The singular value decomposition of tomography operators

Polyakova Anna

Conference
WOMEN IN MATHEMATICS
Sobolev Institute of Mathematics
Novosibirsk, Russia

12.05.2021
supported by RFBR and DFG (project 19-51-12008)

Basic definitions, 2D case

Let $B=\left\{\mathbf{x} \in \mathbb{R}^{2}| | \mathbf{x} \mid=\sqrt{x^{2}+y^{2}}<1\right\}$ be the unit disk, $\partial B=\left\{\mathbf{x} \in \mathbb{R}^{2}| | \mathbf{x} \mid=1\right\}$ be its boundary,
$Z=\{(s, \xi) \mid s \in \mathbb{R}, \xi \in \partial B\}$ be a cylinder.

Basic definitions, 2D case

The space $L_{2}(B)$ consists of functions, which are square integrable in B.

The weighted space $L_{2}(Z, \rho)$ with a non-negative weight function ρ is also used. The inner product in the space $L_{2}(Z, \rho)$ is defined as

$$
\begin{equation*}
(f, g)_{L_{2}(Z, \rho)}=\int_{Z} f(z) g(z) \rho(z) d z \tag{1}
\end{equation*}
$$

The space of m-tensor fields in B is denoted by $S^{m}(B)$. The spaces $H^{k}(B), H^{k}\left(S^{m}(B)\right)$ are the Sobolev spaces.

Basic definitions, 2D case

The operators of inner derivation d and inner \perp-derivation d^{\perp} are the compositions of operators of covariant derivation and symmetrization

$$
\mathrm{d}, \mathrm{~d}^{\perp}: H^{k}\left(S^{m}(B)\right) \rightarrow H^{k-1}\left(S^{m+1}(B)\right)
$$

and act on a function f and a vector field v by the formulas

$$
\begin{align*}
(\mathrm{d} f)_{i} & =\frac{\partial f}{\partial x_{i}}, & (\mathrm{~d} v)_{i j} & =\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right) \tag{2}\\
\left(\mathrm{d}^{\perp} f\right)_{i} & =(-1)^{i} \frac{\partial f}{\partial x_{3-i}}, & \left(\mathrm{~d}^{\perp} v\right)_{i j} & =\frac{1}{2}\left((-1)^{j} \frac{\partial v_{i}}{\partial x_{3-j}}+(-1)^{i} \frac{\partial v_{j}}{\partial x_{3-i}}\right)
\end{align*}
$$

Basic definitions, 2D case

The divergence operator

$$
\operatorname{div}: H^{k}\left(S^{m}(B)\right) \rightarrow H^{k-1}\left(S^{m-1}(B)\right)
$$

acts on a vector field v and on a symmetric 2-tensor field w by the rules

$$
\begin{equation*}
\operatorname{div} v=\sum_{i=1}^{2} \frac{\partial v_{i}}{\partial x_{i}}, \quad(\operatorname{div} w)_{j}=\sum_{i=1}^{2} \frac{\partial w_{j i}}{\partial x_{i}} \tag{4}
\end{equation*}
$$

Basic definitions, 2D case

A vector field u is called potential, if there is a function φ, such that

$$
u=\mathrm{d} \varphi=\left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}\right) .
$$

A vector field v is called solenoidal, if its divergence is equal to 0 ,

In other words, there is a function ψ, such that

An arbitrary vector field w can be uniquely decomposed as the sum of potential and solenoidal part

Basic definitions, 2D case

A vector field u is called potential, if there is a function φ, such that

$$
u=\mathrm{d} \varphi=\left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}\right) .
$$

A vector field v is called solenoidal, if its divergence is equal to 0 ,

$$
\operatorname{div} v=\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}=0
$$

In other words, there is a function ψ, such that

$$
v=\mathrm{d}^{\perp} \psi=\left(-\frac{\partial \psi}{\partial y}, \frac{\partial \psi}{\partial x}\right) .
$$

An arbitrary vector field w can be uniquely decomposed as the sum of potential and solenoidal part

$$
\begin{equation*}
w=\mathrm{d} \varphi+\mathrm{d}^{\perp} \psi, \quad \varphi,\left.\psi\right|_{\partial B}=0 \tag{5}
\end{equation*}
$$

Basic definitions, 2D case

A vector field u is called potential, if there is a function φ, such that

$$
u=\mathrm{d} \varphi=\left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}\right) .
$$

A vector field v is called solenoidal, if its divergence is equal to 0 ,

$$
\operatorname{div} v=\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}=0
$$

In other words, there is a function ψ, such that

$$
v=\mathrm{d}^{\perp} \psi=\left(-\frac{\partial \psi}{\partial y}, \frac{\partial \psi}{\partial x}\right) .
$$

An arbitrary vector field w can be uniquely decomposed as the sum of potential and solenoidal part

$$
\begin{equation*}
w=\mathrm{d} \varphi+\mathrm{d}^{\perp} \psi, \quad \varphi,\left.\psi\right|_{\partial B}=0 \tag{5}
\end{equation*}
$$

Basic definitions, 2D case

Analogously, there exist decomposition of a symmetric 2-tensor field w on a sum of three terms

$$
\begin{equation*}
w=\mathrm{d}^{2} \varphi+\mathrm{dd}^{\perp} \phi+\left(\mathrm{d}^{\perp}\right)^{2} \psi \tag{6}
\end{equation*}
$$

where

$$
\varphi \in H_{0}^{2}(B), \quad \phi \in H^{2}(B), \quad \mathrm{d}^{\perp} \phi \in H_{0}^{1}\left(S^{1}(B)\right), \quad \psi \in H^{2}(B)
$$

Basic definitions, 2D case

The Radon transform $\mathcal{R} f: L_{2}(B) \rightarrow L_{2}(Z)$ of a function f is defined by the formula

$$
\begin{equation*}
(\mathcal{R} f)(s, \xi)=\int_{B} f(\mathbf{x}) \delta(\langle\xi, \mathbf{x}\rangle-s) d \mathbf{x} \tag{7}
\end{equation*}
$$

Basic definitions, 2D case

The transverse ray transform

$$
\mathcal{P}^{\perp}: L_{2}\left(S^{1}(B)\right) \rightarrow L_{2}(Z)
$$

acting on the vector field w is given by the formula

$$
\begin{equation*}
\left(\mathcal{P}^{\perp} w\right)(s, \xi)=\int_{B}\langle w(\mathbf{x}), \xi\rangle \delta(\langle\xi, \mathbf{x}\rangle-s) d \mathbf{x} . \tag{8}
\end{equation*}
$$

The longitudinal ray transform

$$
\mathcal{P}: L_{2}\left(S^{1}(B)\right) \rightarrow L_{2}(Z)
$$

of the vector field w is defined as

$$
\begin{equation*}
(\mathcal{P} w)(s, \xi)=\int_{B}\left\langle w(\mathbf{x}), \xi^{\perp}\right\rangle \delta(\langle\xi, \mathbf{x}\rangle-s) d \mathbf{x} \tag{9}
\end{equation*}
$$

Basic definitions, 2D case

The longitudinal \mathcal{P}, transverse \mathcal{P}^{\perp} and mixed \mathcal{P}^{\star} ray transforms

$$
\mathcal{P}, \mathcal{P}^{\perp}, \mathcal{P}^{\star}: L_{2}\left(S^{2}(B)\right) \rightarrow L_{2}(Z)
$$

of a symmetric 2 -tensor field $w=\left(w_{11}, w_{12}, w_{22}\right)$:

$$
\begin{align*}
{[\mathcal{P} w](s, \xi) } & =\int_{B}\left\langle w(\mathbf{x}), \eta^{2}\right\rangle \delta(\langle\xi, \mathbf{x}\rangle-s) d \mathbf{x} \tag{10}\\
{\left[\mathcal{P}^{\perp} w\right](s, \xi) } & =\int_{B}\left\langle w(\mathbf{x}), \xi^{2}\right\rangle \delta(\langle\xi, \mathbf{x}\rangle-s) d \mathbf{x} \tag{11}\\
{\left[\mathcal{P}^{\star} w\right](s, \xi) } & =\int_{B}\langle w(\mathbf{x}), \xi \eta\rangle \delta(\langle\xi, \mathbf{x}\rangle-s) d \mathbf{x} \tag{12}
\end{align*}
$$

Basic definitions, 2D case

The operators of longitudinal and transverse ray transforms (vector case) have nonzero kernels, namely

$$
(\mathcal{P} \mathrm{d} \varphi)(s, \xi)=\left(\mathcal{P}^{\perp} \mathrm{d}^{\perp} \varphi\right)(s, \xi)=0,\left.\quad \varphi\right|_{\partial B}=0
$$

Also for 2-tensor case:

$$
\begin{aligned}
& {\left[\mathcal{P}\left(\mathrm{d}^{\perp}\right)^{2} \varphi\right](s, \xi)=\left[\mathcal{P} \mathrm{dd}^{\perp} \varphi\right](s, \xi)=0,} \\
& {\left[\mathcal{P}^{\perp} \mathrm{d}^{2} \varphi\right](s, \xi)=\left[\mathcal{P}^{\perp} \mathrm{dd}^{\perp} \varphi\right](s, \xi)=0,\left.\quad \varphi\right|_{\partial B}=0,} \\
& {\left[\mathcal{P}^{\star} \mathrm{d}^{2} \varphi\right](s, \xi)=\left[\mathcal{P}^{\star}\left(\mathrm{d}^{\perp}\right)^{2} \varphi\right](s, \xi)=0}
\end{aligned}
$$

Moreover, there are connections between the ray transforms and the Radon transform of the same potential

Basic definitions, 2D case

The operators of longitudinal and transverse ray transforms (vector case) have nonzero kernels, namely

$$
(\mathcal{P} \mathrm{d} \varphi)(s, \xi)=\left(\mathcal{P}^{\perp} \mathrm{d}^{\perp} \varphi\right)(s, \xi)=0,\left.\quad \varphi\right|_{\partial B}=0
$$

Also for 2-tensor case:

$$
\begin{aligned}
& {\left[\mathcal{P}\left(\mathrm{d}^{\perp}\right)^{2} \varphi\right](s, \xi)=\left[\mathcal{P} \mathrm{dd}^{\perp} \varphi\right](s, \xi)=0,} \\
& {\left[\mathcal{P}^{\perp} \mathrm{d}^{2} \varphi\right](s, \xi)=\left[\mathcal{P}^{\perp} \mathrm{dd}^{\perp} \varphi\right](s, \xi)=0,\left.\quad \varphi\right|_{\partial B}=0,} \\
& {\left[\mathcal{P}^{\star} \mathrm{d}^{2} \varphi\right](s, \xi)=\left[\mathcal{P}^{\star}\left(\mathrm{d}^{\perp}\right)^{2} \varphi\right](s, \xi)=0}
\end{aligned}
$$

Moreover, there are connections between the ray transforms and the Radon transform of the same potential :

$$
\begin{gathered}
\left(\mathcal{P ~}^{\perp} \varphi\right)(s, \xi)=\left(\mathcal{P}^{\perp} \mathrm{d} \varphi\right)(s, \xi)=\frac{\partial(\mathcal{R} \varphi)}{\partial s}(s, \xi),\left.\quad \varphi\right|_{\partial B}=0 . \\
{\left[\mathcal{P}\left(\mathrm{d}^{\perp}\right)^{2} \varphi\right](s, \xi)=\left[\mathcal{P}^{\perp} \mathrm{d}^{2} \varphi\right](s, \xi)=2\left[\mathcal{P}^{\star} \mathrm{dd}^{\perp} \varphi\right](s, \xi)=\frac{\partial^{2}(\mathcal{R} \varphi)}{\partial s^{2}}(s, \xi) .}
\end{gathered}
$$

Statement of the vector and 2-tensor tomography problem

The vector tomography problem reads as follows:
Let the longitudinal ray transform $\mathcal{P} w$ and (or) the transverse ray transform $\mathcal{P}^{\perp} w$ of a vector field w be known for all $(s, \xi) \in Z$.

From these data, we want to determine the unknown vector field $w(\mathbf{x}), \mathbf{x} \in B$.

The 2-tensor tomography problem can be defined analogously.

Singular value decomposition method

In other words, one has to solve operator equations

$$
A f=g, \quad A: H \rightarrow K .
$$

Here A is a linear, bounded operator. In the operator equation g is a known right hand-side (data of tomographic measurements), and f is an unknown vector (or 2-tensor) field to be determined.

Singular value decomposition method

The singular value decomposition of operator A is

$$
\begin{equation*}
A f=\sum_{k=1}^{\infty} \sigma_{k}\left(f, u_{k}\right)_{H} v_{k} \tag{13}
\end{equation*}
$$

with $\left(u_{k}\right),\left(v_{k}\right)$ - orthonormal bases in initial and image space of operator A respectively, $\sigma_{k}>0$ are called singular values of operator A.
If there is singular value decomposition of A, then

$$
A^{-1} g=\sum_{k=1}^{\infty} \sigma_{k}^{-1}\left(g, v_{k}\right)_{k} u_{k} .
$$

Singular value decomposition method

The singular value decomposition of operator A is

$$
\begin{equation*}
A f=\sum_{k=1}^{\infty} \sigma_{k}\left(f, u_{k}\right)_{H} v_{k} \tag{13}
\end{equation*}
$$

with $\left(u_{k}\right),\left(v_{k}\right)$ - orthonormal bases in initial and image space of operator A respectively, $\sigma_{k}>0$ are called singular values of operator A.
If there is singular value decomposition of A, then

$$
\begin{equation*}
A^{-1} g=\sum_{k=1}^{\infty} \sigma_{k}^{-1}\left(g, v_{k}\right)_{K} u_{k} \tag{14}
\end{equation*}
$$

Earlier

scalar tomography problem
Louis A.K. Orthogonal function series expansions and the null space of the Radon transform. SIAM, J. Mathematical Analysis 15,621-633 (1984)
2D vector tomography problem
Derevtsov E. Yu., Efimov A. V., Louis A. K., Schuster T. Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography. J. Inverse III-Posed Problems, 19(4-5), 689-715 (2011)

Earlier

2D 2-tensor tomography problem
A. Polyakova, E.Yu.Derevtsov Solving of 2-tensor fields integral geometry problem with usage of SVD. Vestnik NSU, 3, 73-94 (2012)

3D vector tomography problem
Polyakova, A.P. Reconstruction of a vector field in a ball from its normal Radon transform. Journal of Mathematical Sciences 205(3), 418-439 (2015)

3D 2-tensor tomography problem
Polyakova, A.P. Singular value decomposition of the normal Radon transform operator acting on 3D symmetric 2-tensor fields. (in press)

SVD of ray transform operators

We consider a family of functions

$$
\begin{gather*}
\Phi_{k, n}^{\mathrm{cos}, \sin }(x, y)=\left(1-x^{2}-y^{2}\right)^{2} H_{k}^{\cos , \sin }(x, y) P_{n}^{(k+3, k+1)}\left(x^{2}+y^{2}\right) \\
k, n=0,1,2, \ldots \tag{15}
\end{gather*}
$$

in polar coordinates,

$$
\left\{\begin{array}{l}
\tilde{\phi}^{\cos } \tag{16}\\
\tilde{\phi}^{\sin }
\end{array}\right\}_{k, n}(r, \varphi)=\left(1-r^{2}\right)^{2} r^{k}\left\{\begin{array}{c}
\cos k \varphi \\
\sin k \varphi
\end{array}\right\} P_{n}^{(k+3, k+1)}\left(r^{2}\right) .
$$

Applying operators d and d^{\perp}, we obtain 2-tensor fields:

$$
\begin{equation*}
\left(T_{k, n}^{\mathrm{cos}, \mathrm{sin}}\right)^{\mathrm{sol}}(x, y),\left(T_{k, n}^{\mathrm{cos}, \sin }\right)^{p o t_{1}}(x, y),\left(T_{k, n}^{\mathrm{cos}, \mathrm{sin}}\right)^{p o t_{2}}(x, y) \tag{17}
\end{equation*}
$$

SVD of ray transform operators

Theorem.
System of 2-tensor fields (??) form orthogonal system in $L_{2}\left(S^{2}(B)\right)$ with norm

$$
\begin{equation*}
\left\|T_{k, n}\right\|=\frac{8 \pi(n+1)^{2}(n+2)^{2}}{(k+2 n+3)\left(C_{n+k}^{k}\right)^{2}} \tag{18}
\end{equation*}
$$

SVD of ray transform operators

Proposition. (Louis, 1984)
Let $k, n \geqslant 0,-1 \leqslant s \leqslant 1,0 \leqslant \beta<2 \pi$, and

$$
\Psi(\beta, s)=\left(1-s^{2}\right)^{5 / 2} C_{k+2 n}^{(3)}(s) Y_{k}(\beta)
$$

where $C_{k+2 n}^{(3)}(s)-$ Gegenbauer polynomials and $Y_{k}(\beta)-$ spherical harmonics on ∂B. Then $\Phi=\mathcal{R}^{-1} \Psi$ is given by

$$
\Phi(\beta, r)=c(k, n)\left(1-r^{2}\right)^{2} r^{k} P_{n}^{(k+3, k+1)}\left(r^{2}\right) Y_{k}(\beta)
$$

with $P_{n}^{(p, q)}$ - Yakobi polynomials of degree n and indices p, q, and

$$
c(k, n)=(-1)^{n} 2^{-5} \frac{\Gamma(k+2 n+6) \Gamma(n+1)(k+n)!}{\Gamma(k+2 n+1) \Gamma(3) \Gamma(n+3) k!n!} .
$$

SVD of ray transform operators

Theorem.
System of function

$$
\begin{aligned}
\left(\mathcal{P}\left\{\begin{array}{l}
\mathbf{T}^{\cos } \\
\mathbf{T}^{\sin }
\end{array}\right\}_{k, n}^{\text {sol }}(x, y)\right)(\alpha, s) & =a(k, n) \sqrt{1-s^{2}} C_{k+2 n+2}^{(1)}(s)\left\{\begin{array}{c}
\cos k \alpha \\
\sin k \alpha
\end{array}\right\} \\
& =:\left\{\begin{array}{l}
\Psi^{\cos } \\
\Psi^{\sin }
\end{array}\right\}_{k, n}(\alpha, s),
\end{aligned}
$$

with $a(k, n)=(-1)^{n} 2 \sqrt{\frac{2}{\pi(k+2 n+3)}}$, forms orthogonal system in space $L_{2}\left(Z,\left(1-s^{2}\right)^{-1 / 2}\right)$ of images of longitudinal (transverse, mixed) ray transform. The norms are

$$
\left\|\Psi_{k, n}^{\cos , \sin }\right\|_{L_{2}\left(Z,\left(1-s^{2}\right)^{-1 / 2}\right)}^{2}=\frac{4 \pi}{k+2 n+3}
$$

SVD of ray transform operators

The SVD-decomposition of the operator \mathcal{P} is

$$
\begin{align*}
\mathcal{P} \mathbf{V}= & \sum_{k, n=0,1,2, \ldots}^{\infty} \sigma_{k, n}\left(\left(\mathbf{V},\left(\mathbf{T}_{k, n}^{\cos }\right)\right)_{L_{2}\left(S^{2}(B)\right)} G_{k, n}^{\cos }\right. \\
& \left.+\left(1-\delta_{k, 0}\right)\left(\mathbf{V},\left(\mathbf{T}_{k, n}^{\sin }\right)\right)_{L_{2}\left(S^{2}(B)\right)} G_{k, n}^{\sin }\right) \tag{19}
\end{align*}
$$

where $\sigma_{k, n}=2 \sqrt{\frac{\pi}{k+2 n+3}}$ are the singular values.
The required 2 -tensor field is calculated using the inverse operator by the formula

SVD of ray transform operators

The SVD-decomposition of the operator \mathcal{P} is

$$
\begin{align*}
\mathcal{P} \mathbf{V}= & \sum_{k, n=0,1,2, \ldots}^{\infty} \sigma_{k, n}\left(\left(\mathbf{V},\left(\mathbf{T}_{k, n}^{\cos }\right)\right)_{L_{2}\left(S^{2}(B)\right)} G_{k, n}^{\cos }\right. \\
& \left.+\left(1-\delta_{k, 0}\right)\left(\mathbf{V},\left(\mathbf{T}_{k, n}^{\sin }\right)\right)_{L_{2}\left(S^{2}(B)\right)} G_{k, n}^{\sin }\right) \tag{19}
\end{align*}
$$

where $\sigma_{k, n}=2 \sqrt{\frac{\pi}{k+2 n+3}}$ are the singular values.
The required 2-tensor field is calculated using the inverse operator by the formula

$$
\begin{align*}
\mathbf{V}=\mathcal{P}^{-1} g= & \sum_{k, n=0,1,2, \ldots}^{\infty} \sigma_{k, n}^{-1}\left(\left(g, G_{k, n}^{\cos }\right)_{L_{2}\left(Z,\left(1-s^{2}\right)^{-1 / 2}\right)} \mathbf{T}_{k, n}^{\cos }+\right. \\
& \left.+\left(1-\delta_{k, 0}\right)\left(g, G_{k, n}^{\sin }\right)_{L_{2}\left(Z,\left(1-s^{2}\right)^{-1 / 2}\right)} \mathbf{T}_{k, n}^{\sin }\right) \tag{20}
\end{align*}
$$

Basic definitions, 3D case

$$
\begin{aligned}
& \text { Let } B=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}<1\right\} \text { - unit ball, } \\
& \partial B=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\} \text { - unit sphere. }
\end{aligned}
$$

Basic definitions, 3D case

We use the following differential operators:

1) gradient operator $d: H^{k}(B) \rightarrow H^{k-1}\left(S^{1}(B)\right)$, which acts on the potential ψ by formula:

$$
\begin{equation*}
\mathrm{d} \psi=\left(\frac{\partial \psi}{\partial x}, \quad \frac{\partial \psi}{\partial y}, \quad \frac{\partial \psi}{\partial z}\right) \tag{21}
\end{equation*}
$$

2) rotor operator rot : $H^{k}\left(S^{1}(B)\right) \rightarrow H^{k-1}\left(S^{1}(B)\right)$, which acts on
a vector field w by next way:

3) divergence operator $\delta: H^{k}\left(S^{1}(B)\right) \rightarrow H^{k-1}(B)$, which acts on a vector field w by rule:

(23)

Basic definitions, 3D case

We use the following differential operators:

1) gradient operator $d: H^{k}(B) \rightarrow H^{k-1}\left(S^{1}(B)\right)$, which acts on the potential ψ by formula:

$$
\begin{equation*}
\mathrm{d} \psi=\left(\frac{\partial \psi}{\partial x}, \quad \frac{\partial \psi}{\partial y}, \quad \frac{\partial \psi}{\partial z}\right) \tag{21}
\end{equation*}
$$

2) rotor operator rot: $H^{k}\left(S^{1}(B)\right) \rightarrow H^{k-1}\left(S^{1}(B)\right)$, which acts on a vector field \mathbf{w} by next way:

$$
\begin{equation*}
\text { rotw }=\left(\frac{\partial w_{3}}{\partial y}-\frac{\partial w_{2}}{\partial z}, \frac{\partial w_{1}}{\partial z}-\frac{\partial w_{3}}{\partial x}, \frac{\partial w_{2}}{\partial x}-\frac{\partial w_{1}}{\partial y}\right) \tag{22}
\end{equation*}
$$

3) divergence operator $\delta: H^{k}\left(S^{1}(B)\right) \rightarrow H^{k-1}(B)$, which acts on a vector field w by rule:

$$
\begin{equation*}
\delta \mathbf{w}=\frac{\partial w_{1}}{\partial x}+\frac{\partial w_{2}}{\partial y}+\frac{\partial w_{3}}{\partial z} \tag{23}
\end{equation*}
$$

Basic definitions, 3D case

We use the following differential operators:

1) gradient operator $\mathrm{d}: H^{k}(B) \rightarrow H^{k-1}\left(S^{1}(B)\right)$, which acts on the potential ψ by formula:

$$
\begin{equation*}
\mathrm{d} \psi=\left(\frac{\partial \psi}{\partial x}, \quad \frac{\partial \psi}{\partial y}, \quad \frac{\partial \psi}{\partial z}\right) \tag{21}
\end{equation*}
$$

2) rotor operator rot: $H^{k}\left(S^{1}(B)\right) \rightarrow H^{k-1}\left(S^{1}(B)\right)$, which acts on a vector field \mathbf{w} by next way:

$$
\begin{equation*}
\text { rotw }=\left(\frac{\partial w_{3}}{\partial y}-\frac{\partial w_{2}}{\partial z}, \frac{\partial w_{1}}{\partial z}-\frac{\partial w_{3}}{\partial x}, \frac{\partial w_{2}}{\partial x}-\frac{\partial w_{1}}{\partial y}\right) \tag{22}
\end{equation*}
$$

3) divergence operator $\delta: H^{k}\left(S^{1}(B)\right) \rightarrow H^{k-1}(B)$, which acts on a vector field \mathbf{w} by rule:

$$
\begin{equation*}
\delta \mathbf{w}=\frac{\partial w_{1}}{\partial x}+\frac{\partial w_{2}}{\partial y}+\frac{\partial w_{3}}{\partial z} . \tag{23}
\end{equation*}
$$

Basic definitions, 3D case

A vector field $\mathbf{u} \in H^{k}\left(S^{1}(B)\right)$ is a potential vector field, if there is $\phi \in H^{k+1}(B)$ (potential), such as $\mathbf{u}=\mathrm{d} \phi$.

where $\phi \in H_{0}^{1}(B)$ and $v \in H^{1}\left(S^{1}(B)\right)$.

Basic definitions, 3D case

A vector field $\mathbf{u} \in H^{k}\left(S^{1}(B)\right)$ is a potential vector field, if there is $\phi \in H^{k+1}(B)$ (potential), such as $\mathbf{u}=\mathrm{d} \phi$.
A vector field $\mathbf{v} \in H^{k}\left(S^{1}(B)\right)$ is a solenoidal vector field, if $\delta \mathbf{v} \in H^{k-1}(B)=0$.
It is obvious that field $\mathbf{u}=$ rotv is solenoidal.
It is well known that every vector field $w \in L_{2}\left(S^{1}(B)\right)$ in R^{3} can be decomposed uniquely in a sum of potential and solenoidal parts

$$
\mathrm{w}=\mathrm{d} \phi+\mathrm{rotv}
$$

where $\phi \in H_{0}^{1}(B)$ and $v \in H^{1}\left(S^{1}(B)\right)$.

Basic definitions, 3D case

A vector field $\mathbf{u} \in H^{k}\left(S^{1}(B)\right)$ is a potential vector field, if there is $\phi \in H^{k+1}(B)$ (potential), such as $\mathbf{u}=\mathrm{d} \phi$.
A vector field $\mathbf{v} \in H^{k}\left(S^{1}(B)\right)$ is a solenoidal vector field, if $\delta \mathbf{v} \in H^{k-1}(B)=0$.

It is obvious that field $\mathbf{u}=$ rot \mathbf{v} is solenoidal.
It is well known that every vector field $\mathbf{w} \in L_{2}\left(S^{1}(B)\right)$ in R^{3} can be decomposed uniquely in a sum of potential and solenoidal parts

$$
\begin{equation*}
\mathbf{w}=\mathrm{d} \phi+\operatorname{rot} \mathbf{v} . \tag{24}
\end{equation*}
$$

where $\phi \in H_{0}^{1}(B)$ and $v \in H^{1}\left(S^{1}(B)\right)$.

Basic definitions, 3D case

Let $\mathbb{Z}=\{(\xi, s)| | \xi \mid=1, s \in \mathbb{R}\}$.
The Radon transform $\mathcal{R} f: L_{2}\left(R^{3}\right) \rightarrow L_{2}(Z, \rho)$ of function $f(\mathbf{x})$ is given by formula

$$
\begin{equation*}
\mathcal{R} f(s, \xi)=\int_{P_{\xi, s}} f\left(u \mathbf{e}_{\mathbf{1}}+v \mathbf{e}_{\mathbf{2}}+s \xi\right) d u d v \tag{25}
\end{equation*}
$$

Integral in the right-hand side does not depend on the choice of the basis $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}$ on the plane of integration.

Basic definitions, 3D case

Let $T=\left\{(u, v, \xi)\left|u \in\left[-\sqrt{1-v^{2}}, \sqrt{1-v^{2}}\right], v \in[-1,1],|\xi|=1\right\}\right.$.
The ray transform $\mathcal{P}: L_{2}\left(S^{1}(B)\right) \rightarrow L_{2}(T)$ of a vector field \mathbf{w} is given by formula

$$
\begin{equation*}
(\mathcal{P} \mathbf{w})(u, v, \xi)=\int_{-\infty}^{\infty}\langle\mathbf{w}, \xi\rangle d t \tag{26}
\end{equation*}
$$

Easy to show that the kernel of the operator consist of potential vector fields $\mathrm{d} \phi \in L_{2}\left(S^{1}(B)\right)$ with potential $\phi \in H_{0}^{1}(B)$. That is if we know the ray transform of a vector field we can reconstruct only its solenoidal part.

Basic definitions, 3D case

The normal Radon transform $\mathcal{R}^{\perp}: L_{2}\left(S^{1}(B)\right) \rightarrow L_{2}\left(Z,\left(1-s^{2}\right)^{-1}\right)$ of a vector field $\mathbf{w}=\mathbf{w}(x, y, z)=\left(w_{1}, w_{2}, w_{3}\right)$ is given by formula

$$
\begin{equation*}
\mathcal{R}^{\perp} \mathbf{w}=\iint_{P_{\xi, s}}\left(w_{1} \xi^{1}+w_{2} \xi^{2}+w_{3} \xi^{3}\right) d u d v \tag{27}
\end{equation*}
$$

Basic definitions, 3D case

Lemma.

The kernel of the normal Radon transform consists of solenoidal vector fields, that is, the following equation holds

$$
\begin{equation*}
\mathcal{R}^{\perp}(\text { rotw })=0 \text { with }\left.\mathbf{w}\right|_{\partial B}=0 \tag{28}
\end{equation*}
$$

In other words if we know the normal Radon transform of a vector field, we can reconstruct only its potential part.

A connection between the normal Radon transform of a vector field and the Radon transform of a potential $f \in H_{0}^{1}(B)$:

$$
\begin{equation*}
\left(\mathcal{R}^{\perp}(\mathrm{d} f)\right)(s, \xi)=\frac{\partial}{\partial s}((\mathcal{R} f)(s, \xi)) . \tag{29}
\end{equation*}
$$

Basic definitions, 3D case

Lemma.

The kernel of the normal Radon transform consists of solenoidal vector fields, that is, the following equation holds

$$
\begin{equation*}
\mathcal{R}^{\perp}(\text { rotw })=0 \text { with }\left.\mathbf{w}\right|_{\partial B}=0 \tag{28}
\end{equation*}
$$

In other words if we know the normal Radon transform of a vector field, we can reconstruct only its potential part.

A connection between the normal Radon transform of a vector field and the Radon transform of a potential $f \in H_{0}^{1}(B)$:

$$
\begin{equation*}
\left(\mathcal{R}^{\perp}(\mathrm{d} f)\right)(s, \xi)=\frac{\partial}{\partial s}((\mathcal{R} f)(s, \xi)) \tag{29}
\end{equation*}
$$

Statement of the problem

Let we have some potential vector field

$$
\begin{equation*}
\mathrm{d} \phi \in L_{2}\left(S^{1}(B)\right), \phi \in H_{0}^{1}(B) \tag{30}
\end{equation*}
$$

which is given in a unit ball B.
One has to recover this field by its known the normal Radon transform.

A singular value decomposition of the normal Radon transform operator

We choose the following system of polynomials as the potentials $\Phi_{k, n}(x, y, z)=\left(1-x^{2}-y^{2}-z^{2}\right) H_{k}(x, y, z) P_{n}^{(k+2,5, k+1,5)}\left(x^{2}+y^{2}+z^{2}\right)$,
$k, n=0,1,2, \ldots$
or in spherical system of coordinates

$$
\begin{equation*}
\Phi_{k, n}(r, \theta, \varphi)=\left(1-r^{2}\right) r^{k} P_{n}^{(k+2,5, k+1,5)}\left(r^{2}\right) Y_{k}(\omega) \tag{32}
\end{equation*}
$$

A singular value decomposition of the normal Radon transform operator

System of functions (??) is not orthogonal in the space $H_{0}^{1}(B)$, but this is not required.

An application of the operator d leads to a set of potential vector fields

$$
\begin{equation*}
\mathbf{T}_{k, n}(x, y, z) \stackrel{\text { def }}{=} \mathrm{d} \Phi_{k, n}(x, y, z) \tag{33}
\end{equation*}
$$

A singular value decomposition of the normal Radon transform operator

Theorem.
System of potentials (in spherical coordinates)

$$
\begin{equation*}
F_{k, n}(r, \theta, \phi)=a_{n, k}\left(1-r^{2}\right) r^{k} P_{n}^{(k+2,5, k+1,5)}\left(r^{2}\right) Y_{k}(\omega) \tag{34}
\end{equation*}
$$

with

$$
a_{n, k}=\frac{\Gamma(n+k+1.5)}{(n+1)!\Gamma(k+1.5)\left\|Y_{k}(\omega)\right\|} \sqrt{\frac{2 n+k+2.5}{2}}
$$

forms a system of potential vector fields

$$
\begin{equation*}
\left(\mathbf{F}_{k, n}\right)(x, y, z)=\mathrm{d} F_{k, n}(x, y, z) \tag{35}
\end{equation*}
$$

which is orthonormal in space $L_{2}\left(S^{1}(B)\right)$.

A singular value decomposition of the normal Radon transform operator

Proposition. (Louis, 1984)
Let $\nu>0.5, k, n \geqslant 0$,

$$
\begin{equation*}
\Psi(\omega, s)=\left(1-s^{2}\right)^{\nu-0.5} C_{2 n+k}^{(\nu)}(s) Y_{k}(\omega) \tag{36}
\end{equation*}
$$

$$
\begin{equation*}
\Phi=\mathcal{R}^{-1} \Psi=c(n, k, \nu)\left(1-r^{2}\right)^{\nu-1.5} r^{k} P_{n}^{(k+\nu, k+1.5)}\left(r^{2}\right) Y_{k}(\omega) \tag{37}
\end{equation*}
$$

with $c(n, k, \nu)=\frac{(-1)^{n} 2^{1-2 \nu} \Gamma(2 n+k+2 \nu) \Gamma(k+n+1.5)}{\sqrt{\pi} \Gamma(\nu) \Gamma(n+\nu-0.5) \Gamma(k+1.5)}$
and $P_{n}^{(p, q)}\left(r^{2}\right)$ - Yakobi polynomials of degree n with indices p, q.

A singular value decomposition of the normal Radon transform operator

Theorem.
A system of function

$$
\begin{equation*}
G_{k, n}=b_{n, k}\left(1-s^{2}\right) C_{2 n+k+1}^{(1.5)}(s) Y_{k}(\omega) \tag{38}
\end{equation*}
$$

with

$$
b_{n, k}=\frac{(-1)^{n-1} \sqrt{2 n+k+2.5}}{\sqrt{(2 n+k+3)(2 n+k+2)\left\|Y_{k}(\omega)\right\|}}
$$

forms an orthonormal system in space $L_{2}\left(Z,\left(1-s^{2}\right)^{-1}\right)$.

A singular value decomposition of the normal Radon transform operator

We have the following relation:

$$
\begin{equation*}
\left(\mathcal{R}^{\perp} \mathbf{F}_{k, n}\right)(s, \theta, \phi)=\sigma_{k, n} \cdot G_{k, n}(s, \theta, \phi), \quad k, n=0,1,2 \ldots, \tag{39}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{k, n}=\frac{2 \sqrt{2}}{\sqrt{(2 n+k+2)(2 n+k+3)}} \tag{40}
\end{equation*}
$$

- singular value of operator \mathcal{R}^{\perp}.

A singular value decomposition of the normal Radon transform operator

A singular value decomposition of the normal Radon transform operator \mathcal{R}^{\perp} has the form

$$
\begin{equation*}
\mathcal{R}^{\perp} v=\sum_{k, n=0}^{\infty} \sigma_{k, n}\left(v, \mathbf{F}_{k, n}\right)_{L_{2}\left(S^{1}(B)\right)} G_{k, n}, \tag{41}
\end{equation*}
$$

the inverse operator can be calculated by the formula

A singular value decomposition of the normal Radon transform operator

A singular value decomposition of the normal Radon transform operator \mathcal{R}^{\perp} has the form

$$
\begin{equation*}
\mathcal{R}^{\perp} v=\sum_{k, n=0}^{\infty} \sigma_{k, n}\left(v, \mathbf{F}_{k, n}\right)_{L_{2}\left(S^{1}(B)\right)} G_{k, n}, \tag{41}
\end{equation*}
$$

the inverse operator can be calculated by the formula

$$
\begin{equation*}
v=\left(\mathcal{R}^{\perp}\right)^{-1} g=\sum_{k, n=0}^{\infty} \sigma_{k, n}^{-1}\left(g, G_{k, n}\right)_{L_{2}\left(Z,\left(1-s^{2}\right)^{-1}\right)} \mathbf{F}_{k, n} . \tag{42}
\end{equation*}
$$

Publications

(1) I.E. Svetov, A.P. Polyakova, Comparison of two algorithms for the numerical solution of two-dimensional vector tomography , Siberian Electronic Mathematical Reports, 10 (2013), 90-108. (in Russian)
(2) I.E. Svetov, A.P. Polyakova, Approximate solution of two-dimensional 2-tensor tomography problem using truncated singular value decomposition, Siberian Electronic Mathematical Reports, 12 (2015), 480-499. (in Russian)
(3) A.P. Polyakova, I.E. Svetov, Numerical Solution of the Problem of Reconstructing a Potential Vector Field in the Unit Ball from Its Normal Radon Transform, Journal of Applied and Industrial Mathematics, 9:4 (2015), 547-558.
(9) A.P. Polyakova, I.E. Svetov, Numerical solution of reconstruction problem of a potential symmetric 2-tensor field in a ball from its normal Radon transform, Siberian Electronic Mathematical Reports, 13 (2016), 154-174. (in Russian)

THANK YOU FOR YOUR ATTENTION!

