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Companion matrix

Assume that Z is a non-trivial commutative ring with unity.

Definition 1

Companion matriz Cy of monic polynomial

gt) =t" + gn1t" '+ ...+ g1t + go € Z[t],

is defined as a matrix of order n of the form

0 1 0o ... 0
0 0 1 e 0
C, = . .
0 0 0 1
—90 —g1 —¢g2 ... —Qgn-1 )

Polynomial g(t) € Z]t] is both the characteristic polynomial and the minimal
polynomial for the companion matrix Cy.




Companion matrix

Assume that Z is a non-trivial commutative ring with unity.
Definition 1
Companion matriz Cy of monic polynomial

g(t) =" + gn1t" ' +... + g1t + go € Z[t],

is defined as a matrix of order n of the form

0 1 0 . 0
0 0 1 . 0
Cy = :
0 0 0 1
—g0 —91 —G2 ... —0gn-1

Remark 1.
1. Not every square matrix is similar to a companion matrix.

2. Every square matrix is similar to a block-diagonal matrix, on the diagonal
of which the blocks are a companion matrix and are called Frobenius cell.



Companion matrix

Assume that Z# is a non-trivial commutative ring with unity.

Definition 1

Companion matriz Cy of monic polynomial

g(t) = t" + gn1t" " ...+ git + go € Zt],

is defined as a matrix of order n of the form

0 1 0 . 0
0 0 1 0
Co=| :
0 0 0 1
—g0 —91 —G2 ... —0gn-1 )

Remark 1.

3. L.N. Vaserstein and E. Wheland ' showed that an arbitrary matrix is
similar to the product of two matrices each similar to a companion matrix.

1Vaserstein L.N., Wheland E. Commutators and Companion Matrices over Rings of
Stable Rank 1 // Linear Algebra and its Applications. 1990.:V. 142. P. 263-277.




Ring of polynomials in a companion matrix

Suppose
o Z is a non-trivial commutative ring with unity;
o f(t) € Z[t] is an arbitrary polynomial;
e g(t) € Z]t] is a monic polynomial of degree n > 2, n € N;

o Cy € Z™ " is the companion matrix for g(t).

Remark 2.

Matrix polynomials f(Cy) over the ring # forms a commutative ring, which
is called the companion ring of the polynomial g(t) and denote by Z,.

1. @ If g(¢t) = t", then %, is the commutative ring of lower triangular
Toeplitz matrices of order n with elements in Z.

2. P If g(t) = t" — 1, then %, is the commutative ring of order n circulant
matrices with elements in .

3. P If g(t) = t" + 1, then %, is the commutative ring of order n skew-
circulant matrices with elements in Z.

“Bini D.A., Pan V.Y., Polynomial and Matrix Computations. Fund. Algorithms. V. 1,
Birkhauser. Boston. MA. 1994.
®Davis P.J. Circulant Matrices. New York: AMS Chelsea Publishing. 1994.




Ring of polynomials in a companion matrix

Suppose
o % is a non-trivial commutative ring with unity;
o f(t) € Z[t] is an arbitrary polynomial;
e g(t) € Z]t] is a monic polynomial of degree n > 2, n € N;

o Cy € Z™*™ is the companion matrix for g(t).

When Z is an integral domain, polynomial g(t) has n roots (counted with
multiplicities) in some appropriate extension of # and, for f(t) € Z[t], the
determinant of f(Cy) may be expressed as the resultant

detf(Co) = [ £ =Res(f(t),9(t)).

A:g(A)=0



Ring of polynomials in a companion matrix

Suppose
o % is a non-trivial commutative ring with unity;
o f(t) € Z[t] is an arbitrary polynomial;
e g(t) € Z]t] is a monic polynomial of degree n > 2, n € N;

o Cy € Z™*™ is the companion matrix for g(t).

When Z is an integral domain, polynomial g(t) has n roots (counted with
multiplicities) in some appropriate extension of # and, for f(t) € Z[t], the
determinant of f(Cy) may be expressed as the resultant

detf(Co) = [ £ =Res(f(t),9(t)).

A:g(A)=0

Matrices A and B are elementary equivalent over %, if

dN, M : A= NBM, moreover det N =1, det M = 1.

We will write A ~ B.




Smith form for companion matrix of the product of polynomials

Theorem

@ Let g(t) € Z|[t] be a monic polynomial, and let f(t) € Z[t]. Suppose that
f(t) = F(t)h(t) and g(t) = G(t)h(t), where h(t) is a monic polynomial of
degree m. Then

f(Cq) ~ F(Cq) © Omxm,

where Oy, xm is zero matrix of degree m.

“Noferini V., Williams G. Matrices in companion rings, Smith forms, and the homology
of 3-dimensional Brieskorn manifolds // Journal of Algebra. 2021. V. 587, P. 1-19.

v

Matrix F(C¢) has invariant factors si, s2,...,s, if and only if f(Cy) has
invariant factors s1, s2,...,$r and 0 (repeated m times).

Let g(t) € Z[t] be a monic polynomial, and let f(t) € Z[t]. Suppose that
f(t) = F(t)h(t) and g(t) = G(t)h(t), where h(t) is a monic polynomial of
degree m. Then

Detf(Cy) = Res(F(t), G(t)),

where Det is essential determinant divisor.




Smith form for companion matrix of superposition of polynomials

Theorem A

Let g(t) € Z[t] be a monic polynomial and let f(¢) € Z[t]. Suppose that there
exists polynomials F'(t) € Z[t] and G(t) € Z|[t] such that f(t) = F o h(t)
and g(t) = G o h(t), where h(t) is monic polynomial of degree m. Then the
following elementary equivalence relation holds

f(Cy) ~ diag(F(Cqa), F(Cg),...,F(Cg)).

m




Smith form for companion matrix of superposition of polynomials

Lemma

Let h(t) € Z[t] and G(t) € Z[t] be a monic polynomials of degree n and m
respectively. Let A € Z™"*™" be a matrix of order mn of the form
A
Ao ~
A= 0 ) Ak = [@nx(k—l) |A|@n><(mfk)]a k= 1,2,...77774,
Am
where
1 0 .. 0 0 ... 0
cn(0) cn(1) . cp(m —1) 1 0
A= cp2(0) cp2(l) ... cpz(m—1) cp2(m) 0
cpn-1(0) cpn-1(1) ... cpni(m—1) cpn-ai(m) ... 1
and the symbol c. (k) denotes the k-th coefficient of the polynomial z(¢).
Then A is a unimodular matrix, and h(Cgor) ~ diag(Ceq,Ca, . ..,Ca).
—_——

9 /21



Idea for proof of the Lemma

Note that the statement of Lemma 2.1 is true if and only if

Ah(CGoh) = diag(Cg, Cg, ey Cg)A
N————

1. Since the determinant of the Vandermonde matrix does not vanish, the
following relation holds

1 1
z
2 2
Ah(Ccon) z = diag(Cqa,Caq, ..., Ca)A z . (1)
. —_—— .
Zmn Zmn

2. Consider the right part of the equality (1).
For each k-th block of the matrix A we have the following relation

1 2kt 2F1h
2 Zk—lh Zk:—lh2
2 k—132
CaAyg z =Cqg z h = = {.
. Zkflhnfl

Lmn Zkflhn Zkfl(hn —Go h)

10 / 21



Idea for proof of the Lemma

2. Thus, the right part of the equality being proved has the form

1

4

2

diag(Cg,Ca,...,Ca)A | Z | =1, 02, ..., tm]",
N—— .
Zmn
where

2R 1p

Zk71h2

b = :
Zk—lhn—l

Zkfl(hn _ G ° h)

11 / 21



Idea for proof of the Lemma

Let us remind

1
z
2 2

Ah(Cgon) | # | =diag(Cq,Cq,...,Ca)A | * |. (1)
. N—— —/—— .
Z’ITLTL zmn

3. Consider the left part of the equality (1). Note that
hCaon) = M +> " chCon, (2)
k=0

where the symbol 5’5011 denotes the k-th power of the companion matrix
CE.,, such that

~k k @mn—kxk ]Emn—kxmn—k
CGoh = C‘Goh - )
Ok xk Ok xmn—k



Idea for proof of the Lemma

Let us remind

1 1
z
2 2
Ah(CGoh) z = diag(C’G, CG, ey CG)A z . (1)
. —_—— .
Zmn Zmn

3. Consider the left part of the equality (1). Note that

h(Cgon) = M+ chClon, (3)

k=0

where M is a Toeplitz matrix

cp(0)  cp(l) cp(2) ... cp(m—1) 1 0 0
0 cp(0)  cep(l) ... cp(m —1) 1 0
0 0 cp(0) ... cp(m —1)
M =
cp(m—1)
0 0 0 e (0)

13 / 21



Idea for proof of the Lemma

h(Cgon) = M + Zcﬁéfk;oh» (2)
k=0
The following vector is the product of the k-th block of the matrix A and the
matrix M
1 P
Zk71h2
z
2
ApM | # = .
k—lhn—l
Z’mn Zkfl(hn Z Cmn ] mn— j)
The relation
1
e~k 22 ©(mn71)><1
z _
Aka_OCfCGoh ) = ( mn+zcmn ] mn—j GOg)
Zmn

is satisfied for the second matrix of the equality (2)

14 / 21



Idea for proof of the Lemma

Thus, for the k-th block of the transformation matrix A, we have

1 2F1h
. 2 Zk—th
~ 2
A(M+Y chCéar) | = | = : = Ly,
k=0 : Sh—1pn—1
zmn" 2P — G oh)

This means that the vector on the left side

1
m z
~ 2
AM+3chCla) | # | =10t )™
k=0 .
Zmn

is equal to the vector obtained in step 2.

15 / 21



Smith form for companion matrix of superposition of polynomials

Lemma

Let h(t) € Z[t] and G(t) € Z[t] be a monic polynomials of degree n and m
respectively. Let A € Z™"*™" be a matrix of order mn of the form
A
Ao ~
A= 0 ) Ak = [@nx(k—l) |A|@n><(mfk)]a k= 1,2,...77774,
Am
where
1 0 .. 0 0 ... 0
cn(0) cn(1) . cp(m —1) 1 0
A= cp2(0) cp2(l) ... cpz(m—1) cp2(m) 0
cpn-1(0) cpn-1(1) ... cpni(m—1) cpn-ai(m) ... 1
and the symbol c. (k) denotes the k-th coefficient of the polynomial z(¢).
Then A is a unimodular matrix, and h(Cgor) ~ diag(Ceq,Ca, . ..,Ca).
—_——

16 / 21



Smith form for companion matrix of superposition of polynomials

Let g(t) € Z[t] be a monic polynomial and let f(¢t) € Z[t]. Assume that
f(t) = Foh(t) and g(t) = G oh(t), where h(t) is monic polynomial of degree
m. Then

f(Cy) ~ diag(F(Cq), F(Cq), ..., F(Cq)).

m

Matrix F(Cg) has invariant factors (s1, s2,...,sr) if and only if f(Cy) has
invariant factors (s1, s, ..., s,) repeated m times.

Corollary
Let g(t) € Z[t] be a monic polynomial and let f(¢t) € Z[t]. Assume that
f(t) = Foh(t) and g(t) = G oh(t), where h(t) is monic polynomial of degree
m. Then

Res(f, g) = (ReS(Fa G))m )

and
Det(f(Cy)) = Det(diag(F(Cq), F(Cg), ..., F(Cg))),

m

where Det is essential determinant divisor.




Applications

The Chebyshev polynomials Tn(t) of the first and Uy (t) of the second kind are
polynomials of degree n in ¢, given by the formulas

sin(n + 1)6

Tn(t) = cosnf, Un(t) = nd

)

where 8 = arccost and n € N.

2 From the formula for the difference of sines
sin(n 4+ 1)0 — sin(n — 1) = 2sin 0 cos nd,

it follows that the polynomials of the first and second kinds are related by

the relationship
Un+1(t) — Un—1(t) = 2Tn(t).

2Mason J.C., Handscomb D.C. Chebyshev Polynomials. CRC Press. Boca Raten. 2003.



Applications

Definition 2

The Chebyshev polynomials Wi (t) of the fourth kind is polynomials of degree
n in t, given by the formula
sin(n + 1)
n(t) = 2
Walt) sin /2

where 6 = arccost and n € N.

3 From the formula for the sum of sines
sin(n + 1)8 — sinnf = 2 cos(0/2) sin(nb + 0/2),

it follows that the polynomials of the fourth and second kinds are related in
the following identity

Un () + Un—1 (1) = Wa (D).

3Mason J.C., Handscomb D.C. Chebyshev Polynomials. CRC Press. Boca Raten. 2003.
19 / 21



Applications

@ Suppose M, is an n-fold cyclic covering of the sphere S*, branches over a
two-bridge knot K, and let . and %’ be matrices

L = (F(Ca)™ - W, (1 4 ) , and 2 = (F(Ce)™ *Upm_1 (1 bt ) .

2F(Cg) 2F(Cg)

Then

1. if n = 2m + 1, n € Z, then first homology group Hi(Ma2m+1,7Z) splits
into direct sum of two copies of the Abelian group V' = coker.?, i.e.

Hi(Mam+1,Z) =V O V;
2. if n = 2m, n € Z, then the covering map ¢ : Mz, — M> induces a

surjective homomorphism ¢, : Hi(Mam,Z) — H1(Ms,Z), whose kernel
splits into direct sum of two copies of the Abelian group V' = coker.?’,

Kerp, =V oV’

“Plans A. Aportacion al estudio de los grupos de homologia de los recubrimientos
ciclicos ramificados correspondiente a un nudo, Rev. Real. Acad. Cienc. Exact., Fisica y
Nat. Madrid, 47 (1953), 161-193.

v
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