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An algebraic structure 〈L;∨,∧〉 is a lattice if

∨2 and ∧2 are idempotent, commutative, associative
operations;

for all a, b ∈ L, a ∧ (a ∨ b) = a = a ∨ (a ∧ b).
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A lattice L is distributive if, for all a, b, c ∈ L,

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Not each lattice is distributive! N5 and M3 are the “minimal”
non-distributive lattices.
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Figure: Lattices N5 and M3

Marina Schwidefsky Stone dualities



Theorem (M.H. Stone)

The category of distributive (0, 1)-lattices with
(0, 1)-homomorphisms is dually equivalent to the category of
spectral spaces with spectral maps.
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Theorem (M.H. Stone)

The category of Boolean algebras with homomorphisms is dually
equivalent to the category of Boolean spaces with continuous
maps.
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One can generalize these results of M.H. Stone in two directions:

dualities for distributive posets;

dualities for (0, 1)-lattices which are close to distributive.
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Dualities for distributive posets
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For a poset 〈P;≤〉 and X ⊆ P:

L(X ) is the set of all lower bounds of X ;

U(X ) is the set of all upper bounds of X .
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Distributive posets

A c-poset is a structure P = 〈P;≤, ϕ〉 such that:

〈P;≤〉 is a poset;

ϕ is an algebraic closure operator on P which defines a
completion of 〈P;≤〉; that is,

ϕ : P → IdP, ϕ : x 7→ ϕ(x)

is an order embedding of 〈P;≤〉 into the complete lattice IdP

of ϕ-closed subsets of P.

Corollary

If P = 〈P;≤, ϕ〉 is a c-poset then ϕ(x) = L(x) for all x ∈ P.
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A c-poset P = 〈P;≤, ϕ〉 is distributive or just a distributive
poset, if the following condition is satisfied:

the lattice IdP is distributive.

Any ϕ-closed subset of P is a ϕ-ideal of 〈P;≤〉 or just an ideal of
P.

A set F ⊆ P is a filter of 〈P;≤〉 if it is an upper cone which is
down-directed with respect to ≤.
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Lemma (Ts. Batueva, MS)

For a c-poset P = 〈P;≤, ϕ〉 and a proper ideal I of P, TFAE.

1 P\I is a filter of 〈P;≤〉.
2 I is a ∩-prime element in IdP.

3 L(a0, a1) ⊆ I implies that ai ∈ I for some i < 2.

An ideal I of P is prime if it satisfies one of the equivalent
statements of Lemma above.
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Theorem (Ts. Batueva, MS)

Let P = 〈P;≤, ϕ〉 be a distributive c-poset, let I ⊆ P be a
nonempty ideal of P, and let F ⊆ P be a nonempty filter such that
I ∩ F = ∅. Then there is a prime ideal Q ⊆ P such that I ⊆ Q
and Q ∩ F = ∅.
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The category DP

Let DP denote the category whose objects are distributive
c-posets and whose morphisms are mappings f : P0 → P1, where
P0 = 〈P0;≤, ϕ0〉 and P1 = 〈P1;≤, ϕ1〉 are distributive c-posets,
which satisfy the following condition:

f is proper; that is, f −1(I ) is a prime ideal of P0 for each
prime ideal I of P1;

DP-morphisms preserve meets, joins, 0, 1. In particular, they are
monotone.
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Lemma

Let S0 and S1 be distributive (0, 1)-lattices. Then f : S0 → S1 is a
DP-morphism if and only if f is a (0, 1)-lattice homomorphism.

Marina Schwidefsky Stone dualities



Consider the following full subcategories of DP:

the category DP1 whose objects are distributive posets with 1;

the category DP0 whose objects are distributive posets with 0;

the category DP0,1 whose objects are distributive posets with
0, 1;

the category DSL∧ whose objects are distributive
∧-semilattices;

the category DSL∧1 whose objects are distributive
∧-semilattices with 1;

the category DSL∧0 whose objects are distributive
∧-semilattices with 0;

the category DSL∧0,1 whose objects are distributive
∧-semilattices with 0, 1;
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the category DSL∨ whose objects are distributive
∨-semilattices;

the category DSL∨1 whose objects are distributive
∨-semilattices with 1;

the category DSL∨0 whose objects are distributive
∨-semilattices with 0;

the category DSL∨0,1 whose objects are distributive
∨-semilattices with 0, 1;

the category DL whose objects are distributive lattices;

the category DL1 whose objects are distributive 1-lattices;

the category DL0 whose objects are distributive 0-lattices;

the category DL0,1 whose objects are distributive
(0, 1)-lattices.
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Spectra of posets [Yu. L. Ershov, MS]

Let P = 〈P;≤, ϕ〉 be a c-poset.
Spec P is the set of all prime ideals of P. For each a ∈ P, we put

Va = {I ∈ Spec P | a /∈ I}.

The space Spec P = 〈Spec P,T,B〉, where T denotes the topology
with the basis B = {Va | a ∈ P}, is the spectrum of poset P.

The space Spec S is called the spectrum of a join-semilattice
〈S ;∨〉, where S = 〈S ;∨, ψ〉 and

ψ(X ) = {s ∈ S | s ≤ a∨ . . .∨ an for some n < ω, a0, . . . , an ∈ X}.

The spectrum of a lattice 〈L;∨,∧〉 is the spectrum of its
join-semilattice reduct 〈L;∨〉.
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Lemma

For a c-poset P = 〈P;≤, ϕ〉, the following statements hold.

1 If a ∧ b exists in P for some a, b ∈ P then Va∧b = Va ∩ Vb. If
P is distributive then Va ∩ Vb = Vc for some c ∈ P implies
that c = a ∧ b in P.

2 If 〈P;≤〉 is a join-semilattice and ϕ = ψ then Va∨b = Va ∪ Vb

for all a, b ∈ P. If P is distributive then Va ∪ Vb = Vc for
some c ∈ P implies that c = a ∨ b in P.
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Sober spaces

Let X be a T0-space.

A subset Y ⊆ X is irreducible if Y ⊆ F0 ∪ F1 for some closed sets
F0,F1 implies that Y ⊆ Fi for some i < 2.

X is sober if for each nonempty closed irreducible set F ⊆ X ,
there is x ∈ X such that F = ↓x .

X is almost sober if for each proper closed irreducible set F ⊆ X ,
there is x ∈ X such that F = ↓x .
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Proposition (Yu. L. Ershov, MS)

For a c-poset P = 〈P;≤, ϕ〉, the following statements hold.

1 Spec P is almost sober.

2 Spec P is sober whenever P has 0.

3 If P is down-directed distributive and Spec P is sober then
〈P;≤〉 has 0.
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Proposition (Yu. L. Ershov, MS)

For a distributive c-poset P = 〈P;≤, ϕ〉, the following statements
hold.

1 The set Va is compact in Spec P for every a ∈ S . In
particular, Spec P is compact whenever 〈P;≤〉 has 1.

2 If P is up-directed and Spec P is compact then 〈P;≤〉 has 1.
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For a T0-space X and F ⊆ T(X), define a closure operator ϕF on
F as follows. If X ⊆ F then

ϕF(X) =
{
U ∈ F | U ⊆

⋃
X

}
.

If F consists of compact sets, then ϕF is algebraic.
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Lemma

If a family B of compact open sets in X forms a base of T(X) then
the c-poset B = 〈B;⊆, ϕB〉 is distributive.
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Spaces with base

Definition

A triple X = 〈X ,T,B〉 is a topological space with base or just a
space with base, if

1 〈X ,T〉 is a T0-space and B forms a base of T;

2 〈X ,T〉 is sober and B is down-directed if and only if ∅ ∈ B;

3 X is compact in 〈X ,T〉 and B is up-directed if and only if
X ∈ B.

B is a multiplicative base if B is closed under finite nonempty
intersections. B is an additive base if B is closed under finite
nonempty unions.
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K(X) is the set of all compact sets in X.

Lemma

Let X be a space with additive base and let B(X) ⊆ K(X). Then

B(X) =

{
K(X), if ∅ ∈ B(X);

K(X)\{∅}, if ∅ /∈ B(X).
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Almost [semi]spectral spaces with base

Definition

A space with base X is an almost semispectral space with base,
if 〈X,T(X)〉 is an almost sober space, and B(X) consists of open
compact sets.
X is an almost spectral space with base, if 〈X,T(X)〉 is an
almost sober space, and B(X) is a multiplicative base of T(X)
consisting of open compact sets.
X is a [semi]spectral space with base, if X is almost
[semi]spectral space with base, ∅,X ∈ B(X), and 〈X,T(X)〉 is a
compact sober space.

Marina Schwidefsky Stone dualities



The category AS

Let AS be the category whose objects are almost semispectral
spaces with base and whose morphisms are spectral mappings:

if f : X → Y, where X,Y ∈ AS then f −1(U) ∈ B(X) for all
U ∈ B(Y).
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Lemma

If X,Y are almost semispectral spaces with base and f : X → Y is
spectral then f is continuous.
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We consider the following full subcategories of the category AS:

the category ASc whose objects are compact almost
semispectral spaces with base;

the category ASs whose objects are sober almost semispectral
spaces with base;

the category S whose objects are semispectral spaces with
base;

the category ASp whose objects are almost spectral spaces
with base;

the category ASpc whose objects are compact almost spectral
spaces with base;

the category ASps whose objects are sober almost spectral
spaces with base;

the category Sp whose objects are spectral spaces with base;
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the category AsSpec whose objects are almost semispectral
spaces;

the category AsSpecc whose objects are compact almost
semispectral spaces;

the category AsSpecs whose objects are sober almost
semispectral spaces;

the category sSpec whose objects are semispectral spaces;

the category ASpec whose objects are almost spectral spaces;

the category ASpecc whose objects are compact almost
spectral spaces;

the category ASpecs whose objects are sober almost spectral
spaces;

the category Spec whose objects are spectral spaces.
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Theorem (Yu. L. Ershov, MS)

For a T0-space X, the following holds.

1 X is a semispectral space if and only if X is homeomorphic to
the spectrum of a distributive (0, 1,∨)-semilattice.

2 X is a compact almost semispectral space if and only if X is
homeomorphic to the spectrum of a distributive
(1,∨)-semilattice.

3 X is sober almost semispectral if and only if X is
homeomorphic to the spectrum of a distributive
(0,∨)-semilattice.

4 X is almost semispectral if and only if X is homeomorphic to
the spectrum of a distributive ∨-semilattice.
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Theorem (Yu. L. Ershov, MS)

For a T0-space X, the following holds.

1 X is spectral if and only if X is homeomorphic to the
spectrum of a distributive (0, 1)-lattice.

2 X is compact almost spectral if and only if X is
homeomorphic to the spectrum of a distributive 1-lattice.

3 X is sober almost spectral if and only if X is homeomorphic to
the spectrum of a distributive 0-lattice.

4 X is almost spectral if and only if X is homeomorphic to the
spectrum of a distributive lattice.

These two theorems extend to a full duality.
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The functor T

T: DP → AS;

T: P 7→ Spec P;

if f : P0 → P1 then T(f ) : I 7→ f −1(I ).

Marina Schwidefsky Stone dualities



The functor P

P: AS → DP;

P : X 7→ 〈B(X);⊆, ϕB〉;
if f : X0 → X1 then T(f ) : U 7→ f −1(U).
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Theorem

The categories DP and AS are dually equivalent via P and T. The
categories DPfin and ASfin are therefore also dually equivalent.
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An instance:

Corollary

P and T establish the dual equivalence of categories DSL∧0 and
ASps .
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Dualities for (0, 1)-lattices:
quasivarieties generated by finite (0, 1)-lattices
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The quasivariety SP(N5)
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Figure: Lattice N5
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Definition (W.A. Dziobiak, MS)

A structure S = 〈X ,Y ,≤, f 〉 is an N5-space, if

(s1) X ∩ Y = ∅ and X ∪ Y 6= ∅;

(s2) ≤ is a partial order on X ∪ Y ;

(s3) f : Y → X 2 is a function and for all y ∈ Y with f (y) = (a, b),
the following conditions hold:

a ≤ y and {a, b}, {y , b} are antichains;
if a, b ≤ z for some z ∈ X ∪ Y then y ≤ z ;
if z ≤ y for some z ∈ X ∪ Y then either z ≤ a or z ≤ b, or
z ∈ Y and {u, v} � {a, b} where f (z) = (u, v).
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Definition (W.A. Dziobiak, MS)

Let S = 〈X ,Y ,≤, f 〉 and S′ = 〈X ′,Y ′,≤, f 〉 be N5-spaces. Then
ϕ : S → S′ is a N5-morphism, if the following conditions hold:

(m1) ϕ maps X ∪ Y into X ′ ∪ Y ′ ∪
{
{a, b} | a, b ∈ X ′};

(m2) if u, v ∈ X ∪ Y are such that ϕ(u), ϕ(v) ∈ X ′ ∪ Y ′ and u ≤ v
then ϕ(u) ≤ ϕ(v);

(m3) for all x ∈ X , ϕ(x) ∈ X ′;

(m4) for all y ∈ Y with f (y) = (a, b), the following holds:

if ϕ(y) ∈ X ′ then either ϕ(y) = ϕ(a) or ϕ(y) ≤ ϕ(b);
if ϕ(y) ∈ Y ′ then f

(
ϕ(y)

)
=

(
ϕ(a), ϕ(b)

)
;

if ϕ(y) /∈ X ′ ∪ Y ′ then ϕ(y) =
{
ϕ(a), ϕ(b)

}
is an antichain

and {ϕ(a), ϕ(b)} � ϕ(z) for all z ∈ X ∪ Y with y ≤ z .
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Objects in N5 are bi-algebraic (0, 1)-lattices belonging to SP(N5).
Morphisms in N5 are complete (0, 1)-lattice homomorphisms.

Objects in B5 are N5-spaces. Morphisms in B5 are N5-morphisms.

Theorem (W. A. Dziobiak, MS)

The categories N5 and B5 are dually equivalent.

Introducing a topology compatible with the N5-structure, one
extends this result to a duality between SP(N5) and the category
of topological N5-spaces as follows.
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Objects in L5 are (0, 1)-lattices belonging to SP(N5). Morphisms
in L5 are (0, 1)-lattice homomorphisms.

Objects in T5 are spectral N5-spaces. Morphisms in T5 are spectral
N5-morphisms.

Theorem (W. A. Dziobiak, MS)

The categories L5 and T5 are dually equivalent.
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Similar duality results can also be established for:

the quasivariety SP(L4) (A.O. Basheyeva, MS);
the quasivariety SP(L6) (A.O. Basheyeva, MS);
the quasivariety SP(M3) (A. E. Izyurova, MS).
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Figure: Lattices L4, L6, and M3

Restrictions of all the dualities discussed to distributive lattices
yield the Stone duality.
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