$\Sigma-\text{relations}$ and generalized computability on structures

Svetlana Aleksandrova

Sobolev Institute of Mathematics

Novosibirsk 2023

- Recursive functions
- Turing machines

A structure $\mathcal M$ of the signature $\sigma=\{P_i^{n_i},i\in\omega\}$ consists of:

- the domain set M,
- $P_i^{\mathcal{M}} \subseteq M^{n_i}$ the interpretation of the symbol P_i in \mathcal{M} ;

 $\mathcal M$ is computable if its domain is a computable set and $P_i^{\mathcal M}$ are uniformly computable in i.

- Barwise: Admissible sets.
- Ershov: Σ -definability in hereditarily finite superstructures.
- Goncharov and Sviridenko: lists over the elements of a given abstract data type.

Let ${\mathcal M}$ be a structure of σ

- $HF_0(M) = M$
- $HF_{n+1}(M) = HF_n(M) \cup \mathcal{P}_{\omega}(HF_n(M))$
- $HF(M) = \bigcup_{n < \omega} HF_n(M)$

Then HF superstructure $\mathbb{HF}(\mathcal{M}) = \langle M, HF(M), \sigma \cup \{ \emptyset, \in^2, U^1 \} \rangle$

Hereditarily finite list superstructure

Let ${\mathcal M}$ be a structure of σ

- elements of $S^0(M)$ are finite lists of M,
- elements of $S^{n+1}(M)$ are finite lists of $S^n(M) \cup M$.
- $S(M) = \bigcup_{n \in \omega} S^n(M)$

Then $HW(\mathcal{M}) = \langle M, S(M), \sigma \cup \{head, tail, cons, nil, \in \} \rangle$

- $head(\langle x_1, x_2, \ldots, x_n \rangle) = x_n,$ head(nil) = nil
- $tail(< x_1, x_2, \dots, x_{n+1} >) = (< x_1, x_2, \dots, x_n >),$ tail(< y >) = tail(nil) = nil
- $cons(\langle x_1, x_2, \ldots, x_n \rangle, y) = (\langle x_1, x_2, \ldots, x_n, y \rangle),$
- $y \in \langle x_1, x_2, \ldots, x_n \rangle \iff y = x_i$, for some $1 \le i \le n$.
- $\langle y_1, y_2, \ldots, y_m \rangle \sqsubseteq \langle x_1, x_2, \ldots, x_n \rangle \iff m \leq n \text{ and } y_i = x_i, \text{ for all } 1 \leq i \leq m.$

• Δ_0 -formulas:

closure of the set of all quantifier–free formulas under $\wedge,\vee,\urcorner,\rightarrow,\exists x\in y,\forall x\in y,$

• Σ–formulas:

closure of the set of all $\Delta_0\text{--formulas}$ under $\wedge,\vee,\exists x\in y,\forall x\in y,\exists x,$

- Σ -relation $P(x_1, x_2, \dots, x_n)$ is a relation defined by a Σ -formula
- Function f(x) is Σ -definable, if its graph is a Σ -relation.

- Σ -definable sets in $\mathbb{HF}(\emptyset)$ are c.e.
- Δ -definable sets (Σ -definable together with complements) in $\mathbb{HF}(\emptyset)$ are computable.

Computability over reals

 $\mathbb{R}=\langle R,+,\cdot,0,1,<\rangle$

In HW(ℝ) only algebraic functions are Σ-definable.
 M.V. Korovina (1990)

 $\mathbb{R}_{\exp} = \langle R, +, \cdot, 0, 1, <, exp(x) \rangle$

• Exponential polinomials

 $\mathbb{C}_{\exp} = \langle C, +, \cdot, 0, 1, <, exp(x) \rangle$

• sin, cos, etc.

Ershov

$$\begin{split} \mathcal{A} &= \langle A; P_0^{n_0}, \dots, P_k^{n_k} \rangle \text{ is } \Sigma - \text{definable in } \mathbb{A}, \text{ if there are} \\ \Sigma - \text{formulas (with parameters in } \mathbb{A}) \quad S(x), \ E^+(x,y), \ E^-(x,y), \\ \Psi_i^+(x_1, \dots, x_{n_i}), \ \Psi_i^-(x_1, \dots, x_{n_i}), \ i = 1, \dots, k, \text{ such that} \end{split}$$

- 1. S(x) defines a nonempty subset S^* of \mathbb{A} ,
- 2. Ψ_i^+ in Ψ_i^+ define new predicates P_i^* on S^* and their complements,
- 3. E^+ ı E^- define an equivalence η on S^* and its complement,
- 4. η is a congruence on $\mathcal{A}^* = \langle S^*; P_1^*, \dots, P_k^* \rangle$,
- 5. $\mathcal{A}^*/\eta \cong \mathcal{A}$.

- Structures Σ-definable over HIF(Ø) are structures isomorphic to computable ones.
- If \mathcal{M} has a computable copy then structures Σ -definable over $\mathbb{HF}(\mathcal{M})$ are structures isomorphic to computable ones.

Theorem (A)

 $\mathbb{HF}(\mathcal{M}) \text{ is } \Sigma - \text{definable in } HW(\mathcal{M}) \text{ and } HW(\mathcal{M}) \text{ is } \Sigma - \text{definable in } \mathbb{HF}(\mathcal{M}).$

• The isomorphism $\mathcal{A}^*/\eta \cong \mathcal{A}$ in both cases is identical on \mathcal{M} .

Corollary

 $X\subseteq M \text{ is } \Sigma\text{-definable in }\mathbb{HF}(\mathcal{M}) \text{ iff } X \text{ is } \Sigma\text{-definable in } HW(\mathcal{M})$

Uniformization

- (n + 1)-ary function F is an universal function for some class of n-ary functions G, if for any y F(y, x̄) ∈ G and for any f ∈ G there is y, such that F(y, x̄) = f(x̄).
- There is a partial recursive universal function for all p.r.f.
- There is no recursive universal function for all r.f.

- Let P be a subset of a cartesian product $X \times Y$. P' uniformizes P, if P' is a graph of a function with domain $\{x : \exists y P(x, y)\}, x \in X, y \in Y \text{ and } P' \subseteq P.$
- If any *P* of class *G* can be uniformized by some *P'* of *G*, *G* has the uniformization property.
- Σ-definable (n + 1)-ary function F is an universal function for some class of n-ary functions G, if for any y F(y, x̄) ∈ G and for any f ∈ G there is y, such that F(y, x̄) = f(x̄).

- In any admissible set there is an universal $\Sigma\text{-predicate}.$ Yu.L. Ershov (1996)
- There is an algebraic system *M* such that in HF(*M*) an universal Σ-function does not exist.
 V. Rudnev (1986)
- $HW(\mathbb{R})$ has universal Σ -function. M.V. Korovina (1990)
- There is a Σ -definable universal partial function for Σ -definable in $HW(\mathbb{R}_{exp})$ functions $\mathbb{R}^n \times \mathbb{R}$.

Computable analysis vs. Σ -definability

Definition

The Cauchy representation $\rho_C :\subseteq \Sigma^{\omega} \to \mathbb{R}$ of the real numbers is a representation where a real number x is represented by a one-way infinite stream of symbols if this one-way infinite stream encodes a sequence of rational numbers converging rapidly to x: $\rho_C(w_1 w_2 \dots) = x; \Leftrightarrow |x - \nu_{\mathbb{Q}}(w_i)| < 2^{-i} \text{ for all } i \in \mathbb{N}.$

Computable analysis

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is computable if there is an oracle Turing machine that, given any $k \in N$, may ask for arbitrarily good rational approximations of the input $x \in dom(f)$; i.e., it may ask finitely many questions of the kind "Give me a vector $p \in Q_n$ of rational numbers with $d(x,p) < 2^{-i}$," where the exponent i may depend on the answers to the previous questions, and after finitely many steps, it writes a rational number q on the output tape with $|f(x) - q| < 2^{-k}$.

Definition

A representation of a set X is a surjective function $\delta :\subseteq \Sigma^{\omega} \to X$, where Σ is some alphabet. Then for any $x \in X$ and any $p \in \Sigma^{\omega}$ with $\delta(p) = x$, the sequence p is called a δ -name of x.

Theorem (A)

Let \mathbb{R}^* be an expansion of the ordered real field with a decidable theory. Then there exists a computable real function, which is not Σ -definable in $\mathbb{HF}(\mathbb{R}^*)$.

Schanuel Conjecture:

- if n is a natural number, a₁,..., a_n ∈ C are linearly independent over Q. Then the transcendence degree of expansion Q(a₁,..., a_n, e^{a₁},..., e^{a_n}) ≥ n.
- If the Schanuel Conjecture is true, then the theory of \mathbb{R}_{exp} is decidable.

A. Macintyre, A. Wilkie "On the decidability of the real exponential field."(1996)

Corollary

There exists a computable real function, which is not Σ -definable in hereditarily finite superstructure over the real exponential field.

Remark

The $sign\ {\rm function}$

$$sign(x) = \begin{cases} 0, & if \ x < 0, \\ 1, & if \ x \ge 0. \end{cases}$$

is Σ -definable in $\mathbb{HF}(\mathbb{R})$, but not computable.

Theorem (Bazhenov, A)

There exists a continuous Σ -definable in $\mathbb{HF}(\mathbb{R})$ real function, which is not computable.

Remark

The $sign\ {\rm function}$

$$sign(x) = \begin{cases} 0, & if \ x < 0, \\ 1, & if \ x \ge 0. \end{cases}$$

is Σ -definable in $\mathbb{HF}(\mathbb{R})$, but not computable.

Theorem (Bazhenov, A)

There exists a continuous Σ -definable in $\mathbb{HF}(\mathbb{R})$ real function, which is not computable.

Thank you!