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3D system with smooth functions



dx1

dt
= k1(f1(x3)− γ1(x1));

dx2

dt
= k2(f2(x1)− γ2(x2));

dx3

dt
= k3(f3(x2)− γ3(x3)),

(1)

where fi(xi−1) are smooth monotonous decreasing functions, γi(xi−1) are smooth monotonous

increasing functions, i = 1, 2, 3.

The system (1) has a unique equilibrium S0 = (x0
1, x

0
2, x

0
3) in the invariant domain.
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Lemma 1

The parallelepiped Q3 =
∏3
j=1[0,Mj ], where Mj = min{fj(0),max γj}, is a positively invariant

domain for the trajectories of the three-dimensional system (1).

The hyperplanes xj = x0
j through the equilibrium S0 split Q3 into 8 blocks: {ε1ε2ε3}, where εj = 1, if

xj > x0
j , and εj = 0 otherwise.

The valence of the n-dimensional block B is a number of its (n− 1)-dimensional faces, through which

the trajectories of the dynamical system can pass from B to adjacent blocks.

Q3 = W1 ∪W3

W1 — 6 one-valent blocks;

W3 — three-valent blocks {000}, {111}.
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Lemma 2

For any pair of adjacent blocks B1, B2 trajectories of points of their common (n− 1)-dimensional

face pass either from B1 to B2 , i.e. B1 → B2, or from B2 to B1, B2 → B1.

{101} {001} {011}

{100} {110} {010}

F0 F1

F2F5

F4 F3

(2)

Theorem 1

If S0 is an unstable hyperbolic equilibrium point then the system (1) has a cycle passing through the

blocks of the diagram (2).

We have shown that the linearization matrix has eigenvalues λ1 < 0, with Reλ2,3 > 0.
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3D piecewise linear system
ẋ1 = L1(x3)− k1x1;

ẋ2 = L2(x1)− k2x2;

ẋ3 = L3(x2)− k3x3,

(3)

Lj(xj−1) =

{
ajkj > 0 , 0 6 xj−1 < 1;

0 , xj−1 > 1;
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Lemma 3

The parallelepiped Q3 =
∏3
j=1[0, aj ] is a positively invariant domain for the trajectories of the

three-dimensional system (3).

The system (3) has no equilibrium points, the hyperplanes xj = 1 through the point E = (1, 1, 1) split

Q3 into 8 blocks.

After 6 steps each trajectory returns to the face F0.

Theorem1,2 2

If aj > 1, j = 1, 2, 3, then the system (3) has exactly one cycle, which is stable.

1Golubyatnikov V. P., Ivanov V. V., Minushkina L. S. On existence of a cycle in one non-symmetrical circular gene network

model. //Sib. Journ. of P. and Appl. Math., 2018, V.18, N 3.
2Golubyatnikov V. P., Ivanov V. V. Uniqueness and stability of a cycle in three-dimensional block linear circular gene network

models. // Sib. Journ. of P. and Appl. Math., 2018, V.18, N 4.
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Monotonicity of the Poincaré map

Let Φ(y0, z0) := (y6, z6), where Φ = f5 . . . f0 : F0 → F0 is a Poincaré map, x0 = x6 = 1. A

”normalized“ Poincaré map Ψ = L ◦ Φ ◦ L−1, where L : K2 → F0 is a map of the form

L(u1, u2) = (1, 1− u1, 1 + (a3 − 1)u2).

Lemma 4

Let (u0
1, u

0
2) and (v0

1 , v
0
2) belong to K2. Ψ is monotonous, i.e., if u0

1 6 v0
1 and u0

2 6 v0
2 , then u6

1 6 v6
1

and u6
2 6 v6

2. If one of the first inequalities is strict, them both second inequalities are strict.

Lemma 5

If P = (u0
1, u

0
2) ∈ K2 is sufficiently close to the origin, and does not coincide with it, then u0

1 < u6
1

and u0
2 < u6

2.
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Figure 1: Monotonicity of the Poincaré map Ψ in K2 = [0, 1] × [0, 1]
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Lemma (P. Hartman, Ordinary Differential Equations)

Let A,C be non-singular constant matrices, where A is a d× d matrix, C is a e× e matrix,and

a = ||A|| < 1 and 1/c = ||C−1|| < 1. (4)

Let Π : (y0, z0)→ (y1, z1) be a map of the form

Π : y1 = Ay0 + Y (y0, z0), z1 = Cz0 + Z(y0, z0),

where Y , Z are functions of class C1 for small ||y0||, ||z0|| which vanish together with their Jacobian

matrices at (y0, z0) = 0. Then there exists a continious one-to-one map

R : u = Φ(y, z), v = Ψ(y, z)

of a neighborhood of (y, z) = 0 onto a neighborhood of (u, v) = 0 such that R transforms Π into the

linear map

RΠR−1 = L : u1 = Au0, v1 = Cv0.

6th June 2022 9/ 17



It has been shown that det JΨ(0) = 1 so the Jacobian matrix JΨ(0) has eigenvalues λ1 > 1 > λ2 > 0.
Under conditions of the Lemma d = e = 1 and C = λ1, A = λ2. In the coordinate system OY Z, where

OY and OZ are parallel to eigenvectors corresponding to λ1 and λ2, the Poincaré map Π has a form

Π(Y0, Z0) = (Y1, Z1), Y1 = λ1Y0 +G(Y0, Z0), Z1 = λ2Z0 +H(Y0, Z0).

The linear map L = RΠR−1 maps a point N0 = (ν0, 0) in the neighborhood of the origin to a point

N1 = (ν1, 0) with ν1 = λ1ν0.
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Theorem 4 (V. P. Golubyatnikov, N. B. Ayupova)

If aj > 1, j = 1, 2, 3, then the domain W1 contains an invariant surface of the system (3).
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4D piecewise linear system3

dy1

dt
= L(y4)− ky1;

dyj
dt

= Γj(yj−1)− ljyj , (5)

j = 2, 3, 4, where

L(y) =

{
ak > 0 , 0 6 y < 1;

0 , y > 1;
Γj(yj−1) =

{
0 , 0 6 yj−1 6 1;

bj lj > 0 , yj−1 > 1.

3Glass L., Pasternack J.S. Stable oscillations in mathematical models of biological control systems. // Journal of Mathe-

matical Biology. 1978. V. 6
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Lemma 6

All trajectories of the system (5) do not leave the domain Q4 = [0, a]× [0, b2]× [0, b3]× [0, b4] as

time increases.

The hyperplanes yi = 1 through the point E = (1, 1, 1, 1) split Q4 into 24 blocks: {ε1ε2ε3ε4}, where

εi = 1 if yi > 1 and εi = 0 otherwise.

W1 contains 8 one-valent blocks:

{1111} {0111} {0011}

{1110} {0001}

{1100} {1000} {0000}

F0={y1=1} F1={y2=1}

F2={y3=1}F7={y4=1}

F3={y4=1}F6={y3=1}

F5={y2=1} F4={y1=1}

(6)
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Theorem4 5

If a, bj > 1, j = 2, 3, 4, one-valent domain W1 in the phase portrait of the system (5) contains

exactly one cycle C that passes from block to block according to the arrows of the diagram (6); this

cycle contains the unique fixed point P0 = L−1U0 of the Poincaré map Ψ : F0 → F0.

Theorem4 6

The cycle C is stable.

4Golubyatnikov V. P., Minushkina L. S. On uniqueness and stability of a cycle in one gene network // Sib. Electr. Math.

Reports, 2021, V. 18, N. 1.

6th June 2022 14/ 17



The Jacobian determinant det JΨ(0) of the Poincaré map in the origin is equal to 1. It follows from

Frobenius – Perron Theorem that Jacobian matrix JΨ(0) has a positive eigenvalue λ1 > 1 with the

corresponding eigenvector having positive coordinates. The next four cases are possible:

1. λ1 > 1 > |λ2| > |λ3|;
2. λ1 > |λ2| > 1 > |λ3|;
3. λ1 > 1 > |λ2| = |λ3|.

Even if the norm of Jλ2
=

(
λ2 1
0 λ2

)
can be more than 1, for a sufficiently large m > 0 the norm Jmλ2

becomes less than 1.
4. λ1 > |λ2| = 1 > |λ3|. This case does not satisfy the condition (4) from the Hartman’s Lemma.

Example. The matrix  3 1 1
1/2 1 1/2
1 1 1


has eigenvalues λ1 = 2 +

√
3 > λ2 = 1 > λ3 = 2−

√
3.
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Theorem 7 (V. P. Golubyatnikov, L. S. Minushkina)

If a, bj > 1, j = 2, 3, 4, and the Jacobian matrix JΨ(0) of the Poincaré map does not have

eigenvalues equal to 1 in absolute value, then the domain W1 contains an invariant surface of the

system (5) with the cycle C from Theorems 5,6 lying on it.
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Thank you for attention!
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