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Abstract. The probability inequality for sum S, = Z;;l X ; is proved under the assumption that

the sequence Sy, k = 1, n, forms a supermartingale. This inequality is stated in terms of the tail
probabilities P(X; > y) and conditional variances of the random variables X;, j = 1,n. The
well-known Burkholder moment inequality is deduced as a simple consequence.
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1. Introduction

Let a sequence of the random variables S;, k > 1, form a supermartingale defined
on a filtered probability space (2, F, (Fr)ixo, P) with §o =0, F5 = {@, Q},i.e,

E{Sk / Fi1} < Si1-
Put X; = S; — Sik—1, k > 1. Define the random variables akz by the equalities
of =E(X} / Fii).

Denote
k
B,f = E ajz, S, = max §, X, = max Xi.
n 1<kgn l<k<n

Define
0(x) =P(X, > x) +P(B, > x).

The main purpose of the present paper is to obtain upper bounds on the prob-
abilities P(S,, > y) in terms of Q(x) generalizing the inequality of Theorem 4 in
[7] (see also [13], Theorem 1.10).

* This work was suppored by RFBR (grant 96-01-01529).
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THEOREM 1. Let0 <y < 1 andt > max(eb, */y?). Then, for every y > 0,

_ y
P(S, > y) < c(t, y)y"f Q(suyu' " du, )
0
where
Int —2Inln¢ 2e0r7
& = __21‘——’ ct,y)=

If e, = n/t, n > O, then inequality (1) holds for every t > 0, with c(t,y)
replaced by t&3"*" /na(n), where a(n) = e"*!.

The proof of theorem will be given below, in Section 2. Inequality (1) is close,
in form to the main inequality of [15]. The method of the proof is similar to that
used in the papers [14, 15]. There are points of contiguity with [18] (see Corollary 3
and Lemma 3 in Section 2).

The upper bounds for P(S, > y) which extend the corresponding inequalities
from [7] to martingales were obtained in 1973 by Fuk [6]. The restrictions imposed
by Fuk may seem too strong. It turned out, however, that they are fulfilled, in
particular, for the martingale

o[ o]/

where X; are independent random variables taking values in a separable Banach
space, F; is the o-algebra generated by random variables X, X, ..., Xy, pro-
vided

ElX;|' <00, jel,n

(see, in this connection, [12, 17, 23]).
Haeusler [8] generalized one of Fuk’s inequalities as follows: for any x, u,
v >0,

P(S, > x) < ZP(Xi > u)+P(B, > v) + P(x,u,v), )

i=1

where

P(x,u,v) = exp(% (1 - ln<);—l;>>>

In [11], this result is extended to continuous-time martingales. In [2], P is substi-
tuted for

2
P(x,u,v) = exp(% — (% + ;—C) ]n(%‘ + 1))

(see also [5]).
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Let us show that (1) does not follow from (2). Assume for simplicity that, for
X > Xg,

n

1 1
ZP(X,->x)=—, PB,>x)=—, a>e’—1.
p—r xaf xa

Then Q(x) < 2/x* for x > xo. Put now t = o + 1 into (1). As a result, we obtain
the bound

P(S, > x) < cx7°, 3)

where the constant ¢ depends on «.
Assume now that we want to obtain the bound (3) using inequality (2). Then v
must satisfy the condition

P(B, > v) < i.
xa

The latter will hold for v > ex, where ¢ = ¢~!/%. But then

2 g%x

In— > In—.
xu u

As regards u, the latter must satisfy the same condition as v, i.e., u > ex. Therefore,

x, v, .
—In— > ¢ “minylny.
U xu y

Hence,
P(x,u,v) > exp(c*/?e™"),

i.e., for x large enough, P(x, u, v) > c¢/x“. Thus, inequality (2) does not allow us
to deduce the bound (3) which is true for all x > x.

Similar arguments show that it is impossible to deduce Burkholder inequality
(4) by means of that of Haesler (4). Pinelis [19] has recently extended the Bernstein
and Bennet-Hoeffding inequalities to martingales in Banach spaces. In conformity
to ordinary martingales, the conditions of Pinelis involve the restriction B? < ¢ <
00. In [4], one of Fuk’s inequalities containing a normal component is extended to
a Banach space under the assumption that E|| X j-||3 < o0, j € 1,n. In addition,
the conditions of the same type as those of Fuk are laid on conditional second
moments. Generalizations of the Bernstein and Bennet—Hoeffding inequalities are
obtained in [21] and [3] as well. Large deviations of §, are studied in [22] under
the condition max;<s<, E|X¢|' < 0o. However, main efforts has up to now been
concentrated on obtaining moment inequalities (see, in this connection, the survey
paper [18]). We turn our attention on one such inequality due to Burkholder [1]:

E/S,I" < ¢(D)/ +EV'BY). )
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Here S; is a martingale, S’n = maxigk<n |5k, D = E(max ;gn [ Xil'), t > 2,
¢, is a constant which depends only on ¢. We shall demonstrate now that one can
easily deduce inequality (4) by using (1). By multiplying both sides of (1) for # + 1
by ty'~! and integrating with respect to y from 0 to 0o, we obtain

COROLLARY 1. For any t and y such that t > max(e®,e?/y?) —1 and 0 <
y< 1

E{§;; Sn 20} < co(t, )&}, (D: + EB}), )
where
. o 266y(t+1)
D, = E{X;; X, 2 0}, colt,y) = )
Y

Int —2Inin¢
& = ——.
! 2t

If & = n/t, then inequality (5) holds for all t > 0 with cy(t,y) replaced by
ait, y) = (ma(m)~' ¢ + De*r®,

If (Sx)x>1 is a martingale, then the inequalities in Corollary 1 remain valid for
E(|S.|'; S, <0}, where §, = min, i<, S, D; are replaced by

[),:E{lel’; min Xe < o}

I<k<n

Summing the bounds on
E[S.: 5, > 0]
and
E{I5.1'; 3, <0},
we arrive at inequality (4). From (5) it follows that

Int
llm,_,ooc, ; <1

Note for comparison that
Int 1
hmt—>ooct ==
t e
if X; is symmetrical and independent [9].
COROLLARY 2. Let X; be independent with EX; = 0. Then, for every t >
0,n>0y2 Bnet", we have

— y n
P(S, > y) <c(t,ny™ (/ u'! ZP(X,- > gu)du + t_lst_lB,’,),
0 1
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where

e3'I¢¥(7)) |
ct,n) =t——, a@) =¢e", g =

ne(n)’ t

Fory < By, the termt~'¢;! B! may be omitted.
Proof. Obviously, B? = Z I EX2 Hence,

1, x<,/ "EX?,
P(B, > x) = 2 :
0, x> /Y1EX3,

|3

and
Y 0 y < B
—1 — ’ ns
/0 P(B, > eu)u’'"" du = {t‘ls,_’B,’,, y> B,
It remains to apply inequality (1) with &, = /1. 0O

Remark. Since P(X, > x) < Y 1 P(X; > x), one can replace D, in inequality
(5) by At =Y TE{X ;.; X; > 0}. Respectively, in inequality (4) one can replace
D, by A, = Z',' E|X;|', making the latter similar to the Rosenthal inequality [20].

2. Proof of the Main Result

First, we shall prove several lemmas. We need the following notation:

J J
Skj = Z X,‘, j > k, sz = ZU,'Z, a = E(Xkljr:}(—l)a
k+1 k+1

n
*®
X,’::Xk—ak, Sk"= E X?.
i=k+1

LEMMA 1. Foreveryk =0,

P S0 >/ 7) < VB /5

with probability 1.
Proof. Put

t=inf{j: S8 2 x, k< j<n}
Let x; be the the indicator of the event {r = j}. It is easily seen that

E(XjehS;‘n /3;—]) > XjehS,fj > Xjehx
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Taking the conditional expectation with respect to %, we have
E(x;e"% [ 1) > "E(x; / F) = " P(x = j | F).
Applying this bound, we arrive at the inequality

n n

Efe"h / 7} > Y E(ue [ F) > Y Pe=j/F)

j=k+1 j=k+1

= P(mx 5 >/ %)

> e'”‘P( max S X T),
- k<j<n ki > / k

and this is equivalent to the conclusion of the lemma. |
LEMMA?2. LetX; <y, j=k+1,ny >0 and By, < C. Then

wesme ) <ofs (- 1+ S)o( )

with probability 1.
Proof. 1t is easily seen that

E(S% | 7) = E(H Fi Zn(hy ﬂ) ©)
k+1
where
- n ehx;
(W) =E i Fi_l, Zin(h) = .
fiw) =E{" [ Fi) Zialh) Hfj(h)

Clearly,
fi(h) = e "iEe"* = e (1 + ha; + E{("™ — 1 — hX;) | F;-1}).

Note that the function (e”* — 1 —hx)/x? increases with increasing x. Consequently,

e —1—h
E{(e"Y — 1 —hX;) [ Fj1} < 2ot
Yy
Hence,
e —1—-hy , e —1—hy ,
Hfj(h)<exp —— Bju <expy——C" 1. @)
k+1 y: Y

Forallk < j < n

ehx;‘
E{ — / F;_
(fj(h)/ “)

—_—
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with probability 1. Therefore,
E(Zin(h) / Fi) = 1. 8)

From (6)—(8) it follows that

" by —1—h
E(e"%/F1) < exp{eﬁ—zcz}. ©)

Minimizing the function

1 —h
exp{ e—yz—ycz — h.X}

with respect to h, we arrive at the conclusion of the lemma. a

COROLLARY 3. Under conditions of Lemma 2

x (x C? xy
P(ijasxn Skj = x / ?’k) < exp{; - (; + ;C;) ln(a + 1)}
= Po(x;y,C) (10)
a.s. (cf. [19], Theorem 8.2 and [18], inequality (11.27)).

LEMMA3. IfX; <y, j=k+ 1,n, then, for every C > 0,

Ifﬁgsu>x/ﬂ)<%umxn+Pwm>C/ﬁ)am a1n
<j<gn

Proof. Let the stopping time 7 of the supermartingale S, be defined by the
equality 7 = min{k : By > C}. Denote the stopped martingale by S;. Put X; =
St = Sp-1» Sij = 241 X|- The supermartingale S; satisfies the conditions of
Lemma 2. Therefore, by (10) we have

P( max §;; > x / .?'k) < Py(x; y,C).

k<j<n
If B, < C* then Bf; < C*forallk < j < n,ie, X; = X;,k < j <n,and,

therefore,

k<jgn ] k<j

max S;; = max Sj;.
<n
This means that

I{ﬁgs@>x/ﬂ)<%uw¢n+Pw“>C/ﬂy O
<j<n
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LEMMA 4. For any positive t, s, y, C, we have
P(S, >t+s+y) < P(S, > t)Py(s; y,C) +
+P(B, > C)+P(X, > ).

Proof. It is easy to see that

{§,,>t+s+y} C {§n>t+s+u, max ngy}
I<j<n

U[max Xi> }
i<en 7Y

Next,

S, > 1+ , max X; < } !
{S"> Ty, m RISy

n
C {‘L’=k, max S;; = s, max X; < ]
L1J k<j<n 7 ;=Y

where T = inf{k : S; > t}. By Lemma 3, for every C > 0,
= C > ;<
Pr=k s, S > s oy X <)
< Py(s;y, CO)P(t = k) +P(By, > C, T =k).

The conclusion of the lemma follows from (13)—(15).

Let 8 be any positive number. Consider the sequence
ym=(]+a8)mﬁa m>1-
Note that

Y — Ym—1 = QEYpm—1.

S. V.NAGAEVY

(12)

(13)

(14)

(15)

(16)

(17)

Putting t = yp—y1, s = (¢ — 1)eyu—y, C = y = €y,_ into (13), we have, for

m>1,

P(En > Ym) < P(En > Ym—1)P + Q(EYm_1),

where p = p(a) = Po((@ — 1)éYm—1; €Ym-1, EY¥m-1). By (10) we have p(a) <

p(a) := exp{a(Ina — 1)}. Therefore, form > 1,

m—1

P(S, > ym) < Y Qey)p" " 4 "
1

In what follows, we suppose that p(a) < 1. By (16) we have

_ In(y/B)
" In(1 + ag)’

(18)
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Consequently,
In o/ In(1+ac)
k Yk
pr=\= . (19
(%)
Substituting this expression into (18), we get the bound
_ m—1 B s(a,&) B s(a,8)
P(Sy > ym) < 3 Q(eyk)< ) + ( ) , (20)
) Ym—k—1 Ym—1
where
(@ &) In p(a)
)= ——o.
e In(1 + are)
By (16) we have
ym_k | = ym+1ﬂ — ym+1 (yk_lﬂ) — (1 +(X8)_3,3ym+1
Yk+2 Yie—1 \ Yi+2 Y1

Next, in view of (17),
1 1

Y — Yi-1 018)’1(-1'

—~

Consequently,

. s(a,8)
Q(eyk)( £ )
Ym—k—1

—(1+ae>3s<“’<as) 'Oy ™y (e — i)

wE((J:Fg)) Q(Eu)us(a,a)—l du, (21)
m+‘1‘ Yik—1
where
1 3s(a.g) 1
e =1Fe 1 @

aE agp’
From (20) and (21) it follows that

_ k s(a.g)
PG, > ) < 2o [ QG au+ ( d ) : (23)
1 Yk-1 Ym—1

Let y,, < ¥ < Ym+1- Then, in view of (23),

w(a, &)

s{e,e)—1
@ f Q(eu)u du +

N ((1 +ae),3)‘(°‘ 8).
y

P(S, > y) <P(S, > yn) <
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Hence, since 8 is arbitrary,

w(a, &)

s(a €)

PGS, > y) < f O(euw)u*@® du. (24)

Let us now consider the quantities w (¢, £) and s(«, €). Puta = y¢/(Int—2Inln¢),
where y is any positive number satisfying the only restriction y > 1. Clearly,

¢ 2Inint
In——— =Inr—Inlnt+1In{ 1 — . 25
n1nt—21nlnt . n +n( Int ) (25)
For ¢ > e°,
Inlnt In6
— 3. 26
7 < 5 < 0.3 (26)
Hence,
2Inint
ln(l— amn )>—1. @7)
Int
If
et
t > o (28)
Y
then
1
lny>2—§1nt. 29)

In view of (25), (27), and (29), Ina — 1 > —(lnt — 2Inlnz), that is —Inp
=a(nae — 1) > (@/2)(Int — Inln¢). Hence,
Inp
, _—-——— t 30
s(@#) In(1 + a¢) ~ 0)

ife =(1/2)(Int — 2Inlnt)/¢, and the condition (28) holds. By (25) we have
O<lna <Int —Inln:.

Hence, by (25) and (26) we have

Int —Inlnt
_— <
Int —2Inint
Therefore, for e = (1/2)(In¢t —2Inlnz)/z,

1 2eb7!
<
plag 1%

The desired inequality (1) follows from (22), (24), and (31).

—Inp <alna < yt

(D
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Turn now to the case &, = 7n/t. It is easily seen that

_ a(mn
s(a(m),n/t) = In( + a(ma/D >t (32)

On the other hand, in this case, we have

redetnn
wla, &) =

. 33
a(mn =

Combining (24), (32), and (33), we get the second conclusion of the theorem. O
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