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ON THE ACCURACY
OF GAUSSIAN APPROXIMATION
IN HILBERT SPACE

S. V. Nagaev™ and V. I. Chebotarev **

Abstract

This article is a continuation of the authors’ paper [24] with a new approach
to studying the accuracy of order O(1/n) of Gaussian approximation in Hilbert
space. In contrast to [24], we now study a more general case of the class of sets
on which the probability measures are compared, namely, the class of balls with
arbitrary centers. The resultant bound depends on the thirteen greatest eigen-
values of the covariance operator T in explicit form; moreover, this dependence
is sharper as compared to the bound of [4].

Key words and phrases: Gaussian approximation in Hilbert space, eigenvalues of
the covariance operator, discretization of a probability distribution, conditionally
independent random variables.

1. Introduction. The main results

Let H be a separable Hilbert space with an inner product (-,-) and
the corresponding norm || and let X, X1, Xo,... be independent identically
distributed random elements acting in H with zero mean and covariance op-
erator 1. Let O'% > a% > .-+ be the eigenvalues of T', and let ej,es,... be
the corresponding eigenvectors forming an orthonormal basis. We use the fol-
lowing notations:

N=1]03 o*=EIXP, B.=E[X],
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n
j=1

B(a;r)={z:z€H, [z —a| <r},
Ap(a;r) = |P(S, € Bla;r)) — ®(B(a; 1))
Ap(a) = ?210) Ap(a;r),

b

where ®(-) is the Gaussian distribution in H with covariance operator 7" and
zero mean. We denote the dimension of H by d. If H is an infinite-dimensional
space, we write d = co. The symbols C(+) and ¢(+) possibly with indices stand
for constants depending on the parameters in parentheses, and the symbol ¢
possibly with index denotes an absolute constant. The same notation is per-
mitted for different constants.

We first consider the case of a = 0. From the results of [4] it follows that

o(T) pa

a0 < CH (1)
where
c(T) = e’ /7ts if 13 < d < oo and 013 # 0; (1.2)
04 2 2
C(T)=—e° /76 if 9 < d < oo and o4 # 0; (1.3)
o
d

C(T)=¢“ /% if the distribution of X
is symmetric and 9 < d < oo. (1.4)

The formulas (1.2)—(1.4) illustrate the form of the dependence of the er-
ror A,(0) on the covariance operator. In the case of a symmetric distribution
of X, (1.4) is the most precise result. In the general case each of the re-
lations (1.2) and (1.3) may turn out to be more precise than other. Thus,
if 9 < d < 13 and o5 is considerably less than o2 then (1.3) is more pre-
cise than (1.2). But if d > 13 then it may appear that (1.2) is more precise
than (1.3). This is so, for instance, for d > 14 and sufficiently small o3.

A result of [11] implies that (1.1) holds for o2 = 1 with

1 ol 1
C’(T):c<12“L lzgjL 1/4
A1é UgAg/ UéAg/

The dependence on 7T in (1.5) is more precise than that in (1.2).

) if d>12, o3y #0. (1.5)
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We now give the first main result of the present article which somewhat
revises the bound of A, (0) in [24]. This result was obtained for the case d > 13
and o013 # 0 in terms of the quantities

3
B”UM L; = max L (X, ej)‘ .

ml = Af‘/l ’ 1<j<I o

Sy

Observe that T, /n(“_2)/2 is a generalization of the Lyapunov fraction
ﬁu/n(uﬂ)/?gw

Theorem 1.1. There exists an absolute constant ¢ such that

c 2
An(0) < — <F4,13 + 1315+ L (02//\;/9) ) (1.6)

Remark 1.1. Neither I'413 nor 1%13 nor LS (02/A3/9)2 is a majorant
with respect to the others. For instance, it is incorrect to state that there exists
a constant ¢ > 0 such that, for every distribution whose the fourth moment of
the norm is finite, we have

2
L2 (02//\3/9) < T3y (1.7)

Example 1.1. Consider the distribution of X such that

k
UQZZJJQ-:L
j=1
where
ol =--=03=1/16, o =---=o0r=1/(2(k—38)), k> 16,
E|(X,e)| > c1fs, 1<j<9, e>0. (1.8)

Note that the condition (1.8) is accessible. This follows, for instance, from
a lemma by V.V.Sazonov in [30, p.85]. Next, the following relations are
valid:

2 \2 2 2
o c1f3) ¢ B3cs 2,29/9
Lg(—) Z( ) = > B3k ey,
ap) 2\ ) G = e
B3 Bl

6/13 __60/13
Ay Og

2 21.30/13
F3’13 = S /631{: / Cg.
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Hence, for every constant ¢ > 0, there exists £ such that, in the example under
consideration, the inequality opposite to (1.7) holds. It is possible in the case
of an infinite-dimensional space H. Note that we may construct an example
with a similar property in a finite-dimensional space as well. For instance,
if d = 13 then it is sufficient to consider the distribution of X such that
Z;il 012- =1, 0%,...,0% are close to 1/8, 03, .. ., 025 are sufficiently small, and
the condition (1.8) is fulfilled.

Remark 1.2. It is clear that, for the case in which the eigenvalue 0%3
is small as compared with the previous eigenvalues O’%, ce ,0%2, the expres-
sion (1.5) reflects the dependence of the error on 7' in a more exact form
than (1.6). On the other hand, there exists a class of covariance operators, for
which the bound (1.6) is more precise than the result of [11]. To verify this, it
is sufficient to take the distribution in Example 1.1. Then, as immediate cal-

culations show, 1) the quantity af/(USAg/g) majorizes the quantity 1/A}é2 in
the expression (1.5); 2) LS/AS/Q majorizes F§713 in the bound (1.6). Moreover,
Byot [ (08A2°) majorizes L2 /AY”.

Let a # 0. In contrast to A,(a), we introduce the error of the Gaussian

approximation, taking into account the Edgeworth correction of the first order.
Put

Ay yp(a;r) = P(Sn € B(a;\/v_“)) — @(B(a;\/F)) _

Aqp(a) =sup ‘Alm(a; 7“)‘,
r>0

%QI(TS a),

where (1/y/n)Q1(r;a) is the Edgeworth correction. In other words, A1, (a;r)
is the remainder in the short Edgeworth expansion (in the Edgeworth expan-
sion of the first order), and Ay, (a) is its norm. Put

~

Q(t;a) :/0 eitTdQl(T;a).

Note that there are different algorithms for calculating @1(t; a), and the proof
of the corresponding identities is a particular problem (see [23, Ttem 1.4], and
also Lemma 6.4). We can show that

~

4
%@@z%EmwmwwH@MWX%—®+ﬂX%—®% (1.9)

where Yj is a Gaussian random element with the distribution ®, s = (2it)!/2.
Define

g(t;a) = Eexp{it|Yy —al’}, g;(t) = (1 — 2ito?) V2.
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The following representation of Q;(t;a) in the form of the product of two
functions, one of which is the characteristic function g(t;a), is of interest:

~

Q1(t;a) = g(t; a) Pi(t; a),
where
Pi(t;a) = —{2(it)2]E [(AX, Apa) (A X, 4 X)] + g(it)i"]E(AtX, Ata)3},

oo

(A, Ary) =Y g5 (1) (w,€5)(y, ¢j).

j=1

It is shown in [4, Theorems 1.3 and 1.5] that

|a|6> E[[X[*1(1X] < ovn)]

o6

Apn(a) < C(T) (1 T

oin
E[[X[P1(1X] > ov/n)]
+ = :

(1.10)

where C(T') may be taken either of the two expressions: (1.2) or (1.3), in depen-
dence on the conditions on d and 012. In the case, when H is a finite-dimensional
space, the factor 1 + |a|®/0® in (1.10) may be replaced with the quantity
1+ |af*/o3 [4, Theorem 1.5].
Put
Bu(a) =E|(a, X)|", Tui(a) = Bua) /A"

The following estimate was proved in [11] under the assumption 2 = 1:

c
< —
A p(a) < "

1 of 1 Pa(a)
ﬁ4< +—L -+ >+ 1+ Ba(a))|. (1.11)
N ) )
We now formulate the second main result of the present article whose first
version was published in [25].

Theorem 1.2. For every a € H,

o2

2
&
Arn(a) < —|Turz + T35+ Lg (—A1/9> +T49(a) + F;B(a)] . (L12)
9

Remark 1.3. Since Q1(r;0) = 0, Theorem 1.1 is a corollary to Theo-
rem 1.2.
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Remark 1.4. Theorem 1.2 gives an estimate of accuracy which is
nonuniform with respect to the centers of the balls in the short Edgeworth
expansion. The constant is a sum of five summands, each of them is a general-
ization of the Lyapunov fraction ﬁﬂ/(n(“_%/?a“). Three of them are expressed
in terms of a negative power of the product of the first thirteen eigenvalues of
the covariance operator. Two other summands (responsible for the behavior
of the characteristic function of the squared norm of the sum of the random
elements near the point ¢t = n) are expressed in terms of a negative power of
the product only of the first nine eigenvalues. In addition, it is impossible to
remove any of five summands in the resultant bound. This bound depends
optimally on the centers of the balls.

Obviously, the bounds of Theorems 1.1 and 1.2 yield a sharper dependence
of the error on the covariance operator T' as compared with (1.1) and (1.10),
where C(T') is taken from (1.2). Moreover, Theorem 1.2 yields the more precise
dependence on a of the error with respect to (1.10). The comparison with
the inequality (1.11) is carried out in the same way as in Remark 1.2.

In the following remark we discuss the methods that help us to solve
the problems of obtaining the estimates (1.6), (1.12), (1.1) and (1.11).

Remark 1.5. To explain some main ideas of the proof, we start with
the case a = 0. We split our explanation into a few steps.

Step 1. Passing to the truncations (see (5.46)), we reduce the problem

to estimating A, (0) = sup, |P(|n~1/2 > Xj‘2 <r) —P(|Yo)* <) ‘

By the Esseen inequality (see, for instance, [27]) and the bound

d 2
—P(| Y < 1.1
Sl:p dr (| 0" < r) ~ 20109 (1.13)
(see [14] and also Lemma 6.7), for every 79 > 0, we have
— 1
A, (0) < c<J + ) (1.14)
010270

where

B |7,,(t) — (1)
/= /|;|§7'0 .

id

n
G, (t) = Eexpy it|n~1/? Z)?j
j=1

—

2
}, g9(t) = g(t; 0).
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For simplicity, we may assume in what follows that

[ g ~ 9
J—/O fdt.

1/9
cAg
4 )

Take

T0 = ntg, where 5=
nyo

with ng the number in (5.7). The idea of choosing ng consists in splitting
the sum 2?21 X j into mg blocks such that each of them actually possesses
the properties of a Gaussian random element. (Without loss of generality
we can assume that n = 0 (mod ng).) More exactly, in what follows, we

use the representation Z] 1XJ = /no Z"/"O Y;j, where Y7,Y5,...,Y),
independent copies of the random element

—nalﬂz:X

We split the interval [0, 7g] into 4 parts by the points 71, 79, and 73 to
be defined at the next steps. The choice of the points is determined from
the distinction of the methods used for estimating g,,(¢) — g(t) over the different
intervals.

Step 2. The bounds of g,,(t) — g(t) in [20-22] lead us to the inequality

/OT1 —‘g_n(t) t_ g(t)‘dt ( 5/413 + F3 13) (1.15)

/ng are

if
1 = (n/F4713)1/4A1_31/13.

For ¢t € [r,79] we use some estimates of the characteristic functions g(¢)
and g, (t). It is easy to verify that

o [g(t T
/ 9] —) (1.16)
- t n

It remains to estimate the integral

/TO \g‘n(t)\dt:/to [n(n)] .
sl l t1 l

with t1 = 71 /n.
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Step 3. Choose ty (then 79 = ntg) and evaluate

ty |~
t

| t

Taking it into account that

not n/mo 2
gn(t) =E exp{z‘T PR } = gn(not/n),
j=1

we obtain .

2 g, t

Jo :/ 7‘9"(?0 )‘dt.
t1
Putting

-1
ty = co <2l/2La(L)\/2n> ,
where 0?(L) = ]E{ v —E{Y/]Y| < L}\2/|Y| < L}, by Lemma 2.8, we have

< (1)
V1 N(D)(tn)!

for 0 < t < t9 and every natural [. Here Ay(L) = Hé’:l 0]2.(L), o?(L) > o3(L) >
- are the eigenvalues of the quadratic form

‘:Jn(not)‘

B(z; L) =E[(Y =Y, 2)% [Y|V|Y'| < L],
where Y’ is an independent copy of Y. It follows that
Ty < (1) (T3 /n) /SN2 /A1 (L),
By Lemmas 5.1-5.6, we conclude that
o2(L) > c(l)o?. (1.17)

We obtain this result by the choice of ng and the special sets A;.t(L) (see Sec-
tion 4 and Fig.4.1), 1 < j < [, the probability of hitting in which of the element

Y is separated from 0 (see (5.13) and (5.14)). Taking an arbitrary integer [

from the interval [8, 13] and employing the inequality A}iglﬂ) < All/l, we infer
that

Jy < C(l)r4,13/n (1.18)

on assuming I'y 13/n < 1 without loss of generality.
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Step 4. Choose t3 (in this case 73 = nt3) and estimate Jy = ft :

The definition of the bound t¢3 is connected with the behavior of the charac-
teristic function of the squared norm of the sum of independent identically
distributed random elements in a neighborhood of the point £ = 1. The main
claim about this behavior is Lemma 4.3 proven in [3].

In order to reduce the problem of choosing t3 to Lemma 4.3, we consider
the random elements taking only finitely many values. Our results lose no
generality under this discreteness assumption (see Section 4), since they do
not depend on the support of the discrete distribution and depend only on
finitely many moments.

Let F be the distribution of Y. We can write ﬁ:ZZZO Fy. 1, where

Fj, 1, are the restrictions of F to Ag(L) (these sets are defined in Section 4).
By Lemma 3.2, the discrete positive measure Fj, 7, is a mixture of some two-

to [Ga(not)] g,
3

point measures with atoms in A (L) and A; (L) correspondingly. So the n-fold

convolution F™ is the expectation of the convolution of the two-point random
distributions G1 * --+ * G,,. We write up this fact in the form of F™ =
Ei(Gy*---+Gy). Thus, if Z1,..., Z, are random variables with distributions
G1,...,G, then

| }

where Eq, . g, denotes the expectation with respect to the distributions
G1,...,G,. Consequently,
2
} dt = Jj,
where 7 = ngts, ¢ = ngty. If we put
7/e = (Bpe) ™', where B, = L?\/n/nq, (1.19)

then, using Lemma 4.5 for [ = 9, we obtain

n

> 7

gn(not) = /exp{in0t|z|2}dﬁ"* () =E1Eq, ... Gn exp{inot
j=1

n

> 7%

€
J4 S/ t™ 1 E1Eq, .. G, eXP{mot
T ,7:1

) CN0 (19, 1/9)2
h<= (L JAL ) . (1.20)

From (1.19) it follows that

1/9
ty = (t3n0—2L—8)1/9 n=2/9 = ¢ (AS/QL_80_20"67> n=2/9.
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It should be noted that the proof of Lemma 4.5 rests on all previous results of
Sections 3 and 4, in particular, on Lemmas 4.1, 3.11, and 3.12 and on the con-
struction of the sets A;.E(L) as well. Notice also that a bound of the product
fu(t) fn(t + 7) is derived in Lemma 4.1, where fy(¢) is the characteristic func-
tion of the squared norm of the sum of n independent identically distributed
random elements. This claim is in fact the first step in reducing the problem
of estimating Jj to Lemma 4.3. On the other hand, Lemma 4.1 forces us to
pass to the bounds (we obtain them in Section 3) of conditional characteristic
functions and probabilities, which complicates the proof.

Step 5. We estimate the integral

Js = /tg [n(m0)] }, /T 1901 4,

to not2 t

By Lemma 2.7, the following inequality holds in the interval [ngta, 7]:
Ga(t)] < c(LH A (L)E2,

From here and (1.17) it follows that

J3 < ? (L2/A;/9)2. (1.21)
The estimates (1.14)—(1.16), (1.18), (1.20), and (1.21) imply Theorem 1.1.
The same methods are used in the case of balls with arbitrary centers.

To prove Theorem 1.2, it remains to overcome additional difficulties connected

with the Edgeworth correction. We will address this in Section 6.

Concluding the remark, we observe that, for proving Theorems 1.1 and 1.2,
we use the results and methods of [1-4] and [14-17,21-23]. On the other hand,
we use some new ideas. Lemmas 3.1-3.5, 3.11, and 3.12 are the key assertions.
Notice that, in contrast to [4,11], we avoid using some specific methods of
number theory.

The case of a = 0 was studied by the authors in [24]. A preliminary
version of the present article was published in the preprint [25].

Remark 1.6. We focus attention on some elements of the proof of
the bound (1.11) in [11], since its right-hand side depends on twelve eigenvalues
of the operator T rather than on the thirteen as in estimate (1.12). It should
be noticed that the proof of (1.11) rests on [5,6] and consists of the two
parts: the proofs of two theorems. The general place of these two parts is
the method of characteristic functions. The dependence of |Aq,(a)| on twelve
eigenvalues of the covariance operator was obtained in [11, Theorem 1.1],
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where, for estimating the integral of the difference of characteristic functions
divided by the integration variable, the estimate of the following type is used:

2d+2

for every A > 0, real b # 0, and integer d > 0 (see [11, Lemma 2.2]),
which differs from the bound (5.48) of the present article. Moreover, alongside
the Esseen inequality, the so-called Prawitz inequality [28] is used. The proof
of the corresponding bound in [11, Lemma 2.10], revealing the dependence
on twelve eigenvalues of T, is based on Lemma 8.4 of [5,6]. The proof of
Theorem 1.2 [11], revealing the dependence on nine eigenvalues of 7', is based
on Lemmas 6.3-6.7 and 7.1 of [5,6], where the methods of discreteness and
the double large sieve are used.

The results (1.1), (1.2), and (1.12) give the bound Aj,(a) = O(1/n)
optimal in n under the condition

1/2

< CA2d+2

13<d<o0, o13#0.
The bound (1.11) weakens this condition to the following:
12<d< o0, o012#0;

moreover, as an example in [11, p.5] shows, if 12 < d < oo then the bound
A1 pn(a) = O(n™t) cannot depend on less than the first twelve eigenvalues of T'.

We mention a result that does not follow from neither (1.1)—(1.4) nor (1.6),
(1.11), (1.12).
In what follows, let I(A) be the indicator of a set A.

Theorem 1.3 [21]. Foreveryd > 0,1 < g < 13/12, and an integer | > 7,
we have

[y \/H0) T2\ 1/(120)
AR (0) < e(l,0,q) ( n, ) + <—’> I(7<1<12)

n

I3 }
+—=271(1>13) ). (1.22)

Note that a bound of A, (a; r) analogous to (1.22) was obtained in [34], but
only for d = 13 and with less precise dependence of the error on 7. On the other
hand, the bound in [34] is nonuniform in |r — |a||.
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Remark 1.7. For the case og # 0 it is shown in [15,17,31, 36] that

Ap(a) < cB3(0® + |af’) /(ﬁAé/Q) . (1.23)

The following estimate is announced by S. V. Nagaev in [17] under the con-
dition o4 # 0:

An(0) < Bz [ (VaAY?). (1.24)

About the accuracy of (1.23) and (1.24) see, for instance, [32, p. 25, 26].
Henceforth, we use the following notations: Z’ is an independent copy
of Z, 75 =27—27' and Z = Z — EZ. Notice that the abbreviation Z’ will be
also used for denoting a conditionally independent copy of a random variable Z
(see Section 3).
Let
B(z; L) =E[(Z%,2)%|2| v |Z'| < L], (1.25)

where Z is an arbitrary H-valued random variable, and let U?-(L) > UJ2-+1(L),

Jj = 1,00, be the eigenvalues of the quadratic form B(x; L).
Also, put

l 2 l

1T 2 27— L o2

Al(L) - ;;[1 k(L)7 51 (L) Alg/l(L) = J (L)7
pr=P(|Z| <L), ar=E(Z/|Z| <L),

o*(L)=E(|Z —ar*/|Z| < L),

2 =pee, [~ [

In each particular case we will indicate what we mean by Z.

The article is organized as follows: In Section 2, we obtain some bounds of
the characteristic function of the squared norm of the sum of independent iden-
tically distributed random elements for the values of the argument ¢ in a neigh-
borhood of zero (Lemmas 2.7 and 2.8). In Section 3, we prove the bounds of
conditional characteristic functions. One useful inequality for some quadratic
forms on special finite-dimensional sets is proved in Lemma 3.1. In Lemma 3.2,
we give a representation of an arbitrary discrete measure in the form of a mix-
ture of two-point probability distributions. Lemmas 3.11 and 3.12 are con-
ditional versions of Lemmas 2.7 and 2.8. In Section 4, grounding on the re-
sults of Section 3, we obtain an integral estimate of the characteristic function
of the squared norm of the sum of independent two-point random elements.
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In Section 5, we compare the eigenvalues JJZ(L) and sz and prove Theorem 1.1

(the case a = 0). Sections 6 and 7 are allotted to the proof of Theorem 1.2.

Using statements without proofs, we give precise references to the papers
in which these proofs are contained. Sometimes, despite the appropriate refer-
ences, we repeat the formulations and provide revised proofs (see, for instance,
Lemmas 2.6, 3.11, 5.6, and 5.7).

2. Bounds of characteristic functions
in the neighborhood of zero

Let X, Xy,...,X,,... beasequence of independent identically distributed
random elements with values in H. In contrast to the Introduction, we do not
assume in this section that EX = 0. We use the notations: Uy, , = ZI,:? X;
and Uy, = Uy .

In Section 2, the symbols 02 (L), k = 1,2,..., stand for the eigenvalues of
the quadratic form (1.25) with Z = X.

Lemma 2.1 [21, Lemma 1.3]. Let £ be a nonnegative random variable
and let P(¢ < 7) < Qr! forr > ¢ > 0. Then

E exp{—¢%2} < (c(D|t| " + €)@, (2.1)

where ¢(l) <T(l/2+4 1), T'(p) is the gamma-function. Moreover, for 0 < t <,

Qt >t/l

= (2.2)

EEI(E > ) < 2(
Lemma 2.2 [16, Lemma 1]. Let £ be a real random variable with
E[£]? < oo and let ) be a bounded positive random variable. Then

E(1 —cos&)n > B n/2 — E[¢Pn/(4V3).

Lemma 2.3. Let X, Xy,...,X,, be independent identically distributed
random vectors with values in R, U = 271" X, and B; be a nonnegative
symmetric matrix of order [ x | with eigenvalues b% > -2 bl2 > (0. Then, for
every L > 0 and r > 0,

l l
sup ]P’((Bl(Us—a),US—a)l/2 <r) < 6(132(T+€l)l ,
a€R! ml/QAl (L) Hk:l bk
where &7 = 32[L? 22:1 b2 and c(l) = 1/T(1/2 +1).
Proof. The scheme of the proof is the same as that of Theorem 1 in [16].
(See also the proof of Lemma 2.3 in [25].)
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Lemma 2.4. Forevery 1l <m<n, L >0, andt € R,

Y(t) =K ‘fgg“’"(%) ;U VU] < \/3/(8|t|L)}
< @) (1 Ml (/G =) )l)_l ¥ (%ﬁj)l (23)

Proof. The scheme of the proof is the same as that in [16, Lemma 5]. (See
also the proof of Lemma 2.4 in [25].)

Lemma 2.5. Let Z and Y be independent random elements with values
in H. Then, for every r > 0, a € H, and t € R,

‘]E exp{it|Z+Y — a|2}‘
<P(|Z] > r) sup ‘]E exp{it]Y — b|2}‘
beH

+EY? [\f}”s(%)

12V 17| <7]. (2.4)
Proof. The assertion of the lemma ensues from the following three rela-
tions:
Ey=Eexp{it|Z+Y — a|2}
= ]E[exp{iﬂZ +Y — a|2}; |Z| > r]

+ ]E[exp{mz +Y —a?}; 17] < r}
=FEi+ E»,

1 = B[ 1(021 2 )y expfitz +7 - )]

b

<P(|Z| > r) sup |E exp{it]Y — b}
beH
) <3 11 <121 <]

(See also [16, Lemmas 8 and 7).)
Put co = v/3/8.
Lemma 2.6. Let

Bn ™ < |t < (2.5)
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and {l;}¥_, be a sequence such that

co
1<l < 2.6
k 2
toL
Yt < 2<0—> n. (2.7)
i=1 €0

Then

k
sup ‘E exp{it|U, — a|2}‘ <D U/ v ah (28
aec X

1=1

for every natural [, where

D(l) = (oL)? (B—W + (aL)W) / AVA(L).
Proof (see also [24]). Define the sequence {m;}*_; by the formula
mi = |(co/ (Lo 1t)?]. (2.9)
Note that, by (2.6), the bound m; > 1 is valid. Let p; = 2221 m;. Denote

q;(t) = sup ‘E exp{it|Uw+1’n - a|2}‘.
acH

Putting r = 20,/mj, Z = Uy, 41,4, and ¥ = ﬁwﬂm in Lemma 2.5, we
obtain

1 )
qj_1(t) < qu(t) + Q]', 7=1,...,k, (2.10)

where

0, — B {‘ o @0 || [T | < QUW}.

We have used here the bound P(|Z] > r) < ]E|Z|2/1"2 = 1/4 and the equality
~ d ~
Upj—r+1u; = Umy-

Since, by (2.6) and (2.9), the inequality r < v/3 /(8[¢|L) holds, we may
apply Lemma 2.4 for estimating ();. As a result, we obtain

Qi < c(l)(ai + bi), (2.11)

where

a; = <1 + Al(L)(|t| mi(n — ;) )l>_1/27

b = ( L )W.

(=2
~—

E
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Since le U?-(L) < 202, we have

21202
5l2(L) < NN
AL
Therefore,
/oI 12
bi < (1/1—0> < () (lilt) b, (2.12)
A (L) /g
where l
b= (La/n/®Y. (2.13)
From (2.7) and (2.9) we conclude that
pi < pg < nj2. (2.14)
Hence, taking (2.5) and (2.9) into account, we infer that
12
Lol; ~
< (%) < c(l)(llt) ", (2.15)
N (L)Vn
where 12
= (L )" (2.16)
171
BA (1)

From (2.11), (2.12), and (2.15) it follows that
1 -~ 1/2
ai-1(t) < 3as(t) + e(0) (@ + br) (ale)) "
Successively applying this inequality for 7 =1, ..., k, we conclude that

1

k
a0(t) < Jgar(t) + )t @ + br) ;z;”/zv’. (2.17)

We are left with using the trivial bound ¢;(¢) < 1 and replacing a; and b by
the expressions (2.13) and (2.16). Lemma 2.6 is proven.
Lemma 2.7. Let
€o

Bn 12 << Y% 2.18
n —| |— 4195 ( )
Then

sup ‘]E exp{it|Up — a|2}‘ < c()D)]1[72, (2.19)
a€cH

where

D(l) = (B—l + (aL)l) / AL, (2.20)
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l.l/2 _ g L /4 o /2 .
! 42/t —1 20 L|t|\/n '

Notice that the condition (2.6) is fulfilled if 1 < i < kg, where

(o1 9 2\ 1
ko:mln 21§n1/4<m> §§ s

and, moreover, if the right inequality in (2.18) holds. We have

12 9. 42’i/l co 2
T2t 1\ 20Ltyn)

Hence, the condition (2.7) is valid. Next, by (2.21), we find

P _0__) 4
— 2/ 20 L|t|\/n

Notice that, by (2.22),
, o \I/2 y
—ko < = — 2‘
4 < 16(42/l — 1) n

Proof. Put

17

(2.21)

(2.22)

(2.23)

(2.24)

Putting £ = k¢ in Lemma 2.6 and taking (2.23) and (2.24) into account, we

arrive at the bound
sup ‘]E exp{it|Up — al }‘ <c(l (|t|l/2 (l )[(MUL\/E)_W +

In view of (2.18), we have (|1€|(7L\/ﬁ)_l/2

1} + n_l/2).

< (BoL)~Y?. Using this bound and

considering the following two cases: BoL < 1 and BoL > 1, we find that

D[ (HoLvn) ™" +1] < eD()

(see (2.20)). According to (2.18), we have n=1/* < (|t|/B)l/2. Hence,

sup ‘]E exp{zt|U —a }‘ <l |t|l/2( ()+B_l/2).

Using the inequality Al1/2(L) < ¢(l)(oL)"? it is easy to see that

D(l) + B2 < ¢()D(1).

This completes the proof of Lemma 2.7.
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Lemma 2.8. If |t| < ¢ (21/2L0(L)\/2n)_1 then
c(l)

1+ a@y(tn)

Lemma 2.8 can be proven by analogy with Lemma 10 of [16] (see also [34,
Lemma 10]).

sup ‘]E exp{it|U, — al? ‘ (2.25)

3. Preliminaries

Lemma 3.1 [24]. Let A1,...\n be some positive numbers and let Ay,
1 <k < N, be a set of vectors a = (a1, ag, ...,ay) such that

|a]'| < )\j/(QN), JFk, A < |ak| < (1 —|—€))\k. (3.1)
Then, for every x = (21,2, ...,xN), we have
N 1 N
: 2 2.2

zl:alenf{k(x,a) > Ezl:)\]x]’ (32)

N
max sup (z,a)? < N(1+¢)? Z A?m? (3.3)

aEAk 1

Lemma 3.2 [24]. Let F' be a discrete positive measure concentrated
on the union of two finite disjoint sets: A = {z1,x2,...,2,} and B =
{y1,...,yn}. Then there exists a matrix of nonnegative numbers {e;;}, i =
1,m and j = 1,n, such that F is represented as the mixture

m n
F= ZZ&“UFZ']', (34)
=1 j=1

where Fj; are the two-point probability measures defined by the equalities

a
Fi:i(x;) =
(w) = o D () R
- I - I ) .]_ 7na (35)
1 F(B)
ﬂﬂw)—a+1,

and, in addition,
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Lemma 3.3 [24]. Let a random element X take two values: x1 and x,
and let P(X = x1) = p and P(X = x9) = q. Then

2 2
E{((X +X'),p)" /X = (x*) = 0}2@527(;2)2(:51—@,?;)2, (3.6)

E{((X +X')%,9)° /X" = (X*) =25 — 01 } =0, (3.7)

Lemma 3.4 [24]. Let { Xp; Yy) } k = 1,n, be a sequence of independent
random variables taking values in H x H. Then, for every Borel function ¢(+)
on H, we have

n

E [ [E(e(Xk)/Y) \—HE\]E (Xk)/Ya)|

1

Definition 3.1 (see [13,26]). We call a random variable X’ the condi-
tionally independent copy of a random variable X with respect to a o-algebra B
if X’ coincides with X in distribution, and, for arbitrary Borel functions o1 (-)
and @3(-), the following equality holds almost surely:

E{¢1(X)pa(X')/B} = E{ 1 (X)/B}E{2(X)/B}.

If %8B is generated by a random variable Y then, according to the conventional
notations, we write E{p1(X)p2(X’)/Y} and say that X' is a conditionally
independent copy of X with respect to'Y.

Remark 3.1. Let X’ be a conditionally independent copy of X with
respect to Y. Let (Z; W) be an independent copy of (X;Y). If the random
elements X and Y are discrete then

E{o(X;X")/Y} = E{@(X;Z)/Y,W}\Y:W. (3.8)

We use this identity in the proof of Lemma 4.4. Prove (3.8). Let, for in-
stance, X and Y take the values x1,x2,... and y1,y2,... correspondingly.
To deduce (3.8), it remains to check the validity of the equality

E(o(X; XY =y) =E(o(X;: 2)/Y =W =y), k=1,2,....
But this holds, since, as is easy to see, we have
P(X =4, Z =2;/Y = yp, W = )
=P(X = 2;/Y = yp)P(X = 2;/Y = y).
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Let the sequence {(Xj;Y%)} be the same as in Lemma 3.4. Here we use
the notations

m
Viem = > _ X, Vim =Vim — EVim, Vin = Vim.
k

Let By, ,,, be the o-algebra generated by the random variables Y}, j = k, m,
and B, = By ;. Put

Okm(t; Brm) = sup ‘]E{exp(it‘vhm — 6‘2)

ok (t; Br) = ©1k(t: Bg),
Crm(t) = Epp m (& Bioym),
er(t) = e1i(t),
fe(t;z,y) = E{exp(it(Xg, 2)) / Vi =y }.

We also use the notation
Ezf(Z;W) =E{f(Z;W)/W}.

Lemma 3.5 [24]. For every r > 0,t € R, and 1 < k < n, the following
inequality holds:

en(t) < P([Viginl > 1) er(t)
k
+ VB T By, | 526 Vi)
1

(P ksrnl V [Phyrnl < r)/ask+1,n}, (3.9)

where ‘7;€+1’n is the conditionally independent copy of ‘7k+1,n with respect
to %k+17n’ and V];S—Fl,n = Vk+1:n - Vk,—i-l,n = Vk+1:n - V?H—l,n
Proof. Put Ij11,(r) = I(|Vk+1,n| Vv |V§€+1,n| < 7"). By Lemma 2.5,

ou(t;B0) < P(|Visrn| > r/Brsrn) on(t Be)

k
+EY? { T 142t Vi Y5) \Ik+1,n(r)/%k+1,n}
j=1
= D1+ Ds. (3.10)
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By Lemma 3.4,

k
H Ey; | f5(2t Vi Yj)‘) Ik+1,n(T)/%k+1,n}- (3.11)

E2Dy < ED? = EE {(
j=1

We also have
ED; = ]P(\Vkﬂm\ > r) o). (3.12)

The inequality (3.9) follows from (3.10)(3.12).
Lemma 3.6 [24]. Let B(x; L) be the quadratic form defined by the equal-
ity (1.25). If |t| < /3 /(2L|x|) then
20| = [E exp{it(Z,2)}|* < 1 - B(x; L) /4 (3.13)
for each L > 0.
Proof. Observe first that

720 = E{exp(it(2*.2)): 12| v |2'| < L

+E{exp(it(25,x)); Z|V 2] > L}
= By + B, (3.14)
Put n = I(|Z| v |Z'| < L). Using Lemma 2.2, we obtain
By = E[ (cos((2°,2)) — 1)n] + Er
N

X 12 s 13
<P(Z]< 1) - 5B L)+ 2B |20

£ lelltl3>
2 203 )’
Hence, for [t| < /3 /(2L|z|), the inequality

By <P*(|Z| < L) - B(x; L)t* /4 (3.15)
holds. On the other hand,

<P*|Z| <L) — B(x; L)(

By <1-P*(|Z| < L). (3.16)

Combining (3.14)—(3.16), we arrive at the estimate (3.13).
Denote

ftzy) = E{exp(it(X, x))/Y = y},
Bla,y: L) = B{ (X*,2) T (IX| VX' < L) /Y =y},

where X’ is the conditionally independent copy of X with respect to Y.
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Lemma 3.7 [24]. For every |t| < /3 /(2L|z|), we have
E|f(t2,Y)| < exp{—t’EB(z,Y; L)/8}. (3.17)

Denote by a‘f(kl, ko; L) > 522(1471, ko; L) > - -- the eigenvalues of the form

ko
B(ky, ky;a; L) = > EBj(2,Yj; L),
Jj=k1

where Bj(x,y; L) coincides with the form B(xz,y; L) calculated under X = Xj.
Put

Ny(ky, ks L Ha (K1, ko; L), Ny(k; L) = Ny(1,k; L),

Lemma 3.8 [24]. Let Wy, W, ..., W,, be R!-valued random variables
conditionally independent with respect to a o-algebra §, let U = 1" W;, and
let B; be | x | nonnegative symmetric matrix with eigenvalues b% > 2 bl2.
Then, for every L > 0 and r > 0,

sup EP( (B U";—a,U‘S—al/2 r c()(r +er) , 3.18
et (5 ) ) <) < A (m: D TT b 9

where e? = 32/L? le b2.
Lemma 3.8 generalizes Lemma 2.3 (see also [16, Theorem 1]).
The following assertion generalizes Lemma 5 of [16]. Recall that ¢y =

V3/8.

Lemma 3.9 [24]. For every t # 0 and L > 0, we have

k
E{ (HEyj‘fj(%; Vi Vi) \) (\vkﬂn\ VA |t|L)/ssk+l,n}

i=1

~1/2

c(1) (Itl" [Ny (ks YAk + 1,m; L)] 7Y% 4 6, (e, L)), (3.19)

where

l
5L (kymi L) = (Ra(k; DRk + 1,m, 1)) L2 Y 62 (k; 1),
j=1
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Lemma 3.10. Let X and Y be random elements with values in H and
let X' be a conditionally independent copy of X with respect toY. Then, for
every L > 0 and x € H,
EE{(XS,x)21(|X| Vx| < L)/Y}
= 2K [E{ (X, 2)21(|X| < L) /Y }E{I(IX| < 1) /Y}
——EQ{CYJjIQX|§lJ/Y}L (3.20)

EIE{(XS,x)2I(|X| Vx| < L)/Y} <E[(X,2)2I(X|<L)]. (3.21)

Proof. The formula (3.20) can be proved straightforward; and the inequal-
ity (3.21) follows from (3.10).

Put Bj(z; L) = EB;(z,Yj; L). Let {ép}gozl be an orthonormal basis in H,
let &, v1,72,. .., be some positive numbers, and let 79 = minj<g<; V-

Definition 3.2. Let A, 1 < k <, be the sets of Lemma 3.1 with N = [.
We say that the quadratic form Bj(z; L) satisfies the condition K(Ag, v, 1) if

there exists an element b; € H such that {(bj, ép)};ﬂ € Ay, and the inequality
Bj(x; L) > yi(bj, x)?

holds for every x € H with (z,€,) = 0 for p > [.

In the following lemma, it is actually proved that

2 z2
e <)) T
17Y

for |t| > m, if, for every set Ay, 1 < k < [, there exist sufficiently many

quadratic forms Bj(z; L), 1 < j < n, satisfying the condition K(Ag, v, ).
(Here \; are the quantities defining the sets Ay.)

Lemma 3.11 [24]. Let Xy, ..., X, be independent random elements with
values in H, let the sets Ay be the same as in Lemma 3.1, and let N =1 > 4.
Denote by €, (k) the set of indices j, 1 < j < n, such that each of the quadratic
forms B;(x; L) satisfies the condition K(Ag, vk, ). Denote ng = card Q, (k). If

' > 0<n<1/l 3.29
min ng >, n < 1/1, (3.22)

max E|X;|* < &2, (3.23)
1<j<n
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then, for
BV < |y < VS (3.24)
415
the estimate
ult) < ()]t (von?)TV2(D(1) + BI?) (3.25)

holds, where
l
D)= (B~ + (5L)’)/ [IE%
j=1

Proof. Let m; and l; be defined by the equalities (2.9) and (2.21) respec-
tively (with & instead of o). Put pj = 37, m;. The number kg is defined
below. Denote

7i(t) = ppv1n(t), i=1,... k.

We now use Lemma 3.5, replacing the sets of indices in the intervals [1, n],
[k +1,n], and [1, k] by the indices in [pj—1 + 1,n], [i—1 + 1, pi], and [p; + 1, n]
respectively. Then

Gia () < P(| Vit > 7) 30 + Q. (3.26)
where
n
@ = E1/2E{ ( 1T Evilfie6 Vi v Yj)\)
J=pi+1

- {7/
X I(‘V,ui_1+1,,ui v ‘VMFH-LIM

< T) /%#i—1+17#i}'

Putting r = 26'\/m;, we obtain
]P)(“?Mi71+1,m‘ > T) <1/4. (3.27)

On the other hand, since I; > 1, from (2.9) we deduce that r < ¢o/(|t|L).
Using Lemma 3.9, we obtain

1 =1/2
< c(1)< Tor= - — + 8} ) (3.28)
17 [ Ag(ps + 1, n3 LYAg(pie + 1, i L)

where l
L2 Zj:l 5]2(/1’2 + 1: n; L)

— — vk
(Ag(pi + 1, L)Ay(piey + 1, pis L)) /

=2
0p; =
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Estimate the right-hand side of (3.28). Denote
Qn(k;i) = Qu(k) N {J s pic1 +1<j < i}, my = card Qy(k; ).

It is easy that

i l
Z B,](xaL) EZ’}% (bjaz)Q
J=pi—1+1 k=1 jeQn (ki)
l
> ypmiy inf (a, )
acAy
k=1
l
> ’YOMZ ;aienffk (Cl, LE)2, (329)

where M; = minj<;<; m;x. Find a lower bound for M;. Observe that, by (2.14)
and (3.22), the inequalities m; < n/2 < ni/(2n) are fulfilled, i.e., ng > 2nm;
for every 1 < ¢ < kg. On the other hand, 2nm; < m;. Note that ¢p(t)
does not depend on the order of summands X;. Hence, we can renumber
the summands so that, for every 1 < k < [, the set Q,(k;4) includes not less
than [2npm;] elements from {j : pi—1 +1 < j < p;}. Thus, my, > [2nm;),
k =1,1. In addition, let /; satisfy the condition

Li < con/n/5 (FL]t) " (3.30)
In view of (2.9) and (3.30), we have
2nm; > 2n[5/(4n)] > 2n(5/(4n) —1) > 5/2 = 2/1> 2
for [ > 4. Consequently,

M; > nmi, k:17

o~

. (3.31)

Using (3.29), (3.31), and Lemma 3.1, we obtain the inequality

i 2 l
B o Y01y 2 9
S B> WY e
J=pi1+1 j=1

where z; = (,€;), j <1, (z,&) =0, and 7 > [. Therefore,

2
— YonTmy
Flpic1+ L L) > < 1 l>)‘§'
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Thus,
< yormi \' 1
A(pim1 + 1, i L) > ( 1 Z) H)\f (3.32)
1
Analogously, we have
Ry + 1,m; L) > (%” ) HA2 (3.33)

We now obtain an upper bound for Zl_l a; 2(u; +1,m;L). By (3.21), we

have
n

3 BywL) <2 Z E|(Xp,2)2(1X,] < 1))

p=pi+1 p=pi+1
From here it follows that

n

l
SR+ Lm) <2 > E[I%,1(1%,] < 1)
j=1

p=pi+1
< (n— p)c min(a_2, L2). (3.34)

Combining (3.28) and (3.32)—(3.34), we obtain
Qi < c(l)(a; + bi), (3.35)

where
1

1m0 — o) T
(LJ) 1/2

l/4 l )
m! (von?) 2T A
Since I; < ¢o/(2v/25L|t]) (see (3.30)), by the definition (2.9), we have m; >
%(co/(Qlia_Lt)f. From here and (2.14) it follows that

a; < c(z)<%l;70;\L/ﬁ>z/z (HA) t

Using the first inequality of (3.24), we find

-1
LELIE Y [+ li |t| 2
a; > C(l) <B’YO772> |1| )‘J C(l) 7077 ag, (3 36)

bi =
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-1
where @; = (L(?/B)l/2 (Hll )\j) . By (2.9), we conclude that

N
bi < c(l) ( Ll )l B (3.37)

Yon?

_ -1
where b = (Lo:)l(H’1 Aj) . The relations (3.26), (3.27), and (3.35)~(3.37)
imply that

Gia(t) < =qi(t) + (D) (yor®) 2 (ar + Br) ().

By analogy with (2.17), we now obtain

A~ =

k
Qolt) < 4750+ c)(on®) LI (@ + B) Y12/ (3.39)
1
Define kg by the equality

1/4 i 1/4 1/4
~ mind i (7 2 2 L _1/n
ko = mm{l ‘ 4(5) S i (42/l — 1) 27 =3 (5) } (8:39)

Taking the second inequality in (3.24) into account, we can verify that (3.30)
holds. From (3.39) it follows that

47k < 12165 /)2 (2042 — 1)) 7, (3.40)
By (3.38), (3.40), and (2.23), we have
] . PN L\
do(t) < ¢(l) [(7177)1/2 + (W) (@ + b)) ((W) + 1) . (3.41)

Using the inequality (|t|5L\/ﬁ)_l/2 < (BsL) e (see (3.24)) and considering
two cases: BoL <1 and B&L > 1, we find that
(@ + b) [(|t|5wﬁ)"/2 n 1] < eD(l). (3.42)

The bound (3.25) ensues from (3.41), (3.42), and the left inequality in (3.24).
Lemma 3.11 is proven.

Lemma 3.12. Let the conditions (3.22) and (3.23) be fulfilled and let

It < co/ (225G L/n).
Then

l l -1
onlt) < (D) r0n?) V2 () (H Aj) .
1

Lemma 3.12 can be proven by the same scheme as Lemma 3.11 with
the exception that we use Lemma 2.8 rather than Lemma 2.7.
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4. Estimation of a characteristic function
in the neighborhood of the unity

Let Z1,Z9,...,Zy,... be arbitrary independent random variables taking
values in H and let Vi, = Y1 Z;. Put Z) = Zj+ Z} and V) = 377 Z). Let 2,
be the o-algebra generated by the random variables Z¢, j = 1,n. Define

U, (t;ma) = ‘IE exp{it|Vy, — a|2}HE exp{i(t +7)|Vy — al*}

U(r;b;2Ay) = ‘E{eXp{mV;l] - b|2}/%}"

If Gq,...,G, are the distributions of Zi,...,7, then we say that
U, (t;7; a) corresponds to the convolution [{G;.
Lemma 4.1 [4]. For every t € R, a € H, and 7 > 0, the following

inequality is valid:

U, (t;7;a) < Esup U(7/4;b;U,). (4.1)
bel

Lemma 4.2. Let u, be the number of successes in the Bernoulli trials,
p be the success probability, ¢ = 1 — p, and

H(p:e) = =log(e/p) + (1 — ) log((1 — £)/(1 ~ p)).

Then

P(pun > n(l—¢)) <exp{-nH(g;e)} if 0<e<yq, (4.2)
P(pin < ne) < exp{-nH(p;e)} if 0<e<p. (4.3)

Remark 4.1. The statement of Lemma 4.2 coincides with Theorem 10
of [7, p.131] up to notations. The function H(p;e) called information as
well as entropy (see, for instance, [12]) was already used in the 1950s in
connection with studying the probabilities of large deviations (see, for instance,
[9, p.497; 29, p.13)).

Define the function
(jH42) 772 it Jt) < A,
1t/ if [t > AL

M(t; A) = {
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Lemma 4.3 [3]. Let ¢(t) be a continuous nonnegative function on [0, cc),
©(0) = 1, and let, for every T > 0, the following inequality hold:

§1>1%) (p(®)p(t+ 7)) < xiMy(T; A),

where x; > 1 does not depend on 7. Then, for [ > 9,
1
/ el gy < 20
A-4n T A?
Using the scheme of the proof in [3], we can improve Lemma 4.3 as follows:

Lemma 4.3a. Let the conditions of Lemma 4.3 be fulfilled. Then, for
every integer [ > 9 and a real v such that

1<y < A28 (210g A)71, (4.4)
the following estimate holds:
1
(1) Xi
—=dt < Z(l; 4.
[, B < g, (15

where
2 4 ~y 4vlogy

Remark 4.2. In contrast to Lemma 4.3, Lemma 4.3a makes it possible
to estimate the constant ¢, coefficient of y;/A2. Indeed, the function 1(l;)
decreases in [. So (l;y) < ¥(9;7) = ¢¥(y) for I > 9. We can minimize (%)
provided that the inequality (4.4) is fulfilled. The function () is positive and
continuous for v > 1. Moreover, lim (y) = lim t(vy) = +oc. Therefore,

¥—1+0 y—+00

inf\~1 ¥ (7) > 0. Computer calculations enable us to claim that
121 < miny(y) = P(y) < 122.
y>1

It is easy to see that if A > 109 - 10% then A satisfies the inequality 2.76 <
A% /(21og A), which, in turn, imply the fulfillment of the condition (4.4) for
all 1 < v < 2.76 and hence for a minimum point. Thus, in particular, we may
assume ¢ = 122 in Lemma 4.3 if A > 109 - 106,

Given fixed [ > 9, we can diminish the constant ¢ in Lemma 4.3, alongside
weakening the condition on A.

The analogous arguments lead to the following results in the cases [ = 12
and [ = 13:

[=12= 15 <min*y(12;7) = mi 12;7) < 15.1 for A > 17.1
mvmw( ;) 333;%011/)( ) or A>171,

min
2.74<~<2.76

[=13=114 in*(13;) = i 13; 11.5 for A> 8
= < min ¥(13;7) 3.15”%“3.11‘”( ;) < or A>38,
where min* is the minimum in all ~ satisfying (4.4).
gl
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Let X° X7, X3, ... beindependent identically distributed random vectors
taking finitely many values in H. For every 1 < k <[, put

AZ:{xGH:O—kS(Z‘7€k>§20—k; OS(«T,GJ)SZ—‘;,]%I{?,]SZ},

Ay ={z e H: =20, < (v,00) < o, —ZL < (w.0)) S0, j £k, G},

A= AfuAg,
0.¢)
D(L) = {x €EH: ) ()< L2},
1=l+1

Af (L) = Af 0 D(L),
A7 (L) = AL n D(L),

Ap(L) = AF(L) U AL (L)

(see Fig.4.1). Notice that ®(AF(L)) > 0.

Ar (L)
€3 |
|
Ay (L) L/// I
2 |
A1 |
el o
At | | =
| | | — |
| I | /5 —01 I
| T
O |
BT
/lél/l/ | |
11| | =
= | —
20| ~ | | | —
- | | | =
é/ | | )/’//
1 I _,/__/J_
~
L AS(D)
—~
—~
~
]

Fig.4.1. The sets A?;(L) in the case H = R and [ = 2

Let F'° be a distribution of X°, let F}, 1, be the restriction of F'° to Zk(L),
k = 1,1, and let Fy 1, be the restriction of F° to ZO(L) =H - U2:1 Zk(L)
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Thus,
l l
FOZZFk,Lzzngk,L: (46)
k=0 k=0

where e = Fy,(H) = F°(Ax(L)) and Py 1 = Fyr/ex, 0 < k < 1. According
to Lemma 3.2, for every k, 1 < k < [, we have

Frp = Zegf)Fl(ka): (4.7)
ij

+ j—
where }7, = ZZ’H ;nz’“l, m; and m; are the numbers of values taken by
the random vector X° in the sets A; (L) and A (L), and Flgk)L are the distri-

butions, concentrated at the two points: z;” € Af (L) and z; € Ap (L),

(k) Fo(AF (L) _
F@],L(z?_) — FO(AVk(L)) = Pk,
) - _ P4 (L) _
Fij,L( i) F°(Zk(L)) = Gk-

For every fixed k, 1 < k <1, we denote by F}, 1, the set of two-point distribu-
tions F 1(2

From (4.6) and (4.7) it follows that the convolution (F°)™ is a linear
combination of convolutions of the form G * Gg * - - - x G;,, where each com-

ponent G, coincides with one of the two-point distributions FZ(Jk) or P 1, with
some probability, namely,

Pr(Gy=Fy) =eb
Pr (Gj € fk,L) = &,
Pr (Gj = P(),L) = £9-

Here the symbol Pr denotes the probability distribution on the corresponding
probability space. Therefore, (F°)™ is an expectation (denote it by Eq) of
the convolution of random distributions, i.e.

(FO)™ =E1 (G xGa*x -+ x Gy). (4.8)
Put

P = min €
p 1She k>

Ny = Card{j 1 <5 <mn, Gj € fk,L}a
Ny = card{j :1<7<n,Gj= PO,L}.
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Notice that the probabilities £, depend on L. Using (4.3) and taking the in-
crease of H(p;¢e) in p into account, we obtain the following lower bound:

1
p ( N, ) >1- —nH(ey;
r 1121];21 L >ne| > ZI:GXP{ n (€k,€)}

>1—lexp{—nH(pe)} (4.9)

for every £ € (0, p). Denote

My,1, = {H Gj: mln Nk > pn/Q}

According to (4.9), we have
Pr(M,r)>1- lexp{—nH(z_); ﬁ/?)}. (4.10)
Let Z; be independent random variables with the distributions Gj, where
1<j<n

Lemma 4.4. Let U, (¢7;a) correspond to the convolution F{G; €
M, /4 and let

l
L> (80/V3)V \/2E|X°|?/eg, where gy = F° (]HI — U Zk(L/él))

Then

| U (t; 75 0) | < c(l)wr (Dwa () My(T; A), (4.11)
where A = LQ\/ﬁ, wi(l) = (70}_72)_1/2, wy(l) = LQl/Allﬂ, P = minj<p< €y,
ep = F°(Ap(L/4)).

Proof. Bearing Lemma 4.1 in mind, we need to estimate the expectation

Zﬁhb}/% ,

where 4, is the o-algebra generated by Z;’, 1 < j < n. This expectation

E sup ¥(7;b;44,,) = E sup |E < expy it
beH beH

coincides with the function ¢,(7) in Section 3 if we replace the variables X
and Yj in the notation of the function by Z;-] and Z; respectively. In turn,
to estimate ¢,(7) by means of Lemmas 3.11 and 3.12, we have to check
the validity of the conditions (3.22) and (3.23). Observe that, in the case
under consideration, Bj(x; L) = EB;(x; Z3; L), where

/

By(a: Z: L) = B{ (20 - 20 P12 v 12| < 1)/ 7} }.
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Z?/ is a conditionally independent copy of ZJO with respect to U,. From
Remark 3.1 it follows that

Bj(x; Z3; L) = ]E{(ZJO — WO, 221120 v WP < L)) 7, Wj}

b
S— S

where the random vector (WJO; W?) is an independent copy (in the conventional
sense) of the random vector (ZJO; Z3). For at € AF(L/4) and = € AL (L/4),
the following inequalities hold:

—+

20k<‘(x —x_,ek)‘<4ak, ‘(x+—x_,ej)‘<0j/l, j£k, j<lI.

Therefore, we may assume that
{{(x+ — a2, e)Y ot € AF(L/4), 27 € A,;(L/4)} C Ay,

with Ay from (3.1) provided that A\; =20, N =1, and ¢ = 1.
Observe also that Ay(L/4) c B(0;L/2) for L > 80/+/3. Hence, if Z;
takes two values: z € Af(L/4) and 2~ € A; (L/4), then

|Z?|24max{|x+|2, |x_|2} < I?

ie, I(|Z7|vIW)| <L) =1and E|Z) > < L?. Let Gj = Py r. Since E[X°|* =
Sk ek [ |22Ppr(dz), we have E|Z0]> = 2E|Z;2 = 2 [|x|*Py(dx)
2E|X° |2 /2.

Thus, the condition of the lemma implies that we may assume ¢ = L
in (3.23).

Hence, by Lemma 3.3 for Z; € A,f(L/él), we have

N

Bj(w; L) = BE{ (7] - W{,2)?/ 2}, W} }

Zi=W?

where pp, = P(Z; = x;“), a = P(Z; = x;), x;L € A;:(L/4), and z; €

A (L/4). Taking the definition of M, 14 into account, we conclude that
the condition (3.22) holds with

e = 8piai, n = P/3.

Using Lemma 3.11 for B = ¢y/(2//2L?) and L = co and Lemma 3.12, we
now obtain the estimate

en(7) < c(lwi(Dwa (1) Mi(T; A),
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where A = 21212, /n /¢, which, in view of Lemma 4.1 and the inequality
My(r; A) < My(r; L*V/n),

implies (4.11).
Let €, be the set of random sequences wy, = {&1,&,...,&,} such that
§ =1if Gy € fi,L/4 and {§ = 0if G = PO,L/4- We say that w, € Mn,L/4 if
—a

[ Gj € My, 1)4. Denote
/)

Flti a5 wy) = {exp{
fo(t;a) =FE exp {

Lemma 4.5. Foreverya € H,0< 7 <e, 7/c = (Ae)_4/l, and | > 9, we

have

a) £/ -
n_/ \f (t; dt< ()( (legg) +exp{—nH(1‘7;z‘9/2)}10g;>,

where A, wl(l), and w(l) are the quantities in Lemma 4.4.

Proof. We first estimate I(w,) = [° ‘J?n(t; a;wn)/t|dt, where w, €
M, 4. Obviously,

—(l

fnlet; a; wn)/t‘dt.

In(wn) = / j f

Using (4.11), we obtain

‘fn(et; a; W ‘ ‘f ( (t+7);a; wn)‘ < c(Dwi(l)we (1) M(eT; A) (4.12)
for every t and 7 > 0. If 7/e = (Ae)~*/! then (4.12), the formula

M(et; A) = /20y (t; e A),
and Lemma 4.3 imply that
Ln(wn) < e(Dywr(Dwa(1)e'?(Ae) ™2

under the condition wy, € M,, 1/4. Thus,

Iy < Ely(wn) < e(wi(wa(1)e/?(Ae) ™% + Pr (wy & My, 1/4) log ;

where Pr (w, ¢ M,, 1/4) < lexp{—nH(p; p/2)} in view of (4.10). Lemma 4.5
is proven.
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5. Proof of Theorem 1.1

Denote

j =

1 Qo — Xj |XJ| < oy/my,
my=[n/4+1, Y=-—2>X; X {0 X, >
1 ’ ] U\/m’na

where ng is a fixed number to be defined (see (5.6) and (5.7)).

Let Y; be independent identically distributed random vectors, Y; <y
It is clear that

n "/"0
Y Xi=V )Y (5.1)
1 1
if
n=0 (mod nyp).

In what follows, we suppose for simplicity that this condition holds.

Our aim is to apply the results of Sections 2 and 3 to the sum Z?/no Y.
The next five lemmas were proved in [24]. However, in those cases, we give
a proof whenever the formulation is changed.

Lemma 5.1 [24, Lemma 5.1]. For every k, the following inequality holds:

IE(Y, ex,)| < 205/no/n.

Lemma 5.2 [24, Lemma 5.2 and 5.3]. For every k, we have
E(Y,ex)? < (1 + 4ng/n)os. (5.2)

Thus,
E|Y|? < (14 4ng/n)o>. (5.3)

Proof. Since E(Y, e;)? < o2 + E2(Y, ex), it remains to refer to Lemma 5.1
to obtain (5.2). The bound (5.3) is immediate from (5.2).

Lemma 5.3 [24, Lemma 5.4]. For every k, the following inequality holds:

1
‘]E{(Y,ek); Y] < ad}‘ < (2’/@+8‘/1+4@)0k’ d > 0. (5.4)
n n

Let R! be the space of the vectors (x1,...,x;), where zj = (z,€), 1 <
j < l. Denote by ®; the standard Gaussian distribution in R' and by @,
the distribution function of the standard Gaussian random variable (in R*).
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Lemma 5.4 [24, Lemma 5.5]. Let | be a natural, o; # 0, x be an element
of the space H such that |(z,e;)| < o;/(4l), j =1,...,1. Then

a(f)-o(-3)] [m(e-2)-n(ie )

@(Zk—kx) >q(l) =2

for every k, 1 < k <.
Proof. Obviously,

~ 1 1
Ag+2z D {yG]HI: <1+4—l>ak < ‘(y,ek)‘ < (2— 4—l>ak,
oj . .
(v, e)| < 570 3 # kG <1p. (5.5)

Put
m(l) = {w e RU: 14 ()7 <y <2 (47, [) < 1/(4D), j # k.
It remains to notice that (5.5) implies the bound
O (Ay, +2) > 28 (mx(1)) = 28 (m1(1)) = q(0).

Lemma 5.5 [24, Lemma 5.6]. Let Y be a random vector in RY and let
the sets Ay, satisfy (3.1). Then
N
E(Y,z)? > minP(Y € Ap) Y 22,A2 /(4N).
k m=1
Define ng. Let H = R’ According to the Berry—Esseen bound in Rl, we
have

0 E[(X,e;)|°
sup |P(S, € B) — ®(B)| < <) max ‘(7;7)‘ (5.6)
Beg, vno1gi<t o
where €; is the class of all convex Borel sets in R'. Denote
0 NE
_ . () E|(X,e)]”  q(l)
no = ng(l) = mm{n > 2 W 112;1; 0]3 < Sip [ (5.7)

where ¢(l) is the constant in Lemma 5.4. Observe that this definition implies

the inequality
3\ 2
E|(X,e;
no < ¢(l) max <M> (5.8)

1<;<1 o3

which is used for completing the proof of Theorem 1.1.
Denote ¢, = ]P’(Y € Ak(L)), 0< k<l p= ]P’(Y € A;-L(L))/gj, and
¢ =1-pj; 1<j<L
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Lemma 5.6. Let L =o0d,d > 0. If

d* > 8max{641%,2'/q(I)}, (5.9)
no/n < %mln{l/ 6412), q(1)/2"} (5.10)
then
5,02 1 q()) l 2 2

E{(Y*,2)% |Y|V|Y|<L} > 1—612130—3.(3;,6]-) (5.11)

and, moreover,
E|Y|*/q < co?, (5.12)
1Iéllil<ll€k > c(1), (5.13)
i prgi > e(l). (5.14)

Proof (see also [24, Lemma 5.7]). It is easily seen that
E{(Y*2)% |Y|V[Y| <L} = 2pE{(Y —az,2)% |Y| < L}, (5.15)

where ap = E{Y/|Y| < L} and pp =P(|Y| < L).
Denote (z,y); = Z;Zl(x,ej)(y,ej). Using the equality ]E{(Y —ar,u);
Y| < L} =0, which is valid for each u € H, we obtain

E{(Y —ar,2)% |Y| < L} > erﬂE{ —ag,e)% [V < L}

= ]E{ —ag,o)f; Y] < L}, (5.16)
By Lemma 5.5,
E{(Y —ar,2)}; Y| <L}
l
1 l 2 2
> @21?({(1/ —ap.e)}; € A V< 1) ;aj ()% (5.17)

where Ay are the sets satisfying (3.1) for \; = 0, N = [, and ¢ = 1. Notice
that {(u,ej)}ll € A, = u € Ay, We have

P(Y —ar € Ay; |[Y| < L) > P(Y —ag € A) —P([Y]| > L). (5.18)
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Estimate the quantity P; = ]P’(Y € Zk+aL). Put Py = ]P’(Sn0 € Zk+aL),
(51 = ‘P() — (I)(gk + aL) s 52 = |P0 - P1|. ObViOUS]y,

P > (I)(Zk + aL) — 01 — 09. (5.19)

We will estimate @(Zk + aL) by means of Lemma 5.4. We have first to verify
that
((ar,ej)| <oj/(4l), j=1,2,...,L (5.20)

Note that

(az.¢j)] = [E{ (¥, e;): Y] < L}| /pr.
We then obtain a lower bound for py. From the Chebyshev inequality and
the bound (5.3) it follows that

P(|Y| > L) < (1 +4ng/n)o?/L? = (1 + 4ng/n)/d>. (5.21)
Provided that

dng/n < 1, (5.22)
d> > 4, (5.23)

we obtain
pL > 1/2. (5.24)

Then the inequality (5.4) yields

[(ar,ej)] < 2<2 no/n + 2\/1 +4n0/n>aj.

Let n and d satisfy the inequality

2v/no/n + é\/l + 4ng/n < 1/(81).

To this end, it suffices to suppose that

dng/n < 1/(25612), (5.25)
d > 16V2l. (5.26)
Since the conditions (5.25) and (5.26) are stronger than (5.22) and (5.23)

respectively, the inequality (5.20) holds if (5.25) and (5.26) are fulfilled. Thus,
by Lemma 5.4, we obtain

®(Ay, +ar) > q(l) (5.27)
if n and d satisfy the conditions (5.25) and (5.26).
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Estimate 09 and d7. It is easily seen that
6y < nP(|X| > o/my ) < dng/n.
In addition to (5.25), assume that
4ng/n < q(1)/4. (5.28)

Then
52 < q(1) /4. (5.29)

From (5.6) and (5.7) it follows that
5 < ql)/A (5.30)

(While deriving (5.29), we have used that Ay, is the union of two disjoint

parallelepipeds.)
The inequalities (5.19), (5.27), (5.29), and (5.30) imply the bound

Py >q(l)/2 (5.31)
if the conditions (5.26) and the inequality
dng/n < min{1/(2561%), q(1)/4} (5.32)

hold.
By (5.21), we have
P(|Y]> L) < q(l)/4 (5.33)

if, in addition to the condition (5.26), we suppose that
d? > 8/q(l). (5.34)

Since (5.9) provides the simultaneous validity of (5.26) and (5.34), from (5.18),
(5.31), and (5.33), under the conditions of the lemma, it follows that

P(Y —ap € Ay; [Y] < L) > q(1) /4. (5.35)

Returning to (5.15) and taking (5.16), (5.17), (5.24), and (5.35) into account,
we arrive at the bound (5.11).

Now, we prove (5.12)—(5.14). By the definition of Ax(L) and A,::(L), we
have

Ay — Ay(L) C {x EH: Y (v.¢)°> L2} CH — B(0; L),
j=l+1
A — AF(L) C H - B(0; L).
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Consequently, for every 1 < k <[, the following inequalities hold:

P(Y € Ay) —P(|Y| > L) <ep =P(Y € A(L)) <P(Y € 4;), (5.36)
P(Y € AF) —P(JY| > L) <P(Y € A (L)) <P(Y € 4F). (5.37)

By analogy with (5.30), under the condition (5.10), we infer that

IP(Y € A) — ®(Ay)| < 4ng/n+q(l)/27 < q(1)/2, (5.38)
IP(Y € AF) — ®(AF)| < 4no/n+ q(1)/272 < q(1) /2. (5.39)

We have
B(A) = 01) = 2(90(2) — o(1) (200(2) ) =1) . (5.40)
g(1) < 2(Do(2) — Bo(1)) (2@0((41)—1) - 1)1_1 <a().  (5.41)

Since ®((2) — (1) < 0.14 and, for every = > 0,
20p(x) — 1 < 2z/V/2m,

we have

-1
lgr(1) < 0.31 <z\/1%> <03. (5.42)

From (5.36), (5.38), and (5.40)—(5.42) it follows that
er < ®(Ag) +q(1)/2' < 3q1(1)/2 < 1/(20) (5.43)

for every 1 < k < [. Taking (5.3) and (5.22) into account, from (5.43) we

obtain

E|Y|? 220t
Cco .

The bound (5.12) is proven.
From (5.33), (5.36), (5.38), and Lemma 5.4 it follows that the following
relations are valid for every 1 < k < [:

ek 2 ®(Ax) —a()/2' — B(IY| > L) > q(1) /4.

This means that the bound (5.13) is valid.
In view of the condition (5.10), the following bound stronger than (5.33)
holds:
P(Y] > L) < 2/d? < q()/(214) < a1(0)/(214)
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Moreover,
-1

D(47) = (20(2) — @o(1) (Bo((2) ) = 1/2) = qu(1)/2"

From which, using (5.37) and (5.39), we obtain
)
BV € X)) = 0(4%) = 1D _p(y|s L
( ek())— (k) 919 (||>)
o) al)  al) _ el
> — — = . .44
- 2 202 204 204 (5.44)
We arrive at the bound (5.14) by using (5.43), (5.44), and the equality

e —P(Y € AF(L)) =P(Y € 4; (L)).

Lemma 5.6 is proven.

Let O'JZ(L) be the eigenvalues of the quadratic form (1.25) with Z = Y.
Without loss of generality we may assume the conditions of Lemma 5.6 to be
fulfilled. Hence, (5.11) implies the following:

Corollary 5.1. The following inequality holds under the assumptions of
Lemma 5.6:

(L) > q1(_éz)‘732" (5.45)

Remark 5.1. The bound (5.45) holds as before if the truncation of X
is defined as
P(X; € B) =P(X; € B/|Xj| < oy/my). (5.46)

Then Lemmas 5.1-5.3 remain valid if n is replaced by nb2 with b, = P(|.X] <
0\/My, ), and Lemma 5.6 remains valid if (5.10) is replaced by the condition

1 . 1 q(l)
no/(nby,) < amln{@; 7}

Lemma 5.7. 1. Let d € R and an integer | be such that | > 2d + 3.
Then, for every 8 > 0 and a € H, we have

14(0) = /H 9 [t g(t; a)|dt < 271227 2g 2L (5.47)
t|>

2. Let d > 0 and an integer | be such that | > 2d + 3. Then, for every
a € H,

oo
I, = / 1] g(t; a)|dt < 2-+2A @D/ (5.48)
oo
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Proof. First of all, notice that |g(t;a)| < |g(t)|. The bound (5.47) ensues
from the inequality

1 d—1/2
1;(0) < 7/ t dt.
d( ) = 21/2Al1/2 |t|29| |

Prove (5.48). By (5.47), for every 6 > 0, we have

d
I, = / +/ < 20 + 9=l/2+2 )\ ~1/2p=1/2+d+1 — A+ Ao
<o Jj>6  d+1 !

Choose 6 = 27142/l + 1)2/1Al_1/l by putting A1 = As. From which we obtain
the estimate (5.48). Indeed, in the case [ > 2d + 2, we have

4 a1 4 o (a+1)(1+2/) 2(d+1)/1 A —(d+1)/1 —d \—(d+1)/1
P = . .
[d—d+19 d+12 (d+1) A, < 427N,

Remark 5.2. In connection with (5.48) we observe that an estimate is
obtained in [11, Lemma 2.2|, implying that, for every A > 0, a real b # 0, and
an integer d > 0, we have

A 2d+2
tdeith g;(t) | dt
‘ /. (E i)

Lemma 5.8. The following bound is valid:

—1/2

< chygiy-

2

2
g
Dy13 + F§713 + (—) n0] . (5.49)

C

Proof (see also [24, the proof of (5.19)]). Denote

An(a) = sup
T

b

]P’(% Z)?j € B(a;r)) — ®(B(a;7))
1
gltia) = [ exp{itle - aP}o(da), g(t) = g(t:0),
n_1/2 zn:)?j —a
1

where X ; are the truncations defined in (5.46). By the Esseen bound and (1.13),
for every tg > 0, we have

2
Jn(t;a) ZEexp{it } In(t) = gn(t;0),

An(0) < J/m + 27 (ntgoro9) 7L, (5.50)
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J= /
|t|<nt0

Let t1 = n=2A;/'(n/Ty;)V/4. Show that

Jp = /
|t|<nt1

Using Lemma 6.1 (see also [21]), we can show that

|, (1) — g(1)] < %{% 9(t/2)| ((t02)? + [t/o?)

" 2
# Tt (00" + 1) |

where

t

CETOIM

M‘dt < C;—l)(m/Af/l +F§7l), I >13.

for every ¢ > 1, every natural [, and 0 < y < /2, where

fl(tana’YaQ) = C(l,’}/, q){l A\ [fl(t,n,’Y,Q) + 09"/4] }’

—1/2q) [Ty, \V/1 2T, \1/(24)
st = ()0 (S ) () )

n

Assume that
F47l/n S 1.

It is easy to verify that
0.9"* < ¢(l; q) (T /)19

and, moreover, in view of (5.54),

()5 <o (1)),
()" < o)™

43

(5.51)

(5.52)

(5.53)

(5.54)

for |t| < 7 = nt1. Hence, if |t| < 71 then, under the condition (5.54), we

obtain

f 1/
filtnyy,0) < el v,0) (1 A (118" )

(5.55)

The bound (5.51) follows from (5.48), (5.52), and (5.55) (see also (6.3)).
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Estimate the integral

Jy = /
nty <|t|<nts

where ty = CQ/(RQQZI/QO'(L)L\/QH), ng = ng(l’) is taken from the defini-
tion (5.7) with {’ instead of [,

t

o(L) = ]E{ v —E{y/|Y| < L}/]Y]| < L},

and ¢y = \/5/8 Notice that

n/ng

Gn(t) = Eexp i Z Y = g, (not/n), (5.56)

where g, (t) = E exp{it‘ Z?/"O YJ‘Q} Consequently, employing Lemma 2.8

and taking (5.45) into account, we obtain

el dt (Ta\'7®
< < c1(l — . .
SOV [, <a@)(5) (557

Put I’ > 8,

1’ _ !
to= A" J(L*ng),  t3 = to(Banoto) "', Bn = L*/n/no. (5.58)

It is easy to see that

g, (t g, (t
J4::/ In )‘dt:/ gn()‘dt’
ntz<|t|<ntg t T<|t|<e t
where
e=noto = AJ/' LY, T = ngts = e(Bpe) "V (5.59)

Denote g9 = ]P’(Y cH- U1 Ar(L/4) ) By (5.12), there exists a constant ¢(1)
such that L > (80/+/3) VA\/2E|Y|? /e if L > ¢(I")o. In view of Lemma 4.5,

we find that, for I’ > 9,

Ji < () (wl(l’();vjil);)gl’ﬂ n exp{—%H(]_); g) } log(%)) . (5.60)
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where

p= min P(Y e AWL/D), wil) = ()2 = SIgflgl,pqu,
pe=P(Y € AL(L/4)/P(Y € Ay(L/4), a=1—ps.
In view of (5.13) and (5.14), we have
p>ci(l)), v >co(l). (5.61)

It is easy to check the validity of the equality

2
2
n1'/2 -2 "o L
wa(l")e' 19(Bpe)™* = . (All,/l/> . (5.62)

Since H(t;t/2) is an increasing function in [0, 1], from (5.60)—(5.62) we infer
that

2
L2
Ji < c(l/)% (W) . 1'>0. (5.63)

Using Lemma 2.7 with B = ¢/ (20 +D/25(L)L), (5.45), (5.56), and
the inequality o(L) < L, we arrive at the bound

Js ;:/ In ()‘dt /
nty<|t|<nts | T noty<|t|<r

t - Alll/2
242 o 12 2
By (5.50) and (5.62), the equality £°7," — 7( / /l,) is fulfilled. Hence,
1 l’
L? 2n0
/
l/
In view of (5.47), for k > 2,
t t IV
Js ::/ Q‘dtg/ @‘dtg (i’> . (5.65)
nty <|t|<nto | 1 t|>nt; | T n

Since J < 22:1 J, collecting the bounds (5.51), (5.57), and (5.63)—(5.65), we
obtain the inequality

L1 2 \?
;< el )(Fiﬁp&ﬁ(W) no), 1>13, ' >09. (5.66)
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Take [ = 13 and I’ = 9. The bound (5.49) ensues from (5.50), (5.66), and

the inequality
2n 4
otm2’

Ap(0) < Ap(0) + (5.67)

Notice that without loss of generality we may assume the condition (5.54) with
[ = 13 to be satisfied.
The claim of Theorem 1.1 follows from Lemma 5.8 and the bound (5.8),

which completes the proof.

6. Auxiliary statements for the case a # 0

Denote by F' the distribution of the random variable X in (5.46). Put

FV,"(t; a) = (Z) /exp{it‘n_lﬂx — a‘2}q>*("—'/) * (F _ q))*y(d{l?),
_1 _
Rin(t;a) = g,(t;a) — g(t;a) = Y Pyy(t;a),

1
2
’

n
n~1/2 Z X j—a
j=1
-1/1
1= A /T,
We use the notation @ = («, ag, ... ) for the sequence of independent standard
normal random variables o, 7 =1,2,... .
First of all, we are interested in an estimate for the integral

Ji(a) = / [Fon(tia)]

i

N

N
I

gn(t;a) =E exp{it

[t <71

Lemma 6.1. Let |t| < 0.4n01_2. Then, for every q > 1, every natural [,
and vy such that 0 < 7 < [/2, the following estimate is valid:

2
c(q)(Bs/o® + (B3(a)) /o5)
(/e + (i) )flu,n,%q){(ta?)u|t|a2}, (6:1)

‘R2,n(t§ a)‘ < o

where

?l(tv na’%‘]) = C(l,’)/,q){l A\ [fl(t’ n, ", q) + 09”/4] }’

—1/(2q) Ty, \/ 4 o1, \1/ (20
filt,n,y,q) = (|t|Al1/’) vy (ﬂ) . ((tAll/l) ﬂ)

n n

(see also (5.53)).
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In the case of @ = 0, the bound (6.1) was found in [22]. For an arbitrary a,
the proof is analogous, but more cumbersome (see [8, p. 151]).
It was proved in [22, formula (2.8)] that

c(l
n0) < Uy,

for every [ > 13. The following assertion extends this bound.
Lemma 6.2. Let (5.54) be satisfied. If | > 13 then

na) < (3,4 13,0) (6.2

Proof. 1t is easy to see that, for /¢ > 6 and under the condition (5.54),

T 15,12 4 o2 A
J T iy =) / = g
(v/q — )

Take, for instance, ¢ = 14/13 and v = [/2.01. Then /g > 6, and (6.2) is
immediate from (5.55), (6.1), and (6.3).

Denote
I(y;n) = [(|y| > Umn) + (1 - bn)[(|y| < Umn)/b"

0) 0
Bys(a) = B0/ (8,(a))*'?, where 0 < 0 < p.
Lemma 6.3. The following bounds are valid:
1. f0< A <pandn >5 then

[ P10 (P - o)
< EI(X; )| X (0, )|
< c(p) (ov/n) " Bpgla)
(i) ooy ), (6.4)

oP o?p

IN

2. If 6 <3 < )\ then
[ 1@, (F + @) (a
< W) (ovn) s a(a)
< (Vi) o5+ B8, 65

o3 o6
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3. If0<f0<XNand 0 <v < \—0 then

[ 1@, )['(F + ®) (a0

6/2
< (amA—(’—”{E\y\”\(a,y)W L Bl )}. (6.6)

Proof. 1t is easily seen that
|(F = F)(dy)| < I(y;n)F(dy), (6.7)

and b,! < 5 for n > 5. This implies the first inequality in (6.4). Using
the Chebyshev and Holder inequalities, we obtain the following estimates:

E|XA)(X, )| T(1X] > o/ )
(o ) PEIX P (X, 0)|”

< e(p)(ov/n) Byela), (6.8)
(»—0)/p

VAN

_ o/p _ _
EIXP) (%) < (B](X0)") " (R O/ e=0)
0
< (El(x.aP) E1xp) >0, (69

1= by < (oy/mn ) PEIX P < e(p) (ov/n ) P (EIXP) PV (6.10)

The estimates (6.7)—(6.10) imply the second inequality in (6.4). The third
estimate in (6.4) is easily derived by using the representation

(p—0)/p 6/p
fato) = ()7 (2 o

We now prove (6.5). Using the equality

F(dy) = I(|y| < o/mn ) F(dy)/bn

and the Holder inequality, we find that, for 0 < 0 < 3 < ),

A3

BP0 < O oy ot < T

It is easy to see that

6/
ENYy | (¥, a)]” < (EIYpN) P 9/A<]E\ Yo, a \A) . (6.11)
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Taking it into account that

E|Yy|* < 0 E|ag A
(see, for instance, [18]) and (Yp,a) is the real normal random variable with
zero mean and the variance (T'a, a), we obtain

/) _ 6/
EM) A (E]0da)*) " < (*Blar)* ™ ((Ta, 0V *E|ar )

= ¢\ (Ta,a)?/?. (6.12)
Consequently, if 0 < 0 < 3 < A then

A=3
/ 2*(a,2)|" (F + @) (dx) < @5&0(@ +c(N)o*(Ta, a)?/?
< b (o) By gla)er (V). (6.13)

The bound (6.5) is proven. The inequality (6.6) ensues from the bounds (6.11),
(6.12), and the inequality

EIX (X, a)| < (ovi)* " EIX|(X )
For every x,y € H, define

b L<a—.

b

oo
(y, a0+ sx) :Z y,ej)oj + s(z,y),
where s = (2it)1/2 7=
Lemma 6.4 [25, Lemma 6.4]. For every natural M,
E. [(y, a+ 1) exp{)\ Y, + x)}}

[M/2]
M _
—exp{ Oty +20)/2} Y- (oo JEaR B Ay + )2
m=0
Lemma 6.5. Let a,b € H, k, and N be nonnegative integers.
1. The following bounds hold:
E exp{it]Yo — 0"} (5, Yo — )*[vp "

k . .
< c1(k; N)|g(ea(k; N)O| D | (a, )| TN |y (1 0); (6.14)
=0

Eexp{it]y — b}y, Yo — @) (¥, )|

k . .
< ek N)g(eall; N)E) [(Ta, )2 3 [ (0 ) [ oyl my (1), (6.15)
7=0

where m;(t;b) = 1 if j is even and mj(t;b) = min{1, |¢|(Tb, b)1/2} if j is odd.



20 S. V. Nagaev and V. I. Chebotarev
2. The following equalities are valid:

E exp{it|Yp — a*}(y, Yo — a)F = g(t; a)E(Ayy, Yo — Aa)®;  (6.16)

E(y,a—l—s(At\/Ta'—AtQa))k = E(Asy, a — sAa)*; (6.17)

E[exp{it|%—a|2}]Ea (y,a—ks(Yo—a))k] = g(t:a)E(Ay, a—sAa)*. (6.18)

Proof. We only sketch the proof. The bounds (6.14) and (6.15) are proved
by means the representation

d 1 M
Yo = — Yoi,
0 /—M]z::l 0y

where M is a sufficiently large number depending on £ and N and Yp; are
independent copies of Yy (about this method see also [33,34]). We can prove
the equality (6.16) by using the representation (Yp,z) = Y.1° 0ja;(z,¢€;),
changing variables in the multivariate integral and applying the Cauchy the-
orem (see [23]). The formula (6.17) is proved by induction on the dimension

of H, beginning from the equality ]E(a1 + s5¢1 (t)alo/l)k = gF(t)Ea¥ (we may
first consider the case a = 0). The formula (6.18) is a consequence of (6.16)
and (6.17).

In what follows, we use the notations

Vo= I_1/nYs, Egpf(e)= /f(z)d(F— o) (2)

(f: H — C is an arbitrary Borel function). We call W the generalized random
variable with the distribution F'— ®. We assume that W is independent of all
random variables introduced earlier. In particular,

]E[fl(W)ﬁ(Ot)fs(?o)} =Efi (W) -Efs(c) ‘Ef3(Yo).
Lemma 6.6. The following estimate holds:
[Pyt o) < 2n[E exp{it| o[} (6.19)
Moreover, if n > 5 and the condition
t| < 0.9n/03 (6.20)
is fulfilled then

|Pra(t;a)] < % lg(cat)| <(|t|02)3 + |t|02) (% + B?:,(:)) (6.21)
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Proof. First of all, notice that (6.19) is immediate from the representation
Pin(ta) = n/]E exp{it‘?g + 2y a‘Q} (F — ®)(dy) (6.22)

and the bound sup, ¢y ‘]Eeit|f0+$|2‘ < ‘]Eeit|y~0|2‘.
We give the proof of (6.21) in abbreviated form. Applying the formula

exp{it‘n_lﬂy‘?} =E, exp{sn_l/Q(y, a)}
(see, for instance, [22]), from (6.22) we obtain
Piy(t;a) = nE exp{it‘?o - a‘2}E wEa exp{sn_1/2§}, (6.23)

where £ = (W, a + s(Yq — a)). Change the order of integration in (6.23)
(we bear E 5 and E,, in mind). Note that we are able to do this if ¢ satisfies
the condition |t| < n/o?. By the Taylor formula, we have

+%<%>3 /01(1—)\)2]EW & exp{\;é}] dr. (6.24)

Changing the order of integration again and using the equalities

Eo(y, o+ s3) = s(y,2), Eo(y,a+sz)? =y + *(y, 2)?
and Lemma 6.4, from (6.23) and (6.24) we infer that
Pip(t;a) = A+ R, (6.25)
where

A= n/E{exp{it‘?o - af} {82(%?#@)

2

(T o) L - )

= Qiﬁ /01(1 - )\)2/]E{exp{it‘l70 —a+ \py 2} [53(y,)\ny +Yo— a)?
+35lyP (1, ny+Y0—a)]}(l7—d>)(dy)d)\,
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with A, = A\/n. By (6.14), for n > 2, we have
Eexp{it|Vo - al*} (5. Vo — )
< eafg(eat)| (|(a, v)| + olyl min{1, 1153 (@)} ). (6.26)
‘E exp{it\?o — }(y,?o — a) ‘ < a1l gleat)|((a,9)? + o2yl?).  (6.27)

From (6.4) with p = 3, (6.26), and (6.27) it follows that

212 o 3 53( )
Al < — \F 9(cat)| ((to®)? + |t]o )(U ) n>5. (6.28)

o6

Moreover, using (6.14) and (6.5), we obtain

71 < 2 Jotean] (%)’ + 02) (54 250), 0z o9

o6

The bound (6.21) follows from (6.25), (6.28), and (6.29).
Lemma 6.7 [14]. Let Yy be a Gaussian random element in H with EY; =0

and a covariance operator T'. Let o1 > 09 > -+ be the eigenvalues of T'. Then
d 5 1
sup —[ Yo—a <T]§ .
r>0,a€H dr (| | ) 20109
Lemma 6.8. Let
n 12 (Ta1+ Ta(a) < 1. (6.30)

where | > 9, n > 5, and a € H. Then

sup
r>0

i[@(B(a,ﬁ)) —i—@lm(r;a)H < CAl_l/l‘

Proof. Integrate |P1,(t;a)|. Using (6.21) for |t| < en/of, (6.19) for
|t| > cn/o? (on account of the condition (6.30)), and also (5.48), we arrive at
the bound

/ Pt a)|dt < eA " (6.31)

Since

43, r5a)

oup dr

r>0

1 [, =
< _/ ‘Pln(t;a)‘dta
21 J_ oo ’

the claim of Lemma 6.8 follows from Lemma 6.7 and the inequality (6.31).
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Lemma 6.9. Foreverya € H and k> 7,

1 <[t[<0.9n/0?

< { <F4,l>k/8 (ng + F%,k(a)>k/12}
< cmax{ | —= S =2 _
n n

Proof. Using (6.21) and (5.47), we find that, for k > 7,

Im) < c (@ n ﬁs(@)) < % (s + s x(a)) (%)MS_?’M.

= \1/2_k/2-3 53 T 6
AT Vn

dt

3/4
First considering the case of Pa.x+T5.4(a) < (%) and then the reverse

NG

inequality, we arrive at the assertion of Lemma 6.9.
Denote

g(t;a) =E exp{it‘?o - a‘2}, T=(1-1/n)t, A=A,

o
(Apx, o — sAwy) = Zgj(t)(x, ej)a; — s(Awx, Ayy), x,y € H.
j=1

Lemma 6.10. Let the condition (6.20) be fulfilled and let n > 5. Then

Pin(t;a) = n~Y2Q,(t;a) + R, (6.32)
where
= _ 83 - ~ 3
Q1 (t;a) = g(t; a)glEaE (AW, a — sAsa)

4 - 9 _
SR [exp{a\yo_aE}Ew(g\ W\2(W,n_a)+s2(w,n_a)3)],

IR| < %‘g(czt)‘ ((t02)4 + |t|02> [% + 54(“)].

o8
Proof. We use the representation (6.23). By the Taylor formula, we have

Eyrexp{sé/vn} =A+r1 +rs, (6.33)
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where
_SEgl
~ 3Ip3/2 7
34 1 A
1 3‘?/0 (1= N’Ew[¢texp{Ans&}] dN, A = M/ V0,
2
2= Z jn]/QE w

Using (6.23) and (6.33) and taking the condition |t| < n/o? into account, we
obtain
Pin(t;a) = B+ R1 + Ro, (6.34)

where

33 B
B= WE [exp{zt‘YO — a‘Q}]EaE W€3] ,
s e 2 1 3 4
1 = B e {ilTo — '} [ (1= WEE e e O0nst] ],
0

3n
2

sJ i~ 9 .
R2 :Z‘WE [eXp{Zt‘Yo —(Z‘ }EQEW§J:|
j=1

Estimate |R1|. Change the order of integration: E,E = EwE,.
By Lemma 6.4,
Eq [€* exp{Ansg}]
. = = =~ 2 — 2k — - o~ 4—2k
_ exp{lt()\n W, )\nW+2(Y0—a)) } 3 | T [S(W, )\nW+Y0—a)]
k=0
Using this equality, it is easy to show that

1 2 _ 9
C _ . _ ~ —
B <2 /0 {Z i / [y P BT omethl Ay + Vo — a) "]

m=0

x (F + @) (dy)}(l —2)3d)

4—-2m

c 12 —m o —m—
< %/0 3 " S (2-m 1/2)/|y|2(4 0)
m=0 1=0

x ‘Eeiﬂ?o—a“nyf (v, Vo — )| (F + @) (dy)}(l — 2)3dA.



On the Accuracy of Gaussian Approximation 55

Therefore, by (6.14),

Rl < 2|g(et)] 22: o 4§:m =Gl
n
m=0 =0
XZO—]/|| 4ml+]‘ay‘l J(F"—@)(dy)

7=0
Using (6.6) with # =1 —j, A=8—2m — [, and v =4 — [ + j, we obtain

2
Ba] < Dgleat)] 3 (IHo?) "

m=0

42m E|X |4~ lﬂ‘ a, X) ‘ +04_l+j(Ta,a)(l_j)/2

X Z Z AH—]

=0 j=0

It is easy to check that, for any four positive numbers a, b, ¢, and d, the fol-
lowing inequality holds:

2 4—-2m 1
St YN T 4 d) < 44(a® v at) (et vt vdt v,
m=0 I=0 ;=0
Consequently,
Co 214 o2y [ B4 54( )
< — t t t . .
] < Dlatea|(02)* + (10?) (24 + 24 (6.35)

Estimate |Ra|. By (6.7), (6.4), and (6.5), we have

E [exp{it‘?o — a‘2}Ea (y, o+ 5(370 - a))} (F - F)(dy)‘

s/
+ J

5 /E [exp{it‘?o - a‘Q}Ea (y, a0+ s(Yo — a))Q} (F — F)(dy)

< algfean 10X )] eV [0, )| + o] ]

+t*[(a, X)? + a2|X|2] + |t||X|2}

2
< cs\g(c2t)\((t02)2+|t|02){ o EI(X [f‘ 9l “(jf) ”
< 2 gfeat)| ((10%)2 + 110 (% n 5‘;(8“)) (6.36)
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Since, in view of (6.18),
E [exp{it‘?o — a‘2}]EaE WS?’] = g(t;a)ELE W(‘Zt W,a— sgta)g,

the claim of Lemma 6.10 follows from (6.34)—(6.36).

Lemma 6.11. For every n > 2 and t satisfying the condition (6.20),
the following equality is valid:

n"Y2Q,(t;a) = n~Y2Q,(t;0) + R,

54(61))_

ol

|R| < %\Q(Cﬂ)\ ((ta2)4 + (|t|02)3) (% +

Proof. According to the Taylor formula, we have

~

3
Qi(t;a) = % []E exp{it|YO _ a|2}

Ad)\] . (6.37)

n

1
><]Ea]EW(W,a+S(Y0—a))3—%/Of'(ﬁ)‘

where
1(0) = Eexp{it| VT= Yy — af* BB (W, + 5 (VT =0y - a))s
=Eexp{it| VI -0y —af’}
X EW[3S\W\2(W,M% —a)+ (W, VT—0Y, - a)?’],

Estimate

F() =E { exp{it‘m% _ a‘2}

‘ lit<—|Y0|2 ; %) (35| TP (. VT =% — a)
+ (W, VT=0Y - a)’|

38| WA(W,ye)  383(W.VI—0Y —a)’ (W, V)
2v/1 -0 2v/1 -0

}
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by means of (6.14) and (6.15). As a result of rather bulky computations, we
find

B ) < 2190l (1521 1 o)

X/ |y|3+|y|2\(a,y)\<1+(Ta,a)1/2>

o3 o4 o2

bl gl o)

o2

oy ) (4 40) (10 752

(by (6.5)) 1 ob o?

< M((t(ﬂ)‘* + (|t|a2)3> (% + ﬁ“(a)). (6.38)

(F + ®)(dy)

Taking (1.9), the properties of the random sequence a, and the distribution &
into account, we derive on assuming (6.20) that

- B _
A= ‘%Ee“'Yo—alQEaE w (W0 +50Y0 - a)” = Q1 (t:a)

El

=5 . (6.39)

]Eeit|Y0_“|2/ [3|x|2(:5, Yo—a)+5%(z, Yy —a)g] (F—F)(dx)

From (6.14) and (6.7) we conclude that
A < e1?|(cat)|EI(X; ) [|X|2\(X, a)| + | XPom(t; a)
(Xm0 X (X )+ 5.0

where
m(t;a) = min{1, |¢|(Ta, a)1/2}.
Applying the trivial bound m(¢;a) < 1, we come to the inequality
! 0
A < ert?|g(eat) [EI(X; n) [ STIXP(X a)| ot
6=0
‘9 3-0|

3
+t D IXP(Xa)

0=0

o
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From the inequality (6.4) with p =4 and A = 3 it follows that

C 0'4 a
A< iﬁ |9(cat)] (% + 5‘;(8 )) (1+ [to?). (6.40)

The claim of Lemma 6.11 ensues from (6.37)—(6.40).
Lemma 6.12. The following inequality is valid for [ > 9 and n > 5:

— _ c(l
sup ‘Ql,n(r; a) — n~2Qq(r; a)‘ < % [Ty + Tag(a) + T3, +T3,(a)].
T

Proof. We have

~ Qi) _ 1 [ |Piatia) = Qi(ta)/vin|
il;{g Q1 pn(r;a) — NG < ;/_oo 7 dt. (6.41)
By (1.9) and (6.14), we conclude that
Guttal <aloten] (4 + @??) (G + 25).

Consequently, in view of (5.47),
A (+- 2 \!/2
L ‘Ql(t? a)‘dt S C(l) @ + 63(01) o n5/2
\/ﬁ [t|>cn/o? |t| o3 ab nAll/l
g(xn<rir+FiA@>“**

n

(6.43)

for every [ > 7. Here we have used the evident bound 02/All/l < TI's;. By
analogy with (6.43), we can derive from (6.19) that, for [ > 3,

P (t: 9 \1/2 T2 \!/4
/‘ Li;ﬁﬁnmgcm< i ) ngcm<éﬂ> . (6.44)
[t|>cn/o?

|t] nAll/ ! n
Next, applying Lemmas 6.10 and 6.11 and taking (5.48) into account, we obtain

/ |Pra(t;a) —n~2 Qs (¢ a)|
t|<cn/o? |t|

@ (ﬁ_i " ﬁ4(a)> /|t|SCn/Jf ‘g(cﬂ)‘ <(t02)4 * |t|02)%

dt

VAN

n g 0'8

qm<@+&mv08

n \ ot o8 A?/ l

VAN

= Cl,r(bl) [F4,l + F47l(a)] (645)

for [ > 9. The assertion of Lemma 6.12 follows from (6.41)—(6.45).
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7. Proof of Theorem 1.2

Taking the proof of Theorem 1.1 (see Section 5) into account, we conclude
that it suffices to obtain the estimate

2

2
o
A1 p(a) < F4 13 + F3 13 + ( 1/9> no + Fag(a) + 1—%713(@)] . (7.1)

It is obvious that

Atn(a) < Aqy(a )+s§%\Q1n ria) — nY2Q1(rya)), (7.2)
where
ﬁlm(a) = ig{g ]P’(Sn € B(a,ﬁ)) — @(B(a,ﬁ)) — Q1 (1 0)|.

The quantity sup, ‘@Ln(r; a) — n_1/2Q1(7“; a)‘ is estimated in Lemma 6.12.
By analogy with (5.67), we have

Ay n(a) < Aqn(a) + cfa/(no), (7.3)
where
_ " )
A a(a) = sup ]P’( 23X —d| < r) - <1>(B(a; \/F)) — Quu(r;a)].
r =

By the Esseen inequality, the following relation is valid for every 75 > 0:

= 4T d _
A p(a) < J + — sup [q) (B (a; \/7_“)> + le(r; a)] , (7.4)
70 >0 | dr
where
J = / Ron(tia)|
lt|<7o
The quantity sup, % [<I> (B(a; /7)) 4+Q1 (75 a)} is estimated in Lemma 6.8.

Collecting the bounds (7.2)—(7.4) and using Lemmas 6.8 and 6.12, under
the condition (6.30), we obtain

c (1)
Apn(a) < J+ Tt [F4,T+F4,~Iv(a)+F§71~+F§j(a), (7.5)
TOLN ~
l

where n > 5 and 72 9.
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Put 7; = nt;, j = 0,1,2, 3, where t; are the quantities defined in the proof
of Lemma 5.8. Denote

I = /
lt|<71

.
Ti—1<[t|<T;j

J

i :/ l9(t;a)| + | Pra(tio)
1 <[t|[<mo 2]

R, (t; a)

dt,
t

gn(t;a)

t dt’ ] = 27 3’ 47

By Lemmas 2.7, 2.8, and 4.5, the bounds for J; (j = 2,3,4), ie. (5.57),
(5.63), and (5.64), hold as before. The integral .J; is estimated in Lemma 6.2
(the inequality (6.2)). The integral Js is estimated by means of (5.65) and

Lemma 6.9. As a result, since J < 22:1 Jy, we obtain the inequality

T\ 78 2 \2 2,412, (a
J<etN|(Z)  + JLTZ@+;Q_3AJ
n All,/l n n

T, \F/8 /T2 T2 () \F/12
+m{(_l) (k—k“) e

where [ > 13,1’ > 9, and k > 7. Notice that All/l decreases in [. Consequently,
[',,1 increases in this argument. Put [ = k = 13 and I'=1=0. Returning
to (7.5), we come to (7.1) under the conditions (6.30) and (5.54) (with [ = 13).
It is easy to see that the bound (7.1) is valid as well in the case, when even
one of these conditions is violated. This conclusion ensues from the inequality

[ ‘@1@;@)‘ c
|Ain(a)] <1+ NG /_OO Tdt <1+ ﬁ<F3,13 + 1ﬂ3,13(a)>

which, in turn, follows from the definition of Aj,(a), the inversion for-
mula, (5.47), and (6.42). Theorem 1.2 is proven.
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