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Basic definitions, 2D case

Let B = {x ∈ R2
∣∣ |x| =

√
x2 + y2 < 1} be the unit disk,

∂B = {x ∈ R2
∣∣ |x| = 1} be its boundary,

Z = {(s, ξ)
∣∣ s ∈ R, ξ ∈ ∂B} be a cylinder.
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Basic definitions, 2D case

The space L2(B) consists of functions, which are square integrable
in B .

The weighted space L2(Z , ρ) with a non-negative weight function ρ
is also used. The inner product in the space L2(Z , ρ) is defined as

(f , g)L2(Z ,ρ) =

∫
Z

f (z)g(z)ρ(z)dz . (1)

The space of m-tensor fields in B is denoted by Sm(B).
The spaces Hk(B), Hk(Sm(B)) are the Sobolev spaces.
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Basic definitions, 2D case

The operators of inner derivation d and inner ⊥-derivation d⊥

are the compositions of operators of covariant derivation and
symmetrization

d, d⊥ : Hk(Sm(B))→ Hk−1(Sm+1(B))

and act on a function f and a vector field v by the formulas

(df )i =
∂f
∂xi

, (dv)ij =
1
2

(
∂vi

∂xj
+
∂vj

∂xi

)
, (2)

(d⊥f )i = (−1)i ∂f
∂x3−i

, (d⊥v)ij =
1
2

(
(−1)j ∂vi

∂x3−j
+ (−1)i ∂vj

∂x3−i

)
.

(3)
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Basic definitions, 2D case

The divergence operator

div : Hk(Sm(B))→ Hk−1(Sm−1(B))

acts on a vector field v and on a symmetric 2-tensor field w by the
rules

div v =
2∑

i=1

∂vi

∂xi
, (divw)j =

2∑
i=1

∂wji

∂xi
. (4)
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Basic definitions, 2D case

A vector field u is called potential, if there is a function ϕ, such that

u = dϕ =

(
∂ϕ

∂x
,
∂ϕ

∂y

)
.

A vector field v is called solenoidal, if its divergence is equal to 0,

div v =
∂v1

∂x
+
∂v2

∂y
= 0.

In other words, there is a function ψ, such that

v = d⊥ψ =

(
−∂ψ
∂y

,
∂ψ

∂x

)
.

An arbitrary vector field w can be uniquely decomposed as the sum
of potential and solenoidal part

w = dϕ+ d⊥ψ, ϕ, ψ|∂B = 0. (5)
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Basic definitions, 2D case

Analogously, there exist decomposition of a symmetric 2-tensor
field w on a sum of three terms

w = d2ϕ+ dd⊥φ+ (d⊥)2ψ, (6)

where

ϕ ∈ H2
0 (B), φ ∈ H2(B), d⊥φ ∈ H1

0 (S1(B)), ψ ∈ H2(B).
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Basic definitions, 2D case

The Radon transform Rf : L2(B)→ L2(Z ) of a function f is
defined by the formula

(Rf )(s, ξ) =

∫
B

f (x) δ(〈ξ, x〉 − s) dx. (7)

The unit vector ξ is typically
characterized by
ξ = (cosα, sinα) with angle
α ∈ [0, 2π].

The unit vector
ξ⊥ = (− sinα, cosα)(= η)
specifies the direction of
integration.
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Basic definitions, 2D case

The transverse ray transform

P⊥ : L2(S1(B))→ L2(Z )

acting on the vector field w is given by the formula

(P⊥w)(s, ξ) =

∫
B

〈w(x), ξ〉 δ(〈ξ, x〉 − s) dx. (8)

The longitudinal ray transform

P : L2(S1(B))→ L2(Z )

of the vector field w is defined as

(Pw)(s, ξ) =

∫
B

〈w(x), ξ⊥〉 δ(〈ξ, x〉 − s) dx. (9)
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Basic definitions, 2D case

The longitudinal P, transverse P⊥ and mixed P? ray transforms

P, P⊥, P? : L2(S2(B))→ L2(Z )

of a symmetric 2-tensor field w = (w11,w12,w22) :

[Pw ](s, ξ) =

∫
B

〈w(x), η2〉 δ(〈ξ, x〉 − s) dx, (10)

[P⊥w ](s, ξ) =

∫
B

〈w(x), ξ2〉 δ(〈ξ, x〉 − s) dx, (11)

[P?w ](s, ξ) =

∫
B

〈w(x), ξη〉 δ(〈ξ, x〉 − s) dx. (12)
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Basic definitions, 2D case

The operators of longitudinal and transverse ray transforms (vector
case) have nonzero kernels, namely

(P dϕ) (s, ξ) = (P⊥ d⊥ϕ)(s, ξ) = 0, ϕ|∂B = 0.

Also for 2-tensor case:

[P (d⊥)2ϕ](s, ξ) = [P dd⊥ϕ](s, ξ) = 0,

[P⊥ d2ϕ](s, ξ) = [P⊥ dd⊥ϕ](s, ξ) = 0, ϕ|∂B = 0,

[P? d2ϕ](s, ξ) = [P? (d⊥)2ϕ](s, ξ) = 0.

Moreover, there are connections between the ray transforms and
the Radon transform of the same potential :(

P d⊥ϕ
)

(s, ξ) =
(
P⊥ dϕ

)
(s, ξ) =

∂(Rϕ)

∂s
(s, ξ), ϕ|∂B = 0.

[P (d⊥)2ϕ](s, ξ) = [P⊥ d2ϕ](s, ξ) = 2[P? dd⊥ϕ](s, ξ) =
∂2(Rϕ)

∂s2 (s, ξ).
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Statement of the vector and 2-tensor tomography
problem

The vector tomography problem reads as follows:

Let the longitudinal ray transform Pw and (or) the transverse ray
transform P⊥w of a vector field w be known for all (s, ξ) ∈ Z .

From these data, we want to determine the unknown vector field
w(x), x ∈ B .

The 2-tensor tomography problem can be defined analogously.
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Singular value decomposition method

In other words, one has to solve operator equations

Af = g , A : H → K .

Here A is a linear, bounded operator. In the operator equation g is
a known right hand-side (data of tomographic measurements), and
f is an unknown vector (or 2-tensor) field to be determined.
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Singular value decomposition method

The singular value decomposition of operator A is

Af =
∞∑

k=1

σk(f , uk)Hvk , (13)

with (uk), (vk) — orthonormal bases in initial and image space of
operator A respectively, σk > 0 are called singular values of
operator A.
If there is singular value decomposition of A, then

A−1g =
∞∑

k=1

σ−1
k (g , vk)Kuk . (14)
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SVD of ray transform operators

We consider a family of functions

Φcos,sin
k,n (x , y) = (1− x2 − y2)2Hcos,sin

k (x , y)P(k+3,k+1)
n (x2 + y2),

k , n = 0, 1, 2, . . . ,
(15)

in polar coordinates,{
Φ̃cos

Φ̃sin

}
k,n

(r , ϕ) = (1− r2)2rk
{

cos kϕ
sin kϕ

}
P(k+3,k+1)

n (r2).

(16)
Applying operators d and d⊥ , we obtain 2-tensor fields:(

T cos,sin
k,n

)sol
(x , y),

(
T cos,sin

k,n

)pot1
(x , y),

(
T cos,sin

k,n

)pot2
(x , y) (17)
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SVD of ray transform operators

Theorem.
System of 2-tensor fields (??) form orthogonal system in L2(S2(B))
with norm

‖Tk,n‖ =
8π(n + 1)2(n + 2)2

(k + 2n + 3)(C k
n+k)2

(18)
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SVD of ray transform operators

Proposition. (Louis, 1984)
Let k , n > 0, −1 6 s 6 1, 0 6 β < 2π, and

Ψ(β, s) = (1− s2)5/2C (3)
k+2n(s)Yk(β),

where C (3)
k+2n(s) — Gegenbauer polynomials and Yk(β) — spherical

harmonics on ∂B . Then Φ = R−1Ψ is given by

Φ(β, r) = c(k , n)(1− r2)2rkP(k+3,k+1)
n (r2)Yk(β)

with P(p,q)
n — Yakobi polynomials of degree n and indices p, q, and

c(k , n) = (−1)n2−5 Γ(k + 2n + 6)Γ(n + 1)(k + n)!

Γ(k + 2n + 1)Γ(3)Γ(n + 3)k!n!
.

Polyakova A. SVD of tomography operators



SVD of ray transform operators

Theorem.
System of function(

P
{ Tcos

Tsin

}sol

k,n
(x , y)

)
(α, s) = a(k , n)

√
1− s2C (1)

k+2n+2(s)
{ cos kα

sin kα

}
=:
{ Ψcos

Ψsin

}
k,n

(α, s),

with a(k , n) = (−1)n2
√

2
π(k + 2n + 3)

, forms orthogonal system

in space L2(Z , (1− s2)−1/2) of images of longitudinal (transverse,
mixed) ray transform. The norms are

‖Ψcos,sin
k,n ‖2L2(Z ,(1−s2)−1/2)

=
4π

k + 2n + 3
.
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SVD of ray transform operators

The SVD-decomposition of the operator P is

PV =
∞∑

k,n=0,1,2,...

σk,n

((
V, (Tcos

k,n)
)

L2(S2(B))
G cos

k,n

+(1− δk,0)
(
V, (Tsin

k,n)
)

L2(S2(B))
G sin

k,n

)
, (19)

where σk,n = 2
√

π
k+2n+3 are the singular values.

The required 2-tensor field is calculated using the inverse operator
by the formula

V = P−1g =
∞∑

k,n=0,1,2,...
σ−1

k,n

((
g ,G cos

k,n

)
L2(Z ,(1−s2)−1/2)

Tcos
k,n+

+(1− δk,0)
(
g ,G sin

k,n

)
L2(Z ,(1−s2)−1/2)

Tsin
k,n

)
.

(20)
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Basic definitions, 3D case

Let B = {(x , y , z) ∈ R3|x2 + y2 + z2 < 1} — unit ball,

∂B = {(x , y , z) ∈ R3|x2 + y2 + z2 = 1} — unit sphere.
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Basic definitions, 3D case

We use the following differential operators:
1) gradient operator d : Hk(B)→ Hk−1(S1(B)), which acts on the
potential ψ by formula:

dψ =

(
∂ψ

∂x
,
∂ψ

∂y
,
∂ψ

∂z

)
; (21)

2) rotor operator rot : Hk(S1(B))→ Hk−1(S1(B)), which acts on
a vector field w by next way:

rotw =

(
∂w3

∂y
− ∂w2

∂z
,
∂w1

∂z
− ∂w3

∂x
,
∂w2

∂x
− ∂w1

∂y

)
; (22)

3) divergence operator δ : Hk(S1(B))→ Hk−1(B), which acts on a
vector field w by rule:

δw =
∂w1

∂x
+
∂w2

∂y
+
∂w3

∂z
. (23)
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Basic definitions, 3D case

A vector field u ∈ Hk(S1(B)) is a potential vector field, if there is
φ ∈ Hk+1(B) (potential), such as u = dφ.

A vector field v ∈ Hk(S1(B)) is a solenoidal vector field, if
δv ∈ Hk−1(B) = 0.

It is obvious that field u = rotv is solenoidal.

It is well known that every vector field w ∈ L2(S1(B)) in R3 can be
decomposed uniquely in a sum of potential and solenoidal parts

w = dφ+ rotv. (24)

where φ ∈ H1
0 (B) and v ∈ H1(S1(B)).
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Basic definitions, 3D case

Let Z = {(ξ, s)
∣∣|ξ| = 1, s ∈ R}.

The Radon transform Rf : L2(R3)→ L2(Z , ρ) of function f (x) is
given by formula

Rf (s, ξ) =

∫
Pξ,s

f (ue1 + ve2 + sξ) du dv . (25)

Integral in the right-hand side does not depend on the choice of the
basis e1, e2 on the plane of integration.
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Basic definitions, 3D case

Let T = {(u, v , ξ)
∣∣u ∈ [−

√
1− v2,

√
1− v2], v ∈ [−1, 1], |ξ| = 1}.

The ray transform P : L2(S1(B))→ L2(T ) of a vector field w is
given by formula

(Pw) (u, v , ξ) =

∞∫
−∞

〈w, ξ〉 dt. (26)

Easy to show that the kernel of the operator consist of potential
vector fields dφ ∈ L2(S1(B)) with potential φ ∈ H1

0 (B). That is if
we know the ray transform of a vector field we can reconstruct only
its solenoidal part.
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Basic definitions, 3D case

The normal Radon transform R⊥ : L2(S1(B))→ L2(Z , (1− s2)−1)
of a vector field w = w(x , y , z) = (w1,w2,w3) is given by formula

R⊥w =

∫∫
Pξ,s

(
w1ξ

1 + w2ξ
2 + w3ξ

3) du dv . (27)
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Basic definitions, 3D case

Lemma.
The kernel of the normal Radon transform consists of solenoidal
vector fields, that is, the following equation holds

R⊥(rotw) = 0 with w
∣∣
∂B = 0. (28)

In other words if we know the normal Radon transform of a vector
field, we can reconstruct only its potential part.

A connection between the normal Radon transform of a vector field
and the Radon transform of a potential f ∈ H1

0 (B):(
R⊥(df )

)
(s, ξ) =

∂

∂s
(
(Rf )(s, ξ)

)
. (29)
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Statement of the problem

Let we have some potential vector field

dφ ∈ L2(S1(B)), φ ∈ H1
0 (B), (30)

which is given in a unit ball B.

One has to recover this field by its known the normal Radon
transform.
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A singular value decomposition of the normal
Radon transform operator

We choose the following system of polynomials as the potentials

Φk,n(x , y , z) = (1−x2−y2−z2)Hk(x , y , z)P(k+2,5,k+1,5)
n (x2+y2+z2),

(31)
k , n = 0, 1, 2, . . .

or in spherical system of coordinates

Φk,n(r , θ, ϕ) = (1− r2) rk P(k+2,5,k+1,5)
n (r2)Yk(ω). (32)
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A singular value decomposition of the normal
Radon transform operator

System of functions (??) is not orthogonal in the space H1
0 (B), but

this is not required.

An application of the operator d leads to a set of potential vector
fields

Tk,n(x , y , z)
def
= dΦk,n(x , y , z). (33)
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A singular value decomposition of the normal
Radon transform operator

Theorem.
System of potentials (in spherical coordinates)

Fk,n(r , θ, φ) = an,k (1− r2) rkP(k+2,5,k+1,5)
n (r2)Yk(ω) (34)

with

an,k =
Γ(n + k + 1.5)

(n + 1)!Γ(k + 1.5)‖Yk(ω)‖

√
2n + k + 2.5

2

forms a system of potential vector fields

(Fk,n)(x , y , z) = dFk,n(x , y , z), (35)

which is orthonormal in space L2(S1(B)).
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A singular value decomposition of the normal
Radon transform operator

Proposition. (Louis, 1984)
Let ν > 0.5, k , n > 0,

Ψ(ω, s) = (1− s2)ν−0.5 C (ν)
2n+k(s) Yk(ω), (36)

with C (ν)
2n+k(s) – Gegenbauer polynomials. Then

Φ = R−1Ψ = c(n, k , ν)
(
1− r2

)ν−1.5 rk P(k+ν,k+1.5)
n (r2) Yk(ω),

(37)

with c(n, k , ν) =
(−1)n 21−2νΓ(2n + k + 2ν)Γ(k + n + 1.5)√

πΓ(ν) Γ(n + ν − 0.5)Γ(k + 1.5)

and P(p,q)
n (r2)— Yakobi polynomials of degree n with indices p, q.
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A singular value decomposition of the normal
Radon transform operator

Theorem.
A system of function

Gk,n = bn,k(1− s2)C (1.5)
2n+k+1(s)Yk(ω) (38)

with

bn,k =
(−1)n−1

√
2n + k + 2.5√

(2n + k + 3)(2n + k + 2)‖Yk(ω)‖

forms an orthonormal system in space L2(Z , (1− s2)−1).
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A singular value decomposition of the normal
Radon transform operator

We have the following relation:

(R⊥Fk,n)(s, θ, φ) = σk,n · Gk,n(s, θ, φ), k , n = 0, 1, 2 . . . , (39)

where

σk,n =
2
√
2√

(2n + k + 2)(2n + k + 3)
(40)

– singular value of operator R⊥.
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A singular value decomposition of the normal
Radon transform operator

A singular value decomposition of the normal Radon transform
operator R⊥ has the form

R⊥v =
∞∑

k,n=0

σk,n
(
v ,Fk,n

)
L2(S1(B))

Gk,n, (41)

the inverse operator can be calculated by the formula

v =
(
R⊥
)−1

g =
∞∑

k,n=0

σ−1
k,n

(
g ,Gk,n

)
L2(Z ,(1−s2)−1)

Fk,n. (42)
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