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Main definitions

The Galois field of the characteristic p is denoted by GF (pm).
We denote a primitive element of the Galois field GF (pm) by α.
The vector space of all vectors over F = GF (p) of length n = pm

we denote by Fn.
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Main definitions

Any subset of Fn is called a code of length n.

A code is called linear if it is linear subspace of Fn.

A code is called cyclic if it is linear and cyclic shift of every its
codeword belongs to the code.
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Main definitions

A basis of a linear code is called a minimum weight basis if it
consists of codewords of minimum nonzero weight.
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Motivations

The study of an explicit minimum weight basis property for linear
codes is motivated in coding theory by the classical problem of a
short representation of linear (cyclic) codes and is related to the
question of reconstructing codes from their minimum distance
graphs or their designs.

It is important in cryptography.
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Motivations

The study of explicit minimum weight basis property for linear
codes is also important in testing theory for fast isomorphism
testing of strongly regular graphs.

[T. Kaufman and M. Sudan, “Algebraic property testing: the role of
invariance,” Proceedings of 40th ACM Symposium on Theory of
Computing STOC, pp. 403–412, 2008.]

[ T. Kaufman and S. Litsyn, “Almost orthogonal linear codes are locally

testable,” Proceedings of 46th Annual IEEE Symposium on Foundations

of Computer Science (FOCS), pp. 317–326, 2005.]
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Glagolev, 1971, proved that each binary linear code C can be
transformed into a binary linear code D with the same parameters
and a minimum weight basis.

In 1992 Simonis proved an analogous result over GF (q) for any q.

Note that here D is not necessary equivalent to C .

[See Glagolev lemma in the paper of Ya. M. Kurlyandchik, “On
logarithmical asymptotic of maximal cyclic spread r > 2 length,”
Discretnyj Analiz, vol. 19, pp. 48–55, 1971 (in Russian)]

[J. Simonis, “On generator matrices of codes,” IEEE Trans. Inform.
Theory, vol. 38, no. 2, pp. 516–516, 1992.]
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The Glagolev’s result for Hamming codes immediately implies the
existence of minimum weight codewords bases.

Reed-Solomon, the binary Reed-Muller codes, the linear Greismer
codes have minimum weight bases (see MacWilliams and Sloane
book).

[F. J. MacWilliams and N. J. A. Sloane, “The Theory of Error-Correcting
Codes,” North-Holland Publishing Company, 1977.]
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For the class of binary narrow-sense BCH codes of length 2m − 1 it
is known that codes with designed distance 2m−2 + 1 do not
possess a minimum weight basis, while codes with designed
distance 7 of small length do, see the work of Augot, Charpin and
Sendrier.

[D. Augot, P. Charpin and N. Sendrier, “Studying the locator

polynomials of minimum weight codewords of BCH codes,” IEEE Trans.

Inform. Theory, vol. 30, no. 3, pp. 960–973, 1992.]
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In 2011 Grigorescu and Kaufman presented an asymptotical result
on existence of a single orbit affine generator of minimum weight
for extended primitive double-error correcting BCH C 1,3 codes of
length n = 2m for m ≥ 20.

[E. Grigorescu and T. Kaufman, “Explicit Low-Weight Bases for BCH

Codes,” IEEE Trans. Inform. Theory, vol. 58, no. 2, pp. 78–81, 2011.]
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An element of GF (pm) is called a zero of a cyclic code if it is a
zero of its generator polynomial.

The code C1,...,δ−1 with zeroes α, α2, . . . , αδ−1 is called the
narrow-sense BCH code with the designed distance δ and its
minimum distance is at least δ by BCH bound.
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For a vector c = (c0, . . . , cpm−2) of length pm − 1 we denote its
extension by c , i.e.

c = (c0, . . . , cpm−2,−
pm−2∑
i=0

ci ).

The extended code C of C is {c : c ∈ C}. The last position of the
extended code is indexed by the zero of GF (pm), thus the code
positions are indexed by the elements of GF (pm).
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Affine invariance

The affine group of GF (pm) is the group of the mappings
represented by pairs (γ, σ), γ, σ ∈ GF (pm), γ 6= 0 that send β to
βγ + σ, β ∈ GF (pm).

The affine group of GF (pm) naturally acts on the coordinate
positions of F pm and a code C of length pm is called
affine-invariant if the affine group preserves the set of its
codewords.

The extended BCH codes are affine-invariant.
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Single orbit affine generator

A codeword of an affine-invariant code C whose affine
transformations span C is called a single orbit affine generator.
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Theorem 1. Mogilnykh and S.

The minimum weight bases of the following classes of binary codes
could be chosen from affine orbits of certain explicitly represented
minimum weight codewords:

extended primitive double-error correcting BCH code of length
n = 2m for 4 ≤ m ≤ 19 (for m ≥ 20 it was proven by Grigorescu et
al.),
extended cyclic code C1,5 of length n = 2m, m ≥ 5 and
extended cyclic codes C1,2i+1 of lengths n = 2m, (i ,m) = 1 for

3 ≤ i ≤ m−5
4 − o(m).

[I. Yu. Mogilnykh and F. I. Solov’eva, “On explicit minimum weight

bases for extended cyclic codes related to Gold functions,” Des. Codes

Cryptogr., vol. 86, no. 11, pp. 2619–2627, 2018.]
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Main results

Theorem 2. Mogilnykh and S.

For any prime p, p 6= 2, 3 the codes C1,2 and C1,2 over GF (p) are
not spanned by their codewords of the minimum nonzero weight.
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Lemma

Lemma. Mogilnykh and S.

Let α be a primitive element of GF (pm), p,m ≥ 3,

c(x) = 2 + x i + x j − 2xk ,

where i , j , k are such that

αi = α + 2−1α2, αj = −α + 2−1α2, αk = 1 + 2−1α2.

Then c(x) belongs to C1,2.
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Theorem 3. Mogilnykh and S.

For any prime p 6= 2 and for any m ≥ 3 there is a primitive
element α of GF (pm) such that the extended codeword c , where

c(x) = 2 + x i + x j − 2xk ,

and i , j , k fulfill Lemma is a single orbit affine generator of the
code C1,2 of length n = pm.
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More definitions

Let Z4 be the ring of integers modulo four and ZN
4 be the set of all

quaternary words of length N.

The Lee weight of elements in Z4 is
wL(0) = 0,wL(1) = wL(3) = 1 and wL(2) = 2.
The Lee weight wL(x) of a word in ZN

4 is the addition of the Lee
weights of all its coordinates.
The Lee distance dL(x , y) between two words x , y ∈ ZN

4 is defined
as dL(x , y) = wL(x − y).

A nonempty subset C of ZN
4 is a quaternary code and a subgroup

of ZN
4 is called a quaternary linear code.
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More definitions

Let φ : ZN
4 −→ Z 2N

2 be given by
φ(v1, . . . , vN) = (ϕ(v1), . . . , ϕ(vN)), where ϕ is the usual Gray
map:
ϕ(0) = (0, 0), ϕ(1) = (0, 1), ϕ(2) = (1, 1), ϕ(3) = (1, 0).

The image φ(C) of the code C under the Gray map φ is called a
Z4-linear code.
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More definitions

A quaternary linear code being a subgroup of ZN
4 is isomorphic to

an abelian structure of type Zγ2 × Zδ4.

Therefore |C| = 2γ4δ.

Such code C is called quaternary linear of type (N; γ, δ).
Its binary image C = φ(C) under the Gray map is called a Z4-linear
code of type (N; γ, δ).

Parameters of a code C in ZN
4 : length N, size |C |, code distance

with respect to the Lee metric.
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The classical binary linear Reed – Muller code of order r ,
0 ≤ r ≤ m, for any m ≥ 1 is defined as the set of all vectors of
length 2m corresponding to the boolean functions of m variables of
degree not more than r .

F. I. Solov’eva Minimum weight bases for some classes of linear codes



Introduction
Survey

More definitions and notions
Main results

Pujol, Rifa and S. introduced two constructions of bm+1
2 c

nonequivalent families of quaternary linear Reed–Muller codes for
each value of m and 0 ≤ r ≤ m.
For fixed m and r the families were distinguished by their abelian
structures.
This fact was emphasized by using subindexes s from the set
{0, . . . , bm−1

2 c}, so for fixed m, r and s we have the code
RMs(r ,m).

[See J. Pujol, J. Rifà and F. I. Solov’eva, Construction of Z4-Linear
Reed–Muller Codes, IEEE Transactions of Information Theory, 55(1)
(2009), 99–104.]
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It was proved that under the Gray map the corresponding Z4-linear
codes have similar properties (length, dimension, minimum
distance, inclusion and duality relationship) as the classical binary
linear Reed–Muller (RM) codes but these codes are not linear.
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Main results

Theorem 4.

For any r and m ≥ 2, 0 ≤ r < m and for any s, 0 ≤ s ≤ bm−1
2 c the

quaternary linear code RMs(r ,m) has a minimum weight basis.

Corollary.

The minimum weight graphs of the quaternary Reed-Muller codes
are connected.
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