Completely regular codes in the *n*-dimensional rectangular grid

Anastasia Vasil'eva ¹

Sobolev Institute of Mathematics, Novosibirsk, RUSSIA

November 23, 2024

¹The work was performed according to the Government research assignment for IM SB RAS, project FWNF-2022-0017

Perfect coloring

A vertex partition $(V_0, V_1, \ldots, V_{k-1})$ of a r-regular graph is called the perfect k-coloring if for every $i, j \in \{0, 1, \ldots, k-1\}$ there exists the integer α_{ij} such that every vertex of V_i has exactly α_{ij} neighbors in V_j . Then the matrix $A = (\alpha_{ij})$ is called the parameter matrix.

Obviously,
$$\alpha_{i,0} + \alpha_{i,1} + \ldots + \alpha_{i,k-1} = r$$

 $(V_0, V_1, \ldots, V_{k-1}) \longleftrightarrow \varphi : V \to \{0, 1, \ldots, k-1\}$

Examples

- 0
- - 1
- 2
- $\begin{bmatrix} -3 \\ 0 & 2 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 \end{bmatrix}$

- - 1
- - 2
- $\begin{bmatrix} 0 & 3 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 3 & 0 \end{bmatrix}$

- **O U**
- - 1

 $\left[\begin{array}{cc} 0 & 3 \\ 1 & 2 \end{array}\right]$

Distance regular coloring

A perfect coloring $(V_0, V_1, \dots, V_{k-1})$ is distance regular if its parameter matrix is three-diagonal i.e., it is the coloring by the distance from V_0 .

$$A = \begin{bmatrix} a_0 & b_0 & 0 & 0 & \dots & \dots & 0 \\ c_1 & a_1 & b_1 & 0 & \dots & \dots & 0 \\ 0 & c_2 & a_2 & b_2 & \dots & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & c_{k-2} & a_{k-2} & b_{k-2} \\ 0 & \dots & \dots & \dots & \dots & 0 & c_{k-1} & a_{k-1} \end{bmatrix}$$

Degree triples

a_i - the inner degree of the *i*-th color;

b_i - the upper degree of the i-th color;

c_i - the lower degree of the i-th color.

In these terms, any vertex of color i sees c_i vertices of the color i-1,

 a_i vertices of the color i and b_i vertices of the color i+1.

Completely regular code

If $(V_0, V_1, \dots, V_{k-1})$ is a distance regular coloring of a graph then $C = V_0$ is the completely regular code.

Then k-1 is called as the covering radius of C; the minimum distance between code vertices is called as the code distance of the code C.

Distance regular graph

If for any vertex v of the graph the code $C = \{v\}$ is the completely regular code then the graph is called as distance-regular.

Examples: the *n*-cube, the Petersen graph.

Rectangular grid

The *n*-dimensional rectangular grid is the graph G_n with: the vertex set \mathbb{Z}^n ; the edge set $\{(x,y): x,y\in \mathbf{Z}^n, \sum_{i=1}^n |x_i-y_i|=1\}$.

Rectangular grid

If $n \ge 2$ then the *n*-dimensional rectangular grid is not distance regular.

n = 1

If $k \ge 2$ then the distance regular colorings are

$$\ldots, 1, 0, 1, 2, \ldots, k-2, k-1, k-2, \ldots, 2, 1, 0, 1, \ldots$$
$$\ldots, 1, 0, 0, 1, 2, \ldots, k-2, k-1, k-2, \ldots, 2, 1, 0, 0, 1, \ldots$$
$$\ldots, 1, 0, 0, 1, 2, \ldots, k-2, k-1, k-1, k-2, \ldots, 2, 1, 0, 0, 1, \ldots$$

n = 1

The parmeter matrices are

$$\begin{bmatrix} 02000 & \dots & 0 \\ 10100 & \dots & 0 \\ 01010 & \dots & 0 \\ 00101 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 \dots & 0101 \\ 0 \dots & 0020 \end{bmatrix} \quad \begin{bmatrix} 11000 & \dots & 0 \\ 10100 & \dots & 0 \\ 01010 & \dots & 0 \\ 00101 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 \dots & 0101 \\ 0 \dots & 0020 \end{bmatrix} \quad \begin{bmatrix} 11000 & \dots & 0 \\ 10100 & \dots & 0 \\ 01010 & \dots & 0 \\ 00101 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 \dots & 0101 \\ 0 \dots & 0020 \end{bmatrix} \quad \begin{bmatrix} 11000 & \dots & 0 \\ 10100 & \dots & 0 \\ 01010 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ 0 \dots & 0101 \\ 0 \dots & 00101 \end{bmatrix}$$

Reducible coloring

A coloring φ of the *n*-dimensional rectangular grid is called reducible if there exists a coloring ψ of the 1-dimensional rectangular grid such that $\varphi(x_1, x_2, \ldots, x_n) = \psi(\delta_1 x_1 + \delta_2 x_2 + \ldots + \delta_n x_n), \ \delta_1, \ldots, \delta_n \in \{-1, 0, 1\}$

Example

n=2

Theorem The complete list of parameter matrices:

- 1) six infinite series of reducible matrices;
- 2) irreducible matrices of order 2:

$$\begin{bmatrix} 0 & 4 \\ 1 & 3 \end{bmatrix} \quad \begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix} \quad \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} \quad \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix};$$

3) irreducible matrices of order 3:

```
\begin{bmatrix} 0 & 4 & 0 \\ 1 & 0 & 3 \\ 0 & 4 & 0 \end{bmatrix} \begin{bmatrix} 0 & 4 & 0 \\ 1 & 2 & 1 \\ 0 & 4 & 0 \end{bmatrix} \begin{bmatrix} 0 & 4 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ 1 & 2 & 1 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 2 \end{bmatrix};
```

$$n = 2$$

4) irreducible matrices of order 4:

$$\begin{bmatrix} 0 & 4 & 0 & 0 \\ 1 & 0 & 3 & 0 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 4 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 3 & 0 & 0 \\ 1 & 1 & 2 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 3 & 1 \end{bmatrix};$$

5) the irreducible matrix of order 5:

$$n=3$$

All feasible parameter matrices are discribed.

Monotonicity

Theorem. If

$$A = \begin{bmatrix} a_0 & b_0 & 0 & 0 & \dots & \dots & 0 \\ c_1 & a_1 & b_1 & 0 & \dots & \dots & 0 \\ 0 & c_2 & a_2 & b_2 & \dots & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & c_{k-2} & a_{k-2} & b_{k-2} \\ 0 & \dots & \dots & \dots & \dots & 0 & c_{k-1} & a_{k-1} \end{bmatrix}$$

is the parameter matrix of an arbitrary disrance regular coloring of n-dimensional rectangular grid then

$$b_0 \ge b_1 \ge \ldots \ge b_{k-2},$$

 $c_1 \le c_2 \le \ldots \le c_{k-1}.$

Reducible colorings

Theorem. If $k \ge 4$ and there exists $1 \le i < j \le k - 2$ such that

$$(c_i,a_i,b_i)=(c_j,a_j,b_j)$$

then

$$(c_i,a_i,b_i)=(c_t,a_t,b_t)$$

for all $t \in \{1, ..., k-2\}$ and the coloring is reducible.

Irreducible colorings

Theorem. Let the distance regular coloring be irreducible and I be the maximal i such that $c_i \leq b_i$. Then

$$c_i \neq c_{i+1}$$
 if $i \leq I$;

$$b_i \neq b_{i+1}$$
 if $i > I$.

The number of colors

Theorem. For an arbitrary irreducible distance regular coloring (with k colors) of n-dimensional rectangular grid, it holds $k \leq 2n+1$. An irreducible distance regular coloring with 2n+1 colors exists.

Covering radius

The covering radius of an arbitrary completely regular code in the n-dimensional rectangular grid is at most 2n.

Code distance

The minimal code distance of an arbitrary completely regular code in the *n*-dimensional rectangular grid is at most 4.

Density

Let $(V_0, V_1, \ldots, V_{k-1})$ be a coloring. We call as a density of the *i*-th color, $i = 0, 1, \ldots, k-1$, the following value:

$$p_i = \lim_{r \to \infty} \frac{|V_i \cap B_r|}{|B_r|},$$

where B_r denotes the ball of radius r centered in the all-zero vertex.

Theorem.

Let $(V_0, V_1, ..., V_{k-1})$ be an irreducible distance regular coloring of n-dimensional rectangular grid. Then the sequence $p_0, p_1, ..., p_{k-1}$ of color densities in unimodal.

$n \geq 4$

Our restrictions:

parameter matrices with the all-zero diagonal: $a_0 = a_1 = \ldots = a_{k-1} = 0$.

$$1) \ k = 2 \quad \left[\begin{array}{cc} 0 & 2n \\ 2n & 0 \end{array} \right]$$

2)
$$k = 3$$
 $\begin{bmatrix} 0 & 2n & 0 \\ t & 0 & 2n - t \\ 0 & 2n & 0 \end{bmatrix}$, $t = 1, \dots, n$.

$$n = 4, k = 4$$

We use the linear programming:

Theorem 2.

The matrices

$$\left[\begin{array}{ccccc}
0 & 8 & 0 & 0 \\
1 & 0 & 7 & 0 \\
0 & 2 & 0 & 6 \\
0 & 0 & 8 & 0
\end{array}\right], \quad
\left[\begin{array}{cccccc}
0 & 8 & 0 & 0 \\
1 & 0 & 7 & 0 \\
0 & 3 & 0 & 5 \\
0 & 0 & 8 & 0
\end{array}\right]$$

are not feasible for distance regular 4-colorings of 4-dimensional rectangular grid.

Questions

- 1) Feasible parameter matrices.
- 2) $a_0, a_1, \ldots, a_{k-1}$.
- 3) A classification of completely regular codes with a fixed parameter matrix.

- Avgustinovich, S.V., Vasil'eva, A.Y., Sergeeva, I.V. Distance regular colorings of an infinite rectangular grid. J. Appl. Ind. Math. 6, 280–285 (2012).
- Avgustinovich, S.V., Vasil'eva, A.Yu. Completely regular codes in the n-dimensional rectangular grid, Siberian Electronic Mathematical Reports, 19:2, 861–869 (2022).
- Mogilnykh I. Y., Vasil'eva, A. Y. On completely regular codes in the multidimensional rectangular grid, Int. Conf. Mal'tsev Meeting, 120 (2024) MAL'TSEV MEETING November 11–15, 2024
- Tarasov, A.A. Parameters of distance regular 3-colorings of three-dimensional grid. Student's coursework (2018).

Thank you for your attention!