COAREA FORMULA FOR FUNCTIONS ON SUB-LORENTZIAN STRUCTURES

Maria Karmanova

Sobolev Institute of Mathematics

Conference «Women in Mathematics»

May 12, 2021

The work is supported by the Mathematical Center in Akademgorodok under Agreement No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation

Main Result and Generalizations

• Coarea formula for functions:

$$\int_{\Omega} \left((X_1 \varphi(v))^2 - \sum_{j=2}^n (X_j \varphi(v))^2 \right)^{1/2} d\mathcal{H}^{\nu}(v) = \int_{\mathbb{R}} dy \int_{\varphi^{-1}(y) \cap \Omega} d\mathcal{H}^{\nu-1}_{\mathfrak{d}}(u)$$

• Coarea formula for $\mathbb{R}^{\widetilde{n}}$ -valued mappings:

$$\begin{split} \int_{\Omega} & \left(\det \left(D_{H}^{\widetilde{n}} \varphi (D_{H}^{\widetilde{n}} \varphi)^{*} - \left(D_{H} \setminus D_{H}^{\widetilde{n}} \varphi \right) \left(D_{H} \setminus D_{H}^{\widetilde{n}} \varphi \right)^{*} \right) \right)^{1/2} d\mathcal{H}^{\nu} \\ & = \int_{\mathbb{R}^{\widetilde{n}}} d\mathcal{H}^{\widetilde{n}}(z) \int_{\varphi^{-1}(z)} d\mathcal{H}^{\nu-\widetilde{n}}_{\mathfrak{d}}(y). \end{split}$$

• The analog is valid also for mappings of Carnot groups

Outline of the Talk

- Preliminaries
- ♦ Coarea formula and applications
- Minkowski geometry
- Carnot groups
- Sub-Lorentzian structures
- Coarea formula for functions
- Main ideas of the proof
- \diamond Coarea formula for $\mathbb{R}^{\widetilde{n}}$ -valued mappings
- Specifics
- Coarea formula for mappings of Carnot groups
- Specifics

Coarea formula

• curvilinear version of **Fubini** Theorem:

•
$$(\mathbb{R}^n, |\cdot|_n); (\mathbb{R}^m, |\cdot|_m); (\mathbb{R}^{n+m}, |\cdot|_{n+m})$$

• $E \subset \mathbb{R}^{n+m}$; $\pi_{\mathbb{R}^m}$ is a projection: $\mathbb{R}^{n+m} \ni (x,y) \stackrel{\pi_{\mathbb{R}^m}}{\mapsto} y \in \mathbb{R}^m$

$$\diamond \ \pi_{\mathbb{R}^m}^{-1}(y) \cap E = \{ x \in \mathbb{R}^n : \ (x, y) \in E \} = \{ (x, y) \in E : \pi_{\mathbb{R}^m}(x, y) = y \}$$

 \Rightarrow Then, the value of $|E|_{n+m}$ equals

$$|E|_{n+m} = \int_{\mathbb{R}^m} |\pi_{\mathbb{R}^m}^{-1}(y) \cap E|_n \, dy$$

Coarea formula

• $(\mathbb{R}^n, |\cdot|_n); (\mathbb{R}^m, |\cdot|_m); (\mathbb{R}^{n+m}, |\cdot|_{n+m})$

•
$$E \subset \mathbb{R}^{n+m}$$
; $\varphi \in C^1(E, \mathbb{R}^m)$

$$\diamond \varphi^{-1}(y) \cap E = \{ z \in E : \varphi(z) = y \}$$

•
$$\mathcal{H}^n(A) = \omega_n \lim_{\delta \to 0} \inf \left\{ \sum_{i \in \mathbb{N}} r_i^n : \bigcup_{i \in \mathbb{N}} B(x_i, r_i) \supset A, r_i < \delta \right\}$$

 \Rightarrow Then

$$\int_{E} \mathcal{J}_{m}(\varphi, z) \, dz = \int_{E} \sqrt{\det(D\varphi(z)D\varphi^{*}(z))} \, dz = \int_{\mathbb{R}^{m}} \mathcal{H}^{n}(\varphi^{-1}(y) \cap E) \, dy$$

The Case m = 1

•
$$(\mathbb{R}^N, |\cdot|_N); (\mathbb{R}, |\cdot|); \mathbb{R}^N = \mathbb{R}^{N-1} \times \mathbb{R}$$

• $E \subset \mathbb{R}^N$, N > 1

 \Rightarrow Then

$$\int_{E} \langle \nabla \varphi(z), \nabla \varphi(z) \rangle^{1/2} \, dz = \int_{\mathbb{R}} \mathcal{H}^{N-1}(\varphi^{-1}(y) \cap E) \, dy,$$

where $\varphi \in C^1(E, \mathbb{R})$

 $\diamond \nabla \varphi(z) = \left(\frac{\partial \varphi}{\partial x_1}(z), \dots, \frac{\partial \varphi}{\partial x_N}(z)\right) \text{ is a gradient of } \varphi \text{ at } z$

Geometric Sense of the Coarea Factor

 \Rightarrow Local measure distortion w. r. t. ker^{\perp}

 \Rightarrow We have

$$\mathcal{J}_{m}(\varphi, z) = \sqrt{\det(D\varphi(z)D\varphi^{*}(z))}$$
$$= \lim_{r \to 0} \frac{\mathcal{H}^{m}(\varphi(B(z, r) \cap E \cap z + (\ker D\varphi(z))^{\perp}))}{\omega_{m}r^{m}}$$

almost everywhere

Applications of the Coarea Formula

• Extremal surfaces theory

 \Rightarrow Its development to Minkowski geometry structures, non-holonomic geometry, new properties of solutions to differential equations, modeling of various processes, etc.

• Currents theory

• Algebraic geometry

• New proof of Stokes formula \Rightarrow Deduction of the analog of $\int_{\mathcal{M}} d\omega = \int_{\partial \mathcal{M}} \omega$ on general structures, definition of new objects, etc (see lectures by S.K. Vodopyanov)

Minkowski Geometry

• Consider the following definition of a vector's length in \mathbb{R}^4 :

$$|v|_{L} = \begin{cases} \sqrt{x^{2} + y^{2} + z^{2} - t^{2}}, & x^{2} + y^{2} + z^{2} - t^{2} \ge 0\\ i\sqrt{|x^{2} + y^{2} + z^{2} - t^{2}|}, & x^{2} + y^{2} + z^{2} - t^{2} < 0, \end{cases}$$

where $v = xe_1 + ye_2 + ze_3 + te_4$.

• If
$$a, b \in \mathbb{R}^4$$
 and $b = a + v$ then

 $d_L(a,b) = |v|_L.$

See

 Miklyukov V. M., Klyachin A. A., Klyachin V. A. Maximal Surfaces in Minkowski Space-Time http://www.uchimsya.info/maxsurf.pdf

Vectors and Surfaces

• $v \in \mathbb{R}_1^4$

♦ $|v|_L^2 > 0 \Rightarrow v$ is a spacelike vector

• Light cone: $\{\mathbf{x}' \in \mathbb{R}^4_1 : d_L^2(\mathbf{x}', 0) = 0\} = \partial B_L(0, 0)$

• Light cone centered at $\mathbf{x} \in \mathbb{R}_1^4$:

$$\{\mathbf{x}' \in \mathbb{R}_1^4 : d_L^2(\mathbf{x}', \mathbf{x}) = 0\} = \partial B_L(\mathbf{x}, 0)$$

- ♦ All tangent vectors are spacelike
- \Rightarrow the surface is <u>spacelike</u>

⇔ for each light cone centered at this surface, the surface lies locally outside it (except the center)

Carnot Groups

 \bullet Let $\mathbb G$ be a connected simply connected Lie group, where

♦ Lie algebra V can be represented as $V = \bigoplus_{k=1}^{M} V_k$, where $V_{k+1} = [V_1, V_k], \ k = 1, ..., M - 1,$ and $[V_1, V_M] = \{0\}$

• This structure is called a Carnot group of the depth M

• Put
$$V_1 = \text{span}\{X_1, \dots, X_n\}, n < N$$

• $X_l \in V_k \Leftrightarrow \deg X_l = k$

Applications of Non-Holonomic Structures

- subelliptic equations
- non-holonomic mechanics
- contact geonetry
- physics
- amoeba theory in thermodynamics
- robotechnics (J.-P. Laumond, А. Аграчев, Ю. Сачков, etc.)
- neurobiology (J. Petitot, G. Citti, A. Sarti, etc.)
- astrodynamics (J.K. Whiting)

An Example: a Falling Cat Problem

• Model: a pair of cylinders that can change relative orientation

• Description in terms of connection of configuration space containing relative motions of these two parts admissible by physics

• Solution: horizontal (admissible w. r. t. physics) curve γ with given endpoints. I. e., $\dot{\gamma} \in V_1$

• Montgomery R. Gauge Theory of the Falling Cat // In: Enos, M.J. (ed.), Dynamics and Control of Mechanical Systems, American Mathematical Society, 1993. P. 193–218.

Group Operation

♦ <u>Homogeneous degree</u> $\lambda = (\lambda_1, ..., \lambda_N)$: $|\lambda|_h = \sum_{k=1}^N \lambda_k \deg X_k$

• Let
$$x = \exp\left(\sum_{i=1}^{N} x_i X_i\right)(0), \ y = \exp\left(\sum_{j=1}^{N} y_j X_j\right)(0)$$
. Then
$$x \cdot y = \exp\left(\sum_{j=1}^{N} y_j X_j\right)(x) = \exp\left(\sum_{k=1}^{N} z_k X_k\right)(0),$$

where

$$z_{k} = \begin{cases} x_{k} + y_{k}, & k \leq n \\ x_{k} + y_{k} + \sum_{\substack{|\alpha + \beta|_{h} = \deg X_{k} \\ \alpha > 0, \beta > 0}} F_{\alpha\beta}^{k} x^{\alpha} y^{\beta}, & k > n \end{cases}$$

The Distance *d*₂

• Let
$$x = \exp\left(\sum_{j=1}^{N} x_j X_j\right)(y)$$
. Then $d_2(x, y)$ equals
$$\max\left\{\left(\sum_{j: X_j \in V_1} x_j^2\right)^{\frac{1}{2}}, \ \left(\sum_{j: X_j \in V_2} x_j^2\right)^{\frac{1}{2 \cdot 2}}, \dots, \left(\sum_{j: X_j \in V_M} x_j^2\right)^{\frac{1}{2 \cdot M}}\right\}$$

•
$$\exists C < \infty : d_2(v, w) \le C(d_2(v, u) + d_2(u, w)) \quad \forall w, v, u \in \mathbb{G}$$

• In normal coordinates θ_x^{-1} , the ball $\text{Box}_2(x,r)$ in d_2 equals the Cartesian product of Euclidean balls

$$B(0,r) imes B(0,r^2) imes \ldots imes B(0,r^M)$$

Sub-Riemannian Differentiability

Definition [Pansu, Vodopyanov]. Let $\Omega \subset \mathbb{R}^m$. The mapping $\varphi : (\Omega, d_2) \to (\widetilde{\mathbb{G}}, \widetilde{d}_2)$ is *hc-differentiable* at $u \in \Omega$ if there exists a horizontal homomorphism

$$L_u: (\mathbb{G}, d_2) \to (\widetilde{\mathbb{G}}, \widetilde{d}_2)$$

such that

 $\widetilde{d}_2(\varphi(w), L_u(w)) = o(d_2(u, w)), \ \Omega \cap \mathbb{G} \ni w \to u.$

• Denote hc-differential of φ at u by $\widehat{D}\varphi(u)$

Theorem [Vodopyanov]. Let $\varphi : (\Omega, d_2) \to (\tilde{\mathbb{G}}, \tilde{d}_2)$ be a C_H^1 -smooth and contact: that is, $V_1 \varphi \subset \tilde{V}_1$, and horizontal derivatives are continuous.

Then φ is continuously *hc*-differentiable everywhere.

Sub-Riemannian Differential of a Function

•
$$(\widetilde{\mathbb{G}}, \widetilde{d}_2) = (\mathbb{R}, |\cdot|) \Rightarrow \widetilde{V}_1 = \mathbb{R}$$

•
$$\varphi$$
: (G, d_2) \rightarrow (R, $|\cdot|$)

• $L_u = \widehat{D}\varphi(u) = (X_1\varphi(u), \dots, X_n\varphi(u), 0, \dots, 0)$

•
$$w = \exp\left(\sum_{i=1}^{N} w_i X_i\right)(u)$$
 is from a neighborhood of u

$$\Rightarrow \widehat{D}\varphi(u)(w) = \left\langle (X_1\varphi(u), \dots, X_n\varphi(u), 0, \dots, 0), (w_1, \dots, w_N) \right\rangle$$

Measures on Carnot Groups

• Riemannian measure:

$$\mathcal{H}^{N}(A) = \omega_{N} \lim_{\delta \to 0} \inf \left\{ \sum_{i \in \mathbb{N}} r_{i}^{N} : \bigcup_{i \in \mathbb{N}} \mathsf{B}(x_{i}, r_{i}) \supset A, \ x_{i} \in A, \ r_{i} < \delta \right\},\$$

where $B(x_i, r_i)$ are balls in Riemannain metric d_R

(i. e., the length of a curve connection x and $y = \exp\left(\sum_{j=1}^{N} y_j X_j\right)(x)$)

• Sub-Riemannian measure; $\nu := \dim_{\mathcal{H}}(\mathbb{G}) = \sum_{k=1}^{M} k \cdot \dim V_k$:

$$\mathcal{H}^{\nu}(A) = \omega_N \lim_{\delta \to 0} \inf \left\{ \sum_{i \in \mathbb{N}} r_i^{\nu} : \bigcup_{i \in \mathbb{N}} \mathsf{Box}_2(x_i, r_i) \supset A, \ x_i \in A, \ r_i < \delta \right\},\$$

where $Box_2(x_i, r_i)$ are balls in sub-Riemannian quasimetric d_2

Sub-Lorentzian Structure on Carnot Groups

• Let X_1 be a <u>timelike</u> direction; $V_1 = \text{span}\{X_1, \dots, X_n\}$

•
$$d_L^2(x,y) = (x_2)^2 + (x_3)^2 + (x_4)^2 - (x_1)^2$$
 for $x = \exp\left(\sum_{j=1}^4 x_j \frac{\partial}{\partial x_j}\right)(y)$

•
$$d_2^2(x,y) = \max\left\{\sum_{j=1}^n x_j^2, \left(\sum_{j: X_j \in V_2} x_j^2\right)^{\frac{1}{2}}, \dots, \left(\sum_{j: X_j \in V_M} x_j^2\right)^{\frac{1}{M}}\right\}$$

for $x = \exp\left(\sum_{j=1}^N x_j X_j\right)(y)$

$$\Rightarrow \mathfrak{d}_2^2(x,y) = \max\left\{\sum_{j=2}^n x_j^2 - x_1^2, \left(\sum_{j: X_j \in V_2} x_j^2\right)^{\frac{1}{2}}, \dots, \left(\sum_{j: X_j \in V_M} x_j^2\right)^{\frac{1}{M}}\right\}$$

• \mathfrak{d}_2^2 is a squared sub-Lorentzian distance

References and Main Results

Berestivskii V. N., Gichev V. M. Metrized left-invariant orders on topological groups // St. Petersburg Math. J. 2000. V. 11, no. 4. P. 543–565.

Grochowski M. Reachable sets for the Heisenberg sub-Lorentzian structure on \mathbb{R}^3 . An estimate for the distance function // J. Dyn. Control Syst. 2006. V. 12, no. 2. P. 145–160.

Grochowski M. Geodesics in the sub-Lorentzian geometry // Bull. Polish Acad. Sci. Math. 2002. V. 50, no. 2. P. 161–178.

Grochowski M. Remarks on the global sub-Lorentzian geometry // Anal. Math. Phys. 2013. V. 3, no. 4. P. 295–309.

Korolko A., Markina I. Nonholonomic Lorentzian geometry on some H-type groups // J. Geom. Anal. 2009. V. 19, no. 4. P. 864–889.

Korolko A., Markina I. Geodesics on H-type quaternion groups with sub-Lorentzian metric and their physical interpretation // Complex Analysis Oper. Theory. 2010. V. 4, no. 3. P. 589–618.

Applications

• Equations of motion of a charged particle in a five-dimensional model of general relativity with a nonholonomic four-dimensional velocity space

• The solution of the variational problem for the length functional satisfies the equations of motion of a charged particle of the general theory of relativity

Krym V. R., Petrov N. N. Equations of motion of a charged particle in a fivedimensional model of the general theory of relativity with a nonholonomic four-dimensional velocity space // Vestn. St. Petersburg Univ. Math. 2007. V. 40, no. 1. P. 52–60.

Krym V. R., Petrov N. N. The curvature tensor and the Einstein equations for a four-dimensional nonholonomic distribution // Vestn. St. Petersburg Univ. Math. 2008. V. 41, no. 3. P. 256–265.

Sub-Lorentzian Balls on Carnot Groups

•
$$x = \exp\left(\sum_{j=1}^{N} x_j X_j\right)(y)$$

$$\Rightarrow \mathfrak{d}_2^2(x,y) = \max\left\{\sum_{j=2}^n x_j^2 - x_1^2, \left(\sum_{j: X_j \in V_2} x_j^2\right)^{\frac{1}{2}}, \dots, \left(\sum_{j: X_j \in V_M} x_j^2\right)^{\frac{1}{M}}\right\}$$

• <u>Sub-Lorentzian ball</u> centered at x of the radius $r \ge 0$:

$$\mathsf{Box}_{\mathfrak{d}}(x,r) = \{ y : \mathfrak{d}_2^2(x,y) \} < r^2 \}$$

⇒ In normal coordinates: Cartesian product of $B_L(0,r)$ and $B(0,r^2) \times \ldots \times B(0,r^M)$

Light Cone

• <u>Light cone</u>: let $y = \exp\left(\sum_{j=1}^{N} y_j X_j\right)(0)$

$$\{y: \mathfrak{d}_{2}^{2}(0, y)) = 0\}$$

= $\left\{y: \sum_{j=2}^{n} y_{j}^{2} - y_{1}^{2} = 0, \max\left\{\left(\sum_{j: X_{j} \in V_{2}} x_{j}^{2}\right)^{\frac{1}{2}}, \dots, \left(\sum_{j: X_{j} \in V_{M}} x_{j}^{2}\right)^{\frac{1}{M}}\right\} = 0\right\}$
= $\left\{y: \sum_{j=2}^{n} y_{j}^{2} - y_{1}^{2} = 0, y_{n+1} = \dots = y_{N} = 0\right\} = \partial \operatorname{Box}_{\mathfrak{d}}(0, 0)$

 \Rightarrow Light cone lies in $\exp(V_1)(0)$!

• Light cone centered at x: $\{y : \vartheta_2^2(x, y) = 0\}$

 \Rightarrow It lies in $\exp(V_1)(x)$

Spacelike Surfaces

- All tangent vectors are spacelike
- \Rightarrow the surface is spacelike

⇔ for each light cone centered at this surface, the surface lies locally outside it (except the center)

• Spacelike surface S (a local property):

 $y \in S \Rightarrow \mathsf{Box}_{\mathfrak{d}}(y, 0) \cap S = \{y\}$

This property must be checked only for horizontal coordinates!

Hausdorff Measure

•
$$\mathcal{H}^{l}(A) = \omega_{l} \lim_{\delta \to 0} \inf \left\{ \sum_{i \in \mathbb{N}} r_{i}^{l} : \bigcup_{i \in \mathbb{N}} \mathsf{Box}_{\mathfrak{d}}(x_{i}, r_{i}) \supset A, x_{i} \in A, r_{i} < \delta \right\}$$

♦ This definition makes sense for spacelike surfaces only

• A light cone is a set of a <u>measure zero</u> for all l > 0!

 \diamond It is sufficient to consider $Box_{\mathfrak{d}}(x,r)$, where x is a cone's center

From Classical to Sub-Lorentzian

• Classical type:

$$\int_{\Omega} \langle \nabla \varphi(z), \nabla \varphi(z) \rangle^{1/2} d\mathcal{H}^{N}(z) = \int_{\mathbb{R}} dy \int_{\varphi^{-1}(y) \cap \Omega} d\mathcal{H}^{N-1}$$

• Riemannian case:

$$\mathcal{J}^{R}(\varphi, z) = \frac{\langle \nabla \varphi(z), \nabla \varphi(z) \rangle_{g}^{1/2}}{\sqrt{\det(g|_{\nabla \varphi(z)}(z))}} = \langle \nabla \varphi(z), \nabla \varphi(z) \rangle^{1/2} \frac{\sqrt{\det(g|_{\ker \nabla \varphi(z)}(z))}}{\sqrt{\det(g(z))}}$$

• We should prove <u>sub-Lorentzian type</u>:

$$\int_{\Omega} \mathcal{J}^{SL}(\varphi, z) \, d\mathcal{H}^{\nu}(z) = \int_{\mathbb{R}} dy \int_{\varphi^{-1}(y) \cap \Omega} d\mathcal{H}^{\nu-1}_{\mathfrak{d}}$$

Main Steps of the Proof

- Riemannian measure: $\mathcal{H}^{N}(\mathsf{Box}_{2}(x,r)) = \sqrt{\det(g(x))} \cdot \omega_{N} r^{\nu} \cdot (1 + o(1))$
- Sub-Riemannian Measure: $\mathcal{H}^{\nu}(\mathsf{Box}_2(x,r)) = \omega_N r^{\nu} \cdot (1 + o(1))$
- Spacelike condition for surfaces: the following should hold

$$(X_1\varphi(x))^2 - \sum_{j=2}^n (X_j\varphi(x))^2 > 0$$

Hausdorff Measure

• For
$$A\subset arphi^{-1}(z)$$
, put

$$\mathcal{H}_{\mathfrak{d}}^{\nu-1}(A) = \\ = \omega_{n-1} \prod_{k=2}^{M} \omega_k \lim_{\delta \to 0} \inf \left\{ \sum_{i \in \mathbb{N}} r_i^{\nu-1} : \bigcup_{i \in \mathbb{N}} \mathsf{Box}_{\mathfrak{d}}(x_i, r_i) \supset A, \ x_i \in A, \ r_i < \delta \right\}$$

♦ Level sets are spacelike

 $\diamond \text{ Put } \nabla_H \varphi = \widehat{D} \varphi$

Main Steps of Proof

• Linearization:

$$\mathcal{H}^{N-1}\left(\varphi^{-1}(\varphi(v)) \cap \mathsf{Box}_{\mathfrak{d}}(v,r)\right) = (1+o(1))\mathcal{H}^{N-1}\left(\ker \nabla \varphi(v) \cap \mathsf{Box}_{\mathfrak{d}}(v,r)\right)$$

• Compute $\mathcal{H}^{N-1}(\ker \nabla \varphi(v) \cap \mathsf{Box}_{\mathfrak{d}}(v,r))$ for ker $\nabla \varphi$:

$$\mathcal{H}^{N-1}\left(\ker \nabla_{H}\varphi(v) \cap \mathsf{Box}_{\mathfrak{d}}(v,r)\right) \cdot \frac{\langle \nabla \varphi(v), \nabla \varphi(v) \rangle^{1/2}}{\langle \nabla_{H}\varphi(v), \nabla_{H}\varphi(v) \rangle^{1/2}}$$

• Compute $\mathcal{H}^{N-1}(\ker \nabla_H \varphi(v) \cap \mathsf{Box}_{\mathfrak{d}}(v,r))$ for $\ker \nabla_H \varphi$:

 $\frac{\langle \nabla_H \varphi(v), \nabla_H \varphi(v) \rangle^{1/2}}{\left((X_1 \varphi(v))^2 - \sum_{j=2}^n (X_j \varphi(v))^2 \right)^{1/2}} \cdot \omega_{n-1} \omega_{N-n} r^{\nu-1} \sqrt{\det(g|_{\ker \nabla \varphi(v)}(v))}$

• Compute
$$\mathcal{H}^{\nu-1}_{\mathfrak{d}}\left(\varphi^{-1}(\varphi(v)) \cap \mathsf{Box}_{\mathfrak{d}}(v,r)\right) = \omega_{n-1} \prod_{k=2}^{M} \omega_k r^{\nu-1}$$

Coarea Formula

• Define

$$\mathcal{J}^{SL}(\varphi, z) = \left((X_1 \varphi(v))^2 - \sum_{j=2}^n (X_j \varphi(v))^2 \right)^{1/2}$$

• We infer from the previous slide that

$$\int_{\varphi^{-1}(y)} \frac{\mathcal{J}^{SL}(\varphi, v)}{\langle \nabla \varphi(v), \nabla \varphi(v) \rangle^{1/2} \sqrt{\det(g|_{\ker \nabla \varphi(v)}(v))}} \, d\mathcal{H}^{N-1} = \int_{\varphi^{-1}(y)} d\mathcal{H}^{\nu-1}_{\mathfrak{d}}(u)$$

• We obtain

$$\int_{\Omega} \left((X_1 \varphi(v))^2 - \sum_{j=2}^n (X_j \varphi(v))^2 \right)^{1/2} d\mathcal{H}^{\nu}(v) = \int_{\mathbb{R}} dy \int_{\varphi^{-1}(y) \cap \Omega} d\mathcal{H}^{\nu-1}_{\mathfrak{d}}(u)$$

Minkowski Geometry

- The result is new even for Minkowski geometry!
- We have

$$\int_{\Omega} \sqrt{\left(\frac{\partial \varphi}{\partial t}(v)\right)^2 - \sum_{j=1}^m \left(\frac{\partial \varphi}{\partial x_j}(v)\right)^2} d\mathcal{H}^m(v) = \int_{\mathbb{R}} dy \int_{\varphi^{-1}(y) \cap \Omega} d\mathcal{H}_{d_L}^{m-1}$$

 \bullet The measure $\mathcal{H}_{d_L}^{m-1}$ is constructed w. r. t.

$$d_L^2(\mathbf{x}, \mathbf{x}') = \sum_{j=1}^m (x_j - x'_j)^2 - (t - t')^2.$$

Multidimensional Timelike Coordinates

Craig W., Weinstein S. On Determinism and Well-Posedness in Multiple Time Dimensions // Proc. R. Soc. A. 2008. V. 465, no. 2110. P. 3023–3046.

Bars I., Terning J. Extra Dimensions in Space and Time // Springer, 2010.

Velev M. Relativistic Mechanics in Multiple Time Dimensions // Physics Essays. 2012. V. 25, no. 3. P. 403–438.

The Case $\varphi : \mathbb{G} \to \mathbb{R}^{\widetilde{n}}$

• X_1, \ldots, X_{n^-} are timelike fields, $n^- \leq \tilde{n} < n$:

$$\mathfrak{d}_{2}^{2}(x,y) = \max\left\{\sum_{j=n^{-}+1}^{n} x_{j}^{2} - \sum_{k=1}^{n^{-}} x_{k}^{2}, \left(\sum_{j: X_{j} \in V_{2}} x_{j}^{2}\right)^{\frac{1}{2}}, \dots, \left(\sum_{j: X_{j} \in V_{M}} x_{j}^{2}\right)^{\frac{1}{M}}\right\}$$

- $D_H^{\widetilde{n}}\varphi(x)$: a part of $D_H\varphi(x)$ consisting of the first \widetilde{n} columns
- $D_H \setminus D_H^{\tilde{n}} \varphi$: $(\tilde{n} \times (n \tilde{n}))$ -matrix obtained by deletion of columns $D_H^{\tilde{n}} \varphi$ and columns numbered $n + 1, \ldots, N$ from $D_H \varphi$

Coarea Formula for $\varphi : \mathbb{G} \to \mathbb{R}^{\widetilde{n}}$

• Coarea Factor
$$\mathcal{J}_{\widetilde{n}}^{n^{-}}(\varphi, x)$$
:

$$\left(\det\left(D_{H}^{\widetilde{n}}\varphi(D_{H}^{\widetilde{n}}\varphi)^{*}+\left(D_{H}^{\widetilde{n}}\varphi\right)E_{n^{-}}^{-}\left(D_{H}^{\widetilde{n}}\varphi\right)^{-1}\left(D_{H}\setminus D_{H}^{\widetilde{n}}\varphi\right)\left(D_{H}\setminus D_{H}^{\widetilde{n}}\varphi\right)^{*}\right)\right)^{1/2},$$

• Coarea formula:

$$\int_{\Omega} \mathcal{J}_{\widetilde{n}}^{n^{-}}(\varphi, x) \, d\mathcal{H}^{\nu}(x) = \int_{\mathbb{R}^{\widetilde{n}}} d\mathcal{H}^{\widetilde{n}}(z) \int_{\varphi^{-1}(z)} d\mathcal{H}_{\mathfrak{d}}^{\nu - \widetilde{n}}(y)$$

• Coarea formula for $n^- = \tilde{n}$:

$$\int_{\Omega} \left(\det \left(D_{H}^{\widetilde{n}} \varphi (D_{H}^{\widetilde{n}} \varphi)^{*} - \left(D_{H} \setminus D_{H}^{\widetilde{n}} \varphi \right) \left(D_{H} \setminus D_{H}^{\widetilde{n}} \varphi \right)^{*} \right) \right)^{1/2} d\mathcal{H}^{\nu}$$

$$= \int_{\mathbb{R}^{\widetilde{n}}} d\mathcal{H}^{\widetilde{n}}(z) \int_{\varphi^{-1}(z)} d\mathcal{H}^{\nu-\widetilde{n}}_{\mathfrak{d}}(y)$$

The Case $\varphi : \mathbb{G} \to \widetilde{\mathbb{G}}$

•
$$\varphi : (\mathbb{G}, \bigoplus_{k=1}^{M} V_k) \to (\widetilde{\mathbb{G}}, \bigoplus_{k=1}^{\widetilde{M}} \widetilde{V}_k)$$

• $M \ge \widetilde{M}$, dim $V_k > \dim \widetilde{V}_k$; put dim $H_k = \sum_{l=1}^{k} \dim V_k$, dim $H_0 = 0$
• $X_1, \dots, X_{n_1^-}, X_{\dim H_1+1}, \dots, X_{\dim H_1+n_2^-}, X_{\dim H_2+1}, \dots, X_{\dim H_{M-1}+1}, \dots, X_{\dim H_{M-1}+n_M^-}$ are timelike fields, $n_k^- \le \dim \widetilde{V}_k < \dim V_k$,
 $k = 1, \dots, \widetilde{M}$:

$$\vartheta_2^2(x,y) = \max_{k=1,\dots,M} \left\{ \left(\sum_{j=\dim H_{k-1}+n_k^-+1}^{\dim H_k} x_j^2 - \sum_{j=\dim H_{k-1}+1}^{\dim H_{k-1}+n_k^-} x_j^2 \right)^{\frac{1}{k}} \right\}$$

• In each block of $\widehat{D}\varphi$, there exist $D_k^-\varphi(x)$, the analog of $D_H^{\widetilde{n}}\varphi(x)$

Coarea Formula for $\varphi : \mathbb{G} \to \widetilde{\mathbb{G}}$

• Coarea factor
$$\mathcal{J}^-(\varphi, x)$$
:

$$\prod_{k=1}^{M} \left(\det \left(D_{k}^{-} \varphi (D_{k}^{-} \varphi)^{*} + \left(D_{k}^{-} \varphi \right) E_{n_{k}^{-}}^{-} \left(D_{k}^{-} \varphi \right)^{-1} \left(\widehat{D}^{k} \setminus D_{k}^{-} \varphi \right) \left(\widehat{D}^{k} \setminus D_{k}^{-} \varphi \right)^{*} \right) \right)^{1/2},$$

• Coarea formula:

$$\int_{\Omega} \mathcal{J}^{-}(\varphi, x) \, d\mathcal{H}^{\nu}(x) = \int_{\widetilde{\mathbb{G}}} d\mathcal{H}^{\widetilde{\nu}}(z) \int_{\varphi^{-1}(z)} d\mathcal{H}^{\nu - \widetilde{\nu}}_{\mathfrak{d}}(y)$$

Coarea formula for $\varphi : \mathbb{G} \to \widetilde{\mathbb{G}}$

• Coarea formula for $n_k^- \leq \dim \widetilde{V}_k$, $k = 1, \ldots, M$:

$$\begin{split} \int_{\Omega} \prod_{k=1}^{M} \Big(\det \Big(D_{k}^{-} \varphi (D_{k}^{-} \varphi)^{*} - \Big(\widehat{D}^{k} \setminus D_{k}^{-} \varphi \Big) \Big(\widehat{D}^{k} \setminus D_{k}^{-} \varphi \Big)^{*} \Big) \Big)^{1/2} d\mathcal{H}^{\nu} \\ &= \int_{\widetilde{\mathbb{G}}} d\mathcal{H}^{\widetilde{\nu}}(z) \int_{\varphi^{-1}(z)} d\mathcal{H}^{\nu - \widetilde{\nu}}_{\mathfrak{d}}(y) \end{split}$$

 \ominus <u>Essential</u> difficulty: approximation of C^1 -mapping by order higher than 1

Publications

Karmanova M. B. Coarea formula for functions on 2-step Carnot groups with sub-Lorentzian structure // Dokl. Math. 2020. V. 101. P. 129–131.

Karmanova M. B. Space-likeness of classes of level surfaces on Carnot groups and their metric properties // Dokl. Math. 2020. V. 101. P. 205–208.

Karmanova M. B. The Coarea Formula for Vector Functions on Carnot Groups with Sub-Lorentzian Structure // Sib. Math. J. 2021. V. 62, no. 2. P. 239–261.

THANK YOU!

