z}, y} = {x, z, y}+ {z, x, y};
(2.3.15) 2Ux = V 2

x − Vx2 , Ux = 2L2
x − Lx2 ;

(2.3.16) {x#, x, y} = 2N(x)y;
(2.3.17) x#(x##y) = N(x)y + T (x, y)x# (Dual Adjoint′).

(2.3.14) is simply the linearization x �→ x, z of (2.3.12), and (2.3.15) fol-
lows from this by interpreting {x, y, x} = −{y, x, x} + {{y, x}, x} as an
operator on y; note that this means that the U defined from the sharp
is the usual Jordan U–operator II.1.8.1(2). (2.3.16) follows via (2.3.14):
{x#, x, y} = {{x, x#}, y} − {x, x#, y} = {2N(x)c, y} − 2N(x)y [by (2.3.10)
and (2.3.12)] = 4N(x)y−2N(x)y = 2N(x)y by unitality (2.3.6). For (2.3.17),
(x##y)#x = −{x#, x, y} + T (x#, x)y + T (y, x)x# [by definition of U ] =
−2N(x)y + 3N(x)y + T (x, y)x# [by (2.3.16), (2.3.10)] = N(x)y + T (x, y)x#.
Now we are over the top, and the rest is downhill. To establish the Jordan

identity (JAX2) that Vx and Vx2 commute, it suffices to prove that Vx and
Vx# commute, because Vx2 is a linear combination of Vx# , Vx, Vc = 21J by
the Sharp Expressions and V –unitality (2.3.6). But using linearized (2.3.13)
twice we see that

[Vx, Vx# ]y = {x, {x#, y}} − {x#, {x, y}}
=

({x, x#, y}+ {x, y, x#})− ({x#, x, y}+ {x#, y, x})
= {x, x#, y} − {x#, x, y} = 0

by (2.3.12), (2.3.16). Thus we have a unital degree 3 Jordan algebra
Jord(N,#, c) for any sharped cubic form. �
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The reader should pause and breathe a sigh of relief, then take another
deep breath, because there is more tough slogging to establish the composition
formula in this general situation.

Cubic Composition Theorem C.2.4 If N is a sharped cubic form, its
sharp mapping is always multiplicative,

(1)
(
Uxy

)# = Ux#y#.

If Φ is a faithful ring of scalars (e.g., if Φ has no 3–torsion or no nilpotents),
then N permits composition with the U–operator and the sharp:

(2) N(1) = 1, N(Uxy) = N(x)2N(y), N(x#) = N(x)2.

proof. The multiplicative property of the sharp follows by direct calcu-
lation, using the various Adjoint Identities: by the definition C.2.2(1) of U,(
Uxy

)# − Ux#y# =
[
T (x, y)x− x##y

]# − [
T (x#, y#)x# − x###y#

]
=

[
T (x, y)2x# −T (x, y)x#(x##y)+ (x##y)#

]−T (x#, y#)x#+x###y#

=

1︷ ︸︸ ︷
T (x, y)2x# −T (x, y)

[ 2︷ ︸︸ ︷
N(x)y+

1︷ ︸︸ ︷
T (x, y)x# ]

+
[− 3︷ ︸︸ ︷

x###y#+

2︷ ︸︸ ︷
T (x##, y)y+

4︷ ︸︸ ︷
T (y#, x#)x# ]− 4︷ ︸︸ ︷

T (x#, y#)x#+

3︷ ︸︸ ︷
x###y#

= 0
[by the Dual Adjoint′, Adjoint′′, and the Adjoint Identities].
When Φ has no 3–torsion, all is smooth as silk: the norm permits composi-

tion with sharp and U, since [using (2.3.10) twice] 3N(x#) = T ([x#]#, x#) =
N(x)T (x, x#) = 3N(x)2 and 3N(Uxy) = T ((Uxy)#, Uxy) =T (Ux#y#, Uxy)
[by the above multiplicativity of sharp] =T (UxUx#y#, y) [by U Symmetry]
=N(x)2T (y#, y) [by the second part of (2.3.11)] = 3N(x)2N(y).
It is not true in general that N(x#) = N(x)2, only that the difference is a

scalar which kills c, hence αJ = (αc)•J = 0, so this scalar will be condemned
to vanish by our faithful scalar hypothesis. To witness the murder:

0 =
(
x## −N(x)x

)
#x# [by the Adjoint Identity]

=
(
[S(x#)T (x#)−N(x#)]c− T (x#)x## − T (x##)x#

)
[applying (2.3.8)

−N(x)
(
[S(x)T (x)−N(x)]c− T (x)x# − S(x)x

)
to x and to x#]

=
(
[N(x)T (x)S(x)−N(x#)]c− S(x)N(x)x−N(x)T (x)x#

)
−N(x)

(
[S(x)T (x)−N(x)]c− T (x)x# − S(x)x

)
[using the Adjoint Identity, noting that S(x#) = T (x##) = N(x)T (x) and
T (x#) = S(x) by the Spur Formula]

=
(
N(x)2 −N(x#)

)
c.
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Since this holds strictly, it shows that α(x) = N(x)2 − N(x#) and all its
linearizations kill c. In general, whenever αc = 0 we have 3α = α3 = 0 (taking
traces and norms; note this implies Φ is automatically faithful if it has no
3–torsion or nilpotents) and αJ = 0, so in the faithful case α = 0 and we have
strict sharp composition.
We claim that whenever sharp composition holds strictly, it implies U com-

position. To see this, first equate coefficients of t3 inN([x+ty]#) = N(x+ty)2.
On the left side N(x# + tx#y + t2y#) produces N(x#y) + N(x#, x#y, y#)
(the only combinations of three powers 1, t, t2 having total degree 3 are
t, t, t and 1, t, t2) = N(x#y) + T (x##(x#y), y#) [by linearized Trace–Sharp]
= N(x#y)+T ([N(x)y+T (x#, y)x], y#) [by Adjoint′ and Trace–Sharp], which
reduces by (2.3.10) to

(3L) N(x#y) + 3N(x)N(y) + T (x#, y)T (y#, x).

On the right side,
(
N(x) + tN(x; y) + t2N(y;x) + t3N(y)

)2 produces the
term 2N(x; y)N(y;x) + 2N(x)N(y) (the only combinations of two powers of
1, t, t2, t3 having total degree 3 are t, t2 and 1, t3), which reduces by Trace–
Sharp to

(3R) 2T (x#, y)T (y#, x) + 2N(x)N(y).

Subtracting these two sides gives

(3) N(x#y) = T (x#, y)T (y#, x)−N(x)N(y).

From this we can derive U composition directly (using Trace–Sharp repeat-
edly, and setting n = N(x), t = T (x, y) for convenience):

N(Uxy) = N(tx− x##y)

= t3N(x)− t2N(x;x##y) + tN(x##y;x)−N(x##y)

= t3N(x)− t2T (x#, x##y) + tT ([x##y]#, x)−N(x##y)

= t3N(x)− t2T (x##x#, y)− [T (x##, y)T (y#, x#)−N(x#)N(y)]

+ tT ([−x###y# + T (x##, y)y + T (y#, x#)x#], x)
[using Adjoint′′ and (3) with x replaced by x#]

= t3n− t2T (2nx, y)− [nT (x, y)T (y#, x#)− n2N(y)]

+ t[−nT (x#x, y#) + nT (x, y)T (y, x) + T (y#, x#)T (x#, x)]
[using Adjoint, Sharp Symmetry, and sharp composition],

= t3n− 2nt3 + [n2N(y)− ntT (x#, y#)] [by (2.3.10)]

− 2ntT (x#, y#) + nt3 + 3ntT (y#, x#)

= n2N(y) = N(x)2N(y). �



C.3 The Freudenthal Construction 487

This finishes the involved calculations required to establish the general
cubic construction. We now turn to the Freudenthal and Tits Constructions,
and show that they produce Jordan algebras because they are special cases
of the general construction,

C.3 The Freudenthal Construction

Our first, and most important, example of a sharped cubic form comes from
the algebra of 3× 3 hermitian matrices over an alternative algebra with cen-
tral involution. Replacing the original scalars by the ∗–center, we may assume
that the original involution is actually a scalar involution. For the octonions
with standard involution this produces the reduced Albert algebras. We al-
ready know that the resulting matrix algebra will be Jordan by the 3 × 3
Coordinate Theorem C.1.3, but in this section we will give an independent
proof showing that it arises as a Jord(N,#, c): the scalar-valued norm n(a)
on the coordinates D allows us to create a Jordan norm N(x) on the matrix
algebra.
Recall the results of the Central Involution Theorem II.21.2.2 and Moufang

Lemma II.21.1.1(2): If D is a unital alternative algebra over Φ with involution
a �→ ā such that there are quadratic and linear norm and trace forms n, t :
D→ Φ with n(a)1 = aā, t(a)1 = a+ ā ∈ Φ1, then we have

(D1) t(ā) = t(a), n(ā) = n(a) (Bar Invariance),

(D2) t(ab) = n(ā, b) = t(ba) (Trace Commutativity),

(D3) t((ab)c) = t(a(bc)) (Trace Associativity),

(D4) n(ab) = n(a)n(b) (Norm Composition),

(D5) ā(ab) = n(a)b = (ba)ā (Kirmse Identity),

(D6) a(bc)a = (ab)(ca) (Middle Moufang).

We will establish the Freudenthal construction for the untwisted case
H3(D,−); there is no point, other than unalloyed masochism, in proving the
twisted case H3(D,Γ), since this arises as the Γ–isotope of the untwisted form,
and we know in general (by Cubic Factor Isotopes II.7.4.1) that isotopes of
cubic factors are again cubic. Thus we can avoid being distracted by swarms of
gammas. We will only establish that the Freudenthal construction furnishes a
sharp norm form, hence by the Cubic Construction Theorem C.2.2 a Jordan
algebra. In the Freudenthal Construction Theorem II.4.4.1 we verified that
the Jordan structure determined by the sharp norm form coincides with that
of the matrix algebra H3(D,−), hence this too is a Jordan algebra.
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Freudenthal Construction C.3.1 Let D be a unital alternative algebra
over Φ with scalar involution. Then the hermitian matrix algebra H3(D,−)
is a cubic factor Jord(N,#, c) whose Jordan structure is determined by the
basepoint c, cubic form N , trace T , and sharp # defined as follows for ele-
ments x =

∑3
i=1 αiei+

∑3
i=1 ai[jk], y =

∑3
i=1 βiei+

∑3
i=1 bi[jk] with αi, βi ∈

Φ, ai, bi ∈ D in Jacobson box notation (ei := Eii, d[jk] := dEjk+d̄Ekj, where
(ijk) is always a cyclic permutation of (123)):

c := 1 = e1 + e2 + e3,

N(x) :=α1α2α3 −
∑
k

αkn(ak) + t(a1a2a3),

T (x) =
∑
k

αk, T (x, y) =
∑
k

αkβk +
∑
k

t(akbk),

x# :=
∑
k

(
αiαj − n(ak)

)
ek +

∑
k

(
aiaj − αkak

)
[ij],

x#y :=
∑
k

(
αiβj + βiαj − n(ak, bk)

)
ek

+
∑
k

(
(aibj + biaj)− αkbk − βkak

)
[ij].

proof. The first two assertions are definitions; note that c is a basepoint,
since N(c) = 1. We verify the conditions C.2.1(2) for a sharped cubic form.
We begin by identifying the trace linear and bilinear forms:

N(x; y) = α1α2β3 + α1β2α3 + β1α2α3 −
∑

k αkn(ak, bk)−
∑

k βkn(ak)

+t(a1a2b3 + a1b2a3 + b1a2a3)

=
∑

k[αiαj − n(ak)]βk +
∑

k t([aiaj − αkak]bk)

by trace commutativity and associativity (D2), (D3). In this relation, if we
set x = c, αk = 1, ak = 0 we get N(c; y) =

∑
k[1 1βk − 0] +

∑
k 0, so

T (y) =
∑

k βk.

Thus the linear trace form is what we claimed it is. For the trace bilinear
form, if instead we linearize x �→ x, c, we get N(x, c, y) =

∑
k(αi + αj −

0)βk +
∑

k t([0− 1 ak]bk) =
∑

k(αi + αj + αk)βk −
∑

k αkβk −
∑

k t(akbk) =
T (x)

∑
k βk − ∑

k αkβk − ∑
k t(akbk) = T (x)T (y) − ∑

k αkβk − ∑
k t(akbk).

Thus

T (x, y) := T (x)T (y)−N(x, y, c) =
∑

k αkβk +
∑

k t(akbk)

as claimed.



C.3 The Freudenthal Construction 489

Comparing this formula for T (x, y) with the above formula for N(x; y)
shows that the Trace–Sharp Formula N(x; y) = T (x#, y) holds for the adjoint
x# :=

∑
k

(
αiαj − n(ak)

)
ek +

∑
k

(
aiaj − αkak

)
[ij].

To verify the Adjoint Identity x## = N(x)x, let us write x# =
∑3

i=1 βiei+∑3
i=1 bi[jk] for convenience. Then by definition of sharp we have x## =∑
δiei +

∑
di[jk], where the diagonal entries are given by

δk = βiβj − n(bk) =
[
αjαk − n(ai)

][
αkαi − n(aj)

]− n
(
aiaj − αkak

)
=

[
αjαk − n(ai)

][
αkαi − n(aj)

]− [
n(aiaj)− αkn(ak, aiaj) + α2

kn(ak)
]

[by (D1)]

= αk

[
αkαiαj − αjn(aj)− αin(ai)− αkn(ak) + n(aiaj , ak)

]
+ n(ai)n(aj)− n(aiaj)

= N(x)αk [by (D1), (D2), (D4)],

and the off-diagonal entries are given by

dk = bibj − βkbk

=
[
akai − αjaj

][
ajak − αiai

]− [
αiαj − n(ak)

][
aiaj − αkak

]
= (akai)(ajak)− αjaj(ajak)− αi(akai)ai + αiαj aj ai

−αiαjaiaj − αkn(ak)ak + αiαjαkak + n(ak)aiaj

=
[
αkαiαj − αjn(aj)− αin(ai)− αkn(ak) + t(aiajak)

]
ak

= N(x)ak

by Kirmse (D5), involution ab = b̄ ā, Middle Moufang (D6), and a(bc)a +
(bc)n(a) = [a(bc)+(bc) ā]a [by the Flexible Law and Kirmse (D5)] = t(abc)a =
t(bca)a [by Trace Commutativity and Associativity (D2)–(D3)]. This estab-
lishes the Adjoint Identity.

Finally, to establish the c–Sharp Identity c#y = T (y)c − y, linearize x �→
c, y in the definition of # to get

c#y =
∑

k(1βj + βi1− 0)ek +
∑

k(0− 1bk − 0)[ij]
=

∑
k(βj + βi)ek −

∑
k bk[ij]

=
∑

k(βj + βi + βk)ek −
[∑

k βkek +
∑

k bk[ij]
]

=
∑

k T (y)ek − y = T (y)c− y.

Thus by the Cubic Construction Theorem C.2.2 Jord(N,#, c) is a Jordan
algebra, which coincides with the Jordan matrix algebra H3(D,−). �
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C.4 The Tits Constructions

The second example of a sharp norm form occurs in two constructions, due to
Jacques Tits, of Jordan algebras of Cubic Form Type out of degree–3 associa-
tive algebras. These Jordan algebras need not be reduced, and they provide
our first explicit examples of exceptional Jordan division algebras. A.A. Al-
bert was the first to construct a (very complicated) example of an exceptional
division algebra. Tits’s beautiful method is both easy to understand, and
completely general: all Albert algebras over a field arise by the Tits First or
Second Construction. We begin by describing the associative setting for these
constructions.

Associative Degree–3 Definition C.4.1 An associative algebra A of de-
gree 3 over Φ is one with a cubic norm form n satisfying the following three
axioms. First, the algebra strictly satisfies the generic degree–3 equation

(A1) a3 − t(a)a2 + s(a)a− n(a)1 = 0
(t(a) := n(1; a), s(a) := n(a; 1), n(1) = 1).

In terms of the usual adjoint a# := a2 − t(a)a + s(a)1, this can be rewritten
as

(A1′) aa# = a#a = n(a)1.

Second, the adjoint is a sharp mapping for n,

(A2) n(a; b) = t(a#, b) (t(a, b) := t(a)t(b)− n(1, a, b)).

Finally, the trace bilinear form is the linear trace of the associative product,

(A3) t(a, b) = t(ab).

Axiom (A3) can be rewritten in terms of the linearization of the quadratic
form s,

(A3′) s(a, b) = t(a)t(b)− t(ab),

since by symmetry always s(a, b) = n(a, b, 1) = n(1, a, b) = t(a)t(b)− t(a, b).

From the theory of generic norms, it is known that these conditions are
met when A is a finite-dimensional semisimple associative algebra of degree 3
over a field Φ; in that case the algebras are just the forms of the split algebras
Ω � Ω � Ω ∼=

(
Ω 0 0
0 Ω 0
0 0 Ω

)
⊆ M3(Ω), Ω � M2(Ω) ∼=

(
Ω 0 0
0 Ω Ω
0 Ω Ω

)
⊆ M3(Ω), and

M3(Ω) for Ω the algebraic closure of Φ, where the axioms (A1), (A2), (A3)
are immediate consequences of the Hamilton–Cayley Theorem and properties
of the usual adjoint, trace, and determinant. We want to be able to construct
Jordan algebras of Cubic Form Type over general rings of scalars, and the
above axioms are what we will need. These immediately imply other useful
relations.
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Associative Cubic Consequences Lemma C.4.2 Any cubic form on a
unital associative algebra with basepoint n(1) = 1, sharp mapping a# := a2 −
t(a)a + s(a)1, and sharp product a#b := (a + b)# − a# − b# automatically
satisfies

(A4) t(1) = s(1) = 3, 1# = 1,
(A5) s(a, 1) = 2t(a), 1#a = t(a)1− a.

If (A2)–(A3) hold, then

(A6) s(a) = t(a#), 2s(a) = t(a)2 − t(a2).

When n is a cubic norm satisfying (A1)–(A3) and 1
2 ∈ Φ then we have

(A7) a## = n(a)a,
(A8) aba = t(a, b)a− a##b,

(A9) (ab)# = b#a#,

(A10) n(ab)1 = n(a)n(b)1, t(ab) = t(ba), t(abc) = t(bca).

proof. For (A4), t(1) = s(1) = n(1; 1) = 3n(1) = 3 by Euler’s Equation,
so 1# = 12 − t(1)1 + s(1)1 = 1− 3 + 3 = 1. For (A5), by symmetry s(a, 1) =
n(a, 1, 1) = n(1, 1, a) = 2n(1; a) = 2t(a). Then 1#a = 1a+a1− t(1)a− t(a)1+
s(a, 1)1 = 2a− 3a− t(a)1 + 2t(a)1 = −a+ t(a)1. For (A6), when (A2)–(A3)
hold, setting b = 1 in (A2) yields s(a) := n(a; 1) = t(a#, 1) = t(a#), so taking
the trace of the definition of the adjoint gives s(a) = t(a2)− t(a)2 + 3s(a).

The next three formulas require a bit of effort. It will be convenient to use
the bar mapping

ā := t(a)1− a

(though, in contrast to the quadratic form case, this map is not an algebra
anti-isomorphism, nor of period 2), so we may abbreviate the adjoint by

a# = s(a)1− aā.

We will make use twice of the tracial condition

z = t(z)1 =⇒ z = 0,

which follows by taking traces to get t(z) = 3t(z) hence 2t(z) = 0, hence the
existence of 1

2 insures that t(z) = 0 and z = 0.

Turning to (A7), the element z := a## − n(a)a has

z = (a#)2 − t(a#)a# + s(a#)1− n(a)a

= a#[s(a)1− aā]− s(a)a# + t(a##)1− n(a)a [using (A6) twice]
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= − n(a)[ā+ a] + t(a##)1 [using (A1′)]

= t(a## − n(a)a)1 = t(z)1,

so z = 0 by our tracial condition.

For (A8) we linearize the degree–3 equation (A1) and use (A2) to get
(writing {a, b} := ab+ ba as usual)

aba =
(
− {a2, b}+ t(a){a, b}

)
+ t(b)a2 − s(a)b− s(a, b)a+ t(a#, b)1

=
(
−{[a2 − t(a)a+ s(a)1], b}︸ ︷︷ ︸

1

+2s(a)b︸ ︷︷ ︸
2

)
+ t(b)

(
a#︸︷︷︸
3

+ t(a)a︸ ︷︷ ︸
4

− s(a)1︸ ︷︷ ︸
5

)
− s(a)b︸ ︷︷ ︸

2

−
(
t(a)t(b)︸ ︷︷ ︸

4

− t(a, b)︸ ︷︷ ︸
6

)
a+

(
t(a#)t(b)︸ ︷︷ ︸

5

− s(a#, b)︸ ︷︷ ︸
7

)
1

[using (A3), (A3′) to switch between the bilinear forms s, t]

=
(
−

1︷ ︸︸ ︷
{a#, b}+

2︷ ︸︸ ︷
t(a#)b+

3︷ ︸︸ ︷
t(b)a# −

7︷ ︸︸ ︷
s(a#, b)1

)
+

6︷ ︸︸ ︷
t(a, b)a [by (A6) for (5)]

= − a##b+ t(a, b)a.

For (A9),we compute

(ab)# = (ab)(ab)− t(ab)ab+ s(ab)1 [by definition]

= [aba− t(a, b)a]b+ s(ab)1 [by (A3)]

= [−a##b]b+ t((ab)#)1 [by (A8),(A6)]

= [b#a# − t(b#, a#)1] + t((ab)#)1

[linearizing b �→ b, a# in (A1′) b#b = n(b)1, and using (A2)]

= [b#a# − t(b#a#)1] + t((ab)#)1 [by (A3)].

Thus the element z = (ab)# − b#a# has z = t(z)1, and again z = 0.

The first part of (A10) follows from (A1′) and (A9): n(ab)1 = (ab)(ab)# =
(ab)(b#a#) = a(bb#)a# = a(n(b)1)a# = n(b)aa# = n(a)n(b)1, while the last
two parts of (A10) follow from (A3) and the symmetry of the trace bilinear
form. �

Now we have the associative degree–3 preliminaries out of the way, and
are ready to construct a Jordan algebra.
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First Tits Construction C.4.3 Let n be the cubic norm form on a degree–3
associative algebra A over Φ, and let µ ∈ Φ be an invertible scalar. From these
ingredients we define a module J = A−1 ⊕ A0 ⊕ A1 to be the direct sum of
three copies of A, and define a basepoint c, norm N , trace T , and sharp # on
J by

c := 0⊕ 1⊕ 0 = (0, 1, 0),
N(x) := µ−1n(a−1) + n(a0) + µn(a1)− t(a−1a0a1),

=
1∑

i=−1

µin(ai)− t(a−1a0a1),

T (x) := t(a0),

T (x, y) :=
1∑

i=−1

t(a−i, bi),

[x#]−i := µia#
i − a[i+1]a[i−1],

for elements x = (a−1, a0, a1), y = (b−1, b0, b1), where the indices [j] are
read modulo 3. Then (N,#, c) is a sharped cubic form, and the algebra
Jord(A, µ) := Jord(N,#, c) is a Jordan algebra.

proof. It will be convenient to read subscripts n modulo 3, and always
to choose coset representative [n] = −1, 0, 1:

[n] :=

+1 if n ≡ 1 mod 3;
0 if n ≡ 0 mod 3;

−1 if n ≡ 2 mod 3.
From (A2) and the definition of the norm we compute the linearization

N(x; y) =
∑

i µ
it(a#

i , bi)− t(b−1a0a1)− t(a−1b0a1)− t(a−1a0b1)

=
∑

i µ
it(a#

i , bi)− t(a0a1b−1)− t(a1a−1b0)− t(a−1a0b1)

=
∑1

i=−1 t([µ
ia#

i − a[i+1]a[i−1]], bi) [by cyclicity (A10)],

N(c; y) = t(b0) = T (y) [x = c has a0 = 1 = a#
0 , a−1 = a1 = 0].

Thus the trace coming from the norm is that given in the theorem. Linearizing
x �→ x, c gives

N(x, c, y) =
∑

i t([µ
iai#ci − a[i+1]c[i−1] − c[i+1]a[i−1]], bi)

= − t(1a1, b−1) + t(a0#1, b0)− t(a−11, b1)

= − t(a1, b−1) + t(t(a0)1− a0, b0)− t(a−1, b1) [by (A5)]

= t(a0)t(b0)− t(a1, b−1)− t(a0, b0)− t(a−1, b1)
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= T (x)T (y)−∑1
i=−1 t(a−i, bi) [by (A3)],

T (x, y) = T (x)T (y)−N(x, y, c) =
∑1

i=−1 t(a−i, bi).

Therefore the trace bilinear form coming from the norm is also that given in
the theorem. Then from the above we see that N(x; y) =

∑1
i=−1 t([µ

ia#
i −

a[i+1]a[i−1]], bi) = T (x#, y) for the sharp given in the theorem, verifying the
Trace–Sharp Formula.
Now we are ready to verify the Adjoint Identity, x## = N(x)x. Set x =

(a0, a1, a2), y = x# = (b0, b1, b2) as usual; then we have as ith component

[x##]i = [y#]−(−i) = µ−ib#−i − b[−i+1]b[−i−1] [by definition]

= µ−ib#−i − b−[i−1]b−[i+1]

= µ−i
(
µia#

i − a[i+1]a[i−1]
)#

−(
µ[i−1]a#

[i−1] − aia[i+1]
) · (µ[i+1]a#

[i+1] − a[i−1]ai
)

=
(
µia##

i − a#
i #a[i+1]a[i−1] + µ−i(a[i+1]a[i−1])#

)− µ[i−1]µ[i+1]a#
[i−1]a

#
[i+1]

+µ[i+1]aia[i+1]a
#
[i+1] + µ[i−1]a#

[i−1]a[i−1]ai − aia[i+1]a[i−1]ai

= µin(ai)ai − t(ai, a[i+1]a[i−1])ai + µ[i+1]ain(a[i+1]) + µ[i−1]n(a[i−1])ai

[using (A1′) twice, (A7), (A8), (A9), and µ[i−1]µ[i+1] = µ−i]

=
(∑1

j=−1 µ
jn(aj)− t(a−1a0a1)

)
ai [from (A3), (A10)]

= N(x)ai = N(x)[x]i [from the definition of N ].

Since n continues to be a cubic norm in all scalar extensions, the Adjoint
Identity continues to hold, and thus holds strictly.
Finally, we verify the c–Sharp Identity by comparing components on both

sides: linearizing x �→ c, y in the sharp mapping and using (A5) gives

[c#y]0 =µ0c0#b0−b1c−1−c1b−1=1#b0−0−0= t(b0)1−b0=[T (y)c− y]0,

[c#y]−1 = µ1c1#b1 − c−1b0 − b−1c0 = 0− 0− b−1 = [T (y)c− y]−1,

[c#y]1 = µ−1c−1#b−1 − c0b1 − b0c1 = 0− b1 − 0 = [T (y)c− y]1.

This completes the verification that (N,#, c) is a sharped cubic form, and
therefore produces a Jordan algebra Jord(N,#, c) =: Jord(A, µ). �

For the second construction, let A be an associative algebra of degree 3
over Ω, and let ∗ be an involution of second kind on A, meaning that it is
not Ω-linear, it is only semi-linear (ωa)∗ = ω∗a∗ for a nontrivial involution on
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Ω with fixed ring Φ := H(Ω, ∗) < Ω. (For example, the conjugate-transpose
involution on complex matrices is only real-linear). The involution is semi-
isometric with respect to a norm form if n(a∗) = n(a)∗.

Second Tits Construction C.4.4 Let n be the cubic norm of a degree–3
associative algebra A over Ω as in C.4.3, with a semi-isometric involution
of second kind over Φ. Let u = u∗ ∈ A be a hermitian element with norm
n(u) = µµ∗ for an invertible scalar µ ∈ Ω. From these ingredients we define
a Φ-module J = H(A, ∗)⊕A to be the direct sum of a copy of the hermitian
elements and a copy of the whole algebra, and define a basepoint c, norm
N , trace T , and sharp # on elements x = (a0, a), y = (b0, b) for a0, b0 ∈
H(A, ∗), a, b ∈ A, by the following formulas:

c := 1⊕ 0 = (1, 0),
N(x) := n(a0) + µn(a) + µ∗n(a∗)− t(a0aua

∗),
T (x) := t(a0),

T (x, y) := t(a0, b0) + t(ua∗, b) + t(au, b∗),

x# = (a#
0 − aua∗, µ∗(a∗)#u−1 − a0a).

Then (N,#, c) is a sharped cubic form over Φ, and the algebra Jord(A, u, µ, ∗)
:= Jord(N,#, c) is a Jordan Φ-algebra. Indeed, the map (a0, a)

ϕ−→ (ua∗, a0, a)
identifies Jord(N,#, c) with the fixed points H(Jord(A, µ), ∗̃) of the algebra
J(A, µ) over Ω obtained by the First Construction relative to the semi-linear
involution (ua−1, a0, a1) �→ (ua∗1, a

∗
0, a

∗
−1). If Ω contains invertible skew ele-

ments (e.g., if it is a field), then the second construction is a form of the first :
Jord(A, u, µ, ∗)Ω ∼= Jord(A, µ).
proof. We could verify directly that J := Jord(A, u, µ, ∗) is Jordan by

verifying that (N,#, c) is a sharped cubic, but Jordanity will follow from
the more precise representation of J as H(J̃, ∗̃) for J̃ := Jord(A, µ) =
Jord(Ñ , #̃, c̃) obtained by the First Tits Construction over Ω.
The first thing to do is verify that ∗̃ is indeed an involution of Jordan

algebras. Since the products are built out of the basepoint c̃, norm Ñ , and
sharp #̃ in the Cubic Construction, we need only prove that ∗̃ preserves these.
It certainly preserves the basepoint,

c̃∗̃ = (u0, 1, 0)∗ = (u0∗, 1∗, 0∗) = (u0, 1, 0) = c̃.

Since the original ∗ is semi-isometric on A, it respects norms, traces, and
sharps:

n(a∗) = n(a)∗, t(a∗) = t(a)∗, s(a∗) = s(a)∗, (a∗)# = (a#)∗.

From this we see that the involution ∗̃ interacts smoothly with the norm Ñ :
for any element x̃ = (ua−1, a0, a1) we compute
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Ñ(x̃∗̃) = Ñ(ua∗1, a
∗
0, a

∗
−1)

= µ−1n(ua∗1) + n(a∗0) + µn(a∗−1)− t(ua∗1a
∗
0a
∗
−1)

= µ−1n(u)n(a1)∗ + n(a0)∗ + µn(a−1)∗ − t(a−1a0a1u)∗

= µ∗n(a1)∗ + n(a0)∗ + (µ∗)−1n(u)∗n(a−1)∗ − t(a−1a0a1u)∗

=
(
µn(a1) + n(a0) + µ−1n(ua−1)− t(ua−1a0a1)

)∗
= Ñ(ua−1, a0, a1)∗ = Ñ(x̃)∗.

using, respectively, (1) the definition C.4.3 of ∗̃; (2) the definition of Ñ ; (3)
(A10) and u∗ = u; (4) n(u) = µµ∗; (5) (A10) and the fact that ∗ is an
involution onA; (6) the definition of Ñ . The involution interacts less smoothly
with the adjoint: for any element x̃, we have

(x̃∗̃)#̃ =
(
ua∗1, a

∗
0, a

∗
−1

)#̃

=
(
µ(a∗−1)

# − (ua∗1)(a∗0), (a∗0)# − (a∗−1)(ua
∗
1), µ

−1(ua∗1)
# − (a∗0)(a∗−1)

)
=

(
µ(a∗−1)

# − ua∗1a
∗
0, (a

∗
0)

# − a∗−1ua
∗
1, µ

−1(a∗1)
#u# − a∗0a

∗
−1

)
=

(
u[(µ∗)−1u#(a#

−1)
∗ − a∗1a

∗
0], (a

#
0 )

∗ − a∗−1ua
∗
1, µ

∗(a#
1 )

∗u−1 − a∗0a
∗
−1

)
=

(
u[µ−1a#

−1u
# − a0a1]∗, [a

#
0 − a1ua−1]∗, [µu−1a#

1 − a−1a0]∗
)

=
(
u[µu−1a#

1 − a−1a0], [a
#
0 − a1ua−1], [µ−1a#

−1u
# − a0a1]

)∗̃
=

(
µa#

1 − (ua−1)a0, a
#
0 − a1(ua−1), µ−1(ua−1)# − a0a1

)∗̃
=

(
(ua−1, a0, a1)#̃

)∗̃ = (
x̃#̃

)∗̃
using, respectively, (1) the definition of ∗̃; (2) the definition C.4.3 of #̃; (3)
(A9); (4) uu# = n(u)1 = µµ∗ by (A1′), and (a∗)# = (a#)∗; (5) (u#)∗ =
u#, u∗ = u; (6) the definition of ∗̃; (7) (A9); (8) the definition of #̃. Thus
∗̃ preserves all the ingredients of the Jordan structure, and is a semilinear
involution on Jord(Ñ , #̃, c̃).
From this it is clear that the space H(J̃, ∗̃) of symmetric elements is pre-

cisely all (ua−1, a0, a1), where a∗0 = a0, a−1 = a∗1, so we have a Φ-linear
bijection ϕ : J→ H := H(J̃, ∗̃) given by

ϕ(a0, a) = (ua∗, a0, a).

To show that this is an isomorphism of Jordan algebras, it suffices to prove
that the map preserves the basic ingredients for both cubic constructions, the
basepoints, norms, and sharps. As usual the basepoint is easy:

ϕ(c) = ϕ(1, 0) = (0, 1, 0) = c̃.

The norm, as usual, presents no difficulties:
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Ñ(ϕ(a0, a)) = Ñ(ua∗, a0, a)

= µ−1n(ua∗) + n(a0) + µn(a)− t(ua∗a0a)

= n(a0) + µn(a) + µ−1n(u)n(a)∗ − t(a0aua
∗)

= n(a0) + µn(a) + µ∗n(a)∗ − t(a0aua
∗)

= N(a0, a),

using, respectively, (1) the definition of ϕ; (2) the definition C.4.4 of Ñ ; (3)
(A10); (4) n(u) = µµ∗; (5) the definition of N . Once more the sharp is messier:

ϕ(a0, a)#̃ = (ua∗, a0, a)#̃

= (µa# − (ua∗)a0, a
#
0 − a(ua∗), µ−1(ua∗)# − a0a)

= (u[µu−1a# − a∗a0], a
#
0 − a(ua∗), µ−1(a∗)#u# − a0a)

= (u[µ∗(a∗)#u−1 − a0a]∗, [a
#
0 − aua∗], [µ∗(a∗)#u−1 − a0a])

= ϕ
(
a#
0 − aua∗, µ∗(a∗)#u−1 − a0a

)
= ϕ

(
(a0, a)#

)
.

using, respectively, (1) the definition of ϕ; (2) the definition C.4.4 of #̃; (3)
(A9); (4) µ−1u# = µ∗u−1 by (A1′); (5) the definition of ϕ again; (6) the
definition of #. This completes the verification that ϕ induces an isomorphism
of J with H.
Since the original involution ∗ on A is of the second kind, there exist

scalars ω ∈ Ω with ω∗  = ω. Then there exist nonzero skew elements λ = ω−ω∗.
Assume that some such λ is invertible; then Skew(Ω, ∗) = Φλ and Skew(J̃, ∗̃) =
Hλ (if s ∈ J̃ is skew, then by commutativity h := λ−1s is symmetric, h∗̃ =
(λ−1)∗s∗̃ = (−λ−1)(−s) = λ−1s, so s = λh (heavily using invertibility of
λ). The presence of 1

2 guarantees that all Φ-modules with involution are the
direct sum of their symmetric and skew parts, Ω = H(Ω, ∗) ⊕ Sk(Ω, ∗) =
Φ⊕Φλ, J̃ = H(J, ∗̃)⊕Sk(J, ∗̃) = H⊕Hλ, and the Φ-isomorphism ϕ : J→ H
extends to an Ω-isomorphism of JΩ with HΩ, which by standard properties
of tensor products is isomorphic to J̃. (Recall that HΩ = H ⊗Φ (Φ ⊕ Φλ) =
(H⊗Φ Φ)⊕ (H⊗Φ Φλ) ∼= H⊕Hλ = J̃.) �
Notice that our verification that the Freudenthal Construction produces

degree–3 Jordan algebras involves only basic facts (D1)–(D6) about alterna-
tive algebras with scalar involution, and the verification for the Tits Con-
structions involves only basic properties (A1)–(A10) about cubic norm forms
for associative algebras. In both cases the hard part is discovering a recipe,
and once the blueprints are known, any good mathematical carpenter can
assemble the algebra from the ingredients.
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C.5 Albert Division Algebras

We mentioned in II.6.1.6 that the Tits Construction easily yields Albert divi-
sion algebras, i.e., 27-dimensional Jordan algebras of anisotropic cubic forms.

Tits Division Algebra Criterion C.5.1 The Jordan algebra Jord(A, µ)
and Jord(A, u, µ, ∗) constructed from a degree–3 associative algebra A over a
field Φ will be Jordan division algebras iff A is an associative division algebra
and µ  ∈ n(A) is not a norm.

proof.We know that Jord(A, µ) will be a division algebra precisely when
its cubic norm form is anisotropic. A direct attempt to prove anisotropy in
terms of the norm N(x) := µ−1n(a−1) +n(a0) +µn(a1)− t(a−1a0a1) for x =
(a−1, a0, a1) is difficult; as Macbeth’s witches said, “Equation cauldron boil
and bubble, two terms good, three terms trouble.” Necessity of the conditions
is easy: The algebraAmust be a division algebra (anisotropic norm n) because
it is a subalgebra with the same norm N(0, a, 0) = n(a), and the scalar µ
must not be a norm because µ = n(u) would imply N(0, u,−1) = 0 + n(u) +
µn(−1) = n(u)− µ = 0 and N would be isotropic. The hard part is showing
that these two conditions are sufficient. We finesse the difficulty of the three-
term norm equation by replacing it by two-term adjoint equations:

N(y) = 0 for some y  = 0 =⇒ x# = 0 for some x  = 0.
Indeed, either already x = y# is zero, or else x  = 0 but x# = (y#)# =
N(y)y = 0 by the fundamental Adjoint Identity. But the vector equation
x# = 0 for x = (a−1, a0, a1) implies three two-term equations 0 = [x#]−i =
µia#

i − a[i+1]a[i−1] for i = −1, 0, 1. Then µia#
i = a[i+1]a[i−1], so multiplying

on the left or right by ai and using a#a = aa# = n(a)1 yields µin(ai)1 =
a[i+1]a[i−1]ai = aia[i+1]a[i−1]. Since x  = 0, some ai  = 0, and therefore n(ai)  =
0 by anisotropy of n. Then a[i+1]a[i−1]ai  = 0, and none of the ai vanishes.
Hence µ0n(a0)1 = a1a−1a0 = µ1n(a1) implies that µ = n(a0a

−1
1 ) is a norm.

�

Albert Division Algebra Example C.5.2 Let A be a 9-dimensional
central-simple associative division algebra over a field Φ. (Such do not ex-
ist over R or C, but do exist over Q and p-adic fields.) Then the extension
A(t) = A⊗Φ Φ(t) by the rational function field in one indeterminate remains
a division algebra, but does not have the indeterminate t as one of its norms.
Then Jord(A(t), t) is an Albert division algebra over Φ(t).
proof. Let x1, . . . , x9 be a basis for A over Φ, with cubic norm form

n(x) = n(
∑

ξixi) =
∑

αi,j,kξiξjξk for scalars α ∈ Φ. We first show that
A(t) remains a division algebra, i.e., that the extended norm form remains
anisotropic. Suppose instead that n(x(t)) = 0 for some nonzero x(t) =∑

ξi(t)xi for rational functions ξi(t) ∈ Φ(t). We can clear denominators to
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obtain a new isotropic x(t) with polynomial coefficients ξi(t) ∈ Φ[t], and then
divide through by the g.c.d. of the coefficients to get them relatively prime.
If we substitute t = 0 into the polynomial relation

∑
αi,j,kξi(t)ξj(t)ξk(t) =

n(x(t)) = 0 in Φ[t], we get
∑

αi,j,kξi(0)ξj(0)ξk(0) = n(x(0)) = 0 in Φ. Here
x(0) =

∑
i ξi(0)xi has constant coefficients in Φ and so lies in A, yet x(0) is

not zero since relative primeness implies the polynomial coefficients ξi(t) of
the basis vectors xi are not all divisible by t and hence do not all vanish at
t = 0, contradicting anisotropy of n on A.
Next we check that t is not a norm on this division algebra over Φ(t).

Suppose to the contrary that some n(x(t)) := n(
∑

ξi(t)xi) = t. We can write
ξi(t) =

ηi(t)
δ(t) for polynomials ηi, δ which are “relatively prime” in the sense

that no factor of δ divides all the ηi. Again substituting t = 0 in n(y(t)) :=
n
(∑

ηi(t)xi
)
= n

(
δ(t)x(t)

)
= δ(t)3t gives n(y(0)) = 0, so by anisotropy on

A we have y(0) = 0, and by independence of the xi each coefficient ηi(0) is
zero. But then each ηi(t) = tη′i(t) is divisible by t, y(t) = ty′(t) for y′(t) ∈
A[t], and t3n(y′(t)) = n(y(t)) = tδ(t)3 in Φ[t]. Then t2 divides δ3, hence the
irreducible t divides δ, which contradicts δ(t) being relatively prime to the
original ηi(t) = tη′i(t).
Thus A(t) and µ = t can be used in the Tits First Construction to produce

a 27-dimensional Jordan Albert division algebra which is a form of the split
Albert algebra Alb(Φ) over the algebraic closure Φ, because AΦ

∼= M3(Φ),
and the Tits Construction applied to a split M3(Ω) produces a split Albert
algebra Alb(Ω) (see Problem C.2 below). �
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C.6 Problems for Appendix C

Problem C.1 Show that Jord(A, µn(v)) ∼= Jord(A, µ) for any invertible
scalar µ and invertible element v ∈ A. In particular, the scalar can always
be adjusted by an invertible cube (just as the scalar in the Cayley–Dickson
Construction can always be adjusted by an invertible square).

Problem C.2 (1) Verify that the First Tits Construction applied to a split
matrix algebra produces (for any invertible scalar) a split Albert algebra,
Jord(M3(Φ), µ) ∼= Alb(Φ). [Hint: You can make your life easier by changing
to µ = 1, since every element of Φ is a norm in this case.] (2) Verify that when
Φ is a field, the First Tits Construction is preserved under scalar extension:
Jord(A, µ)Ω ∼= Jord(AΩ, µ⊗ 1) for any field extension Ω of Φ. (3) Show that
for central-simple degree–3 algebras over a field Φ, the First Tits Construction
always produces a form of a split Albert algebra. [Use the associative fact
that every central-simple degree–3 algebra A over a field Φ is a form of 3× 3
matrices, AΦ

∼=M3(Φ) over the algebraic closure.]

Question C.1 (1) Does the First Tits Construction respect scalar extension
for arbitrary rings of scalars, i.e., if A is a degree–3 algebra over Φ and Ω
is any scalar Φ-algebra, does AΩ remain a degree–3 algebra over Ω, with
Jord(A, µ)Ω ∼= Jord(AΩ, µ⊗ 1)?
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The Jacobson–Bourbaki Density Theorem

Since not all readers will have been exposed to the Density Theorem, we have
made our exposition (cf. Strict Simplicity Theorem II.1.7.1, Prime Dichotomy
Theorem III.9.2.1) independent of it. However, students should be aware of
this fundamental associative result, so we include a brief treatment here.
Throughout this appendix we will consider left modules over a Φ-algebra

R. This algebra need not be unital or commutative, and so is quite a different
beast than the scalars we have dealt with in the rest of the book. Most of the
interest here is the purely ring-theoretic case where Φ = Z and the underlying
Φ-module R is a mere abelian group under addition, but by allowing Φ to be
dragged along unobtrusively we can handle those cases where we want a fixed
underlying ground field (such as the reals or complexes).

D.1 Semisimple Modules

Recall that an R-module is called simple if it is non-trivial, R ·M  = 0, and it
has no proper submodules. A module is called semisimple if it is a direct sum
of simple modules. These are frequently called irreducible and completely
reducible modules respectively; we prefer to speak of irreducible and com-
pletely reducible representations, using the terms simple and semisimple to
refer to algebraic structures (in keeping with the terminology of simple groups
and rings).

The crucial fact we need about semisimple modules is their complemen-
tation property: as in vector spaces, every submodule N ⊆ M is a direct
summand and has a complement N′: M = N⊕N′. Indeed, this property is
equivalent to semisimplicity. In complete analogy with vector spaces, we have
the following powerful equivalence.
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Semisimplicity Equivalence Theorem D.1.1 The following are equivalent
for an R-module M :
(1) M is a direct sum of simple submodules (semisimple) :
(2) M is a sum of simple submodules;
(3) every submodule N has a complement which is a direct sum of simple
submodules;

(4) every submodule N has a complement.
These conditions are inherited by every submodule, every quotient module,
and all sums. Moreover, even though R need not be unital, we have RN = N
for all submodules N, in particular Rm = R̂m always contains m.

proof. (1) =⇒ (2) is clear. (2) =⇒ (3) is highly nontrivial, depending on
Zorn’s Lemma. Let {Mσ}σ∈S be the collection of all simple submodules ofM.
Choose a subset X ⊆ S maximal among those having the two properties

(i) S :=
∑

σ∈XMσ misses N, S ∩N = 0;

(ii) the submodules corresponding to the indices in X are
independent, Mσ ∩ (∑

τ �=σ∈XMτ

)
= 0.

Such maximal X exist by Zorn’s lemma since both properties are of “finite
type”: the union X = ∪Xα of a directed collection of such sets Xα again has
the two properties, since by directedness any finite set of indices σi ∈ Xαi

are contained in some Xβ , so any element m of S :=
∑

σ∈XMσ and any
(finite) dependence relation

∑
mσ = 0 lives in some Sβ , which by hypothesis

(i) misses N and by (ii) has the Mσ(σ ∈ Xβ) independent. [It is important
that we don’t just take directed sets of semisimple submodules missing N: to
make sure that the union is again semisimple, it is important to make sure
that we have a directed set of “bases” Xα as well.]

We claim that this S is a complement for N. By independence (i) we
certainly have S ⊕ N ⊆ M. To prove that it is all of M, it suffices by (2) to
show that S ⊕N contains each simple submodule Mτ of M. But if NOT, by
simplicityMτ  ⊆ S⊕N =⇒Mτ∩(S⊕N)  =Mτ =⇒Mτ∩S =Mτ∩(S⊕N) = 0
[by simplicity of Mτ ] =⇒ (S ⊕ Mτ ) ∩ N = 0 [if s + mτ = n  = 0 then
mτ = −s + n ∈ Mτ ∩ (S ⊕ N) = 0, hence s = n ∈ S ∩ N = 0 implies
s = n = 0, contrary to n  = 0]. This would produce a larger independent
direct sum S ⊕Mτ (larger set X ∪ {τ}) missing N, contrary to maximality.
Thus S is the desired complement for N.

Note that (3) =⇒ (1) is clear by taking N = 0, so we have a closed circle

(1)⇐⇒ (2)⇐⇒ (3).
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We prefer to show the stronger result that complementation alone implies
semisimplicity. Clearly (3) =⇒ (4), and we will complete the circle by showing
(4) =⇒ (2).

To squeeze consequences from (4) we need to show that this property is
inherited. If we have global complementation (4) in M then we have local
complementation in each submodule N  M: if P  N then M = P ⊕ P′ [by
global complementation], hence N = P ⊕ (P′ ∩ N) by Dedekind’s Modular
Law [n = p+ p′ =⇒ p′ = n− p ∈ N shows that N = P+P′ ∩N, and certainly
P∩(P′∩N) ⊆ P∩P′ = 0]. Similarly, we have complementation in each quotient
M :=M/N: any submodule ofM has the form P for P ⊇ N, so ifM = P⊕P′
globally then M = P ⊕ P′ in the quotient [the two span M, and they are
independent in the quotient since p = p′ =⇒ p′ ∈ P +N = P =⇒ p′ = 0 by
global independence of P,P′ in M]. Once we establish that semisimplicity is
equivalent to (2), it will be clear that semisimplicity is preserved by arbitrary
sums, and this will establish the assertions about heredity at the end of the
theorem.

We return to the problem of extracting the consequence (2) out of com-
plementation (4). Let N be the sum of all the simple submodules ofM (for all
we know at this stage, there may not be any at all, in which case N = 0), and
suppose N  =M, so some m  ∈ N. But any “avoidance pair” (m,N) consisting
of a submodule N  M and element m  ∈ N avoiding N (for example, N = 0
and m any nonzero element) gives rise to a simple submodule. Indeed, choose
any submodule P maximal among those containing N but missing m. An easy
Zornification shows such P exist (a union of a chain of submodules missing a
subset is always another submodule of the same sort). Then complementation
(4) givesM = P⊕P′, and we claim this complement P′ is simple. Indeed, if it
had a proper submodule Q′ then by the above inheritance of complementation
it would have a local complement, P′ = Q′ ⊕ Q, hence M = P ⊕ Q ⊕ Q′
where Q,Q′  = 0 =⇒ P ⊕ Q,P ⊕ Q′ > P; by maximality these larger sub-
modules cannot miss m, we must have m ∈ P ⊕ Q,m ∈ P ⊕ Q′ and hence
m ∈ (P ⊕Q ⊕ 0′) ∩ (P ⊕ 0 ⊕Q′) = P ⊕ 0 ⊕ 0′, contrary to our hypothesis
m  ∈ P. But the particular N we chose was the sum of all simple submodules,
so P′ ⊆ N ⊆ P, contradicting directness. This contradiction shows that there
is no such m, and N =M.

This establishes the equivalence of (1)–(4), and we have already noted
inheritance of semisimplicity by submodules. We have M ⊆ RM trivially for
simpleM [recall RM = 0 is explicitly ruled out in the definition of simplicity],
hence is true for direct sum of simples, i.e., for all semisimple modules, hence
all N  M. In particular, for the submodule generated by an element m we
have R̂m = RR̂m = Rm, establishing the last assertions of the theorem. �



504 Density Theorem

D.2 The Jacobson–Bourbaki Density Theorem

Recall that an associative algebra R is primitive iff it has a faithful irre-
ducible representation, i.e., a faithful simple module M. Then the left reg-
ular representation r �→ Lr is (by faithfulness) an isomorphism of R with
an algebra of ∆-linear transformations on a left vector space V = M over
∆ = EndR(M) (which by Schur’s Lemma is a division algebra). The Den-
sity Theorem describes approximately what this algebra of transformations
looks like: it is “thick” or “dense” in the full ring End∆(V ). More precisely,
we say an algebra of linear transformations is dense in End∆(V ) if for any
∆-independent x1, . . . , xn ∈ V and arbitrary y1, . . . , yn ∈ V there is an r ∈ R
with rxi = yi for i = 1, . . . , n. (Density can be interpreted as ordinary topo-
logical density of LR with respect to a certain topology on End∆(V ).)
Jacobson Density Theorem D.2.1 (1) An algebra is primitive iff it is
isomorphic to a dense ring of transformations on a vector space. (2) If M is
a simple left R-module, then V = M is a left vector space over the division
ring ∆ := EndR(M) and LR is a dense algebra of linear transformations in
End∆(V ).
proof. Density in (1) is certainly sufficient for primitivity, because then

R ⊆ End∆(V ) has a faithful representation (the identity) on V , which is irre-
ducible since Rx = V for any nonzero vector x ∈ V : x  = 0 is ∆-independent,
hence for any y ∈ V there is by density an r ∈ R with rx = y. Density in (1)
is necessary for primitivity by (2). The result (2) about simple modules will
follow from a more general density theorem for semisimple modules below. �

To describe the general setting, we need to reformulate density in terms
of double centralizers. For any independent set of k vectors xi and any k
arbitrary vectors yi in a left vector space V, there is a linear transformation
T ∈ End∆(V ) = CentV (L∆) = CentV (CentV (LR)) ⊆ EndΦ(V ) taking each xi to
the corresponding yi, T (xi) = yi. Thus the above density will follow if every
linear transformation T ∈ CentV (CentV (LR)) in the double centralizer agrees
at least locally with an element of R: for every finite-dimensional ∆-subspace
W ⊆ M we can find an element r ∈ R with Lr|W = T |W . Such double-
centralizer theorems play an important role in group representations as well
as ring and module theory. Moreover, as Bourbaki emphasized, Jacobson’s
somewhat tricky computational proof becomes almost a triviality when the
situation is generalized from simple to semisimple modules.

Jacobson–Bourbaki Density Theorem D.2.2 If M is a semisimple left
R-module, then M is a left R′-module and left R′′-module for the centralizer
R′ := CentM(FLR) and double-centralizer R′′ := CentM(R′) = CentM(CentM(LR)),
and for any finite set m1, . . . ,mk ∈ M and any R′-linear transformation
T ∈ R′′, there is an element r ∈ R with Lrmi = T (mi) for i = 1, . . . , k.
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proof. The case k = 1 is easy (for both Jacobson and Jacobson–Bourbaki
Density): by complementation D.1.1.4 we have M = Rm ⊕ P for a comple-
mentary R-submodule P, and the projection E(tm⊕p) := tm on Rm along P
belongs to R′ = EndR(M) [projection of a direct sum of R-modules on the first
factor is always R-linear], so T ∈ R′′ commutes with E and T (m) = T (E(m))
[remember that m ∈ Rm by D.1.1] = E(T (m)) ∈ E(M) ⊆ Rm implies
T (m) = rm for some r.
Now comes the elegant leap to the general case, where k elements are fused

into one. For any finite set m1, . . . ,mk ∈ M set m̃ = m1 ⊕ · · · ⊕mk ∈ M̃ :=
M⊕· · ·⊕M, and for any T ∈ R′′ set T̃ := T⊕· · ·⊕T on M̃. As a direct sum M̃
remains a left module over R̃ := R, hence a left module over R̃

′
:= CentM̃(LR̃)

and left module over R̃
′′
:= Cent M̃(Cent M̃(LR̃)). [Warning: while R̃ = R,

the centralizers R̃
′
, R̃

′′
are NOT the same as R′, R′′ as they are computed

in EndΦ(M̃) instead of EndΦ(M). For this reason we have re-christened R as
R̃ to denote its new elevated role on M̃.] We will show that T̃ ∈ R̃′′, i.e., T̃
commutes with all S ∈ R̃′ = EndR(M̃). If we denote the ith copy ofM in M̃ by
[M]i we have S([n]i) =

∑
j [Sji(n)]j (for Sji := F−1

j ◦Ej ◦S ◦Fi ∈ EndR(M) =
R′ as the composition of the canonical R-linear insertions Fk : M → [M]k
and projections Ek : M̃ → [M]k) since S([n]i) = SFi(n) = (

∑
j Ej)SFi(n) =∑

j(FjF
−1
j )EjSFi(n) =

∑
j FjSji(n) =

∑
j [Sji(n)]j . Thus we have T̃ (S(ñ) =

T̃
(
S(

∑k
i=1[ni]i)

)
= T̃

(∑
i,j [Sji(ni)]j

)
= (T ⊕ · · · ⊕ T )

(⊕
j [
∑

i Sji(ni)]j
)
=⊕

j [T
(∑

i Sji(ni)
)
]j =

⊕
j [
∑

i Sji(T (ni))]j [since T ∈ R′′ commutes with
Sji ∈ R′] = S

(⊕
i[T (ni)]i

)
= S

(
(T ⊕ · · · ⊕ T )(n1 ⊕ · · · ⊕ nk)

)
= S

(
T̃ (ñ)

)
.

Since M̃ is still semisimple by closure under sums in D.1.1, by the case
k = 1 there is r ∈ R̃ with rm̃ = T̃ (m̃), i.e., an r ∈ R with rmi = T (mi) for
each i. This finishes the proof of both density theorems. �

Exercise D.2.2 In the case of modules over a noncommutative ring, ifM is a left R-module
it is preferable to write the linear transformations T ∈ R′ = EndR(M) on the right of the
vectors in M, (x)T [so we have the “associativity” condition (rm)T = r(mT ) instead of the
“commutativity” condition T (rm) = rT (m)], and dually when M is a right R′-module we
write transformations in R′′ = EndR′ (M) on the left [so T (mr′) = (Tm)r′]. Because most
beginning students have not developed sufficient ambidexterity to move smoothly between
operators on the left and the right, we have kept our discussion left-handed. Try out your
right hand in the following situations. (1) Show that if V is finite-dimensional, the only
dense ring of linear transformations on V is the full ring End∆(V ). (2) Explain why in the
n-dimensional case V ∼= ∆n we have End∆(V ) ∼= Mn(∆op) instead of Mn(∆). (3) Show
that the dual space V ∗ = Hom∆(V,∆) of a left vector space carries a natural structure of
a right vector space over ∆ via fδ = Rδ ◦ f , but no natural structure of a left vector space
[Lδ ◦ f is not in general in V ∗]. (4) Show that for a left vector space V there is a natural
bilinear pairing on V ×V ∗ → ∆ [it is additive in each variable with < δx, f >= δ < x, f >,
< x, fδ > =< x, f > δ for all x ∈ V, f ∈ V ∗, δ ∈ ∆] via < x, f >= (x)f.
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Hints

Here we give hints (varying from unhelpful to mildly helpful to outright an-
swers) to the starred exercises at the end of each chapter in Parts II and
III.

E.1 Hints for Part II

Chapter 1. The Category of Jordan Algebras

Exercise 1.3.1: (1) This is clearly a homomorphism of non-unital algebras,
corresponding to the imbedding of a subalgebra in a larger algebra. (2) There
is no unital homomorphism M2(Φ) → M3(Φ) when Φ is a field. Indeed,
E11, E22 are supplementary orthogonal idempotents inM2(Φ), conjugate un-
der the inner automorphism ϕ(X) = AXA−1 for A = E12 + E21, so their
images e, e′ would have to be two conjugate supplementary idempotents in
M3(Φ), so they would both have the same integral rank r = 1 or 2, and
3 = rank(1) = rank(e) + rank(e′) = 2r, which is impossible. [In characteristic
0 we can use traces instead of ranks of idempotents, since trace(e) = r1 and
0  = n ∈ N =⇒ 0  = n1 ∈ Φ.]
Exercise 1.6.1B: Compute directly, heavily using the commutativity of c,
or use the identity [x, y, z]− [x, z, y] + [z, x, y] = [z, x]y+ x[z, y]− [z, xy] valid
in all linear algebras.

Exercise 1.6.3: (1) Reduce q.i. to inverse, then cancel T from T [T−1, S]T =
[S, T ] = 0. (2) Ker(T ), Im(T ) are S-invariant.

Exercise 1.7.1: The relation is shorter because the commutator and associ-
ators vanish for i = 1, whereM(x1) = 1 is central, so the relation must vanish
entirely; by independence of the ωi, this implies that the associators vanish
for each i. Once the M(xi) are scalars in Φ, they can be moved to the other
side of the tensor product, forming ω =

∑
γiωi.
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Exercise 1.8.5: (1) λ = 1 yields u+v = 0; hence λ2u+λ2v = 0 for any λ, so
subtracting λu+λ2v = 0 gives µu = 0 for all µ = λ−λ2. If λ = 1

2 , then µ = 1
4

is invertible with inverse 4. (2) f(x+ λz; y)− f(x; y)− λ3f(z; y) = λa+ λ2b
for a = f(x; y; z), b = f(z; y;x).

Problem 1.1: Consult Barry Mitchell The Theory of Categories, Academic
Press, New York, 1965, page 2. (1) Show that the left unit is unique; (2) iden-
tify the objects X with the identity maps e, e = 1X ; (3) defineMor(X,Y ) :=
1XM1Y ; (4) show thatM is the disjoint union of theMor(X,Y )’s, (5) show
that fg is defined iff f ∈ Mor(X,Y ), g ∈ Mor(Y,Z), i.e., the domain of f is
the codomain of g.

Problem 1.3: (1) By the universal property, any hull A1 = Φ1 + A is an
epimorphic image of Â, and a quotient Â/I′ faithfully contains A iff the
kernel I′ is disjoint from A. (2) Tightening is possible: maximal disjoint ideals
M′  Â exist by Zorn’s Lemma; A remains faithfully imbedded in the resulting
quotient Â/M′, and all nonzero ideals of the quotient hit A [by maximality of
M′]. (3) AnnA(A) is a pathological ideal, which is not permitted in semiprime
algebras. (4) Any disjoint ideal I′ has I′A + AI′ ⊆ I′ ∩ A [since both I′ and
A are ideals of Â] = 0 [by disjointness]. Then I′ is a subset of the ideal M′ =
AnnÂ(A), which is a disjoint ideal in the robust case (M′ ∩A = AnnA(A) =
0), so M′ is the unique maximal disjoint ideal.

Problem 1.4: (1) We noted that Â = Φ(1̂−1)�A, and Φ(1̂−1) = AnnÂ(A).
Here Â/M′ = A, so as expected Ã = A is its own tight unital hull. (2)
Â = Z1 ⊕ 2Z,M′ = Z(2 ⊕ −2) with Â/M′ consisting of all n1⊕ 2m =
(n+ 2m)⊕ 0 ∼= n+ 2m, so as expected the tight unital hull is Z.

Problem 1.5: (1) A is always an ideal in any unital hull. (2) Nonzero or-
thogonal ideals in Ã would have nonzero orthogonal traces on A. In Ã we
always have M′A = 0. Always M′ consists of all ω1 ⊕ −z(ω) for z(ω) ∈ A
with za = ωa = az for all a ∈ A; the set of such ω ∈ Φ forms a Φ-subspace
(i.e., ideal) Ω  Φ. In infinite matrices these z’s are just all ω1∞. (3) Nonzero
self-orthogonal ideals in Ã would have nonzero self-orthogonal traces on A.
An ω1⊕−z(ω) ∈M′ as above squares to 0 iff ω2 ⊕−ωz(ω) = 0, which means
that ω2 = 0 in Φ1 ⊂ Â; then Φω is a trivial ideal in Φ, and generates a trivial
ideal ωA in A if Φ acts faithfully on A. If Φ′ = Φ ⊕ Ω for a trivial Φ-ideal
Ω, then A becomes a Φ′-algebra via ΩA = 0, and Â has a trivial ideal Ω1 no
matter how nice A is as a Φ-algebra. (4) If z(ω) acts like ω1, then ω−1z(ω) is
already a unit for A. (5) If AnnΦ(A)1+M′ were a larger ideal, then it would
hit A, so some α1+m = a ∈ A, thus ax = αx+mx = mx ∈M′ ∩A = 0 and
dually, therefore a ∈ AnnA(A) = 0 by robustness.

Problem 1.6: (2) The maximum number of mutually orthogonal idempo-
tents in Mk(Φ) over a field is k, achieved when all the idempotents are of
“rank one” (eAe = Φe). If Mn(Φ) → Mm(Φ) is a unital homomorphism
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when Φ is a field, then the mutually conjugate supplementary orthogonal
idempotents E11, . . . , Enn in Mn(Φ) would be carried to mutually conju-
gate supplementary orthogonal idempotents e1, . . . en in Mm(Φ); by conju-
gacy each ei would have the same decomposition into r completely primi-
tive idempotents, hence would have integral rank r. But then we would have
m = rank(1) = rank(e1) + · · · + rank(en) = nr, which is impossible unless n
divides m.

Question 1.1: Think of the example in Problem 1.5.

Question 1.2: Almost never. It suffices if Ω itself is a Boolean ring of scalars,
and this is also necessary if B is free as a Φ-module.

Question 1.3: Outer ideals UĴI ⊆ I reduce to ordinary ideals in the presence
of 1

2 .

Chapter 2. The Category of Alternative Algebras

Exercise 2.5.1: KD(A, α2µ) → KD(A, µ) via ϕ(a + bm) = a + αbm′ has
ϕ(1) = 1, N ′(ϕ(a + bm)) = n(a) − µn(αb) = n(a) − µα2n(b) = N(a + bm),
ϕ
(
(a1+b1m)(a1+b1m)

)
= ϕ

(
(a1a2+α2µb̄2)+(b2a1+b1ā2)

)
= (a1a2+α2µb̄2)+

α(b2a1 + b1ā2)m′ = (a1 + αb1m
′)(a2 + αb2m

′) = ϕ(a1 + αb1m)ϕ(a2 + αb2m).

Exercise 2.6.1A: (2) Construct Zorn(R) = A ⊕ A? using A =
(

R RCe1
RCe1 R

)
spanned by E11 := ( 1 0

0 0 ) , E22 := ( 0 0
0 1 ) , E12 :=

(
0 Ce1
0 0

)
, E21 :=

( 0 0
Ce1 0

)
[which

is clearly isomorphic to M2(R)], and take ? =
(

0 Ce2
−Ce2 0

)
so N(?) = 1. Show

that ? ⊥ A. Compute the space A? as the span of
E11? =

(
0 Ce2
0 0

)
, E22? =

( 0 0
−Ce2 0

)
E12? =

(
0 Ce1
0 0

) (
0 Ce2
−Ce2 0

)
E21? =

( 0 0
Ce1 0

) (
0 Ce2
−Ce2 0

)
=

( 0 0
Ce1×Ce2 0

)
=

( 0 0
Ce3 0

)
, =

(
0 −Ce1×(−Ce2)
0 0

)
=

(
0 Ce3
0 0

)
.

Take B spanned by 1, i =
(

0 Ce1
−Ce1 0

)
, j =

(
0 Ce2
−Ce2 0

)
, k =

(
0 −Ce3
Ce3 0

)
[beware the minus sign in k!]; show that B is a copy of H, and Zorn(R) =
B+Bm for m =

(
1 0
0 −1

)
with m ⊥ B, N(m) = −1.

Exercise 2.6.1B: In C = KD(A, µ) itself we have an element m′ := αm with
C = A + Am′, N(A,m′) = 0, µ′ = −N(m′) = −α2N(m) = α2µ, so C also
equals KD(A, µ′).

Chapter 3. Three Special Examples

Exercise 3.1.D: By imbedding in the unital hull, we may assume that A is
unital, so the left regular representation x �→ Lx is by the left alternative law
an injective specialization A+ → EndΦ(A)+.

Exercise 3.2.2A: (3) Take A′ to be the algebra direct sum of A with a space
N with trivial product A′N = NA′ = 0 and skew involution n∗ = −n for all
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n; if A is unital and you want the extension A′ to remain unital with the
same unit, take N to be a direct sum of copies of the regular bimodule Ai

with skew involution and trivial products AiAj = 0.

Exercise 3.3.2: (1) To show that a basepoint-preserving isometry ϕ is an
algebra isomorphism, show that it preserves traces T ′(ϕ(x)) = T (x) and
hence involutions ϕ(x̄) = ϕ(x); then use the U–formula 3.3.1 to show that
ϕ preserves products (or use the Degree–2 Identity to show that it preserves
squares). To show that an algebra isomorphism is a basepoint-preserving isom-
etry, note that first that ϕ must preserve unit elements ϕ(c) = c′; then apply
ϕ to the Degree–2 Identity in J and subtract off the Degree–2 Identity ap-
plied to ϕ(x) in J′, to get [T ′(ϕ(x))− T (x)]ϕ(x) + [Q(x)−Q′(ϕ(x))]c′ = 0. If
ϕ(x) is linearly independent of c′ in J′, show that Q(x) = Q′(ϕ(x)). If ϕ(x)
is dependent on c′, show that x = λc, Q(x) = Q′(ϕ(x)) = λ2.

Problem 3.2: (1) The measures ∆(x, y) := ϕ(xy) − ϕ(x)ϕ(y), ∆∗(x, y) :=
ϕ(xy) − ϕ(y)ϕ(x) of homomorphicity and anti-homomorphicity satisfy the
relations ∆(x, y)∆∗(x, y) = ϕ

(
(xy)2 + Uxy

2 − {xy, y, x}) = 0.
Problem 3.4: u = αλ1− e, v = α1+λe, λ  = ±i, λ  ∈ R. Answer: α = − 1+λλ̄

1+λ2 .

Problem 3.7: (1) Linearizing x �→ x, c in Q(D(x), x) = 0 yields T (D(x)) = 0,
so D(x) = D(x̄) = −D(x). Thus D(Uxȳ) − Ux(D(ȳ)) − UD(x),x(ȳ) =
Q(D(x), x)y − (

Q(D(x), y) + Q(x,D(y))
)
x, and the two conditions suffice.

Conversely, for a derivation the vanishing of this last linear combination for
y independent of x forces each coefficient to vanish [or setting y = x forces
Q(D(x), x)x = 0; applying Q(D(x), ·) to this yields Q(D(x), x)2 = 0, so ab-
sence of nilpotents compels the term to vanish]. (2) T (1) = 1 ⇔ εD(1) =
0, Q(T (x)) = Q(x) for all x ∈ J⇔ εQ(D(x), x) = 0.

Chapter 4. Jordan Algebras of Cubic Forms

Exercise 4.1.0: (1) We have intrinsically determined A := N(x+y)−N(x)−
N(y) = N(x; y) +N(y;x), B := N(x + λy) −N(x) − λ3N(y) = λN(x; y) +
λ2N(y;x), C := λ2A−B = −λ(1− λ)N(x; y).

Exercise 4.3.3A: (1) Use the c–Sharp Identity and T (c) = 3. (2) Use Trace–
Sharp, the c–Trace Formula, and the definition of T.

Exercise 4.3.3B: From Bullet Symmetry deduce V ∗
x = Vx, U∗

x = Ux [as-
suming you know that Ux = 2L2

x − Lx2 , or else directly from the definition
of Ux using Sharp Symmetry], V ∗

x,y = (VxVy − Ux,y)∗ = VyVx − Ux,y = Vy,x
[or use Sharp Symmetry and the recipe 4.2.2(2) for the triple product to
see that T ({x, y, z}, w) − T (z, {y, x, w}) = T (x, y)T (z, w) + T (z, y)T (x,w) −
T (x#z, y#w)− T (y, x)T (z, w)− T (w, x)T (z, y) + T (z#x, y#w) = 0].

Exercise 4.3.3D: (1) x#Uxy = x#(T (x, y)x − x##y) = 2T (x, y)x# −
[N(x)y + T (x, y)x#]. (2) {Uxy, z, x} − Ux{y, x, z} =

(
T ((2 − 1)Uxy, z)x +
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T (x, z)[T (x, y)x − x##y] − [x#Uxy]#z
) − (

T (x, Vy,xz)x − x##{y, x, z}) =
T ([2Uxy−T (x, y)x+x##y+T (x, y)x−Vx,yx], z)x− [T (x, y)x#−N(x)y]#z−
x##[T (x, z)y−{y, x, z}] = T (x##y, z)x+N(x)y#z−x##[T (x, y)z+T (x, z)y−
{y, x, z}] = T (x#, y#z)x+N(x)y#z − x##[x#(y#z)] = 0.

Problem 4.1: (1): Set x = 1 in the V U -Commuting Identity to get V1,y =
Vy,1 or (acting on x) using U1 = 1X . (2) Set y = 1 in the V U -Commuting
Identity. (3): Apply the V U -Commuting Identity to 1 to get Ux,x2 = UxVx,
linearize x �→ x, 1 to get U1,x2 + 2Ux,x = Ux,1Vx + UxV1, and use Ux,x =
2Ux, V1 = 21X .

Problem 4.2: (1): Use the c-Sharp Identity and 1
2 for the first, the c-Sharp

Identity for the second. (2) For Adjoint′, linearize the strict Adjoint Identity;
for U–x–Sharp, use Sharp Symmetry and Adjoint′ Ux(x#y) = T (x, x#y)x −
x##(x#y) = 2T (x#, y)x − [N(x)y + T (x#, y)x] = T (x#, y)x − N(x)y.
(3) For Dual Adjoint′ use Sharp Symmetry to move T (Adjoint′(y), z) =
T (y,Dual Adjoint′(z)), then use nondegeneracy. (4) Compute

(
Vx,yUx −

UxVy,x
)
z = {x, y, Uxz} − Ux{y, x, z} =

(
T (x, z){x, y, x} − {x, y, x##z}) −

Ux

(
T (z, x)y + T (y, x)z − x#(y#z)

)
=

(
2T (x, z)Uxy − T (x##z, y)x −

T (x, y)x##z + y#[N(x)z + T (x, z)x#]
) − (

T (x, z)Uxy + T (x, y)Uxz −
[T (x#, y#z)x − N(x)y#z]

)
[using the above formulas for x#(x##z) and

Ux(x#(y#z))] = −T (x, y)[Uxz + x##z] + T (x, z)[Uxy + y#x# [by Sharp
Symmetry for T (x##z, y)] = −T (x, y)[T (x, z)x] + T (x, z)[T (x, y)x] = 0.

Problem 4.4: (2) Show that (A3) implies that ∆(x)ϕ(x) = 0 for ∆(x) :=
N(ϕ(x))−N(x), and (A1), (A2) imply ∆(x+ty) = ∆(x)+t3∆(y). These con-
tinue to hold in any extension, so linearized Adjoint in J[t] yields ∆(x)ϕ(y) = 0
for all x, y.

Problem 4.5: (1) If αc = 0, then α3 = N(αc) = 0, and take ε := α2 (unless
α2 is already zero, in which case take α). (2) T (c) = 3 = 0 guarantees that
N ′(c) = 1, T (x+λy)3 = T (x)3+λ3T (y)3 guarantees that N ′(x; y) = N(x; y),
so T ′ = T, S′ = S, #′ = # remains a sharp mapping, and the Adjoint Identity
holds because εJ = 0. (3) x = e1 + e2, y = e3 = x# = y2 have T (x) =
2, T (y) = T (x#) = T (y2) = 1, N(x) = N(y) = 0, so N ′(x) = −ε,N ′(y) = ε,
and therefore N ′(x)2 = N ′(y)2N ′(c) = 0 but N ′(x#) = N ′(Uyc) = ε  = 0.

Chapter 5. Two Basic Principles

Exercise 5.3.3: UT (z) = TUzT
∗ vanishes on Ĵ or J, respectively, since Uz

does.

Problem 5.2: (1) If UzI = 0, then any Uzâ is trivial in J by UUz âĴ =
UzUâUz ⊆ Uz(UĴUIĴ) ⊆ UzI = 0. (2) Show that if z ∈ K, then all w ∈ Uz(Ĵ)
are trivial, using the Fundamental Formula to show that Uw(Ĵ) ⊆ UzK ⊆
UKK = 0; either some w  = 0 is trivial or else all w = 0 and z itself is trivial.
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Problem 5.3: By induction, with M1 = 1J,M2 = Vx, find a formula for
Mn+2. [Answer: UxMn + Vx,xn .]

Problem 5.4: (3) For an example where nondegeneracy of H(A, ∗) doesn’t
force nondegeneracy of A, choose A2 to be trivial and skew, so that it con-
tributes nothing to H.
Problem 5.5: (1) If I is a trivial ideal, I I = 0, then also I∗ I∗ = 0∗ = 0,
so I + I∗ is a nilpotent ∗-ideal: (I + I∗)2 = (I)(I∗) + (I∗)(I) ⊆ I ∩ I∗ and
(I + I∗)3 = (I + I∗)(I ∩ I∗) = 0. (2) A nonzero trivial ∗-ideal I would have
I∩J a nonzero trivial Jordan ideal. (3) A skew ideal certainly misses H when
1
2 ∈ Φ. Conversely, if z lies in a ∗-ideal I missing H, then all z+z∗, ∈ H∩I = 0
implies z∗ = −z, and all elements of I are skew. (4) For J = H, there is a
unique maximal skew ideal (the sum of all such).

Question 5.3: [x) is only a weak inner ideal since it needn’t contain
x2 = Ux1̂ ∈ U[x)Ĵ. We have inclusions U[x)Ĵ ⊆ (x], U[x)J ⊆ (x) by
Uαx+Uxa = UxBα,−a,x, (x) is contained in both [x) and (x], which in turn are
both contained in [x].

Question 5.4: Yes, yes. The associative algebra A can’t have trivial multi-
plication since already the Jordan algebra inside it has nontrivial products;
any nonzero ideal I has a nonzero intersection with J, which is itself an ideal
in J. Then this intersection J ∩ I must be all of J, so J ⊆ I. By definition of
cover, J generates all of A as associative algebra, so A ⊆ I, thus I = A and
A is simple. [Similarly for ∗-simplicity.]

Chapter 6. Inverses

Exercise 6.1.4: (1) x = α1̂ + βε has UxĴ = 0 if α = 0; otherwise, x =
α(1̂ + α−1βε) is invertible with x−1 = α−1(1̂ − α−1βε). (2) Let b  = 0 be
an arbitrary nonzero element of A. Show that (i) bÂb  = 0 so bÂb = A; (ii)
b = bcb for some c ∈ A, so bAb = A; (iii) bca = a = acb for all a, hence
bc = cb = 1 is a unit element for A; (iv) conclude that A is unital and all
nonzero elements are invertible. [Subhints for (i)–(iv): (i) else B := Φb would
be inner, Φb = A, and AA = Φbb = 0; (ii) b = bâb ⇐ b = bcb for c = âbâ ∈ A;
(iii) write a = ba′b; (iv) if A has a left unit and a right unit, they coincide
and form the (unique) unit.]

Exercise 6.1.7: (1) Ux is invertible from (Q2) and the Fundamental Formula.
(2) Ux(xn • y) = Ux(xn−1) for n = 1, 2 [using (Qn)] since Lxn commutes with
Ux. (3) (L1)–(L2) =⇒ Uxy = x as in (Q1); x2 • y2 = 1 from [x2, y, y] = −2[x•
y, y, x] [linearized Jordan identity (JAX2)′] = 0; then x • y2 = (x2 • y) • y2 =
(x2 • y2) • y = y, so Uxy

2 = 1 as in (Q2) (or 0 = 2[y2, x, x] + 4[y • x, x, y] −
[x2, y, y]− 2[x • y, y, x] = Uxy

2 − 1).
Problem 6.1: (1) u2 = 1 iff e := 1

2 (u + 1) =
2
4 (u + 1) =

1
4 (2u + u2 + 1) =(

u+1
2

)2 =: e2.
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Problem 6.2: Cancel Ux from Vx,x−1Ux = UUxx−1,x = 2Ux to get Vx,x−1 =
21J. Then compute D(x) = D(Uxx

−1) = 2D(x) + UxD(x−1).

Problem 6.3: (1) D(y) = D(y2x) = Ly2D(x) + VyRxD(y), where D(y)x =
D(yx)− yD(x) = −LyD(x). (2) For nuclear y we have LyVy − Ly2 = LyRy.

Question 6.1: (1) If x satisfies q(t), we can scale so the constant term is 1,
then write q(t) = 1 − tp(t); try y = p(x). (2) No — all commutative Jordan
algebras are ncJa’s, and elements x of Jordan algebras of quadratic forms have
many “inverses” x • y = 1.

Chapter 7. Isotopes

Exercise 7.2.1A: The Inverse Condition requires only the Fundamental For-
mula, but the Linear Inverse Condition requires the formula {y, x−1, Uxz} =
{y, z, x}.
Problem 7.2: (1) Example of orthogonal non-automorphism: think of T =
−1J. [This is an automorphism of the Jordan triple system, but not of the
Jordan algebra.] (7) If T (1) = x2, try Ux.

Problem 7.3: For associativity, [x, y, z]u = u(uxy)z−ux(uyz) = u[u, x](yz)+
u[x, y, z] vanishes identically iff A is associative and u lies in the center of A.
For unitality, the element u−1 is always a left unit, but is a right unit iff u lies
in the center: xuu−1 = uxu−1 = [u, x]u−1 + x.

Question 7.1: (1) Verify, either directly from the definitions or in terms of

J(ũ) as a subalgebra of J̃
(ũ)

, that Proposition 7.2 still holds. (2) Let J be the
finite matrices in the algebra of all infinite matrices, or the transformations
of finite rank in all linear transformations on an infinite-dimensional vector
space, and u an invertible diagonal matrix (the case u = 1 gives the original
J, u = α1 gives an “α-isotope,” and non-constant diagonal u give complicated
isotopes).

Chapter 8. Peirce Decompositions

Exercise 8.1.2: Use the formulas Ux = 2L2
x −Lx2 , Ux,y = 2(LxLy +LyLx −

Lx•y) for x, y = e, e′. [Answer: E2 = −Le + 2L2
e = −Le(1J − 2Le), E1 =

4Le − 4L2
e = 4Le(1J − Le), E0 = 1J − 3Le + 2L2

e = (1J − Le)(1J − 2Le).]

Exercise 8.1.3: (3) e ↔ u is a bijection with involutory elements, but
u ↔ U = Uu is not bijective between involutory elements and involutory
automorphisms: e and 1 − e have the same u up to sign, u(1− e) = −u(e),
and ±u have the same U .

Chapter 9. Off-Diagonal Rules

Exercise 9.2.2A: (1) Use the Peirce U–Product Rules 8.2.1 and x2
1 = Ux1ei+

Ux1ej . (2) Use (1), the Commuting Formula (FFII), and the Eigenspace
Laws 8.1.4, since J1(e) = J1(1 − e). (3) Use the Peirce U–Formulas,
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Triple Switch, and the Peirce U–Product Rules. (4) Use (1) and (FFI).
(5) Use the Peirce U–Product Rules to show that 0 = Ei (2Ux1(ai)) =
Ei

({x1, {x1, ai}} − {x2
1, ai}

)
= qi(x1, {x1, ai}) − {qi(x1), ai}, so that we

have (5a) qi(x1, {x1, ai}) = Vai
qi(x1); from this show that we have (5b)

2Uaiqi(x1) =
(
V 2
ai

− Va2
i

)
qi(x1) = Vaiqi({ai, x1}, x1) − qi({a2

i , x1}, x1) =(
qi({ai, x1}, {ai, x1})+qi({ai, {ai, x1}}, x1)

)−qi({a2
i , x1}, x1) = 2qi({ai, x1}).

Exercise 9.2.3: (1) One way is to use 9.2.2(1) on the element z1 + tx1 in
J[t] for z1 ∈ Rad(qj), x1 ∈ J1 to get qi(z1) = 0, qi(z1, x1)2 = Uz1qj(x1), z2

1 =
0, qi(z1, x1)4 = 0. (2) Use 9.2.2(2) in Ĵ to show that a radical z1 is trivial;
to show that a trivial z1 is radical, qi(z1, y1) = 0, use the general identity
{y, z}2 = {y, Uz(y)}+ Uy(z2) + Uz(y2).

Chapter 11. Spin Coordinatization

Exercise 11.4.1: (1) Use the Commuting Formula to show that UxVx2 =
Ux3,x. Then apply U−1

x on the left and right, and use the Fundamental For-
mula.

Chapter 12. Hermitian Coordinatization

Exercise 12.1.1: (1) {a2, v} = {q0(v), a0, v} for a0 := U−1
v a2. (2) v−1 ∈

D2(v) +D0(v) because v−1 = v−2 • v ∈ D2(v) +D0(v).

Exercise 12.2.1A: (1) For any x1 ∈ J1 set y1 := U−1
v x1. Then we have that

{Uvai, {uj , Uvy1}} = {Uvai, uj , Uvy1} = Uv{ai, Uvuj , y1} = Uv{ai, ei, y1} =
UvVaiy1. (2) T �→ UvTU

−1
v is an (inner) automorphism of linear transforma-

tions on J1, and maps the generators (hence all) of Di into Dj ; the reverse
inclusion holds by applying this to the invertible element v−1.

Exercise 12.2.1B: (1) VUv(ai)(v) = Vqi(v)Vai
(v).

Chapter 13. Multiple Peirce Decompositions

Exercise 13.1.3A: Multiply EA + AE = 0 on the left and right to get
EA = −EAE = AE; then get 2EA = 2AE = 0. From the linearizations (i)
Ux2 = U2

x , (ii) Ux2,{x,y} = UxUx,y+Ux,yUx, (iii) Ux2,y2+U{x,y} = {Ux, Ux,y}+
U2
x,y, (iv) Ux2,{y,z}+U{x,y},{x,z} = {Ux,y, Ux,z}+{Ux, Uy,z} show that (i) =⇒
(1), (ii) =⇒ (4), (iii) =⇒ [(2) ⇐⇒ (3)], (iv) =⇒ [(5) ⇐⇒ (6)]. Show that
(3) =⇒ (2), (5), (7) because e ⊥ f, g, f + g; e, f, e + f ⊥ g, h, g + h. Multiply
(iii) by Ue and use (4) and Uef = 0 to get (3).
The general identity follows from the Macdonald Principle; (2) follows

directly since Vei,ej = 0, Ueiej = 0 by Peirce Orthogonality, where we have
ei ∈ J2, ej ∈ J0 relative to e = ei.

Exercise 13.1.3B: (1) In the expansion ofE(t)E(t3) = E(t4) (i) one variable
t8i arises only for {i, j} = {k, ?} = {i} equal sets of size 1; (ii) two variables
t2i t

6
k arise only if {i, j} = {i}, {k, ?} = {k} are disjoint sets of size 1; (iii) two
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variables tit7j arise only if {i, j} of size 2 contains {k, ?} = {j} of size 1; (iv)
two variables t5kt

3
� arise only if {i, j} = {k} of size 1 is contained in {k, ?} of

size 2; (v) three variables t2i t
3
kt

3
� arise only if {i, j} = {i} of size 1 is disjoint

from {k, ?} of size 2; (vi) three variables titjt
6
k arise only if {i, j} of size 2

is disjoint from {k, ?} = {k} of size 1; (vii) two variables t4i t
4
j arise only if

{i, j} = {k, ?} are equal of size 2; (viii) three variables tit
4
j t

3
� arise only if

{i, j} of size 2 overlaps {k, ?} = {j, ?} of size 2 in precisely one element; (ix)
four variables titjt3kt

3
� arise only if {i, j}, {k, ?} are disjoint sets of size 2.

Exercise 13.6.0: When n = 0,∆ = 1; ∆n =
∏

n≥i>j≥1[ti − tj ] =∏
n>j≥0[tn−tj ]·∆n−1; check that the extremely monic tn−tj are nonsingular.

Problem 13.1: (1) If we use S ↔ T to indicate that the operators S, T
commute, show that Vx, Vx2 , Ux ↔ Vx, Vx2 , Ux; show that Uxy = x2 • y; show
that UUxy,y = Vx2Uy; show that U{x,y,1} = (2Ux+V 2

x −Vx2)Uy. (3) Macdonald.
(4) Le = Le2 commutes with Lf = Lf2 because e ∈ J2(e), f ∈ J0(e), and use
Peirce Associativity 9.1.3 and Orthogonality 8.2.1(4).

Problem 13.2: (4) Try any x, y ∈ A := εA′ for ε ∈ Φ with ε3 = 0.

Chapter 14. Multiple Peirce Consequences

Exercise 14.4.1: (1) By Peirce Orthogonality 13.3.1(3) x•y =∑
i xii •yii =∑

i ei = 1, x2 • y =
∑

i x
2
ii • yii =

∑
i xii = x. (2) Taking the component

in Jii of 1 = x • y =
∑

i xii • yii +
∑

i<j(xii + xjj) • yij , x = x2 • y =∑
i x

2
ii • yii +

∑
i<j(x

2
ii + x2

jj) • yij gives ei = xii • yii, xii = x2
ii • yii.

Chapter 15. Hermitian Symmetries

Exercise 15.1.3: (1) In 15.1.1, the Supplementary Rule (1) and h2
ii = hii

in (2) hold by definition; show that hij ∈ Jij so {hii, hij} = hij . (2) Deduce
Hermitian Orthogonality (3) from Peirce Orthogonality. (3) Establish h2

ij =
hii + hjj (i  = j) by considering the cases (1) i or j equal to 1, (2) for i, j, 1
distinct. (5) Establish {hij , hjk} = hik by considering separately the cases (i)
(j = 1) {v1j , v1k}, (ii) (i = 1  = j, k) {hij , hjk} = {v1j , {v1j , v1k}}, (iii) (dually
if i, j  = 1 = k), (iv) (i, j, k, 1  =) {hij , hjk} = {{v1i, v1j}, {v1j , v1k}}.
Exercise 15.2.1A: The explicit actions in (2) [except for U ij on Jij ] and (3)
involve only the hij and xk� in distinct Peirce spaces.

Exercise 15.2.1B: For Index Permutation (3), if {k, ?}∩{i, j} has size 0, we
have U (ij) = 1 on hk� by Action (2); if {k, ?}∩{i, j} = {i, j} has size 2, we have
U (ij)hk� = Uhijhij [by (2)] = hij ; and if {k, ?}∩{i, j} = {j} has size 1 (dually
if {k, ?} ∩ {i, j} = {i}), then by (2) U (ij)hk� = Vhijhj� = {hij , hj�} = hi�.

Chapter 16. The Coordinate Algebra

Exercise 16.1.3A: 1L = e being a left unit implies 1R = e∗ is a right unit,
and always if 1L, 1R exist they are equal and are the unit, so e = e∗.
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Exercise 16.1.3B: (1) δ0(a11) = Uh12Vh12(a11) = Uh2
12,h12

(a11) =
{a11, h12} = δ0(a11). (2) d · d̄ = {U (23)(d),U (13)U (12)(d)} =
{U (23)(d),U (23)U (13)(d)} becomes U (23){d,U (13)(d)} = U (23){d, {d, h13}} =
U (23){d2, h13} = U (23){q11(d), h13} = {q11(d),U (23)(h13)} =
{q11(d), h12} = δ0(q11(d)). (3) δ0(a11) · d = {U (23)({a11, h12}),U (13)(d)} =
{{a11, h13},U (13)(d)} = {a11, {h13,U (13)(d)}} = {a11,U (13)U (13)(d)} =
{a11, d}. (4) δ0(a11) · δ0(a11) = {a11, δ0(a11)} = {a11, {a11, h12}} =
{a2

11, h12} = δ0(a2
11). (5) δ0(a11) = 0 ⇐⇒ 0 = q11(h12, {h12, a11}) =

{a11, q11(h12)} = {a11, h11} = 2a11 ⇐⇒ 0 = a11.

Chapter 18. Von Neumann Regularity

Exercise 18.1.2: (1) Uxy := Ux(Uzx) = UxUzUxz = UUxzz = Uxz = x
and Uyx := Uz(UxUzx) = Uzx = y. (2) vNr 18.1.2 shows that x is vNr iff
[x] ⊆ (x). Always (x) ⊆ (x] and (x) ⊆ [x) ⊆ [x].
Question 18.1: Yes: v = T−1(1) has 1J = UT (v) = TUvT

∗ so UvT
∗ =

T−1 invertible implies that Uv is surjective, therefore v invertible, hence Uv

invertible, so T ∗ = U−1
v T−1 is invertible too. Then u = T (1) has Uu = TT ∗

invertible, so u is invertible.

Question 18.2: (1) Expand UT̂ (α1+x) = T̂
(
α21+αVx +Ux

)
T̂ ∗ evaluated on

β1 + y, and collect coefficients of like αiβj .
[
Answer: (1) (α0β0) : TUxT

∗y =
UT (x)y (i.e., the given structural linkage), (α1β0) : TVxT ∗ = Ut̂,T (x) [=
τVT (x) + Ut,T (x)], (α2β0) : TT ∗ = Ut̂ [= τ21J + τVt + Ut], (α0β1) : T (x)2 =
T (Uxt̂

∗) [= τT (x2) + T (Uxt
∗)], (α1β1) : Vt̂T = TVt̂∗ [VtT = TVt∗ ], (α2β1) :

T̂ (t̂∗) = t̂2 [T (t∗) = τt+ t2]
]
. (2) Combine the conditions of (1) for T and for

T ∗.

Chapter 19. Inner Simplicity

Exercise 19.2.1B: (1) The element b is paired with c = (1+d)b(1+d) because
bcb = b(1+d)b(1+d)b = bdbdb (by nilpotence b2 = 0) = b (by pairing bdb = b)
and cbc = (1+d)b(1 + d)b(1 + d)b(1+d) = (1+d)b(1+d) (by the above) = c. So
far we have used only b2 = 0, but to get c2 = 2c we need to assume that d2 = 0
too: c2 = (1+d)

(
b(1 + d)2b

)
(1+d) = (1+d) (b(1 + 2d)b) (1+d) (by nilpotence

d2 = 0) = (1+d) (2bdb) (1+d) (by nilpotence b2 = 0) = 2(1+d) (b) (1+d) = 2c.
Therefore e = 1

2c is idempotent with (e] = (c] structurally paired with (b] by
Principal Pairing 18.2.5, and again e is a simple idempotent.

Chapter 20. Capacity

Problem 20.1: (1) x ∈ J0(e + en+1), e ∈ J2(e + en+1) =⇒ {e, x} = 0 by
Peirce Orthogonality. (2) en+1 ∈ J0(e) ∩ J2(e+ en+1).

Problem 20.2: (1) Replace J by J2(e1+e2), which remains nondegenerate by
Diagonal Inheritance 10.1.1(1). (2) Use 19.2.1(2). (3) Use 9.2.2(1), qi(x1)2 =
Ux1qj(x1). (4) Use nondegeneracy. (5) Any v with q2(v)  = 0 automatically
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has q0(v)  = 0 as well [using (3)], hence qi(v) are invertible in the division
algebras Ji, so v2 [hence v] is invertible.

Problem 20.3: (3) Use the identity v2 = {vij , vjk}2 = {vij , Uvjk
(vij)} +

Uvjk
(v2

ij) + Uvij
(v2

jk) [by Macdonald].

Problem 20.4: (1) Uei
K  = 0 =⇒ ei ∈ K =⇒ all ej ∈ K =⇒ 1 ∈ K. (2)

Work with e = ei in the nondegenerate subalgebra J′ = J2(ei + ej) where
Uei,ej

K = K1; show that (1) =⇒ all qr(K1) = 0 =⇒ UK1(J
′) = 0 [using the

q-Properties Proposition 9.2.2(3)] =⇒ K1 = 0 [using nondegeneracy].

Chapter 21. Herstein–Kleinfeld–Osborn Theorem

Exercise 21.1.1: (2) Left alternativity implies that x �→ Lx is a monomor-
phism A+ → End(Â)+ of linear Jordan algebras, hence automatically of
quadratic Jordan algebras when 1

2 ∈ Φ, where 2Uxy := x(xy + yx) + (xy +
yx)x− (x2y + yx2) = 2x(yx) by Left and linearized Left Moufang.

Exercise 21.2.1B: Its square b2 is symmetric and still invertible, hence with
symmetric inverse, so b−1 = (b2)−1b ∈ HB ⊆ B.
Exercise 21.2.2: For norm composition (4),

(
n(xy)−n(x)n(y)

)
1 = n(xy)1−

(n(x)1) (n(y)1) = (xy)(xy)− (xx̄)(n(y)1) = (
[x, y, xy]+x(y(ȳ x̄))

)−x(n(y)x̄)
[since is an involution and n(y) is a scalar] = −[x, y, xy] − x[y, ȳ, x̄] [re-
moving a bar] = −[x, y, xy] − x[y, y, x] [removing two bars] = [x, xy, y] − 0
[by alternativity] = (x2y)y − x(xy2) [by alternativity] = x2y2 − x2y2 [by al-
ternativity again] = 0. For Kirmse (5), n(x)y − x̄(xy) = [x̄, x, y] = −[x, x, y]
[removing a bar] = 0 [by left alternativity], and dually on the right.

Problem 21.1: (I)(3) Some commutator γ = [α, β] ∈ ∆ is invertible,
so H generates (γ−1, γ−1) ((α, α)(β, β)− (βα, βα)) = (1, 0), also (1, 1) −
(1, 0) = (0, 1), so all (δ, δ)(1, 0) = (δ, 0) and (δ, δ)(0, 1) = (0, δ), hence all
of (∆, 0) + (0,∆) = (∆,∆) = D. (II) An associative division algebra ∆ with
non-central involution is symmetrically generated by Step 4 of the proof of
Herstein–Kleinfeld–Osborn 21.3.1. (III) H(D,−) equals the ∗-center Ω, and
the subalgebra generated by H is Ω, so D is symmetrically generated iff
D = H, i.e., iff the involution is trivial.
Problem 21.2: (2) By (1) we know zD = Dz = Dz. For right idealness
(zx)y = z(yx) of zD (dually left idealness of Dz), argue that (zx)y = ȳ(zx) =
−z(ȳx) + (ȳz + zȳ)x = −z(ȳx) + (z(y + ȳ))x = z(−ȳx + (y + ȳ)x) = z(yx).
For triviality, use the Middle Moufang Identity (zx)(yz) = z(xy)z, valid in all
alternative algebras, or argue directly that (zx)(yz) = z((yz)x) = z((zȳ)x) =
z(z(xȳ)) = z2(xȳ) = 0.

Problem 21.3: (4) Use (3) to show that [N ,N ] = 0: either recall 21.2.1(4), or
prove it from scratch using a hiding track [hidem in an associator till the coast
is clear: nm[x, y, z] = n[mx, y, z] = [mx, y, z]n = m[x, y, z]n = mn[x, y, z].
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Problem 21.4: (5) For zz̄ = z̄z = 0, note that they can’t both be invertible
by (4), and if one is zero, so is the other by (1) with x, y taken to be z, z̄. For
zHz̄ = 0, show that it lies in H and kills z, or is not invertible by (1) with
x = hz, y = z̄. (6) Otherwise, if xy = 0 then I := D̂xD̂,K := D̂yD̂ would be
nonzero ideals which kill each other, while if xy  = 0 then I := D̂xyD̂ would
be a nonzero ideal which kills itself.

Problem 21.6: (1) It suffices to prove L; from Left and Middle Moufang
LxL

2
yLx = Lxy2x = L(xy)(yx) = L1 = 1A shows that Lx has both a left and

right inverse, hence is invertible, so from LxLyLx = Lxyx = Lx we can cancel
to get LxLy = LyLx = 1A.

Chapter 22. Osborn’s Capacity–Two Theorem

Exercise 22.1.1B: (1) Use the U1q-Rule 9.2.2(2) twice to show that
q0([Va2 , Vb2 ]x1, y1) = q0(x1, [Vb2 , Va2 ]y1). (2) Use the U1q-Rule 9.5(2) again,
together with Peirce Specialization 9.1.1 on the Jordan product [a, b]2

to compute (setting z1 := [[a2, b2], x1]) that 2q0(z1) = q0(z1, z1) =
q0([Va2 , Vb2 ]x1, z1) = q0(x1, [Vb2 , Va2 ]z1) = q0

(
x1,−[Va2 , Vb2 ]

2(x1)
)
=

−q0
(
x1, V[a2,b2]2(x1)

)
= −{x1, [a2, b2]2, x1} = −2Ux1 [a2, b2]2.

Chapter 23. Classical Classification

Exercise 23.1.2: In II.7. Problem 7.2 you were to show that structural trans-
formations are just the isomorphism between isotopes, so isomorphism classes
of isotopes correspond to conjugacy classes of invertible elements under the
structure group. Here we are concerned with the orbit of 1: T (1) = 1(u) = u−1

imples J ∼= J(u). (1) Here T is structural with T ∗(y) = αa∗ya. (2) If v = u−1

has v = bb∗, then u−1 = αaa∗ for α = 1, a = b. (3) If γi = didi then
Γ−1 = aa∗ for a = diag(d1

−1
, . . . , dn

−1
). (4) In (i) D = Ex(B), all symmet-

ric γ = (β, β) = (β, 1) (β, 1)ex are norms; in (ii) D = M2(Ω), all symmetric
( ω 0

0 ω ) =
(

0 ω−1 0
) (

0 ω−1 0
)
.

E.2 Hints for Part III

Chapter 1. The Radical

Exercise 1.3.2: Try z = −1.
Exercise 1.4.3: Check that the given proof of 1.4.3(2) uses only weak struc-
turality.

Exercise 1.5.1: (2) Show that γ is structural with γ∗ = γ.

Exercise 1.7.3: By nondegeneracy, J has no nonzero weakly-trivial elements
z ((z) = UzJ = 0), so run the argument with principal (z]’s replaced by open
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principal (z)’s. Note that we wind up with true vNrity, y ∈ (y), instead of the
(“weak” but equivalent) vNrity y ∈ (y].
Problem 1.1: (1) The infinite series converges in the complete vector space,
since ‖x‖ = ρ < 1 implies ‖xn‖ ≤ ρn where

∑∞
0 ρn = 1

1−ρ < ∞. (2) If
‖x‖ < α then ‖y‖ < 1 for y := α−1x implies 1 − y and α(1 − y) = α1 − x
are invertible. (3) It suffices if 1− u−1v is invertible, and here ‖1− u−1v‖ =
‖u−1(u− v)‖ ≤ ‖u−1‖‖u− v‖ < 1.

Problem 1.2: Since the quasi-inverse is unique, it suffices to check that∑
n=0 t

nxn is indeed the inverse of 1̂ − tx in the formal power-series algebra
Ĵ[[t]].

Problem 1.4: Show that (x, y) q.i. in J(z) iff x is q.i. in (J(z))(y) by J(Uzy) =
(J(z))(y), and also iff {x, y}(z) − U

(z)
x y(2,z) q.i. in J by 1.4.2(4)(vi).

Problem 1.5: Set v := u−1 for typographical convenience. (1) u−x = 1(v)−x
is invertible in J iff it is in J(v), i.e., iff x is q.i. in J(v). (2) Apply (1) to u = 1̂−y
in the unital hull.

Problem 1.7: (1) If f is homogeneous of degree di in xi, set J̃ = Ĵ ⊗
Φ[ε1, . . . , εn], where εdi+1

i = 0 [realized as Ĵ[t1, . . . , tn]/〈td1+1
1 , . . . , tdn+1

n 〉],
so that ui := 1 + εixi is invertible in J̃. Then the coefficient of εd1

1 · · · εdn
n in

f(u1, . . . , un) = 0 is f(x1, . . . , xn). (2) Show that the invertible elements are
Zariski-dense.

Problem 1.8: (2) Bα,x,y = U
(y)
α1(y)−x, UBα,x,y(z)Uy = U

(y)
U(y)(α1(y)−x)(z),

UzBα,y,xUy = UzUyBα,x,y = U
(y)
z U

(y)
α1(y)−x. (3) UBα,x,y(Uxw) =

UUαx−Ux(y)(w) = Uαx−Ux(y)UwUαx−Ux(y) =
(
Bα,x,yUx

)
Uw

(
UxBα,y,x

)
=

Bα,x,yUUx(w)Bα,y,x.

Problem 1.9: (1) The only minimal inner idealsB in a nondegenerate algebra
are of Idempotent Type II or Nilpotent Type III, and those of Nilpotent Type
II are regularly (not just structurally) paired with a D of Idempotent Type.
If R := Rad(J)  = 0, we can find a minimal B  = 0 inside, hence some b ∈ B
is regularly paired with a nonzero idempotent e; but then b ∈ R =⇒ e =
Ueb ∈ R, contradicting 1.7.2(1). (2) By nondegeneracy, 0  = b ∈ (c] =⇒ 0  =
(b] ⊆ (c] =⇒ (b] = (c] F b =⇒ b is a vNr. [Dually for open principal inners
(x).] (3) Any nonzero inner I contains nonzero inner (c]’s, hence minimal ones,
and therefore contains vNrs. (4) Since R can’t contain nonzero vNrs, it must
vanish.

Question 1.3: Ĵ = Φê� J for ê := 1̂− 1, 1̂− x = ê� (1− x) is invertible in
Ĵ iff 1− x is invertible in J.

Questions 1.4: The closed case is heritable, because inclusion [x] ⊆ [y] is
equivalent to the elemental condition x ∈ [y], and strict inclusion [x] < [y] is
equivalent to x ∈ [y], y /∈ [x]. I don’t know the answer for open or ordinary
principal inner ideals.
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Chapter 2. Begetting and Bounding Idempotents

Exercise 2.1.1A: (2) If e = ax is idempotent, then f = xea is idempotent
with afx = e.

Exercise 2.1.1B: Every nonzero inner ideal contains a nonzero trivial ele-
ment or a nonzero open (b), so all non-nilpotent B will contain an idempotent
iff all these (b) do.

Exercise 2.2.2: (xm) = (x4m+2) =⇒ x2m+1 = Uxmx ∈ (xm) = (x4m+2) =
Ux4m+2(J) = Ux2m+1Ux2m+1(J) is a double vNr.

Exercise 2.4.1: f < g ⇐⇒ 1−f > 1−g ⇐⇒ f •g = f ⇐⇒ (1−f)•(1−g) =
1− f − g + f • g = 1− g.

Problem 2.2: Each element x = α1e1+ . . .+αnen has (x] ⊆ In :=�n

k=1Φek
finite-dimensional, but the ideals I′n :=�k>nΦek decrease strictly.

Chapter 3. Bounded Spectra Beget Capacity

Exercise 3.1.1A: (4) Let J = J1�J2 for unital subalgebras Ji; for z ∈ I = J1
show that ResΦ,J(z) = ResJ1(z) \ {0}, SpecΦ,J(z) = SpecΦ,J1(z) ∪ {0}, so in
particular the unit e1 of J1 has SpecΦ,J1(e1) = {1} but SpecΦ,J(e1) = {1, 0}.
Problem 3.3: (1) is just vector space theory. (2) Follows from |Γ| ≥ |Ω| ≥
|Φ| > [J : Φ] ≥ [J : Ω] ≥ [J : Γ].
Problem 3.4: Repeat the Jordan proof, using in (1) Ci := ∩k �=iBk in place
of Cij , and in (2) Bλ := Rλ1̃−zA = A(λ1̃ − z) in place of Uλ1̃−zJ. (3) If
λ ∈ f-SpecΦ,A(z(s)) then, in particular, f vanishes at λ1̃ − z(s), and the
polynomial g(t) = f(t− z(s)) vanishes at λ ∈ Φ ⊆ Ω, where g(t) of degree N
in Ω[t] (Ω := Φ[s] an integral domain) cannot have more than N roots in Ω.

Chapter 4. Absorbers of Inner Ideals

Exercise 4.1.4: The intersection I := ∩Iσ is co-whatever-special because
J/I ↪→ ∏

σ J/Iσ is isomorphic to a subalgebra of a direct product, and sub-
algebras and direct products inherit whatever-speciality (it is quotients that
preserve i-speciality but not speciality).

Exercise 4.2.1A: Vr,s(Uzx) = (UVr,sz,z − UzVs,r)x ⊆ q(B) [by Fundamental
Lie (FFII) and double absorption by z] and Ur(Uzx) = (U{r,z} + UUrz,z +
UzUr−U{r,z},zVr+UzVr2)x [by Macdonald, or taking coefficients of λ2 in the
linearized Fundamental Formula] ⊆ UB(J) ⊆ B [by innerness and absorption
{r, z}, Urz ∈ B.]
Exercise 4.2.1B: See the proof of (2) in the Quadratic Absorber Theorem
4.2.1.

Exercise 4.3.3:Write (− 1
2 )(− 1

2 −1) · · · (− 1
2 −i+1) = (− 1

2 )
i(1)(3) · · · (2i−1)

where (1)(3) · · · (2i−1) = (2i−1)!/((2)(4) . . . (2i−2)) and (2)(4) · · · (2i−2) =
2i−1(1)(2) · · · (i− 1) = 2i−1(i− 1)!.
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Chapter 5. Primitivity

Exercise 5.1.1: (2) U1̂−c1̂ is never in B ⊆ J. (3) c modularity of the hull B̂c

requires (1̂ − c)2 = (1̂ − c) + (c2 − c) and {1̂− c, Ĵ, 1̂− c} = 2U1̂−cĴ to lie in
B̂
c
. (4) The modularity terms (Mod 1)–(Mod 3) for the contraction fall in J

and are in B′ by hypothesis. Note that if c−c2 belongs to B′ as well as U1̂−c1̂,
then 1̂ − c must belong too, so B̂

c ⊆ B′. Conversely, if b′ = α1̂ + x ∈ B′ for
x ∈ J, then b′−α(1̂−c) = αc+x ∈ B′∩J = B, so that b′ = α(1̂−c)+b ∈ B̂c

.

Exercise 5.4.1: Note that z(2n,ỹ) =
(
z(n,ỹ)

)(2,ỹ)
and also all z(2n+k,ỹ) =

Uz(n,ỹ)Uyz
(k,ỹ) for k ≥ 1 vanish.

Problem 5.2: (1) Note that {z2, y2} ∈ Rad(J) ⊆ Core(B) ⊆ B.
Problem 5.3: Consider inverses of 1 − tz in the power series algebra Â[[t]]
and the polynomial subalgebra Â[t].

Problem 5.4: (1) If the result holds for J := J/I, then z p.n.b.i. in J̃ =⇒ z̄

p.n.b.i. in J[T ] = J̃/Ĩ =⇒ z̄ = 0̄ =⇒ z ∈ Ĩ∩ J = I. (3) Choose (by infiniteness
of T ) a t which doesn’t appear in the polynomial ỹ; then identify coefficients
of t in z(2n−2,ỹ+tx) = 0 to conclude that Uz(n−1,ỹ)x = 0 for all x ∈ J, so
Uz(n−1,ỹ) J̃ = 0, forcing z(n−1,ỹ) = 0 by (2).

Chapter 6. The Primitive Heart

Question 6.1: The heart (associative and Jordan) consists of all finite ma-
trices (those having only a finite number of nonzero entries whatsoever). The
heart is not unital, but it is simple; it is better known as being the socle of A,
the sum of all minimal left (equivalently, right or inner) ideals.

Question 6.2: (1) The heart consists of all linear transformations of finite
rank (finite-dimensional range). Again, this is the same as the socle, and the
heart is simple but not unital. (2) is just the special case of (1) where V is a
countable-dimensional right vector space over ∆ with basis B = {e1, e2, . . . },
where a linear transformation T is determined by its values T (ei); these are
finite linear combinations of ej ’s, and the finite collection of coefficients forms
the ith column of the matrix [T ]BB of T with respect to this basis.

Question 6.3: You need to know a little functional analysis to come up with
the answer. The heart is the space of compact operators, those operators that
take the unit ball to a compact set; this is just the norm-closure of the ideal
of operators of finite rank.

Question 6.4: H will be the heart if it satisfies any of the following equiv-
alent conditions: (i) its left (respectively, right) annihilator is zero, aH = 0
(respectively, Ha = 0) =⇒ a = 0; (ii) for all a  = 0 there is h ∈ H with ah  = 0
(respectively, ha  = 0); (iii) H separates elements of A, a1  = a2 =⇒ ∃h ∈ H
with a1h  = a2h (respectively, ha1  = ha2); (iv) there is no disjoint ideal
0  = I  A, I ∩H = 0.
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Chapter 7. Filters and Ultrafilters

Problem 7.1: Y has finite or bounded complement iff Y = X \ W with
complement W a finite set F or a bounded set B, respectively. If Yi = X \Wi

then Y1 ∩ Y2 = X \ (W1 ∪W2). Any set with finite complement consisting of
n < · · · < N or bounded complement ≤ N contains an interval (N,∞).
Problem 7.2: If F = {x1} ∪ · · · ∪ {xn} ∈ F then some {xi0} ∈ F and
F = {Y | xi0 ∈ Y } is the principal ultrafilter Fxi0

.

Problem 7.3: (Filt 1) Y1 ∩ Y2 ⊇ U1 ∩ U2 is still open containing x0; (Filt 2)
Y ′ ⊇ Y ⊇ U =⇒ Y ′ ⊇ U ; (Filt 3) x0  ∈ ∅ so ∅  ∈ F .

Chapter 8. Ultraproducts

Exercise 8.2.3 (1) z(y)  = 0⇐⇒ z(y)  ∈ Rad(Qy)⇐⇒ either (i)Qy(z(y))  = 0
or (ii) there exists a(y) with Qy(z(y), a(y))  = 0, i.e., y ∈ Y1 ∪ Y2. By the
basic property of ultrafilters, Supp(z) = Y = Y1 ∪ Y2 ∈ F ⇐⇒ Y1 ∈ F
or Y2 ∈ F ⇐⇒ Q′(z′)  = 0′ or some Q′(z′, a′)  = 0′. (2) Similarly, z′ ∈
Rad(Q′) ⇐⇒ Zer(Q(z)) = {x ∈ X | Qx(z(x)) = 0} and Zer(Q(z, ·)) = {x ∈
X | Qx(z(x), Vx) = 0} belongs to F ⇐⇒ Zer(Q(z)) ∩ Zer(Q(z, ·)) ∈ F ⇐⇒
{x | z(x) ∈ Rad(Qx)} ∈ F ⇐⇒ z ≡F w ∈ ∏Rad(Qx).

Problem 8.1. (1) Thinking of the imbedding as inclusion, the kernels Kj :=
Ker(πi) = A0 ∩Aj are orthogonal ideals in A0 because any of their products
falls in K1 ∩K2 ⊆ A1 ∩ A2 = 0. (2) For i = 1, 2 set Ai :=

∏
xi∈Xi

Axi and
check A = A1 �A2. For the case of n summands or unions, use induction.

Question 8.1. All answers except to the first question are Yes.

Chapter 9. The Final Argument

Problem 9.1: Note that characteristic p is finitely defined (p·1 = 0), whereas
characteristic 0 is not (for all n > 0, n · 1  = 0). In

(∏
p Zp

)
/F , the charac-

teristic will always be 0 unless the filter is the principal ultrafilter determined
by some particular p, in which case the ultraproduct is Zp again. In gen-
eral, the ultraproduct

∏
Φx/F will have characteristic 0 unless the filter is

“homogeneous,” containing the set Xp := {x ∈ X | Φx has characteristic p}.

E.3 Hints for Part IV

Appendix B. Macdonald’s Theorem

Exercise B.1.0B: The involution is never mentioned because it is the identity
involution.
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Introduction

I will have no true index for this book, but instead five separate specialized
indexes. The first is an index of collateral readings. This is not meant to be a
formal Bibliography, nor even a Guide to Further Reading. It is primarily a
guide to parallel readings in other textbooks. I list several standard textbooks
on Jordan theory, and several articles of historical interest. I use the opportu-
nity to inject a few miscellaneous thoughts on the historical development of
Jordan structure theory.
The second index is a pronouncing index of names, indicating the pages

where a mathematician’s work is discussed. I do not include references to
every occurrence of a result or object named after a given mathematician (so
I do not list every time Albert algebras appear, or Macdonald’s Theorem is
used); the references are primarily to the mathematician’s work as it appears
in an historical context. A novel feature of this index is that I attempt to
instruct American readers in the proper pronunciation of the names of the
foreign mathematicians listed.
The third index is an index of notations, which contains symbols other than

words which are used in the text, with a brief description of their meaning as
a convenience for the reader, and a reference to a location where the notation
is explained in detail.
The fourth index is an alphabetical list of each named statement (result or

formula), giving a reference to the location of its statement or definition, but
I do not attempt to list each of its occurrences in the text, nor do I include
a restatement of result itself. The fifth and final index is a list of definitions,
terms that have been defined in boldfaced type throughout the text, where
again reference is given only to their page of definition.
There is no index which indicates where topics are discussed. Thus there

is no reference to all places in the text where I discuss semisimplicity or
semisimple algebras or Albert algebras.
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Index of Collateral Readings

In this Index I list a few works on Jordan algebras that can be useful sup-
plements to this book for beginning students. It is primarily a guide to other
textbooks at the same level. I do list a few articles explicitly mentioned in
the text for their historical value, though I must stress that I am not writing
a history of Jordan theory, and do not cite a reference for each theorem I
mention.

A.1 Foundational Readings

In the past, when graduate students inquired about research in the field of
Jordan and nonassociative algebras, I recommended that they first look at the
Carus Monograph Studies in Modern Algebra [1963A], especially the survey by
Lowell Page of good old-fashioned finite-dimensional Jordan structure theory
(using linear algebra arguments such as associative trace forms) and Charley
Curtis’s nice historical sketch of composition algebras and Jacobson’s boot-
strap proof of Hurwitz’s Theorem, as well as Dick Schafer’s Introduction to
Nonassociative Algebra [1966S], a very readable account of general nonassocia-
tive, power associative, and Jordan algebras, with a full treatment of finite-
dimensional alternative algebras. Recently, John Baez’s eminently readable
survey The Octonions appeared in the Bulletin [2002B]. For an overall view
of developments I also referred students to three of my own survey articles, an
article Jordan algebras and their applications [1973M], a talk Quadratic meth-
ods in nonassociative algebra [1975M] propagandizing on behalf of the new
quadratic methods (not just in Jordan theory), and a survey of The Russian
revolution in Jordan algebras [1984M]. One of my main purposes in writing
this present book is to provide one general survey that covers all this ground.
Once students had gotten a taste of Jordan and nonassociative algebra,

there were several texts where they could learn the foundations of the subject.
Of course, the standard text where I learned my Jordan algebra was Jake’s
Colloquium volume Structure and Representations of Jordan Algebras [1968J],
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giving the definitive treatment of Jordan rings with d.c.c. Most subsequent
books have simply quoted Jacobson when the proofs got long and technical.
An exception was Hel Braun and Max Koecher’s Jordan Algebren [1966BK],
featuring a novel approach to Jordan algebras coming from number theory
and differential geometry, which during the next ten years was to help re-
shape the Jordan landscape. An appendix to Jake’s book sketched the brand-
new quadratic theory, and his Tata Lecture Notes Lectures on Quadratic Jor-
dan Algebras [1969J] were the first detailed exposition of that theory; unfor-
tunately, these notes are almost unreadable due to typesetting (Jake never
proofread the printed manuscript).
Tonny Springer’s book Jordan algebras and Algebraic Groups [1973Sp] re-

duced Jordan algebras to algebraic groups: the algebraic structure of a Jordan
algebra resided in its inversion map j(x) = −x−1 satisfying the Hua Identity
at x = 1 [in the beginning was the j, and Koecher said “Let there be U ,” and
there was U, and the U was Ux =

(
∂j|x

)−1], and the gospel of inversion was
carried from 1 to the dense set of invertible x’s by means of a transitive struc-
ture group. This presents Jordan theory in a form congenial to researchers in
group theory and geometry. In particular, the classification of simple Jordan
algebras is derived from the classification of semisimple algebraic groups, and
Peirce decompositions arise from representiations of tori (Peircers in disguise).
Ottmar Loos’s elegant Springer Lecture notes Jordan Pairs [1975L] de-

veloped the entire structure theory for quadratic Jordan pairs with minimum
condition on inner ideals; the triple and algebra structure could, with effort,
be read off from this. (Loos, like Zel’manov after him, did not atempt to give
an independent proof of the finite-dimensional algebra classification, particu-
larly coordinatization and Albert algebras.) Erhard Neher’s Springer Lecture
Notes Jordan Triple Systems by the Grid Approach [1987N] is the definitive
treatment of grids, the Peirce decompositions needed in Jordan triple systems;
these have a rich combinatorial structure related to the root systems that are
at the heart of Lie structure theory.
The book Rings that are Nearly Associative [1978S] by K. A. Zhevlakov,

Arkadi Slin’ko, Ivan Shestakov, and Anatoli Shirshov (which appeared in En-
glish in 1982), gave a very detailed account of alternative and Jordan alge-
bras on the eve of the Russian Revolution, with much emphasis on radicals,
identities, and free algebras, but again left the final coordinatization stages
of the classical theory of Jordan algebras with d.c.c. to Jake’s book. Jacob-
son’s Arkansas Lecture notes [1981J] contains the final version of the Classical
structure theory, for quadratic Jordan algebras with capcacity. It also proves
Zel’manov’s Exceptional Theorem for quadratic Jordan algebras, and gives
Zel’manov’s classification of linear Jordan division algebras. This presents the
state of Jordan structure theory just before Zel’manov’s complete structure
theory (in particular, the tetrad eaters) had been fully digested.
None of these works gives an accessible and comprehensive account of

our general post-Zel’manov understanding of Jordan structure theory. Efim
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Zel’manov’s path-breaking papers [1979Z]-[1983Z] are, even today, a rich mine
of insights and novel techniques, but (like most diamond deposits) they lie
buried deep and are not easy to extract. Another of my purposes in writing
this text is to present an overview of Zel’manov’s revolutionary work, and a
full exposition of his Exceptional Theorem. (To fully exposit his classification
of all prime algebras would take another 200 pages and another semester-long
graduate course.)

Suggested Foundational Readings

[1963A] A.A. Albert (ed.): Studies in Modern Algebra, M.A.A. Studies in
Mathematics v. 2, Mathematical Association of America, 1963.
[2000B] J.C. Baez: The Octonions, Bull. Amer. Math. Soc. 39 (2002), 145-205.
[1966BK] H. Braun and M. Koecher: Jordan–Algebren, Grundl. der Math. v.
128, Springer Verlag, Berlin, 1966.
[1968J] N. Jacobson: Structure and Representations of Jordan Algebras, Amer.
Math. Soc. Colloq. Publ. v. 39, Providence, 1968.
[1969J] — : Lectures on Quadratic Jordan Algebras, Lecture Notes, Tata In-
stitute of Fundamental Research, Bombay, 1969.
[1981J] — : Structure Theory of Jordan Algebras, U. Arkansas Lecture Notes
in Mathematics, v. 5, Fayetteville, 1981.
[1975L] O. Loos: Jordan Pairs, Lecture Notes in Mathematics v. 460, Springer
Verlag, Berlin, 1975.
[1975M] K. McCrimmon: Quadratic methods in nonassociative algebra, Proc.
Int. Cong. Math. 1974 v.1 (325-330), Canad. Math. Congress, Montreal 1975.
[1978M] — : Jordan algebras and their applications, Bull. Amer. Math. Soc.
84 (1978), 612-627.
[1984M] — : The Russian revolution in Jordan algebras, Algebra, Groups, and
Geometries 1 (1984), 1-61.
[1987N] E. Neher: Jordan Triple Systems by the Grid Approach, Lecture Notes
in Mathematics v. 1280, Springer Verlag, Berlin, 1987.
[1966S] R.D. Schafer: An Introduction to Nonassociative Algebras, Academic
Press, New York, 1966.
[1973Sp] T.A. Springer: Jordan Algebras and Algebraic Groups, Ergebnisse
der Math. v. 75, Springer Verlag, Berlin, 1973.
[1978S] K.A. Zhevlakov, A.M. Slin’ko, I.P. Shestakov, A.I. Shirsov: Rings that
are Nearly Associative, Academic Press, New York, 1982 (Nauka, 1978).
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A.2 Readings in Applications

The Colloquial Survey gives only sketchy outlines of certain applications, and
is not intended to prepare students for work in those areas. Students inter-
ested in pursuing those subjects more deeply (here I deviate from my stated
limitation to collateral reading) are encouraged to consult the following books
and articles. (This list covers only the applications discussed in the Survey, so
leaves out important applications to statistics, probability theory, differential
equations, and other areas.) A good place to start is the collection of survey
lectures in several areas given at the 1994 Oberwolfach Conference:

W. Kaup, K. McCrimmon, H. Petersson (eds.): Jordan Algebras,
de Gruyter, Berlin, 1994.

Another collection of lectures on applications as well as theory is the Confer-
ence Proceedings from Santos González’s big conference in Oviedo, symboliz-
ing the strong new Spanish contributions to Jordan theory:1

S. González (ed.): Nonassociative Algebra and its Applications,
Kluwer, Dordrecht, 1994.

The applications of Jordan algebras and octonion algebras to Lie algebras
date from the inception of both theories, the study of Lie algebras as indepen-
dent entities (not infinitesimal Lie groups) initiated by Hermann Weyl, and
the study of abstract Jordan algebras (not formally real) by Adrian Albert
in 1949. One detailed treatment of the ways that Jordan algebras arise in the
construction of the exceptional Lie algebras is Jake’s small book [1971J]. A
nice survey article by John Faulkner and Joe Ferrar [1977FF] shows linkages
between exceptional Jordan objects, Lie algebras, and projective geometries.
Applications to finite-dimensional differential geometry can be found in

the books of Ottmar Loos [1969L], [1977L] and Wolfgang Bertram [2000B],
and Max Koecher’s Minnesota notes (as updated with notes by Alois Krieg
and Sebastian Walcher in 1999)2 [1962K]; applications to infinite-dimensional

1 Warning: most of the articles here are pretty hard-core. I am told that a brief part of
my survey lecture was chosen to appear on Spanish national television, though less because
of popular enthusiasm for my subject of local Jordan algebras than because of the fact that
I was one of the few speakers to be wearing a suit.

2 If I may be permitted a personal remark, my own Yale Ph.D. came about quite acci-
dently from Koecher’s Minnesota notes. Each student in the 1964 Algebra Seminar had to
talk on a chapter from the mimeographed notes; I was assigned Chapter 2, where a Jordan
algebra was constructed from an ω-domain. Being weak in differential geometry, I presented
an “algebraic” version of Koecher’s proof using just the differential calculus (which works
as well for rational maps over arbitrary fields as well as it does for real analytic ones).
Jake said I should write up the result as my thesis. Luckily, I was quite unprepared to
graduate in ’64, so I remained a graduate student for another year, and got to go along
with Jake’s students when he visited the University of Chicago Algebra Year for the Fall
1964 semester. This proved to be a very exciting time, where I first saw the giants of the
field (Albert, Kaplansky, Herstein, Amitsur, Cohn, Martindale, Taft, Maclane, Topping,
and many others).
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differential geometry are found in Harald Upmeier’s book [1985U]. A good
survey of the classical finite-dimensional theory and the transition to the
infinite-dimensional theory is Wilhelm Kaup’s survey article [2002K]. The
Jordan triple approach to symmetric spaces and bounded symmetric domains
in finite-dimensions is slowly gaining recognition on a par with the Lie ap-
proach (as witnessed in the books [1980S] of Ichiro Satake and [1994F] of
Jacques Faraut and Adam Korányi), and is dominant in infinite-dimensions
(where the Lie theory is not fully developed). The study of domains in infinite
dimensions requires tools from functional analysis; good discussions of the im-
portance of Jordan C∗ algebras are Harald Hanche-Olsen and Erling Störmer’s
book [1978AS] giving a detailed treatment leading up to the Gelfand-Naimark
theorem for Jordan algebras, and Harald Upmeier’s book [1987U].
A treatment of the approach to octonion geometry in characteristic not 2

or 3 of Hans Freudenthal, Tonny Springer, and the Dutch school of geometers
can be found in an updated version [2000SV] of the original lectures. The first
application of quadratic Jordan algebras to this geometry appears in John
Faulkner’s Memoir [1970F].

Suggested Readings in Applications

[2000B] W. Bertram, The Geometry of Jordan and Lie Structures, Lecture
Notes in Math. vol. 1754, Springer Verlag, Berlin, 2000.
[1994F] J. Faraut, A. Korányi: Analysis in Symmetric Cones, Oxford U. Press,
1994.
[1970F] J. Faulkner: Octonion Planes Defined by Quadratic Jordan Algebras,
Memoirs of Amer. Math. Soc. v. 104, Providence, 1970.
[1977FF] J. Faulkner, J.C. Ferrar: Exceptional Lie Algebras and related alge-
braic and geometric structures, Bull. London Math. Sooc. 9 (1977), 1-35.
[1971J] N. Jacobson: Exceptional Lie Algebras, M. Dekker, New York, 1971.
[2002] W. Kaup: Bounded symmetric domains and derived geometric struc-
tures, lecture at conference Harmonic Analysis on Complex Homogeneous Do-
mains and Lie Groups, to appear in Geometria.
[1962K] M. Koecher: The Minnesota Notes on Jordan Algebras and their Ap-
plications, Lecture Notes in Math. 1710, Springer Verlag, Berlin, 1999.
[1969L] O. Loos: Symmetric Spaces I,II, Benjamin, New York, 1969.
[1977L] — : Bounded Symmetric Domains and Jordan Pairs, Lecture Notes,
U. Cal. Irvine, 1977.
[1984OS] H. Hanche–Olsen, E. Størmer: Jordan Operator Algebras, Mono-
graphs in Mathematics v. 21, Pitman, 1984.
[1980S] I. Satake: Algebraic Structures of Symmetric Domains, Princeton U.
Press, 1980.
[2000SV] T. Springer, F. Veldkamp: Octonions, Jordan Algebras, and Excep-
tional Groups, Monographs in Math., Springer Verlag, Berlin, 2000.
[1985U] H. Upmeier: Symmetric Banach manifolds and Jordan C∗ Algebras,
North Holland Mathematics Studies 104, Elsevier, 1985.
[1987U] H. Upmeier: Jordan Algebras in Analysis, Operator Theory, and
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Quantum Mechanics, C.B.M.S. Conference Report, Amer. Math. Soc, Provi-
dence, 1987.

A.3 Historical Perusals

Here I will just indicate a very few of the articles mentioned in the text
connected with the historical development of Jordan structure theory; I will
not list papers on applications except when they directly affected the algebraic
theory itself. These papers are not meant to be read in their entirety; in
keeping with the concept of collateral reading, these are primarily meant for
the reader to skim through and notice the original form in which familiar
concepts and results appeared. One good way to help get the big picture of a
subject is to look back at its earlier stages, to see it arising from the mist of
partial comprehension and then going on to take its final mature form.
Pascual Jordan set forth his program for finding an alternate algebraic

foundation for quantum mechanics in [1933J], and the fruition (or stillbirth)
of the program is found in the classical Jordan–von Neumann–Wigner paper
[1934J] the next year. Topping’s offhand introduction of inner ideals in [1965T]
was followed quickly by the full Artin-Wedderburn-Jacobson theory in [1966J],
followed rapidly in turn by the introduction of quadratic Jordan algebras in
[1966M]. The subject was undergoing a growth spurt at this point, 1965-
1970, only to be overshadowed later by the growth spurt 1978-1983 during
the Russian revolution. A high point in this exciting time was the first of a
long series of international conferences on Jordan theory held in Oberwolfach,
Germany, in 1967.3

Linear Jordan triple systems were introduced by Kurt Meyberg in [1969My],
and quadratic triples in [1972My]. The germ of Jordan pairs (“verbundene
Paare”) is found in [1969My], but these later came forth full-grown in Ottmar
Loos’s book [1975L]. Jordan superalgebras were a scene of feverish activity
in the late 1970s, with the Victor Kac’s classification appearing in [1977K].
The Gelfand-Naimark Theorem for JB-algebras proved in [1978AS] was a por-
tent of things to come, but its true significance went unrecognized. The flood
of papers during the Russian Revolution 1978-1983 is too vast to list in its
entirety. I list here only the articles of Efim Zel’manov on the structure of
Jordan algebras (not triples or pairs).

3 If I may be permitted one last personal remark, when at this meeting I gave my
first lecture on quadratic Jordan algebras (entitled “Was Sind und was Sollen die Jordan-
Algebren”, where “sind” meant linear and “sollen” meant quadratic), I had as yet no way
to show that the hermitian 3 × 3 octonion matrices satisfied the quadratic axioms. Tonny
Springer took me aside after lunch one day and carefully explained the methods he and
Freudenthal used to describe the algebra and geometry of Albert algebras entirely in terms
of the norm form and the adjoint, and suggested how the method should work equally
well in characteristic 2. I went back home after the conference and worked through his
suggestions, resulting in the paper [1969MS], which forms the basis for the treatment of
degree–3 algebras over general rings of scalars in this book.
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A Few Historical Articles

[1978AS] E.M. Alfsen, F.W. Shultz, E. Størmer: A Gelfand-Neumark theorem
for Jordan algebras, Adv. Math. 28 (1978), 11-56.
[1966J] N. Jacobson: Structure theory for a class of Jordan algebras, Proc.
Nat. Acad. Sci. U.S.A. 55 (1966), 243-251.
[1933J] P. Jordan: Uber Verallgemeinerungsmöglichkeiten des Formalismus
der Quantenmechanik, Nachr. Ges. Wiss. Göttingen (1933), 29-64.
[1934J] P. Jordan, J. von Neumann, E. Wigner: On an algebraic generalization
of the quantum mechanical formalism, Ann. Math. 36 (1934), 29-64.
[1977K] Victor Kac: Classification of simple Z-graded Lie superalgebras and
simple Jordan superalgebras, Comm. in Alg. 13 (1977), 1375-1400.
[1966M] K. McCrimmon: A general theory of Jordan rings. Proc. Nat. Acad.
Sci. U.S.A. 56 (1966), 1071-1079.
[1969MS] K. McCrimmon: The Freudenthal–Springer–Tits constructions of
exceptional Jordan algebras, Trans. Amer. Math. Soc. 139 (1969), 495-510.
[1969My] K. Meyberg: Jordan-Tripelsysteme und die Koecher-Konstruktion
von Lie Algebren, Math. Z. 115 (1970), 115-132.
[1972My] K. Meyberg: Lectures on algebras and triple systems, Lecture notes,
University of Virginia, Charlottesville, 1972.
[1965T] D.M. Topping: Jordan Algebras of Self-Adjoint Operators, Memoirs
of Amer. Math. Soc. v.53, Providence, 1965.
[1978Z] E.I. Zel’manov: Jordan algebras with finiteness conditions, Alg. i
Logika 17 (1978), 693-704.
[1979Z] — : On prime Jordan algebras, Alg. i Logika 18 (1979), 162-175.
[1979Z] — : Jordan division algebras, Alg. i Logika 18 (1979), 286-310.
[1983Z] — : On prime Jordan algebras II, Siber. Math. J. 24 (1983), 89-104.
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Here I give references to the places in the book where a mathematician’s work
is discussed; these are divided into entries for: (O) Introduction (Colloquial
Survey), (I) Part 1 (Historical Survey), (II) Part 2 (The Classical Theory),
(III) Part 3 (Zel’manov’s Exceptional Theorem), (ABCD) Appendixes.
I also give in each case a rough approximation of how that mathemati-

cian (alive or dead) would like to have his or her name pronounced. If I were
delivering these lectures in person, you would hear an approximately correct
pronunciation. But in aural absence, I include this guide to prevent readers
(especially Americans) from embarrassing mistakes. The names of most Amer-
ican mathematicians in our story are pronounced in the good-old American
way, and won’t merit much explication. I have tried to make the pronuncia-
tions as phonetic as possible. A few sounds are hard to represent because they
do not occur in English: I use (rr) to indicate a slightly trilled r; (ll) indicates
a slightly liquid ell as found in French, Spanish, and to some extent Russian
(soft ell); (y) indicates a brief y (voiced consonant) before the Russian vowel e.

A

Adrian A. Albert [AY-dree-uhn AL-burt] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . O: 4; I: 45, 49, 50, 51, 63, 64, 67, 91; II: 237

Erik Alfsen [air-ik AHLF-tsen] . . . . . . . . . . . . . . . . . . . . . . . . . . . . O: 20, 21; I: 107
Shimshon Amitsur [SHIM-shohn ahh-mee-TSU(RRR), but a deep u, tending
to oo] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O: 80; I: 124; III: 388, 390

Richard Arens [richard AIR-uns] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I: 107
Emil Artin [AY-meell AHR-teen] . . . . . . . . . . . . . . . . .O: 34; I: 83; II: 337, 341

B

Reinhold Baer [RINE-holt BARE] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I: 89, 90
Stefan Banach [SHTEFF-ahn Bah-nahk]
Stefan Bergmann [SHTEFF-ahn BAIRG-mun] . . . . . . . . . . . . . . . . . . . . . . . . O: 24
Garrett Birkhoff [GAIR-et BURK-hoff] . . . . . . . . . . . . . . . . . . . . . . . I: 90; II: 150
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Hel Braun [hell BROWN] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I: 82; II: 189
R.H. Bruck [ralf brukk] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O: 34; II: 154
William Burnside [william BURN-side] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I: 109

C

Constantin Carathéodory [KON-stant-teen CARR-uh-TAY-uh-DOR-ee] . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O: 26

Elie Cartan [AY-lee Kar-TAH(N)]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O: 12; I: 51
Arthur Cayley [arthur KAY-lee] . . . . . . . . . . . . . . . I:49, 61, 62, 64; II:160; C:490
Claude Chevalley [klode shev-ah-LAY] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I: 51
Paul M. Cohn [pawl CONE] . . . . . . . . . . . . . I:90; II:200; A:447, 449, 451; B:468

D

C.F. Degan [C. F. DAY-gun] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I: 61
Girard Desargues [gee-RAR day-SARG]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O: 33
René Descartes [ruh-NAY day-KART] . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O: 31, 34
Leonard Eugene Dickson [yew-jeen DICK-son] . . . . . . . . . . . . . . . . I: 64; II: 160
Diophantus [DEE-oh-FAHN-tus; dee not dye] . . . . . . . . . . . . . . . . . . . . . . . . . . I: 61

E

Leonhard Euler [LAY-on-hart OY-lur] . . . . . . . . . . . . . . . . . . . . . . . . I: 61; II: 187

F

John Faulkner [john FAHLK-nur] . . . . . . . . . . . . . . . . . . . . . . . . . . O: ??, 28, 34, 35
Hans Freudenthal [hunts FROY-den-tahl]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O:12,28,34; I:51,78; II:193; C: 488

Yakov Friedman [YAW-kove FREED-mun] . . . . . . . . . . . . . . . . . . . . . . . . . . . . O: 27
F. Georg Frobenius [GAY-org fro-BAY-nee-us] . . . . . . . . . . . . . . . . . . . . . . . . . I: 63

G

Carl Friedrich Gauss [karl freed-rick GOWSS] . . . . . . . . . . . . . . . . . . . . . . . . . . I: 62
I.M. Gelfand [iz-rye-I(LL) GG(y)EL-fond]. . . . . . . . . .O: 20, 21, 22, 27; I: 107
Charles M. Glennie [charles GLENN-ie] . . . . . . . . . . . . . . . . . O:5; I:45, 91; B:469
Alfred M. Goldie [alfred goldie] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I: 98
J.T. Graves [j.t. graves] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I: 61

H

William Hamilton [william HAM-il-ton] . . . . . . . . . . . . . . . . . . . . . . . I: 62; C: 490
Harish-Chandra [HARR-ish CHAHN-druh]. . . . . . . . . . . . . . . . . . . . . . . . . . . .O: 22
Charles Hermite [sharl air-MEET] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II: 172
Israel N. Herstein [I. HURR-steen, “Yitz”] . . . . . . . . . . . . . . I: 102; II: 183, 341
David Hilbert [dah-vid HILL-bairt] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I: 39
Luo Keng Hua [llwwuh gkging HWWHAH] . . . . . . . . . . . . . . . . . . O: 15; II: 183
Adolf Hurwitz [AH-dolf HOOR-vitz, but OO as in look, not hoot] . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I: 49, 63, 64; II: 154, 155, 166



Pronouncing Index of Names 533

J

C.G.J. Jacobi [carl yah-KO-bee] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O: 11
Florence D. Jacobson [flor-ee JAY-kub-son] . . . . . . . . . . . . . . . . . . . . .O: ??; I: 51
Nathan Jacobson [nay-thun JAY-kub-son, “Jake”] . . . . . O: ??, 5, 7, 35; I: 51,
64, 81, 82, 85, 88; I: 89, 91, 92, 97, 100, 101, 111; II: 145, 155, 164, 183,
211, 215, 229, 265, 315; III: 362; D: 504

Camille Jordan [kah-MEEL zhor-DAHN] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I: 39
Pascual Jordan [PASS-kwahl YOR-dahn] . . . . . . . . . . . . . . . O: 2, 3, 4, 5, 17, 25;
I: 38, 39, 40, 42, 43, 44, 45, 49, 59, 68, 91, 92, 111; II: 249

K

Victor Kac [viktor KAHTZ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O: 9
Issai Kantor [iss-eye KAHN-tur] . . . . . . . . .O: 7, 8, 9, 13, 14, 12; I: 81; II: 150
Irving Kaplansky [irving kap-LANN-ski, “Kap”] . . . . . . . . . . . . . O: 9; I: 63, 98
Wilhelm Kaup [vill-helm COW-pp] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O: ??
Wilhelm Killing [vill-helm killing] . . . . . . . . . . . . . . . . . . . . . . . . . . O: 12, 13; I: 51
J. Kirmse [yo-awk-eem KEERM-ze] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II: 156, 341
Erwin Kleinfeld [ur-win KLINE-fellt] . . . . . . . . O: 33, 34; I: 102; II: 154, 341
Max Koecher [muks KE(R)-ccch-urr. This is almost impossible for Americans
to pronounce. The E(R) is approximately ER without the R, as in the
English EA in Earl the Pearl, or the French OEU in Sacre Coeur or oeuf.
The CCCH is softer than Scottish loch as in Ness, not Lock, tending in south
Germany to SCCHH as the tongue moves forwards towards the teeth.] . . .
. . . . . . . . . . . . . . . . . . . . . . . . O: 7, 8, 9, 12, 13, 23; I: 81, 82; II: 189; III: 379

A.I. Kostrikin [alekSAY kos-TREE-kin] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I: 109
J. Köthe [J. KE(R)-tuh] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I: 367

L

Joseph-Louis Lagrange [zho-sef-loo-ee lah-GRAHNJ] . . . . . . . . . . . . . . . . . . . I: 61
Jakob Levitzki [YAH-kove luh-VITZ-kee] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I: 108
Sophus Lie [SO-foos LEE] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I: 51
Ottmar Loos [OTT-marr LOW-ss]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . O: 9, 14, 16, 23, 27; I: 83, 93; II: 237, 320, 329

Hans-Peter Lorenzen [hunts PAY-tur LOR-enn-tsen] . . . . . . . . . . . . . . . . . . . I: 83

M

I.G. Macdonald [I.G. mak-DON-uld; little d, not MacDonald!] . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O: 5; I: 82, 85; B: 466, 468

Wallace S. Martindale III [JAIR-ee martindale] . . . . . . . . . . . . . . . . . . . I: 56, 110
E.J. McShane [JIM-ee muk-SHANE] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II: 147
Yuri Medvedev [YOO-ree mid-V(y)AY-deff] . . . . . . . . . . . . . . . . . . . . . . . . . . I: 112
Kurt Meyberg [koort MY-bairg] . . . . . . . . . . . . . . . . . . . . . . . . . O:??, 8, 9, 13; I:83
Ruth Moufang [root MOO-fahng]. . . . . . . . . . . . . . . . . . .O: 28, 33; I: 100; II: 335
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N

M.A. Naimark [mark NIGH-mark, nigh as in eye] . . . . O: 20, 21, 22, 27; I:107

O

J. Marshall Osborn [marshall OZZ-born] . . . . . . . . . . . I: 102, 105; II: 341, 351

P

Lowell J. Paige [LOW-ul PAGE] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I: 91
Pappus [PAP-us, not pap-OOS!] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O: 33
Sergei Pchelintsev [serr-gay (p)chel-(y)EEN-tseff] . . . . . . . . . . O: 111; III: 442
Benjamin Peirce [benjamin PURSS, NOT PEERCE!] . . . . . . . . . . . . . . . . . . I: 99
Holger Petersson [HOLL-gerr PAY-tur-son, not hole] . . . . . . . . . . . . . . . . . . . I: 96

R

Charles Rickart [charles RICK-urt] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II: 183
Bernard Russo [ber-NARD ROO-so] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O: 27

S

R.I. San Souci [R.I. san SOO-see] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O: 33
E. Sasiada [E. SAHSS-ee-AH-da]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I: 119
Richard D. Schafer [dick SHAY-fur] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I: 51
Otto Schreier [OTT-tow SHRY-ur] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I: 44
Ivan Shestakov [(y)ee-VAHN shes-ta-KOFF]. . . . . .O: 6, 111; I: 350; B: 469
A.I. Shirshov [anna-TOW-lee sheer-SHOFF] . . . . . . . . . . . . . . . . II: 200; B: 468
Frederic W. Shultz [FRED-ric SHULtz] . . . . . . . . . . . . . . . . . . O: 20, 21; II: 107
Carl Ludwig Siegel [karl lood-vig ZEE-gl] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O: 23
L.A. Skornyakov [L. sko(rrr)-nyi-KOFF]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O: 33
Arkady Slin’ko [ahr-KAH-dee s(ll)een(g)-KO] . . . . . . . . . . . . . . . . . . . . . . . . . I: 108
T. A. Springer [tonny SHPRING-urr] . . . . . . . . . . . . . . . O: 15, 28, 34; I: 43, 77
Erling Størmer [air-ling SHTERR-mur] . . . . . . . . . . . . . . . . . . . .O: 20, 21; I: 107

T

Armin Thedy [AHR-meen TAY-dee] . . . . . . . . . . . . . . . . . O:6; I:45; II:350; B:469
Jacques Tits [zhack TEETS, zhack as in shack, not zhock as in Frere!] . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . O: 8, 9, 12, 13; I:81; II:195, 196; C:490, 493, 495

David M. Topping [david topping] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O: 92

V

Alexandre-Théophile Vandermonde [VAHN-der-mownd] . . . . . . . . . . . . . . II: 188
John von Neumann [john fon NOY-mun, “Johnny”] . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . O: 4, 17, 25; I: 49, 59, 68, 111; II: 128, 205, 217, 249, 318
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W

Joseph H.M. Wedderburn [J.H.M. WEDD-ur-burn] . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O: 34, 44; I: 92, 100; II: 259

Eugene Wigner [yew-jeen VIG-nur] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O: 4, 17, 25; I: 49, 59, 68, 111; II: 249

Z

Efim Zel’manov [(y)ef-FEEM ZE(LL)-mun-off] . . . . . . . . . . . . . . O: 4, 5, 10, 25;
I: 98, 108, 109, 111, 114, 117, 120, 122, 202; III: 348, 392, 393, 397, 404,
410, 420, 422, 424, 442

Max Zorn [muks TSORN, not ZZorn as in ZZorro] . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O: 34; I: 47, 109, 158; II: 341



C

Index of Notations

In addition to the Standard Notations listed in the Preface, I gather here for
reference a list of notations, symbols, and abbreviations introduced in the
book. For each entry I give a brief definition or formula which usually suffices,
but I include page references to places where the notation is explained in more
detail. Since many of these notations are not standard in the literature, the
ability to recognize them is important primarily in the context of this book.
The reader will need to know what AbspecJ(x) means in reading Part III
Section 6, but will survive comfortably the rest of his or her life without that
knowledge.
I have resisted the temptation to list every single symbol that occurs in

the book; I list only those that appear several times, far away from their home
of definition, and thus run the risk of not being recognized.

Elemental Products

x · y product in any linear algebra A
x • y symbol for basic product in a linear Jordan algebra; in special algebras it

is the Jordan product or quasi-multiplication or anticommutator
1
2 (xy + yx) [cf. 41]

xn nth power of element x in any power-associative algebra; defined
recursively in linear algebras by x · xn−1, in quadratic algebras by
Ux(xn−2) [cf. 200]

x−1 inverse U−1
x (x) of an invertible element x in a Jordan or alternative

algebra [cf. 211]
qi(x) quasi-inverse of x ((1̂ − x)−1 = 1̂ − qi(x)) [cf. 366]
qi(x, y) quasi-inverse of pair (x, y) (quasi-inverse of x in the y-homotope) [cf. 369 ]
xy quasi-inverse qi(x, y) of x in the y-homotope [cf. 369]
[x, y] commutator or Lie bracket xy − yx in linear algebras; symbol for basic

product in a Lie algebra [cf. 55]
[x, y, z] associator (xy)x− x(yz) in linear algebras [cf. 56]
[x, y, z]+ associator taken in a plus algebra A+ [cf. C.1.1]
[x, y, z](u) associator taken in a homotope A(u)
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{x, y} anticommutator or brace product {x, 1, y} or 2x • y;
reduces to xy + yx in associative algebras [cf.147]

{x, y, z} triple product or 3-tad; in a linear Jordan algebra, given by
2
(
x • (y • z) + (x • y) • z − (x • z) • y

)
; in a quadratic

Jordan algebra it is Ux,y(z); it reduces to xyz + zyx
in associative algebras [cf. 5, 147]

{x, y, z, w} tetrad xyzw + wzyx in any associative algebra
(NOT a Jordan product!) [cf. 449]

{x1, . . . , xn} n-tad product x1 · · ·xn + xn · · ·x1 in any associative algebra
(NOT a Jordan product if n > 3) [cf. 449]

Uxz basic U -product of quadratic Jordan algebras (2x • (x • y) − x2 • y);
reduces to xzx in special algebras [cf. 5, 7, 81, 147]

[[x, y], z] double commutator product Dx,yz = {x, y, z} − {y, x, z};
reduces to [x, y]z − z[x, y] in special algebras [cf. 349]

[x, y]2 square of commutator U[x,y]1 [cf. 349]
U[x,y]z U operator of commutator

(
U{x,y} − 2{Ux, Uy}

)
z;

reduces to [x, y]z[x, y] in special algebras [cf. 349]
[[x, y]3, z] commutator of cube of commutator

(
D3
x,y + 3Dx,yU[x,y]

)
z in any

Jordan algebra; reduces to [x, y]3z − z[x, y]3 in special algebras
[cf. 349]

x •(u) y bullet product in a Jordan homotope J(u) (
x • (u • y) + (x • u) • y

−(x • y) • u = 1
2 ({x, u, y}) [cf. 71, 86, 223]

{x, y}(u) brace product {x, u, y} in a Jordan homotope J(u) [cf. 86, 223]
{x, y, z}(u) triple product {x, Uuy, z} in a Jordan homotope J(u) [cf. 86, 223]
U

(u)
x z U -product UxUuz in a Jordan homotope J(u) [cf. 86, 223]

1(u) unit u−1 in the Jordan isotope J(u) (if u invertible) [cf. 71, 86, 223]
xuy product xuy in a nuclear u-homotope Au [cf. 72, 220]
1u unit u−1 in a nuclear isotope Au (only if u invertible) [cf. 72, 220]
∗u nuclear u-isotope of an involution ∗ (x∗u := ux∗u−1) [cf. 72, 221]
sx symmetry of a symmetric space at x, multiplication by x in Loos’

algebraic formulation of symmetric spaces [cf. 16]

Multiplication Operators

adx,y Jordan derivation Dx,y [cf. 349]
ad[x,y]3 adjoint map of the cube of a commutator D3

x,y + 3Dx,yU[x,y] in any
Jordan algebra; reduces truly to ad[x,y]3 in special algebras [cf. 349]

Bx,y Bergmann operator 1J − Vx,y + UxUy in any Jordan system [cf. 205]
Bα,x,y generalized Bergmann operator α21J − αVx,y + UxUy in any Jordan

system [cf. 205]
Dx,y inner Jordan derivation Vx,y − Vy,x = [Vx, Vy ] = 4[Lx, Ly ]; reduces to

ad([x, y]) in special algebras [cf. 349]. Also denotes the analogue of
Vx,y in Jordan pairs [cf. 9]

Ei Peirce projections of J on Peirce subspaces Ei(J) = Ji relative to an
Ei(e) idempotent e (E2 = Ue, E1 = U1−e,e, E0 = U1−e) [cf. 236]

E(t) Peircer with respect to idempotent e (E(t) = Ue(t), e(t) = te + (1 − e))
[cf. 237]
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Eij Peirce projections of J on Peirce subspaces Eij(J) = Jij relative to a
Eij(E) supplementary orthogonal family E of idempotents

(Eii = Uei , Eij = Uei,ej ) [cf. 278]
E(t) Peircer with respect to orthogonal family E (E(t) = Ue(t), e(t) =

∑
i tiei)

[cf. 279]
Lx left multiplication operator Lx(y) = x · y in any linear algebra [cf. 55]
Lx,y analogue of Vx,y in Jordan triple systems [cf. 8]
Mp,q multiplication operator on FJ [x, y, z] parameterized by monomials

p, q in the variables x, y [cf. 462]
Px analogue of Ux in Jordan triple systems [cf. 8]
Qx analogue of Ux in Jordan pairs [cf. 9]
Rx right multiplication operator Rx(y) = y · x in any linear algebra [cf. 55]
Uij hermitian symmetry automorphisms of J determined by a supplementary

Uπ family of n hermitian matrix units (hermitian involutions Uij = Uuij ,

uij = 1 − (hii + hjj) + hij , Uπ = Ui1j1 · · · Uirjr if π = (i1j1) · · · (irjr))
[cf. 303]

Ux basic U -operator of quadratic Jordan algebras (2L2
x − Lx2 ); reduces to

LxRx in special algebras [cf. 5, 7, 81, 147]
Ux,y linearization Ux+y − Ux − Uy of the U -operator, Ux,yz = {x, z, y}

[cf. 7, 81, 147]
U

(u)
x U -operator UxUu in a homotope J(u) [cf. 71, 86, 223]

U[x,y] U operator of a commutator U{x,y} − 2{Ux, Uy} [cf. 349]
Vx left brace multiplication z �→ {x, z}; in Jordan algebras it has equivalent

forms Vx = Ux,1 = Vx,1 = V1,x = 2Lx [cf. 7 81, 147]
V

(u)
x V -operator Vx,u in a homotope J(u) [cf. 71, 86, 223]

Vx,y left triple multiplication z �→ {x, y, z} by x, y in a Jordan triple product
[cf. 7, 81, 147]

V
(u)
x,y V -operator Vx,Uuy in a homotope J(u) [cf. 71, 86, 223]

Operations with Idempotents

e ≤ f ordering of idempotents in a Jordan algebra (e • f = e, e ∈ J2(f)) [cf. 384]
e ⊥ f orthogonality of idempotents in an algebra (e • f = 0, e ∈ J0(f)) [cf. 384]
ei ∼ ej orthogonal idempotents are connected or strongly connected (there is vij

∈ Jij invertible or an involution in J2(ei + ej)) [cf. 297, 298]
{eij} family of associative matrix units (eijek! = δjkei!) [cf. 302]
{hij} family of hermitian matrix units hij = hji (h2

ii = hii, h
2
ij = hii + hjj ,

{hij , hjk} = hik(k �= i), {hij , hk!} = 0 if {i, j} ∩ {k, >} = ∅) [cf. 301]
σi Peirce specialization of Ji on J1 (σi(a) = Vai |J1 ) [cf. 248]
σκ(ai) skewtrace action Vsktr(ai) = Vai − Vai

= σi(ai) − σj(ai) on Jij [cf. 350]
qi Peirce quadratic forms on J1 (qi(x1) = Ei(x2

1)) [cf. 250]
σij Peirce specialization of Jij on Jik (σij(aij) = Vaij |Jik+Jjk

) [cf. 294]
qii Peirce quadratic forms on Jij (qii(xij) = Eii(x2

ij)) [cf. 295]

Alphabetical Constructs

Aff (V ) affine plane of a 2-dimensional vector space V or ∆2 over a division
Aff (∆) ring ∆ (points are vectors of V , lines are 1-dimensional affine

subspaces, incidence is membership) [cf. 30]
Alb(Φ) split albert algebra ∼= H(O(Φ)) ∼= H3(Zorn(Φ)) over Φ [cf. 66]
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AnnR(S) annihilator from R of a set S (elements x ∈ R which annihilate the set
S ⊆ M in a left R-module, xS = 0) [cf. 151, 307]

Aut(A) group of automorphisms of the algebra A (invertible linear T with
T (xy) = T (x)T (y)) [cf. 134]

Γ(A) centroid of A (the linear operators commuting with all multiplications)
[cf. 142]

Cent(A) center of an algebra A (x with [x,A] = [x,A,A] = [A, x,A] = [A,A, x]
= 0) [cf. 56, 141]

Cent(A, ∗) ∗-center of a ∗-algebra A (central elements with x∗ = x) [cf. 141]
CentA(S) centralizer of a set S in an algebra A (x ∈ A with [x, S] = 0) [cf. 142]
Core(S) core of subset S ⊆ A (largest two-sided A-ideal contained in it) [cf. 413]
Deg(J) degenerate radical of a Jordan algebra (smallest ideal with

nondegenerate quotient) [cf. 92 ]
Der(A) Lie algebra of derivations of the algebra A (linear D with D(xy)

= D(x)y + xD(y)) [cf. 0.1, 11; 134]
D(J) open unit disc of a formally real Jordan algebra (imbedded as the unit

ball of JC); bounded symmetric domain arising as the open unit ball
{x ∈ J | 1J − 1

2Lx,x > 0} of the positive hermitian triple system J
[cf. 24]

Ex(A) exchange ∗-algebra (A �Aop with exchange involution ex(a, b) = (b, a))
[cf. 140]

FA[X] free unital associative algebra on a set X [cf. 447]
FA0[X] free unitless associative algebra on a set X [cf. 454]
FJ [X] free unital Jordan algebra on a set X [cf. 455]
FJ 0[X] free unitless Jordan algebra on a set X [cf. 475]
FSJ [X] free special unital Jordan algebra on a set X [cf. 448]
FSJ 0[X] free special unitless Jordan algebra on a set X [cf. 454, 475]
Half(J) Koecher’s upper half space of formally real Jordan algebra J [cf. 23]
H(A) Jordan algebra of hermitian elements x = x∗ of a ∗-algebra A when

the involution is understood, e.g., composition algebras [cf. 171]
H(A, ∗) algebra of hermitian elements x = x∗ of a linear algebra A with

involution [cf. 3, 46, 58, 168, 46, 58]
Hn(D,−) Jordan matrix algebra H(A, ∗) of hermitian elements of A = Mn(D)

for ∗ the standard matrix involution (conjugate transpose) [cf. 46, 59]
Hn(D,Γ) “twisted” Jordan matrix algebra H(A, ∗Γ) of hermitian elements of

A = Mn(D) for ∗Γ the canonical involution (the Γ-isotope x∗Γ

= Γx∗Γ−1 of the standard involution by a diagonal matrix Γ with
diagonal entries invertible in the nucleus); it is isomorphic to the
isotope Hn(D,−)(Γ) of the untwisted matrix algebra [cf. 73, 229]

H3(D,Γ) twisted matrix algebra; it is Jordan for alternative D whose
hermitian elements are all nuclear [cf. 78, 230]

IA(S) ideal of the algebra A generated by a set S [cf. 403]
i-Specializer(A) i-Specializer of a Jordan algebra (smallest ideal whose quotient is

i-special) [cf. 116]
Jord(A, µ) cubic Jordan algebra of the First Tits Construction from a

degree–3 associative Φ-algebra A [cf. 196]
Jord(A, u, µ, ∗) cubic Jordan algebra of the Second Tits Construction from a

degree–3 associative Ω-algebra A with involution ∗ of second
kind over Φ [cf. 196]
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Jord(N, c) the Springer Construction of a degree–3 Jordan algebra Jord(N, c)
from a Jordan cubic form N with basepoint c; it is just
Jord(N,#, c) for the adjoint # derived from the Jordan cubic N
by T (x#, y) = N(x; y), using nondegeneracy of T (·, ·) [cf. 77, 191]

Jord(N,#, c) Jordan algebra of a sharp cubic form N with basepoint c and
sharp mapping (2x • y = x#y + T (x)y + T (y)x− S(x, y)c) [cf. 190, 481]

Jord(Q, c) degree–2 Jordan algebra of the quadratic form Q with basepoint c
(2x • y = T (x)y + T (y)x−Q(x, y)c) [cf. 176]

Jord(Q(u), c(u)) u-isotope of the quadratic form (Q(u)(x) = Q(x)Q(u), T (u)(x) =
Q(x, ū), c(u) = u−1) [cf. 76, 225]

JSpin(M,σ) Jordan spin factor Φ1 ⊕M determined by a symmetric bilinear
form σ on a Φ-module M (v • w = σ(v, w)1) [cf. 74, 178]

JSpinn(Φ) the original Jordan spin factor of Zorn, JSpin(V, σ) for V = Φn,
σ the ordinary dot product [cf. 3, 47, 58, 179]

KD(A, µ) the Cayley-Dickson algebra obtained by doubling the algebra A
by the Cayley-Dickson Recipe [cf. 64, 160]

Loc(A) locally nilpotent (Levitzki) radical (maximal ideal which is locally
nilpotent, all finitely-generated subalgebras are nilpotent) [cf. 107]

M[X] free monad on the set X (nonassociative monomials in the elements
of X) [cf. 456]

Mn(D) linear algebra of n× n matrices with entries from a coordinate
algebra D [cf. 456]

M∞(D) all ∞×∞ matrices with only finitely many nonzero entries
from D [cf. 425]

MorC(X,Y ) all morphisms from X to Y in the category C [cf. 132]
Mouf (O) the Moufang projective plane coordinatized by the octonion division

algebra O [cf. 33]
Mult(A) multiplication algebra of A (unital subalgebra of End(A) generated by

1A and all left and right multiplications La, Ra; in the Jordan case
it is also generated by the Vx, Ux) [cf. 142]

Nil(A) nil (Köthe) radical (maximal nil ideal) of the algebra A [cf. 109, 367]
Nuc(A) nucleus of the algebra A (x with [x,A,A] = [A, x,A] = [A,A, x] = 0)

[cf. 56, 141]
PNBI(A) set of properly–nilpotent–of–bounded–index elements of A [cf. 421]
Pnil(A) set of properly nilpotent elements of A (nilp. in every homotope) [cf. 370]
PQI(A) set of properly quasi-invertible elements of A (q.i. in every homotope)

[cf. 369]
Prime(A) prime or semiprime (Baer) radical of A (smallest ideal with

semiprime quotient)
Proj (J) octonion projective plane determined by a reduced Albert algebra

J = H3(O) (points are 1-dimensional inner ideals, lines are
10-dimensional inner ideals, incidence is inclusion) [cf. 34]

Proj (T ) isomorphism Proj(J) → Proj(J′) of projective planes induced by a
structural T : J→ J′ of reduced Albert algebras [cf. 35]

Proj (V ) projective plane of a 3-dimensional vector space V or ∆3 over an
Proj (∆) associative division ring ∆ (points are 1-dimensional subspaces,

lines are 2-dimensional subspaces, incidence is inclusion) [cf. 29]
QI(A) set of quasi-invertible elements of A (1̂ − x invertible in Â) [cf. 366]
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Rad(A) semiprimitive (Jacobson) radical of A (THE radical; smallest ideal
with semiprimitive quotient, largest q.i. ideal, consists precisely
of all p.q.i. elements) [cf. 89, 366]

Rad(Q) radical of the quadratic form Q (z with Q(z) = Q(z, V ) = 0) [cf. 63]
RedSpin(q) reduced spin algebra of quadratic form q on Φ-module M (Φe1 ⊕M ⊕ Φe2

with square (α,w, β)2 := (α2 + q(w), (α + β)w, β2 + q(w))) [cf. 181]
Seq(A) algebra of all sequences from A (same as

∏∞
1 A) [cf. 418]

Skew(A, ∗) set of elements x∗ = −x skew with respect to the involution ∗ [cf. 171]
Specializer(J) specializer of a Jordan algebra J (smallest ideal whose quotient is

special) [cf. 399]
Strg(J) structure group U(J)Aut(J) of a Jordan algebra J [cf. 12]
Strl(J) structure Lie algebra L(J) + Der(J) of a Jordan algebra J [cf. 12]
T KK(J) Tits–Kantor–Koecher Lie algebra J−1 ⊕ Inder(J) ⊕ J1 of J [cf. 13]
Zann(S) Zel’manov annihilator in the Jordan algebra J of a set S (z with

{z, S, Ĵ} = 0) [cf. 108]
Zorn(Φ) Zorn vector-matrix algebra over Φ (split octonion algebra) [cf. 158]

Symbolic Constructs

Aop opposite linear algebra, same space but opposite product
(x ·op y = y · x) [cf. 140]

A+ plus algebra of any linear algebra (A under the Jordan product
1
2 (xy + yx)); it is Jordan if A is associative or alternative
[cf. 3, 46, 58, 168]

A− minus algebra of any linear algebra (A under the Lie bracket
xy − yx); it is Lie if A is associative

A quotient or factor algebra A/I [cf. 53, 135, 148]
AΩ scalar extension AΩ := Ω ⊗Φ A of the Φ-algebra [cf. 69, 135]
A1 general unital hull A1 = Φ1 +A of a linear algebra [cf. 138]
Â (formal) unital hull Φ1 ⊕A [cf. 52, 138]

Â
Ω

(formal) unital hull Ω1 ⊕A of A considered as an Ω-algebra [cf. 138]
A[ε] algebra of dual numbers A[ε] = A⊗Φ Φ[ε] for ε2 = 0 [cf. 134]
Aij associative Peirce spaces eiAej [cf. 241, 285]
A[T ] formal polynomials in indeterminates T with coefficients from A [cf. 417]
A[[T ]] formal power series in indeterminates T with coefficients from A [cf. 417]
A(t) rational functions in t over A (AΦ(t) for rational function field Φ(t)

over a field Φ)
Au nuclear u-homotope of the algebra A (product xuy = xuy) [cf. 72]

�IAi infinite direct sum of algebras [cf. 54, 135]∏
I Ai direct product of algebras [cf. 54, 135]

=∼ ∏
I Ai subdirect product of algebras. [cf. 135]

♥(A) heart of A (smallest nonzero ideal, if such exists) [cf. 119, 422]
Ji, Ji(e) Peirce subspaces of J relative to idempotent e or supplementary
Jij , Jij(E) orthogonal family E of idempotents (eigenspace for Peircer with

eigenvalue ti or titj) [cf. 99, 100 236, 280]
Jt Jordan triple system built out of a Jordan algebra J by taking triple
Jt∗ product {x, y, z} or {x, y∗, z} for an involution ∗ on J [cf. 8]
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J(u) Jordan u-homotope of the algebra J (product x •(u) y := 1
2{x, u, y})

[cf. 71, 223]
J[u] Jordan isotope J(u

−1) with unit 1[u] = u [cf. 15]
J[T, T−1] algebra J⊗ Φ[T, T−1] of polynomials in T, T−1 [cf. 238, 283]
>a(B) linear, higher linear absorber of an inner ideal B
>an(B) (the set of all b ∈ B with V n

Ĵ
(b) ⊆ B) [cf. 116, 398]

(N,#, c) sharped cubic form [cf. 190]
(N(u),#(u), c(u)) u-isotope (N(x)N(u), N(u)−1Uu#x#, u−1) of a sharped

cubic form [cf. 226]
qa(B) quadratic, higher quadratic absorber of inner ideal B
qan(B) (the set of all b ∈ B with

(
VJ,Ĵ + UĴ

)n(b) ⊆ B) [cf. 116, 398]
Φ[T ]S localization of the polynomial ring at a monoid S [cf. 289]
S⊥ orthogonal complement of the set S relative to given bilinear

form σ (x with σ(x, S) = 0)
Y ′ complement Y ′ = X \ Y of a subset Y in ambient space X [cf. 427]

Elemental Constructs

AbsSpecΦ,J(x) absorber spectrum of an element x (λ with qa(Uλ1̂−xJ) = 0)
AbsSpec(x) [cf. 402]

d[ij] Jacobson box notation dEij + d̄Eji for off-diagonal entries in
Hermitian matrix algebra Hn(D) (d ∈ D arbitrary) [cf. 174]

d[ij]Γ Jacobson Γ-box notation γidEij + γj d̄Eji ∈ Hn(D,Γ) for
d ∈ D [cf. 229]

δ[ii] Jacobson box notation δEii for diagonal entries in Hermitian
matrix algebra Hn(D) (δ ∈ H(D,−)) [cf. 174]

δ[ii]Γ Jacobson Γ-box notation γiδEii ∈ Hn(D,Γ) for δ ∈ H(D,−)
[cf. 229]

Eig(x) eigenvalues of an element x (λ with Uλ1̂−xz = 0 for some
z �= 0 in J) [cf. 121]

f-Spec(x) f -spectrum of x (λ with f(Uλ1̂−xJ) = 0, where f(J) �= 0)
[cf. 121, 390]

N(x), n(a) cubic norm form on a degree–3 Jordan or associative algebra
[cf. 76, 189, 195]

Res(x) resolvent of an element x (complement of spectrum)
ResΦ,J(x) [cf. 389]
Spec(x) Φ–spectrum of an element x (all scalars λ with Uλ1̂−x not
SpecΦ,J(x) invertible on J) [cf. 121, 388]
sktr(x) skewtrace x− x∗ of x in a ∗-algebra [cf. 349]
S(x), s(a) quadratic spur form of a cubic N or n [cf. 77, 189, 195]
S(x, y), bilinearization of the quadratic spur form of a cubic

s(a, b) [cf. 189, 195]
t(x), n(x) trace x + x∗, norm n(x) = xx∗ of x in a ∗-algebra [cf. 139, 349]
T (x) trace form T (x) = Q(x, c) of a quadratic form Q with basepoint

[cf. 75, 156]
T (x), trace form T (x) = N(c;x) of a cubic form N or n

t(a) with basepoint [cf. 77, 189, 195]
T (x, y), trace bilinear form T (x, y) = T (x)T (y) −N(c, x, y) of a

t(a, b) cubic form N or n [cf. 77, 189, 195]
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x̄ often denotes coset [x]I = π(x) of x ∈ A mod I (but it also
indicates the image of x under an involution ) [cf. 53]

x#, a# quadratic sharp mapping for a cubic form N or n [cf. 77]
x#y bilinearization of the sharp mapping [cf. 77]
(x) open principal inner ideal UxJ [cf. 205]
(x] principal inner ideal Ux(Ĵ) = Φx2 + UxJ determined by x

[cf. 87,205]
[x] closed principal inner ideal Φx + Φx2 + UxJ [cf. 205]
x EF y regularly paired elements (Uxy = x, Uyx = y) [cf. 318]

Filters on Index Set of a Direct Product

agree(x, y) agreement set for elements of a direct product (indices i where
xi = yi) [cf. 126, 433]

F filter on a set X [cf. 427]
F|Y restriction filter F ∩ P(Y ) on Y ∈ F for a filter F on X [cf. 428]
F ∩ Y intersection filter F ∩ Y = {Z ∩ Y |Z ∈ F} on Y ∈ F for a filter

F on X [cf. 428]
F0 enlargement filter of downward-directed collection F0 of subsets

(all subsets containing some Y ∈ F0) [cf. 428]
F(A0) support filter of a prime subalgebra A0 of a direct product

(generated by the support sets of nonzero elements of A0,
which are downward-directed by primeness) [cf. 127, 429]

≡F equivalence relation induced on direct product by a filter
(x ≡F y iff xi = yi for all i in some set Z ∈ F) [cf. 433]

(
∏
Ax)/F filtered product of algebras ((

∏
Ax)/ ≡F ) [cf. 433]

I(F) filter ideal (ideal of elements equivalent to 0 mod the filter) [cf. 126, 433]
Supp(x) support set of a function or element of a direct product

(indices i where xi �= 0) [cf. 126, 429]
Supp(A0) collection of all support sets Supp(a0) of nonzero elements in the

prime subalgebra A0 of a direct product [cf. 429]
Zero(x) zero set of a function or element of a direct product

(indices i where xi = 0) [cf. 126, 429]

Lists

(AInv1), (AInv2): Associative Inverse conditions (AInv1) xy = 1, (AInv2) yx = 1 [cf. 213].
(AltAX1)–(AltAX3): Alternative axioms (AltAX1) left alternative x(xy) = x2y, (AltAX2) right

alternative (yx)x = yx2, (AltAX3) flexible (xy)x = x(yx) (a consequence of the first two)
[cf. 60, 153]

(A1)–(A4): axioms for a cubic norm form on an associative algebra (A1) Degree–3 Identity; (A2)
Trace-Sharp Formula; (A3) Trace–Product Formula; (A4) Adjoint Identity [cf. 194]

An, Bn, Cn, Dn;G2, F4, E6, E7, E8 4 Great Classes and 5 Sporadic Exceptions of simple Lie al-
gebras (respectively, groups): An is matrices of trace 0 (resp. determinant 1), Bn, Dn are
the skew matrices T ∗ = −T (respectively, isometric T ∗ = T−1) with respect to a nonde-
generate symmetric, Cn with respect to a nondegenerate skew-symmetric bilinear form [cf.
12]

(FAQ1)–(FAQ6): Frequently Asked Questions settled by the Russian Revolution [cf. 107]
(FFI)–(FFV): fundamental operator formulas (FFI) Fundamental Formula; (FFII) Commuting

Formula; (FFIII) Triple Shift Formula; (FFIV) Triple Switch Formula; (FFV) Fundamental
Lie Formula; (FFI)′ Alternate Fundamental Formula, (FFIII)′ Specialization Formulas;
(FFV)′ 5-Linear Identity [cf. II.5.2.3, 202 for full details]

(FFIe)–(FFVe): fundamental element identities (FFIe) Fundamental Identity; (FFIIe) Commut-
ing Identity; (FFIIIe) Triple Shift Identity; (FFIVe) Triple Switch Identity; (FFVe)′ 5-Linear
Identity [cf. II.5.2.3, 202 for full details]
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G8, G9,X8,X9, T10, T11 s-Identities: Glennie’s identities Hn(x, y, z) = Hn(y, x, z)
where H8(x, y, z) := {UxUyz, z, x • y} − UxUyUz(x • y), H9(x, y, z) := 2Ux(z) •
Uy,xUz(y2) − UxUzUx,yUy(z); Shestakov’s identities [[x, y]3, z2] = {z, [[x, y]3, z]},
[[x, y]3, z3] = {z2, [[x, y]3, z]} + Uz [[x, y]3, z]; Thedy’s identities T11(x, y, z, w) =
T10(x, y, z)(w), T10(x, y, z) = UU[x,y]z − U[x,y]UzU[x,y] [cf. 5, 469]

(Filt 1)–(Filt 3): conditions for a filter on X (closed under intersection; enlargement; does not
contain ∅) [cf. 125, 427]

(Filt 1)′, (Filt 2)′, (Filt 2)′′, (Filt 3)′: auxiliary filter conditions (closed under finite intersections;
closed under unions with any subset; contains X; not P(X)) [cf. 427]

(JAX1), (JAX2): Jordan axioms (JAX1) commutativity x • y = y • x, (JAX2) Jordan identity
x2 • (y • x) = (x2 • y) • x [cf. 45, 57, 146]

(JAX2)′, (JAX2)′′: first, second linearizations of (JAX2) (of degree 2, 1 in x) [cf. 148].
(KD0)–(KD4) Cayley-Dickson product rules for the Cayley-Dickson Recipe: (KD0) am = ma;

(KD1) ab = ab; (KD2) a(bm) = (ba)m; (KD3) (am)b = (ab̄)m; (KD4) (am)(bm) = µb̄a [cf.
160]

(LAX1), (LAX2): Lie axioms (LAX1) skewness [x, y] = −[y, x], (LAX2) Jacobi identity [x, [y, z]]+
[y, [z, x]] + [z, [x, y]] = 0 [cf. 57]

(LJInv1), (LJInv2): Linear Jordan Inverse conditions (LJInv1) x • y = 1, (LJInv2) x2 • y = x [cf.
70, 215]

(Mod 1)–(Mod 3), (Mod 3a), (Mod3b): conditions for c to be modulus for inner ideal B in J
(Mod1) U1−cJ ⊆ B; (Mod2) c− c2 ∈ B; (Mod3) {1 − c, Ĵ,B} ⊆ B; (Mod3a) {1 − c, J,B} ⊆
B; (Mod3b) {c,B} ⊆ B [cf. 118; 411]

q.i., p.q.i., p.n., p.n.b.i.: property of an element being quasi-invertible, properly quasi-invertible,
properly-nilpotent, properly nilpotent of bounded index (1̂ − x is invertible in Ĵ; x is q.i.
in each homotope; x is nilpotent in each homotope; x is p.n. of bounded index (there is n
with x(n,y) = 0 for all y ∈ J)) [cf. 366; 369; 369; 369]

(QInv1), (QInv2): Quasi-Inverse conditions (QInv1) U1̂−zw = z2 − z; (QInv2) U1̂−zw
2 = z2 [cf.

368].
(QInvP1), (QInvP2): Quasi-Inverse Pair conditions (QInvP1) Bz,yw = Uzy − z, (QInvP2)

Bz,yUwy = Uzy [cf. 370]
(QJAX1)–(QJAX3): unital quadratic Jordan axioms (QJAX1) U1 = 1J, (QJAX2) Vx,yUx =

UxVy,x, (QJAX3) UUxy = UxUyUx [cf. 0.1, 7; 83]
(QJInv1), (QJInv2): Quadratic Jordan Inverse conditions (QJInv1) Uxy = x; (QJInv2) Uxy2 = 1

[cf. 85, 211, 363].
q(x, y), N(x; y), N(x, y, z): linearization of a quadratic map q, first, complete linearization of a

homogeneous cubic N [cf. 74/187]
R,C,H,K; A;M12(K) reals, complexes, Hamilton’s quaternions, Cayley’s octonions (real compo-

sition division algebras); Albert algebra A = H3(K) of hermitian 3×3 matrices over Cayley
algebra (27-dimensional simple exceptional Jordan algebra); bi-Cayley Jordan triple (16-
dimensional simple exceptional triple system) [cf. 4, 8]

(RFilt): restriction filter [cf. 125]
(UFilt 1)–(UFilt 4) equivalent conditions for an ultrafilter: (UFilt 1) maximal filter; (UFilt

2)/(UFilt 3) if a union of two/finite number of sets belongs to F then one is already
in F ; (UFilt 4) for any subset Y , either Y or its complement lies in F [cf. 126, 431]

U(Φ),B(Φ),Q(Φ),O(Φ) split composition algebras: split unarions, binarions, quaternions, octo-
nions of dimension 1,2,4,8 over Φ [cf. 66, 157]
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Index of Statements

The following list contains an entry for each Statement that has been chris-
tened with a proper name in the text. Named statements include Theorems,
Propositions, Lemmas, Examples, Definitions, and named formulas. For each
entry I give the proper name of the entry, its numerical tag, and a reference
to the page(s) where the statement is made, but I don’t repeat its statement.
The citation gives only the page(s) where the statement is made, not to all the
places it is discussed or used. The numerical tag lists Part, Chapter, Section,
and Statement number, with parts of statements indicated by parentheses
(e.g., I.2.3.4 or I.2.3.4(5)); the Colloquial Survey has no Part and no Chapter,
it is designated by O and the section number (e.g., O.1).
Besides being a reference for locating statements, the list provides a use-

ful review and summary of the basic results of Jordan theory. Going through
the list will test the student’s ability to formulate and recall these facts, and
reinforce them in memory. Of course, many of the entries are of lesser impor-
tance, useful only for students intending to pursue research in specific aspects
of Jordan structure theory; they can stay safely buried in this index, to be
looked up rather than stored at the tip of the tongue.



546 Statements

A

A Little Reassuring Argument II.4.3.3,
191

Absorber Boosting Principle III.4.2.1(3),
400

Absorber Nilness Theorem III.4.3.1, 403
Absorber Spectrum Definition I.8.6, 121;

III.4.2.2, 402
Absorberless Primitizer Property I.8.4,

119; III.5.2.2(3), 414
Absorberless Primitizer Proposition

I.8.4, 119
Absorbers Definition III.4.1.3, 399
Absorbers Theorem I.8.2, 116
Action Formula for Hermitian

Involutions II.15.2.1(2), 303
Addition Principle III.1.4.3(3), 372
Adjoint Identity for cubic form I.3.8, 77;

II.4.2.1(2), 190; C.2.1(2), 480
Adjoint′ Identity II.4.3.3(4), 192;

C.2.2(2), 481
Adjoint′′ Identity C.2.2(2), 481
Agreement Principle for hermitian

symmetries II.15.2.2(3), 305
Albert Division Algebra Example C.5.2,

498
Albert’s Exceptional Theorem I.1.11,

49; II.13.5.3, 288
Algebraic Definition III.2.2.1, 383
Algebraic I Proposition I.8.1, 115;

III.2.2.2, 383
Alternate Fundamental Formula (FFI)′

II.5.2.3, 202
Alternate q Expression II.9.2.2, 250
Alternative Algebra Definition I.2.7, 60;

II.2.1.1, 153
Alternative Associator Facts Lemma

C.1.1, 476
Alternative Coordinates Theorem I.2.7,

60
Alternative Inheritance II.2.5.2, 162
Alternative Nucleus Lemma II.21.2.1,

338
Amitsur’s Big Resolvent Trick I.8.8,

124; III.3.2.2, 391
Amitsur’s Polynomial Trick III.1.8

Problem 1.2, 379; III.5.5 Problem
5.3, 420

Artinian Definition I.4.11, 92
Artin’s Theorem II.21.1.2, 337
Artin–Wedderburn–Jacobson Structure

Theorem I.4.11, 92
Artin–Zorn Theorem O.8, 34

Associative Adjoint Identity II.4.5.1, 195
Associative Coordinates Theorem I.2.6,

60
Associative Cubic Consequences Lemma

C.4.2, 491
Associative Degree–3 Definition II.4.5.1,

195; Definition C.4.1, 490
Associative Degree–3 Identity II.4.5.1,

195
Associative Inheritance II.2.5.2, 162
Associative Peirce Decomposition

II.8.3.1, 241
Associative Peirce Multiplication Rules

II.13.4.1, 285
Associative Trace–Product Formula

II.4.5.1, 195
Associative Trace–Sharp Formula

II.4.5.1, 195
Auxiliary Products Definition II.1.8.2,

147

B

Bar Invariance of central involution
II.21.2.2(1), 340

Basic Brace Orthogonality II.3.2.4(2),
175

Basic Identities Lemma B.2.1, 458
Basic Inverse Consequences III.1.1.1(4),

363
Basic Inverse Criterion III.1.1.1(3), 363
Basic Inverse Theorem III.1.1.1, 363
Basic Quasi-Inverse Theorem III.1.3.2,

368
Basic Quasi-Inverse Criterion,

III.1.3.2(3), 368
Basic Quasi-Inverse Consequences,

III.1.3.2(4), 368
Basic Q.I. Pair Theorem III.1.4.2, 370
Basic Q.I. Pair Criterion III.1.4.2(3),

370
Basic Q.I. Pair Consequences

III.1.4.2(4), 371
Basic Q.I. Pair Principles III.1.4.3, 372
Basic Triple Orthogonality II.3.2.4(4),

175
Basic Triple Products II.3.2.4(4), 175
Basic Twisted Brace Orthogonality

II.7.5.3(2), 229
Basic Ultraproduct Fact I.8.10, 127;

III.8.1.4, 435
Basic U -Orthogonality II.3.2.4(3), 175
Basic U -Products II.3.2.4(3), 175
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Bergmann Structurality Proposition
III.1.2.2, 364

Big Definition I.8.8, 123; III.3.2.1, 390
Big Primitive Exceptional Theorem

I.8.8, 124; III.6.2.2, 424
Bounded Spectrum Theorem III.3.4.1,

393
Bruck–Kleinfeld Theorem O.8, 34
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Trace–Sharp Formula II.4.2.1(2), 190;

C.2.1(2), 480
Triangular Trivial Example I.6.4, 103;

II.19.1.5, 326
Triple Shift Formula (FFIII) II.5.2.3,

202
Triple Shift Identity (FFIIIe) II.5.2.3,

202
Triple Switch Formula (FFIV) II.5.2.3,

202
Triple Switch Identity (FFIVe) II.5.2.3,

202
Triviality Definition II.5.3.2, 206
Twisted Hermitian Connection Example

I.5.1, 96
Twisted Hermitian Cyclicity Example

II.12.1.2, 269
Twisted Hermitian Proposition I.3.4, 72;

II.7.1.3, 221
Twisted Matrix Example I.3.5, 73;

II.7.5.3, 229
Twisted Matrix Frame Example

II.11.1.5, 261
Two-Frame Definition II.11.1.1, 260
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U

U Commutator Expression II.21.3.1, 341
U–Inverse Formula II.6.1.3, 212
U Symmetry Formula C.2.2(1), 480
U1q Rules II.9.2.2(2), 251
Uijq Rules II.14.3.1(2), 295
Ultrafilter Characterization Theorem

III.7.3.4, 431
Ultrafilter Definition I.8.10, 126;

III.7.3.1, 430
Ultrafilter Restriction Example III.7.3.5,

431
Ultra Imbedding Theorem III.7.3.3, 430
Ultraproduct Definition I.8.10, 126;

III.8.1.2, 434
Unital Algebra Definition II.1.3.1, 137
Unital Heart Principle I.8.5, 120;

III.6.1.2(2), 422
Unital Hull Definition I.2.1, 52; II.1.4.1,

138
Upper Triangular Connection Example

I.5.1, 96

V

vNr Definition II.18.1.1, 318
vNr Pairing Lemma II.18.1.2, 319
von Neumann Inverse Definition II.6.2.1,

217

Vonverse Condition II.6.2.1, 217
V U-Commuting Theorem II.4.6

Problem 4.1, 197

W

Weak Riddance Proposition II.5.3.3, 206

Z

Zel’manov’s Absorber Nilness Theorem
I.8.2, 117

Zel’manov’s Division Theorem I.7.3, 110
Zel’manov’s Exceptional Theorem I.7.3,

110; III.9.2.1, 442
Zel’manov’s Local Nilpotence Theorem

I.7.2, 109
Zel’manov’s Nilpotence Theorem I.7.2,

109
Zel’manov’s PI Theorem I.7.4, 111
Zel’manov’s Polynomial Trick III.5.5

Problem 5.4, 420
Zel’manov’s Prime Theorem I.7.3, 110
Zel’manov’s Simple Theorem I.7.3, 110
Zorn Vector-Matrix Example II.2.4.2,

158
Z-Specialization Definition III.4.1.1, 397
Z-Specialization Lemma III.4.1.2, 398



E

Index of Definitions

The following is a list of definitions, terms that appeared in bold-faced type
in the book. The citation gives for each entry only the page(s) where the term
is defined, not all the places it is discussed or used, nor a repetition of the
definition. As with the Index of Statements, this can provide a useful review
and summary of the basic terms of Jordan theory. Going through the list will
test the student’s ability to formulate and recall these facts, and reinforce
them in memory.
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A

absorber spectrum of element I.8.6, 121;
III.4.2.2, 402

absorber (linear/quadratic/higher)
III.4.1.3, 399

a.c.c. (ascending chain/maximum
condition) on idempotents I.8.1, 115;
III.2.4.1(3), 384

a.c.c. (ascending chain/maximum
condition) on inner ideals I.4.11, 92

adjoint map of a cubic [see sharp
mapping]

affine plane O.8, 30
agreement set of two elements in direct

product I.8.10, 126; III.8.1.1, 433
Albert algebra I.3.9, 78
algebra of dual numbers II.1.2.2, 134
algebra with involution II.1.5.1, 139
algebraic algebra I.8.1, 115; III.2.2.1, 383
algebraic element I.8.1, 114; III.2.2.1,

383
alternative algebra I.2.7, 60; II.2.1.1 153
anisotropic vector I.2.10, 63
anti-commutative law I.2.4, 57
anti-homomorphism/isomorphism/

automorphism I.2.2, 53
artinian algebra I.4.11, 92
associative algebra I.2.3, 56
associative degree–3 algebra II.4.5.1,

195; C.4.1, 490
associative n× n matrix units

II.15.1.2(2), 302
associative Peirce decomposition

II.8.3.1, 241; II.13.4.1(1), 285
associative Peirce multiplication rules

II.8.3.1, 241; II.13.4.1(1), 285
associator I.2.3, 56; II.1.6, 141
automorphism of linear algebra I.2.2, 53;

II.1.2.2, 134
automorphism group of linear algebra

II.1.2.2, 134
autotopy of linear algebra II.21.4

Problem 21.9, 347
autvariant (characteristic) ideal I.7.4,

113
auxiliary Jordan products and operators

(squares, brace products,
U -products, triple products, V
products) O.1, 7; I.4.1, 81; II.1.8.2,
147

B

basepoint for cubic form I.3.8, 77;
II.4.2.1, 189

basepoint for quadratic form I.3.7, 75;
II.2.3.1(1), 156

Bergmann kernel function O.6, 24
Bergmann operator, generalized

Bergmann operators II.5.3, 205,
III.1.2.2, 364

bi-Cayley Jordan triple O.2, 8
big set of scalars I.8.8, 123; III.3.2.1, 390
bounded symmetric domain O.6, 22;

O.7, 26

C

canonical projection π on quotient
algebra II.1.2.5, 135

capacity n, finite capacity I.5.1, 96;
II.20.1.1, 330

category II.1.1, 132
category of alternative algebras II.2.1.1,

153
category of Jordan Φ-algebras, II.1.8.1,

146
category of linear algebras II.1.2.1, 134
category of ∗-algebras II.1.5.1, 139
category of unital Jordan Φ-algebras,

II.1.8.1, 146
category of unital Φ-algebras II.1.3.1,

137
Cayley–Dickson algebra I.2.11, 64;

II.2.5.2, 162
Cayley–Dickson Construction or

doubling process I.2.11, 64; II.2.5.2,
162

Cayley–Dickson recipe I.2.11, 64
center of alternative algebra II.2.2.1, 154
center of linear algebra I.2.3, 56;

II.1.6.1, 141
central algebra II.1.6.1, 141
central involution II.2.2.2, 155
central-simple algebra II.1.6.1, 141
centralizer or commuting ring of set of

operators II.1.6.2, 142
centroid of linear algebra II.1.6.2, 142
centroidal algebra II.1.6.2, 142
centroid-simple algebra II.1.6.2, 142
codomain (target) of morphism II.1.1,

132
commutative algebra I.2.3, 55
commutative law I.1.6, 45; I.2.4, 57;

II.1.8.1, 146
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commutator I.2.3, 55; II.1.6, 141
complement for a submodule D.1, 501
complementary idempotent II.8.1.1, 235
completely reducible representation on

module D.1, 501
composition algebra (scalar, binarion,

quaternion, octonion algebra) I.2.10,
63; I.2.11, 64; II.2.3.1(3), 156

congruence on direct product
determined by a filter I.8.10, 126;
III.8.1.1(1), 433

congruent to 1̂ mod J III.1.2.1(2), 364
connected/strongly connected capacity

I.5.1, 96; II.20.1.1, 330
connected/strongly connected

idempotents I.5.1, 95; II.10.1.3, 255;
II.14.4.2, 297

connecting/strong connecting element
II.10.1.3, 255; II.14.4.2, 297

connection action II.10.1.3(2), 255
connection equivalence relation among

orthogonal idempotents II.14.4.4, 298
connection fixed point II.10.1.3(3), 255
connection involution II.10.1.3(1), 255;

II.14.4.5, 298
connection trace function II.10.1.3(2),

255
contagious invertibility III.1.2.3, 366
coordinate algebra II.12.1.1, 268;

II.16.1.1(1), 308; II.16.1.3, 310
coordinate involution II.12.2.3, 271;

II.16.1.1(2), 309; II.16.1.3, 310
core of a subset III.5.2.1, 413
co-prime/co-primitive ideal I.4.9, 89
co-special/co-i-special III.4.1.4, 400
cubic form I.3.8, 76; II.4.1, 187
cubic norm form for associative algebra

II.4.5.1, 195
cyclic Peirce condition II.12.1.1, 268
cyclic Peirce generator II.12.1.1, 268
cyclic/strong cyclic 2-frame II.12.1.1,

268, 269

D

d.c.c. (descending chain, minimum
condition) on idempotents I.8.1, 115;
III.2.4.1(4), 384

d.c.c. (descending chain, minimum
condition) on inner ideals I.4.11, 92

degenerate radical I.4.11, 92
degree–3 associative algebra C.4.1, 490
dense algebra of linear transformations

D.2, 504

derivation/derivation algebra of linear
algebra O.3, 11; II.1.2.2, 134

derivation of quadratic Jordan algebra
II.6.8 Problem 6.2, 219

diagonal coordinate space of a hermitian
frame II.16.1.1(3), 309

diagonal Peirce subalgebra I.6.1, 99,
100; II.9.0, 248

direct product of algebras I.2.2, 54;
II.1.2.6, 135

direct sum of algebras I.2.2, 54; I.2.2,
54; II.1.2.6, 135

division idempotent I.5.1, 95; II.19.1.1,
325

domain of morphism II.1.1, 132

E

eigenvector/eigenvalue for an element
I.8.6, 121

elemental alternative isotope II.21.4
Problem 21.7, 346

elements operator-commute II.6.2.1, 217
endvariant (T -, fully characteristic, fully

invariant, verbal) ideal I.7.4, 112
enlargement filter III.7.1.4, 428
equivalent mod inner ideal III.4.3.2, 404
Euclidean (formally real) Jordan algebra

I.1.6, 45
exceptional Jordan algebra I.1.10, 48;

II.3.1.2, 170
exchange algebra/functor/involution

II.1.5.3, 140
extension of ring of scalars II.1.2.7, 135

F

filter on a set I.8.10, 125; III.7.1.1, 427
filter ideal I.8.10, 126; III.8.1.1(2), 433
filtered product (quotient of a direct

product by a filter) I.8.10, 126;
III.8.1.1(1), 433

finite capacity [see capacity]
flexible law/algebra I.2.7, 60; II.2.1.1,

153
form of an algebra I.3.1, 70
form permitting composition II.2.3.1(3),

156
formal unital hull II.1.4.1, 138
free associative functor A.1.3, 448
free monad B.1.1, 456
free special Jordan functor A.1.3, 448
free special unital Jordan algebra A.1.2,

448
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free unital associative algebra A.1, 447
free unital Jordan algebra B.1, 455
free unital linear algebra B.1, 456
free (unitless) associative algebra A.4

Problem A.1, 454
free (unitless) Jordan algebra B.6

Problem B.2, 475
free (unitless) special Jordan algebra

A.4 Problem A.1, 454
f -spectral bound I.8.7, 122; III.3.4.2,

393
f -spectrum of an element I.8.6, 121;

III.3.1.2, 390
functor II.1.1, 133

G

geometric series O.4, 15; III.1.3.1(4), 367
generalized inverse in associative algebra

II.18.1.1, 319
generalized Jordan isotope II.7.6

Question 7.1, 233

H

heart of an algebra I.8.5, 119; III.6.1.1,
422

hermitian algebra I.1.8, 46; I.2.5, 58;
I.3.4, 72; II.3.2.1, 171; II.3.2.4, 174

hermitian coordinate ∗-algebra II.16.1.1,
308

hermitian element II.1.5.1, 139; II.3.2.1,
171

hermitian frame II.15.1.1, 301
hermitian functor II.3.2.3, 174
hermitian involution II.15.2.1, 303
hermitian matrix algebra I.1.8, 46; I.2.6,

59; I.3.5, 73; II.3.2.4(1), 174; II.7.5.3,
229

hermitian matrix units I.1.8, 46;
II.15.1(3), 301

higher linear, quadratic absorbers
III.4.1.3(3), 399

homomorphism/isomorphism/
automorphism of linear algebra I.2.2,
53; II.1.2.2, 134

homotope of Jordan algebra I.4.6, 86;
II.7.2.1(1), 223

Hua identity O.4, 15

I

ideal of linear algebra I.2.2, 53; II. 1.2.3,
135; of Jordan algebra II.1.8.3, 148

idempotent element I.5.1, 95; II.5.2.1,
200; II.8.1.1, 235

i-exceptional (identity-exceptional)
I.4.10, 91; B.5.1, 469

I-finite (idempotent-finite) I.8.1, 115;
III.2.4.1(1), 384

I-gene, I-genic (idempotent-generating)
I.8.1, 114; III.2.1.1(1), 381

improper ideal II.1.2.4, 135
inner ideal of Jordan algebra I.4.7, 87;

II.1.8.3, 148
intersection filter III.7.1.3, 428
inverse, invertible element I.3.2, 70;

II.I.3.2, 70; II.6.1.1, 211; III.1.1.1,
363

invertible modulo inner ideal III.4.3.2,
404

involution in a Jordan algebra II.6.1.9,
217

involution in a linear algebra II.1.5.1,
139

involution of second kind C.4.4, 495
involution on a Jordan algebra II.6.1.9,

217
irreducible representation/module D.1,

501
isomorphic, isomorphic to I.2.2, 53
isomorphism I.2.2, 53
isotope of involution I.3.4, 72; II.7.1.3,

221
isotope of Jordan algebra I.3.2, 71; I.4.6,

86; II.7.2.1(2), 223
isotope of quadratic factor II.7.3.1(1),

225
isotope of reduced spin factor

II.7.3.1(2), 225
isotope of sharped cubic form II.7.4.1,

226
isotopic Jordan algebras II.7.2.1(3), 223
isotopy of linear algebras II.21.4

Problem 21.9, 347
isotropic vector I.2.10, 63
i-special (identity-special) algebra I.4.10,

91; III.4.1.4, 399; B.5.1, 469
i-specializer of algebra III.4.1.4, 399

J

Jacobi identity O.3, 11; I.2.4, 57
Jacobson box notation II.3.2.4(1), 174
Jacobson Γ-box notation II.7.5.3, 229
Jacobson radical [see primitive radical]
Jordan algebra O.1, 3; I.1.6, 45; I.2.4,

57; II.1.8.1, 146
Jordan algebra over a big field I.8.8,

123; III.3.2.1, 390
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Jordan–Banach (JB) real algebra O.5,
20

Jordan–Banach (JB∗) complex
∗-algebra O.5, 21

Jordan–Banach (JB∗) ∗-triple O.7, 27
Jordan cubic form I.3.8, 77; II.4.3.1, 191
Jordan division algebra I.3.2, 70;

II.6.1.1, 212
Jordan homotope I.3.2, 71; I.4.6, 86
Jordan identity O.1, 3; I.2.4, 57; I.1.6,

45; II.1.8.1, 146
Jordan pair O.1, 9
Jordan polynomial B.1.2, 457
Jordan product (quasi-multiplication)

O.1, 2; I.1.3, 41; II.1.8.1, 146
Jordan superalgebra O.2, 9
Jordan triple system O.2, 8

K

Koecher’s upper half space of a formally
real Jordan algebra O.6, 23

L

left alternative law/algebra I.2.7, 60;
II.2.1.1, 153

left ideal II.1.2.3, 135
left Moufang algebra O.8, 33;

II.21.1.1(2), 337
left Moufang plane O.8, 33
left multiplication I.2.2, 55
Lie algebra O.3, 11; I.2.4, 57
linear absorber of inner ideal I.8.2, 116;

III.4.1.2(2), 398; III.4.1.3(1), 399
linear algebra (Φ algebra) I.2.1, 52;

II.1.2.1, 134
linearization of cubic form I.3.8, 76
locally nilpotent algebra I.7.1, 107
locally nilpotent (Levitzki) radical I.7.1,

107

M

mimimal inner ideal of idempotent type
I.6.4, 103; II.19.2.1, 327

mimimal inner ideal of nilpotent type
I.6.4, 103; II.19.2.1, 327

mimimal inner ideal of trivial type I.6.4,
103; II.19.2.1, 327

modular inner ideal I.8.3, 118; III.5.1.1,
411

modulus for an inner ideal I.8.3, 118;
III.5.1.1, 411

morphism of Jordan algebra II.1.8.1, 146

morphism of linear algebra II.1.2.2, 134
morphism in category II.1.1, 132
Moufang (translation) plane O.8, 33
Mp,q multiplication operator B.3.1, 462
multiplication algebra of linear algebra

II.1.6.2, 142
mutually orthogonal (pairwise

orthogonal) family of idempotents
II.13.1, 278

N

nil algebra II.5.2.1, 200; III.1.3.1(4), 366
nil ideal I.7.3, 109; III.1.3.1(4), 367
nil modulo an absorber III.4.3.0, 403
nil (Köthe) radical I.7.2, 109;

III.1.3.1(4), 367
nilpotent element II.5.2.1, 200;

III.1.3.1(3), 366
noncommutative Jordan algebra II.6.8

Question 6.1, 219
nondegenerate cubic form I.3.8, 77;

II.4.3.1, 191
nondegenerate Jordan algebra I.4.8, 88;

II.5.3.2, 206
nondegenerate quadratic form I.2.10, 63;

II.2.3.1(2), 156
nontrivial linear algebra II.1.2.4, 135
norm of an element in a ∗-algebra

II.1.5.1, 139
norm of quadratic form II.2.3.1(3), 156
n-squares problem I.2.8, 61
nuclear inverse in linear algebra II.6.2.2,

218
nuclear involution II.2.2.2, 155
nuclear isotope of involution II.7.1.3, 221
nuclear isotope of linear algebra I.3.3,

72; II.7.1.1, 220
nucleus of alternative algebra II.2.2.1,

154
nucleus of linear algebra I.2.3, 56;

II.1.6.1, 141

O

object in category II.1.1, 132
off-diagonal Peirce space I.6.1, 100;

II.9.0, 248
opposite algebra of a linear algebra

II.1.5.2, 140
orthogonal family of idempotents I.5.1,

95; II.13.1, 278.
orthogonal idempotents I.5.1, 95;

II.8.1.1, 235; III.1.4.0, 384
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outer ideal in a Jordan algebra II.1.9
Question 1.3, 152

P

paired inner ideals I.6.4, 103
Pchelintsev monster I.7.3, 111; III.9.2.2,

442
Peirce decomposition I.6.1, 99, 100;

II.8.1.2(1), 236; II.13.1.4, 280
Peirce projection II.8.1.2(1), 236;

II.13.1.1, 278
Peirce quadratic form II.9.2.1, 250;

II.14.3.1(1), 295
Peirce s-identity II.13.5.3, 288
Peirce specialization II.9.1.1, 248;

II.14.2.1, 294
Peirce subspace I.6.1, 99, 100;

II.8.1.2(1), 236; II.13.1.4(1), 280
Peircer II.8.1.3, 237; II.13.1.2, 279
Peircer torus II.8.1.3, 237; II.13.1.3, 279
permits Jordan composition quadratic

form II.3.3.1, 176; cubic form
II.4.2.2(3), 190

Φ acts faithfully II.15.3 Problem 15.1,
307

Φ–spectrum of element I.8.6, 121;
III.3.1.1, 388

plus algebra I.1.7, 46; II.3.1.1, 168
plus functor II.3.1.1, 170
polynomial vanishing identically on an

algebra B.1.2, 457
positive cone of a formally real Jordan

algebra O.5, 18
positive hermitian Jordan triple system

O.6, 23
power of a modulus III.5.1.2(1), 411
power of an element II.5.2.1, 200
power-associative algebra II.5.2.1, 200
prime algebra I.4.9, 89
prime algebraic system III.7.2.2, 429
prime ideal I.4.9, 89
prime (semiprime, Baer) radical I.4.9,

89, 90
primitive associative algebra D.2, 504
primitive Jordan algebra I.8.4, 118;

III.5.2.1, 413
primitive (semiprimitive, Jacobson,

quasi-invertible) radical I.4.9, 89, 90;
III.1.3.1(2), 366

primitizer III.5.2.1, 413
principal inner ideal (open, half-open,

closed principal) I.4.7, 87; II.5.3.1,
205

projective plane O.8, 29
proper ideal II.1.2.4, 135
proper idempotent II.8.1.1, 235
properly nil (Köthe) radical III.1.4.1,

370
properly nilpotent III.1.4.1(3), 369
properly quasi-invertible element (p.q.i.)

I.4.9, 90; III.1.4.1(2), 369
properly quasi-invertible mod inner

ideal III.4.4 Problem 4.2, 409

Q

quadratic absorber of inner ideal I.8.2,
116; III.4.1.3(2), 399

quadratic factor II.3.3.1, 176
quadratic form I.3.7, 74
quadratic form permitting composition

I.2.9, 62
quadratic Jordan algebra O.1, 7; I.4.3,

83
quadratic Jordanification functor

II.3.3.2, 177
quasi-inverse, quasi-invertible

III.1.3.1(1), 366
quasi-invertible mod inner ideal

III.4.3.2, 404
quasi-invertible (q.i.) pair/quasi-inverse

of pair III.1.4.1(1), 369
quotient of Jordan algebra II.1.8.3, 148
quotient of linear algebra I.2.2, 53;

II.1.2.5, 135

R

radical (cf. primitive/Jacobson)
III.1.3.1, 366

radical of quadratic form I.2.10, 63;
II.2.3.1(2), 156

radical surgery III.1.7.0, 376
real Jordan algebra I.1.6, 45
reduced algebra II.8.1.1, 235
reduced spin factor of a quadratic form

II.3.4.1, 181
regularly paired elements (vNr pair)

II.18.1.1, 318
relatively prime inner ideals III.3.4.2(1),

393
resolvent of element I.8.8, 123; III.3.1.1,

389
restriction filter I.8.10, 125; III.7.1.3, 428
reversal involution on coordinate

algebra II.12.2.3, 271
reversal involution on the free unital

associative algebra A.1, 448
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reversible elements of the free
associative algebra A.1, 448

Riemannian symmetric space O.5, 16
right alternative law/algebra I.2.7, 60;

II.2.1.1, 153
right ideal II.1.2.3, 135
right multiplication I.2.2, 55
ring of scalars I.2.1, 52; II.1.2.7, 135
robust linear algebra II.1.9 Problem 1.3,

151.

S

scalar extension functor for linear
algebras II.1.2.7, 135

scalar extension of algebra I.3.1, 69;
II.1.2.7, 135

scalar involution II.2.2.2, 155
semi-isometric involution with respect

to a norm form C.4.4, 495
semiprime algebra I.4.9, 89
semiprimitive algebra I.4.9, 90;

III.1.3.1(2), 366
semisimple algebra I.2.2, 55
semisimple R-module D.1, 501
semi-(whatever) III.1.3.1(2), 367;

III.1.7.0, 376
sharp mapping (adjoint) for cubic form

I.3.8, 77; II.4.2.1(2), 190; II.4.3.1, 191
sharp product for cubic form I.3.8, 77;

II.4.2.1(2), 190; C.2.1(2), 480
sharped cubic form II.4.2.1(3), 190;

C.2.1(2), 480
shifted connection involution

II.10.2.2(2), 257
shifted idempotent II.10.2.2(1), 257
shifted Peirce quadratic form

II.10.2.2(4), 257
shifted Peirce specialization II.10.2.2(3),

257
s-identity (special identity) I.4.10, 90;

B.5.1, 469
simple algebra I.2.2, 55; II.1.2.4, 135
simple element II.19.1.1, 325
simple inner ideal II.19.1.1, 325
simple R-module D.1, 501
skew algebra I.2.3, 55
skew element O.3, 11; II.1.5.1, 139;

II.3.2.1, 171
skewtrace element II.22.1.2, 349
socle of Jordan algebra II.19.3 Problem

19.1, 329
special Jordan algebra I.2.5, 58; I.1.10,

48; I.1.10, 48; II.3.1.2, 170

specialization of a Jordan algebra in an
associative algebra II.3.1.2, 170

specialization of a Jordan algebra on a
module II.9.1, 248

specializer of Jordan algebra III.4.1.4,
399

spin factor I.1.9, 47; I.3.6, 74; II.3.3.3,
178

spin frame II.11.1.2, 260
spin functor II.3.3.3, 179
split composition algebra (unarion,

binarion, quaternion, octonion)
I.2.12, 66; II.2.4.1, 157

spur quadratic form of a cubic with
basepoint I.3.8, 77; II.4.2.1(1), 189;
C.2.1, 480

standard hermitian matrix units
II.15.1.2, 302

standard hermitian n-frame II.15.1.2,
302

standard spin frame II.11.1.3, 260
standard trace involution of quadratic

form with basepoint II.2.3.1(1), 156
∗-algebra (star algebra) I.2.2, 53;

II.1.5.1, 139
∗-center of alternative algebra II.2.2.1,

154
∗-center of linear algebra II.1.6.1, 141
∗-homomorphism I.2.2, 53; II.1.5.1, 139
∗-ideal I.2.2, 53; II.1.5.1, 139
∗-simple algebra I.2.2, 55; II.1.5.1, 139
strictly-simple linear algebra 1.7.1, 144
strong two-frame II.11.1.1, 260
structure group/algebra O.3, 12
structural pair of transformations

II.18.2.1, 321; III.1.2.1(1), 364
structural/weakly structural

transformation II.18.2.1, 321;
III.1.2.1(1), 364

structurally linked transformation
II.18.2.1, 321

structurally paired inner ideals II.18.2.3,
323

subalgebra of Jordan algebra II.1.8.3,
148

subalgebra of linear algebra I.2.2, 53;
II.1.2.3, 135

subdirect product of algebras I.2.2, 55;
II.1.2.6, 135

supplementary family of idempotents
I.5.1, 95; II.13.1, 278

supplementary idempotents II.8.1.1, 236
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support filter of a prime subalgebra of a
direct product III.7.2.2, 429

support set of element in direct product
I.8.11, 127; III.7.2.1, 429

T

tetrad A.2, 449
tight associative cover/∗-cover of a

Jordan algebra II.5.4 Problems, 210
tight extension of a linear algebra II.1.9

Problems, 150
Tits–Kantor–Koecher Lie algebra O.3,

13
trace bilinear form of a cubic with

basepoint I.3.8, 77; I.3.8, 77;
II.4.2.1(1), 189

trace linear form of a cubic form with
basepoint I.3.8, 77; II.4.2.1(1), 189;
C.2.1, 480

trace linear form of a quadratic form
with basepoint I.3.7, 75; II.2.3.1(1),
156

trace of an element in a ∗-algebra
II.1.5.1, 139

translate of a modulus III.5.1.2(1), 411
trivial element I.4.8, 88; II.5.3.2, 206
trivial Jordan algebra II.5.3.2, 206
trivial linear algebra II.1.2.4, 135
twisted hermitian matrix algebra

II.7.5.3, 229
two-frame II.11.1.1, 260

U

ultrafilter on a set I.8.10, 126; III.7.3.1,
430

ultrapower III.8.2.6, 438
ultraproduct of algebras I.8.10, 126;

III.8.1.2, 434
unit element for Jordan algebra II.1.8.1,

146

unit element for linear algebra I.2.1, 52;
II.1.3.1, 137;

unital homomorphism II.1.3.1, 137
unital hull I.2.1, 52; II.1.4.1, 138
unital Jordan algebra II.1.8.1, 146
unital linear algebra I.2.1, 52; II.1.3.1,

137.
unital quadratic form II.2.3.1(1), 156
unital quadratic Jordan algebra I.4.3, 83
unitalization functor II.1.4.1, 138
universal property of free unital

associative algebra A.1, 447
universal property of free unital Jordan

algebra B.1, 455
universal property of free unital special

Jordan algebra A.1, 447

V

vanishes strictly III.3.1.2, 390
variety of linear algebras I.4.9, 90; II.1.2,

136; II.1.9, 150
vNr (von Neumann regular)

element/algebra II.18.1.1, 318
vonverse/vonvertible (von Neumann

inverse/invertible) II.6.2.1, 217

W

weakly trivial element I.4.8, 88; II.5.3.2,
206

Z

Zel’manov annihilator of a set I.7.2, 108
zero set of element of a direct product

I.8.10, 126; III.7.2.1, 429
Zorn vector-matrix algebra II.2.4.2, 158
Z-specialization III.4.1.1, 397


