Element orders of finite almost simple groups

Maria Grechkoseeva

Sobolev Institute of Mathematics
12 May, 2021

Orders of elements

If G is a group and $g \in G$, then the order of g is the smallest positive integer k such that $g^{k}=e$.
$\omega(G)$ is the set of all numbers that are the orders of elements of G.

Example

If G is the symmetry group of the regular triangle, then
$\omega(G)=\{1,2,3\}$ with 1,2 and 3 be the orders of the identity, a reflection and a nontrivial rotation respectively.

Example

If $G=P G L_{2}(q)$, the projective general linear group of dimension 2 over the field of order $q=p^{m}$, then $k \in \omega(G)$ iff k divides $q+1$, or $q-1$, or p.

Finite almost simple groups

A finite group S is a simple group if $S \neq 1$ and its only normal subgroups are 1 and S itself. Every finite group G can be "constructed" from simple groups via extensions.

A finite group G is almost simple if $S \leqslant G \leqslant \operatorname{Aut}(S)$ for some nonabelian simple group S. This group S is the socle of G.

Finite almost simple groups

A finite group S is a simple group if $S \neq 1$ and its only normal subgroups are 1 and S itself. Every finite group G can be "constructed" from simple groups via extensions.

A finite group G is almost simple if $S \leqslant G \leqslant \operatorname{Aut}(S)$ for some nonabelian simple group S. This group S is the socle of G.

Classification of Finite Simple Groups

- cyclic groups C_{p} of prime order p
- alternating permutation groups $A l t_{n}, n \geqslant 5$
- simple groups of Lie type
- 26 sporadic groups
(abelian)
(nonabelian)
(nonabelian)
(nonabelian)

The main problem

Problem

Given a nonabelian simple group S and G with $S \leqslant G \leqslant \operatorname{Aut}(S)$, decribe $\omega(G)$.

The problem is easy if S is an alternating or sporadic because

- $\operatorname{Aut}\left(A l t_{n}\right)=$ Sym $_{n}$ for $n \neq 6$
- Alt t_{6} and sporadic groups are in "The Atlas of Finite Groups"

So we may assume that S is a group of Lie type.

The main problem

Problem

Given a nonabelian simple group S and G with $S \leqslant G \leqslant \operatorname{Aut}(S)$, decribe $\omega(G)$.

The problem is easy if S is an alternating or sporadic because

- Aut $\left(A / t_{n}\right)=S_{y m}$ for $n \neq 6$
- Alt t_{6} and sporadic groups are in "The Atlas of Finite Groups"

So we may assume that S is a group of Lie type.
Also it should be noted that the sets $\omega(S)$ are known (Suzuki, Deriziotis, ..., Buturlakin; the final case is $S=E_{8}(q)$ due to Buturlakin, 2018).

Automorphisms of groups of Lie type

The easiest but still illustrartive example of a group of Lie type is $P S L_{n}(q)$, the projective special linear group of dimension n over the field of order q. Its authomorphism group is generated by inner automorphisms and the following:

- diagonal automorphisms:
$A \mapsto D^{-1} A D$ with D a fixed diagonal matrix in $G L_{n}(q)$
- graph automorphisms:
relating to the inverse-transpose map $A \mapsto A^{-\top}$
- field automorphisms:
$\left(a_{i j}\right) \mapsto\left(a_{i j}^{\varphi}\right)$ with φ an automorphism of the underlying field

Steinberg's Theorem

Every automorphism of a simple group of Lie type is a product of inner, diagonal, graph and field automorphisms.

Field automorphisms

Theorem (Zavarnitsine, 2006)

Let $S=P S L_{n}(q)$, where $q=q_{0}^{m}$, and φ be a field automorphism of S of order m. Then

$$
\omega(\langle S, \varphi\rangle)=\bigcup_{k \mid m} \frac{m}{k} \cdot \omega\left(P S L_{n}\left(q_{0}^{k}\right)\right)
$$

Similar results hold for other groups of Lie type and for some other automorphisms relating to field authomorphisms (Zavarnitsine, 2006; Grechkoseeva, 2017).
In some sense, this reduce the whole problem to graph and diagonal automorphisms.

Graph automorphisms

Let $S=P S L_{n}(q)$ and γ be the inverse-transpose automorphism. To find $\omega(\langle S, \gamma\rangle)$, one needs to know which matrices can be written as

$$
A A^{-\top} \text { for some } A \in S L_{n}(q)
$$

A similar problem with $A \in G L_{n}(q)$ was solved by W all in 1962 as a part of the classification of bilinear forms on $G F(q)^{n}$.
Wall's results provided a basis for calculating $\omega(\langle S, \gamma\rangle)$.

Theorem (Grechkoseeva, 2017)

Let $S=P S L_{n}(q)$, where q and n are odd, and γ the graph automorphism of S or order 2. Then

$$
\omega(\langle S, \gamma\rangle)=\omega(S) \cup 2 \cdot \omega\left(S_{p_{2 n-1}}(q)\right)
$$

Similar results were obtained for involutary graph automorphisms of orthogonal groups of even dimensions (Grechkoseeva, 2018).

Ongoing projects

- G is the extension of an exceptional group of Lie type by diagonal automorphisms (with A. Buturlakin)
Tools: Carter's description of centralizers of semisimple elements in the corresponding adjoint groups
- G is the extension of an exceptional group of Lie type by graph authomorphism
Tools: using Cartan subgroups instead of maximal tori and the corresponding modification of the above Carter's description

