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A REFINEMENT OF THE ERROR ESTIMATE OF THE
NORMAL APPROXIMATION IN A HILBERT SPACE

S. V. Nagaev and V. I. Chebotarev UDC 517.214.4

Introduction. The Formulation of the Results. Fundamental Notations

Let H be a separable real Hilbert space, let X,, X,;, ..., X, be independent, iden-
tically distributed random variables with values in H, EX;, = 0, E[X;|* < = (|:| is the norm
in H), let T be the covariance operator of X,, let Y; be a Gaussian random variable with
values in H with the same covariance operator and EY, = 0, and let

p (i IL‘—I/‘JZXJ'
i

We introduce the notations: o

An‘—:b‘up <r)—‘—P(lY1|<")-

; are the eigenvalues of the operator T, 03 > og 1

j=1, 2, ..., {ej}T is an orthonormal basis of the eigenvectors of the operator T, Ay =
; ;

I ¢, o==EIX, 5, 8, =EIX* k=3
1
The symbols c(+), c, with or without indices, denote positive constants, depending only

on the arguments indicated in the parentheses, and absolute constants, respectively. We
allow the same notation for different constants.

In 1982, B. A. Zalesskii [1] has proved that for any & > 0 one has A, = O(n~! * €),
Taking into account the remark made at the end of [1l], this result can be formulated in the
following manner: for any € > 0 we have

A, < Antte, (1)

if GZN 2 0 for sufficiently large N = N(e). In 1984, V. Yu. Bentkus [2] has obtained a
more general result, from which there follows the estimate (1) for

o

where Q, n{a, r) is the first termof the asymptotic expansion and Q:, a0, 1)

no.
n"”z}_] Xj —a
1

An(a)‘—-’b'"p <r)—P(|Y1—a‘<r)_glvn{a1r) ’

0.

It is natural to consider the problem of the dependence of A. on € and on the distribu-
tion of X;. In the special case when H = Ry and T is the identity operator, the answer to

this question can be found in Esseen's paper (3]: 4, < c(l)sﬁfzn'z/(l + 1), Qur purpose
is to solve this problem in the case of an arbitrary Hilbert space.

We set
D)y =B’ ATY!, Ty = Byo®AT™".
Without loss of generality, we can assume that '
Loin<t, Todyn<t. (2)
THEOREM 1. For any § > 0 and integer £ 2 7 we have the estimate
(D / VAP, 1 1< 12,J

An<c(l, 8)| (T, yn)/¢He+® 1 .
<< ( )[(LM) “%Jm g 1>

(
We denote v(x) = Eexp{i(X,, x)}, x(2) = X (z,¢)¢;, where (+, *) is the inner product.
i
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THEOREM 2. For any €4 > 0, 8§ > 0 and integer 2 > 13 we have the estimate

Aoy () Triin + ¢ (4, 8) [ max (1, (e,0,0V3)2) (Cpun) ¥ + Ti/n] + ¢ u)(| sup lo(x) l)"”ln (0T ).
xh].2e,

We set

go=(0,T}1)™Y, a= sup |v(2)]
bl e

From Theorem 2 there follows

Corollary. For any § > 0 and integer ¢ > 13 we have

A<y (D Vim ke (1, ) [T ) 4 £ T3 /0] 4 c(a Y (0, T, ).
We do not propose to obtain an explicit form for c(%) and c(%, &) in the theorems and
the corollaries, although this is feasible within the framework of our paper. If § is fixed

(for example, § = 1/2), then preliminary computations, with the use of I. F. Pinelis' result
[4], show that these constants are bounded from above by the quantity (c)?%.

In the sequel we shall use the following notations. Let m be a natural number, m <
my, £ [n/4] + 1, where [*] is the integral part of a number. We define the random variables

Xk(m) by the equality

P(XWa A) =P(N, 4] X ) <o Vm).
We set

‘|
]9
g(t)=Eexp (it |V [}, b2 (2) = E(X,, )% b (s) = E(X,.c(1)2

n
Xk. = 1Y2mn), é—!n (t) = E exp {Lt \ ’l—l/2 .\:Yh
3]

We shall denote one-dimensional random variables by & and n (possibly with indices),
other random variables by X, Y, Z, V, W, an independent copy by X', and the symmetrization
of X by XS = X — X',

By'n0 we denote the random variable with density
p(r)=(3/g)[sin(r/4)/ (1/4)}, ~o0 <r< oo,
If A is a set, then by I(A) we shall mean the indicator of this set.

If x and y are some complex functions, then the equality x = O(|y|) means that |x| <
cly|-

In Sec. 1 we obtain estimates for |gn(t)| (Lemmas 1.9, 1.10), and in Sec. 2 estimate
for |gp(t) — g(t)| (Lemma 2.5). For this an important role is played by the modifications
of Gotze's Lemma (3.37) of [5], realized in Lemmas 1.4 and 2.1. In Sec. 3 we prove Theorems
1 and 2.

1. Auxiliary Statements. An Estimate of |8p(t)]

LEMMA 1.1. TIf Z,, Z, are independent random variables with values in a locally convex
space ¥ and if I‘# is a seminorm in ¥, then for any r,, r, > 0 we have

PIZ,I < r)P(iZ) < ra) < P(IZ,+ Zol <1 +12).
Proof. The assertion of the lemma follows from the obvious inequality
P(IZN < ry, 1241 < 1) < POIZN+1Z0 < r +12).
LEMMA 1.2. Let £ be a random variable such that Ef = 0, E£* < =, Then
{E exp {itt}] < exp {—*Ez%/4}
for |t| < (3Eg?/2Eg*)t/2,

Proof. We consider £5 = g -~ g'. Expanding Eexp{it£S} by using the Taylor formula,
we obtain

IE exp {itt}1* = Eexp {itg’} < 1 — fEg* + £'E(8") V4! <1 — #E&¥/2 (1.1)
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for |t] < Z(BEEZ/E(ES)“)l/Z. It is easy to see that
E(8°)" = 2(Eg' + 3(EE®)*) < 8Eg.- (1.2)
The assertion of the lemma follows from (1.1), (1.2) and the inequality 1 — x < exp{-x}.

Remark. There exist both one-dimensional and multidimensional variants of Lemma 1.2.
We mention, for example, {6] (Lemma 12, n = 1) and [7] (Theorems 8.5-8.8, n = 1).

LEMMA 1.3. Let £ > 0 and let FE be the distribution function of £. If for some ¢ >
G we have Fg(r) < Qr? for r >e, then

Eexp -2 < (itl-'e(D)+ ") Q, (1.3)
where c(¢) = o2+ l)/2(2e)‘1/2. In addition,

B> <2 (l_‘g_,)‘“ (1.4)

for 0 < t < ¢.

Proof. We have

Eexp {__ §'t=} — ‘ exp {__ r’t’} ng (r) == sl +

0

(1.5)

®i—8

Integrating by parts, we obtain

o0 o0

j < 2 Y Fe (r) exp {— r2e®) rdr < 2t2Q s‘ exp {— rt?} rridr,
4 2

. &

Extending the domain of integration and performing the change of variable r2t? = x2/2, we
find that

j<|t|—102—l/2.,l' (1-6)

e

where Jg = | exp{—a¥2}a'"*'dz.
¢

Making use of the expression of Jy in terms of the Gamma function and of known estimates,

it is easy to show that Jg < g (L + 1)/ 26-L.c,

Now, it is easy to see that

§<-F=_(s)<0.e’. (1.7)

The estimate (1.3) follows from (1.5) -(1.7).
We prove (1.4). We have

BTG >e = [ raf ) < [ Aoy e ar (1.8)
€ e
Let e, = ((¢ — t)/t)}/%Q-1/% 2 €. Then
: N g
[ rpyar=§ + . (Lo
2 e 31
Obviously,
T K % 1—t
gel—'t—lands <0‘S rl—t—xdrg(l)it
e e e

for £ > t. From the last inequalities, (1.8), (1.9), and the definition of e; there
follows that
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e—l7 e _ A
B (E> )gzelfgz(l%), (1.10)

if €; > €. Inequality (1.10) holds also for €, < €. The lemma is proved.
In the sequel we shall use the notation
f(&)y=TEexp{it(Y,z)).

LEMMA 1.4. Let X, Y, V be independent random variables, X + Y = Z, and let g,(-),
g,(*) be measurable functions in H. Then

[Eexp{it|Z + Vg1 (X)g (V< cEV? | £ (20) 81 (X) 1 (X) | El 2, (V).
Proof. Obviously,
Eexp{itlZ+ Vitg (X)g. (V)= Eg. (V) Elexp {it|1Z + V|*} g, (X)/V).

Making use of the properties of the conditional mathematical expectations and of Cauchy's
inequality, we obtain for any a & H that

| E exp {it| Z+al2}g1(X)|<E‘”IE{gx(X)exp{it(IXI’ +
+2(X,a) + 2(X, Y)Y} = EYg, (X) g (X expfit (X |2 — | X' I* +
+ 2(X°, @)} E lexp (20 (X0, )1/ X, X'} S BV | (20) 8, (X) £, (X)),
where g, is the complex conjugate function of g,. From here there follows the assertion
of the lemma.

Let m and y be natural numbers such that

m<u<2m<2m,=2([n/4] +1). (1.11)
We ask additionally that :
m = 21. (1.12)
We denote ay = Yu/n, a = vYm/n. From (1.11) there follows
o L o, <L 20 (1.13)

For the Lemmas 1.5-1.8 we set

;] n—uiv n
—1/2 1
X—=n ‘/-( 2 Y+ 3 x;m),
Jou—p k1 imn—pi-v41

where 0 < v < y, Yj are independent and distributed in the same way as Y,.

We define the quantities My and €(%) by the equalities

{ 1/2
Pyl < M)=(12), e(l) = M, (_2 a,/a,) . (1.14)
=t
Here aj = cj(Bn/ZBujl3)L/2, Buj = E(Xy, ej)*
LEMMA 1.5. For all 0 < v < u we have the following estimates: if r > e€(2), then
P (b () <r) <e AT (1.15)
if 0 < r < (), then ]
(0 (XN <r) e () AT eyl (1). . (1.16)

Proof. First we prove the lemma for v = 0. Let W = ‘JTV%, where nj» j=1, L are in-
dependent random variables, distributed in the same way as no/a .

For seminorm in H we consider bg(x), x ¢ H. From Lemma 1.1 there follows
P(b(X)<r—e(l))< P (6, (X + W)<r)/P(b(W)<e(l)) (1.17)
for r > ().
Now, by virtue of (1.14) and the definition of W, we have

P<b,<W><e<l)>=P(Zn’;’c§<82(z)> Pl mol < M) =7
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Then from (1.17) we obtain

, / !
P(b (X)) <r—e () 2P (X + W) <r) = 2§ p(@)] 2= i -\3"3"3<"2) i (1.18)
ity . !
for r 2 €(2), where p(-) is the distribution density of the random variable XS(2) + W, x =
1
Nz dr =dzdrx,...dx,.
1
We find a uniform estimate of p(x). We denote A = {8=Ry: [84] < aj, j =1, &}, where

85 = (8, ej). Since Eexp{itne} = 0 for [t] > 1, it follows that for 6 & A = Rg\A we have

I
Eexp{i (0, W)} = [] Eexp {in0;} = 0.
=1
By virtue of the inversion formula and the independence of X5 and W, we have

p@) =20~ | exp{—i(0, 1)} Eexp li (8, X*)| Fexp (i (0, 1)} dd < (2m) ™ { | Eexp{ (0, X)} |1 (4)do. (1.19)
. IS

R”y ]

We have
RtY

[Eexp {i (0, X)}|* = | Eexp i (8, X{Pn~1?)}

By Lemma 4 of {8] we have
|Eexp [i (0, X{™)) |* < | Eexp (i (8, X 1)} ™ exp {4oapt} + (1/2 + po)™*, (1.20)
where pg = var[P((8, Xgm)) <r) =P((8, X,) <r)].
From (1.19), (1.20) there follows

p@< @)™ | [[Eexp lin™(0, X))} ™ exp (dpun} + (172 + po)™] 7(A) do.

Ry
(1.21)
Since for 0 = A we have
!
E(X,,0) < 1® 207y < 3nE (X, 0)4/2;
1 .
Lemma 1.2 implies
. . 1
|Eexp [in "2 (Xy,0)1 1 (4)| << exp{— E(X}, 0)*/4n} = cxp {_ 29‘,&;}/@}, (1.22)
1

It is easy to see that
pe <2P(IX, | = o¥m)/P(1X.] <6¥m)<2/(m--1).
Then from (1.21), (1.22) we obtain the estimate

) l )
P <2m)™ ‘ [exp {—u ;0?03’/%} exp {4pon} + (1/2 + po)“‘I(A)] do <

Ry
A 9 ' ‘Ju b 9 0
<@n)~ a;‘A;'”' exp {IB_—HT] + (1/2 + m%) i (242 /ni2)! WA,
From here, by virtue of (1.11) and (1.12) there follows
p(,r):gc(l)au_l/\,'—l/z. (1.23)
The inequalities (1.18) and (1.23) lead to the assertion of Lemma 1.5 for v = 0.

Let 0 < v < u. Then either X contains at least half of the terms of the form xgm) or

in X one has more than half of the terms of the form Y;. It is well known that the convolu-
tion of the densities does not exceed the maximum of any cf the components of this convolu-
tion nf densities. Therefore, in the first case, for the estimation of p(x) it is sufficient
that in the previous computations we replace u by [u/2], while in the second case we use the
fact [p/2] terms are Gaussian. In both cases the estimate (1.23) holds; consequently, also
Lemma 1.5 holds.
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N2y,

For Lemma 1.6 we set Y = n~'* ¥ ¥

o X
1]
LEMMA 1.6. For any t > 0 nd 0 < v < u we have the estimate
EIXI* < c(t) (o). (1.24)
In addition, for any t > 0 we have
ElYl' <c(t)o'. (1.25)

Proof. Let v = 0. From [9] there follows that for t > 2 we have

l].

EIX{ e n™ [u + (nE]XTVF)™ + (1| EX{])" +

(1.26)
It is easy to see that
E[X™| =E|X,|7(X,| <o Vm)/P(X,| <o Vm)<20'm "
for t > 2 and
|EX{™ | = (|EX (1 X | =0 V) [/P (| Xy | <o Vm)) < (20m™ ).

From the last inequalities and also from (1.26) and (1.13) there follows (1.24) for t 2
2, v = 0. Applying Holder's inequality, we obtain that the estimate (1.24) is valid also
for 0 < t < 2, v =0. Inequality (1.25) is proved in a similar manner.

n—p+v n
If 0 < v < y, then applying a result from [9] ton ¥ ¥ ¥; and n7V2 3 x{™
npt1 nhv+1

separately, we obtain again (1.26). The lemma is proved.
LEMMA 1.7. For each 0 < y < /2 we have the estimate
P (b, (X°) e, | X [/62 (X) = (e ) < el I (AT Vou0?).

Proof. We denote A = {by(XS) > €(2)}. By Chebyshev's inequality, for any y > 0 we
have

PIX /0% (X*)>"1t], )< E((A) 11X (X)) T < E(L(A) 1 X167 (X7) ) (161¢]-)". (1.27)
By virtue of Holder's inequality, we have
E[1(A) 1 X196-21(X*) ] < EVo| XI*WEV?[] (4) b= (X*)], (1.28)
where p, q > 0, p~! + ¢~ = 1. .

Making use of Lemmas 1.3 (inequality (1.4)) and 1.5, we obtain that for any 0 < y < %/2p
we have

EYPb™ (X)) I (A) < e(l, v, p) (AT Ve '), (1.29)

We set 0 < y < /2, p = 2/2y. The assertion of Lemma 1.7 follows from (1.27)-(1.29)

and Lemma 1.6.
n—om n—2am

For Lemma 1.8 we introduce the notations: Y =n""? 3 X; or Y =rn""* 3! Y,.
1 1

LEMMA 1.8. Let ¢ be a natural number and let 0 < y < 2/2. Then we have the estimate

=1

EV2|f e (1< e () (A} ol ] 4 1) +(P,1/aun)’“]+c(l v)(aw’“ltlri’.%/n”“)"+(%)‘ . (1.30)
In addition, if m = my, then for any p > 1 we have

i
En/-zplf t)l <e(l) [(A;/ap“‘l/zp + 1)—1 + (I‘l',/n)“’] c(ly) (A,’/ll t] I"/’/nl/z)wp + 0(3/5)71/4 (1.31)

n-—2m

Proof. Assume first that Y = n72 3 X,. Then
1
f:(8) =(Eexp {itn~"*(X,, z)})"-*".

From Lemma 4 of [8] we obtain
f=(t)} < [Eexp litn="(X,, z) H*-*™ exp {20(n — 2m)} +(1/2+ p)n=m, (1.32)
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Here p = var{P((X,, x) < r) = P((X;, x) < r)]. It is easy to see that
p<2n, (1.33)
where n, = [n/4].
Now, by virtue of Lemma 1.2 we have
{Eexp {itn="*(X,, 2)H < exp {—b*(2) */4n)} (1.34)
for |t| < (3nb2(x)/28,,(x))‘/2, Bo(x) = E(X,, x)*. The inequalities (1.32)-(1.34), taking
into account (1.11), imply
E"“’Ifx.(t)|<c[E”” exp [— b2 (X5) £ (n — 2m)/4n) + PY3(2P, (1) 2
> 300 (X)) + (1,2 + 20m)" ™ sm g [a, + 2y + ). (1.35)
From Lemma 1.3 (inequality (1.3)) and Lemma 1.5 (inequality (1.15)) we obtain
Eexp =62 (X") 2} < Ao (217 + &' () e (D).
Now from the condition (1.11) and from the fact that a, < 1 there follows

a, < c()[(AM2L2 1617 + 1) + a2 Ty n) 4], (1.36)
{
where Iy, = A7 X B,;.
]

We estimate a,. For any t we have
P (B (X)/02 (X)) > 1)< P B (X)) <e) + P06, (X) Ze(), | X°1/62(X7) =18 B7Y).
From the last inequality, Lemmas 1.5 (inequality (1.16)) and 1.7 there follows that for any
0 <y < /2 we have
P (B, (X*)/6* (X*) > t]) < A'ap'e e ) + el y) (wioB | 1T AT
o' (Taum) ey () + (i £ 7)) AP e (1, y).

Returning to (1.35), we obtain
a, = P2 (B, (X*)/b*(X*) > 3n/2t*) <o (Tauin)" ey (1) + (an | LTI /) AY el vy, (1.37)
It is easy to see that conditions (1.11) and (1.12) imply
a5 << (3/5) ", (1.38)
Since 'y, ¢ < Ty, g, from (1.35)-(1.38) there follows the estimate (1.30) for Y =

n-—-2m n—am

"Vt X, . If Y=n"" 3 Y;, then the proof of (1.30) becomes simpler.
1

1

Estimate (1.31) is proved in a similar manner. The difference consists in the fact
that now one has to raise both sides of the inequality (1.32) to the power p, to obtain for
E!/2|fgg(t) |P an estimate similar to (1.35), and to extract from both sides of this estimate
the root of order p. It remains to make use of the inequalities (1.36)-(1.38). The lemma
is proved. )

For Lemmas 1.9, 1.10 we set
A EX =Y +V 1 X,
1

n—2m ’ n—p n

where Y =n"? 3 X;, V=n""" 3 X;, X,=n"" 3 X,
1 . n—2m+-1 n-u+1

LEMMA 1.9. Let £ be a natural number and let 0 < y < ¢/2, Then
|zl <[(AF%a"™ 1|7 + 1) + a2y um) " c() + (@) ¢| TIE/02)Y APe(t.3) + exp (— m/2). (1.39)

Proof. We denote
’ 2
Zuim (t) = E {exp {it }/gi =0,

j=n—2m+t Ln—pu =1 k=n—p+ 1n}

n —
n—1/2 2 Xh
. 1
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where £, = I(|Xy| < ovm). We have

) é §j<m)1 (‘I.VC?)

]
—1/2 NP
n 2 pa Xk

1 n'—'.'mJ-l'

£n(t) = ;‘mgu.m(t)l’( S 5= u) + E(exp{it

n—2m41

Applying Hoeffding's result on bounded random variables (see, for example, [10]), we
obtain
n

P( :‘_1, §,<m)<l’( 2 (Ei—EEJ)<2—m><e_m/2 (1.41)

n—-2m+1 n—m4-1
under the condition (1.12).
We estimate |g,, p(t)|. We denote

A=lti=t k=n—p+inl, Ai={li=Lk=n_—p+1n],

Ay=(g=0, j=n—-2m+1,n—yu} ~

Obviously, I(A;) and I(A,) are measurable functions of X, and V, respectively. Therefore,
making use of Lemma 1.4, we have
| guim ()] = |Efexp (it X, + Y + VA, A} = (1.42)
= |Eexp{it| X, + YV + VI (A) ] (A) [P (A) P(A)< EV | £, (20) | T (A) T (47)/P (Ay) = E'*| 1, (28)),

n
where X = noV2 2 -xg-’").
j=n-pu+1

From (1.12) there follows that .
(3/5) -t < exp {—m/2), (1.43)

Therefore, (1.40)-(1.42) and Lemma 1.8 (inequality (1.30)) lead to the assertion of Lemma
1.9.

LEMMA 1.10. Let £ be a natural number and let g4 > 0.4 Then

e

lgn )\ < e, () ATH? (max_(1, o.en?)/| L))" + ¢ () (F,,,/n_)'/" +\(Ix3}}>p! v () |)ﬂ/4 + exp [4— 121—}

Proof. We consider the random events
Ay = (3nb*(X*)/2B, (X*) = 7}, By, = {2|tX°(})|/n'/2 =g},

n

where X =n-Vz X@mh Making use of the inequalities (1.42), (1.32)-(1.34), and also of
-+l
the conditions (1.11), (1.12), we obtain

| Bum (8)] << BV [0 (26)]| < ¢ [EV2I (A oxp {— b (X*) £ (n — 2m)/n} +

= EALAB)( sp 10 @)+ B (AB) + (112 +,

+ 2/n,)m—2mi2 Z EV2 exp {— b2 (X°) t7/2) + ( sup |v(z) \)ﬂ/t§+ (3/5)"4-1 + PV2(B,, ).
o [2(In; }

%y

(1.44)

Then, we have y
P(Bi.,) = P(|1 X () [ <egnt2|t]) <P (5(X") < eooin”*/21t]).

Therefore, from Lemma 1.5 there follows that
PU2 (B, )< AT g (g0 an 12| £ Y2 + V2 (D) ¢ (1), (1.45)
We select m = m,. Now (1.44), (1.45), and (1.36) lead to

_ i 3 \E_1
I OIEMY Y2 (max (1, eq0 nV2)| £ | )12 4 ¢, (1) (DY /nuz) 2 4 ( sup |v(x)|)"/4 + (Tf . (1.46)

|x(D]~>e,

Since Iy ¢ < T1, ¢, the assertion of Lemma 1.10 follows from (1.40), (1.41), (1.46),
and (1.43).
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2. Auxiliary Statements. An Estimate of (g, (t) — g(t)|

LEMMA 2.1. Let Z = X + Y, where the random variables X and Y are independent, and let
¥ be a measurable mapping H x H » H. Then for any x & H, y € H, natural numbers j, k, and
real numbers p > 0, q > 0, 1/p + 1/q = 1, we have the estimate

h~j

|B(2, 22, 0 oxp (2. ¥ & u) + |21, 1) 12P [yl 3 BV Y [EV| X [himmEuee | [, 20) P, (2.1)

where fy(t) = Eexp{it(Y, x)}.
Proof. We set
Ejx(z, y) = E(Z, 2)(Z, yYeexp (it (Z, ¥ (z, y)) + | Z|*)},
Ey1, fa T T4 7, 9) = B(X, 2Y1(Y, 2)2(X, 9 (Y, yYsexp (it ((Z, ¥ (z, )+ | 21}
It is easy to see that
En(z, )= X E(ufa o o 2 4) CRCP. (2.2)

iy tig=i.
Jgtig=k

Making use of Holder's inequality and the properties of conditional mathematical expec-
tations, we have the following chain of inequalities:

VE @iy, oo Jar Juo 7, )| = | E(Y, 22 (Y, pYeexp (it (Y, ¥ (z, ¥) +
FIYPIE X, 20X, ) exp (it (X, W (@, ) + 2(X, V) + | XYY
<K (Y, 2707, o) ER (X, 2 (X, 5 exp (it (X, ¥ (2, p) +
+2(X, Y) + | XTI 2ty P E Y PO EVE (X, 0 x
% (X7, 2V (X, 9 (X7, 0 exp (it (X, W (2 ) + 2 (X, Y) + | X|" =
Xy =2y PR Y P B o (x, 0 (X, )" x
X (X7, gy exp (it ((X*, ¥ (z, ) + | X [P = X" 12)] %
« E {oxp (2t (X°, Y)I/X, X'} < |2 P |y P BV Y (P70 BV £ L 2] %
) | X P78 X0 P oy [P Y PO BV X PR s 2 P (2.3)
From (2.2) and (2.3) there follows (2.1). The lemma is proved.
We set
e(v, z.t) = exp{it(,z) |z J(-. 0= {e(-,z1)Q" (o).

BHere XEES , Q is a generalized measure on H with Q(H) = 0, Q?* = Q * Q is the convolution of
H

measures.

We shall use the notations

Ef(U) = | {(2)Q(dz),
E(U, V) = [ (= 1)Q@d0) 0 @y),
where f(x) and f(x, y) are arbitrary Borel functions.
In the sequel it is assumed that the summation indices are nonnegative.
LEMMA 2.2. We have the expansion
J )= Ere(, U )+ 28E[ X @™, U, V) +
. ) j<1,h<1
+ 21+ it (-, O Vo) +r (LU O (L V01U, V) + 230 Efl +
+2r, (-, Vo) (L U ) (Vo I, V)2 + 4(it)* Ee (-, U, t)e(-, V,)r, U, V,t), (2.4)

where
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r(-.z, t)=e(-,x, t)—l—zt( z)y= —1(

12('7 Z, t) ‘-—'—'—'6‘(-,

T, t)—1=it(,

f exp {itA(-,2)} (1 — M) dA + it exp{it (-, 2)} |z ? f exp {ith |z |*} dA,

x[Yexp{itk(rl-)}dl-+ O (|t 2)z)),

0

1

ro (@, ¥, £) =(z, ¥ | exp{2itA(z, )} (1 — 12 dh.

Proof.

Making use of the identity

0

e(z+y t)=e(,z t)e(y tYexp {2it(z, y)}

and the expansion

it)®

exp (it (z, y)} = 1+ it (z, y)—-’—(z e+ r @y, 1/2),

we obtain

J(.t)y=Ee(-, U+ V,t)=E%(.,U,¢t)+ 2itEe(-, U, t)e(-, V, ) (U, V) —
4
— 2B (-, U, e (-, V, ) (U, V) + 4(itP Ery (U, V, D) e (-, U, )e (-, V, 1) = 2 4;. (2.5)
. 1
Obviously,
1
e(-,x,ﬂ.=(1f+it|xFSexp{ﬂA|xP}dk)exp{u(~,x»== 14+ it{(-,2)+r(,xt),
1]
From here
A, =20tE[ X @Y™, Uy (L VR + 201+ (L, UGV )+ (LU GV I, V). (2.6)
: J<LE<1
Similarly,
A= —20E[1+2r(, V, )+ ra(y U, yra(e, V, 1T, V)? (2.7)
Taking into account that
1 .
e(-,z, t)= 1+ O(|t]|"2]|z)) cxp{zt x)}=1+it(~,z)'s exp {itA (-, )} dA + O (|t |12 ]z]),
0
from (2.5)-(2.7) we obtain the assertion of the lemma.
LEMMA 2.3. We have the representation
1
Ee(-, U, ) =E[1+ it (-, U) + U ) + S22, oy + ©2 ¢, U)ﬂexp{iw-,tf)}x
} 0
. 1
X (1 —Nrdh— U (-, U) § exp{ith(-, U)}dh + r (U, t)exp{it (-, U) 1,
‘ o (2.8)
where r,(x, t) = 0(|t|3/2]x|?).
Proof. Obviously,
exp {itlz|*} = 1+ itlzl* + O (1t1*2]z]%). (2.9)

From here

e(-,z,t) =1+ it ((-,z)

1

3

+ 9% ap [exp i,
0

(1= dh —e* |z (-,

Flol) = 5 (a2 +
1

z)jexp{ﬂk(u

0

)} dh + exp (it (-, 2} O (1t 2|z ]).
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It remains to take the mathematical expectation of both parts of this equality.

LEMMA 2.4. We have the expansion
Ee\P{“|Y1+J|}—g(l)[i-f-ltz Al +0(t’ly|‘]

Proof. The assertion of the lemma follows from the known equality

g(t,yy=FEexp{it|Y, +yl’}=¢ t)exp{zt? (y'ej)z} (2.10)

1-— ‘.’.L’t_af1
(see, for example, [11]) and from the estimate

it V . &) (1—%:05) < ey

We note that in [12] one derives a representation of g(t, y), distinct from (2.10).
However, it is less convenient for our purpose.

LEMMA 2.5. For any p > 1, natural number ¢, 0 < y < £/2, we have
|En BO—e@®I< ”'—l{c'g_d'('o‘tz + UQItI)H(i + tzo'f‘)_l/‘ +
1 ) =1

+ c(p)i—%(o’“t" + o? \tl)[c(l ((Al/npltll/'zp + 1)—1 + (Fl.l/n)_,’l4p) + e(l, Y)(Itlrllo/nl/o)wn Av/lp + ( )n}}

Proof. Let F, F, ¢ be the distributions of the random variables X,, X Yl, respec-
tively, let G=F- 9.

From the elementary identity
s

a" = b =n(@—>b)b""' 4 (@—b2 3 (I + 1)ba"?

there follows that for any Borel set A < H we have
.l-f’,('n"mz = A) —Pl( Y Y,. e A)
1 : - 1
- . n-a . - _
=n5 ( (z )eA)G(dy)+ S+ 1) P2+ iy e 4) 3 (dy),
1 =0 :
where 2¢ = (ZY 2 ) n;—2. From here,
+

n—1 2] _ n—2 ’ -
(S 4 o) [} B+ 522 S0+ 0B foxp 1204 w1 32
(2.11)

gn (t)"" g()y= b;inE 5 exp {it n

Here by, =P(|X,| < o /m), G, = byG.
First we estimate
E;=E j explit| Z, + n= "2y %) G (dy) = Ee‘xp.{it | Z, l’}jexp (it ((n~V2y, 22,) +
+ | n" 2y P GY" (dy) = Eexp{it| 2, "} J (22, 1),

Q(A) = G,(/nA). To this end we make use of the representation (2.4) and we shall estimate
the terms occurring in this sum.

It is easy to see that

. N L
E =Q, +2n7"2 Zk: E(j, &) (it/ V)Y L 3R, + Q,, (2.12)
JREL 1

j<1

where

Q, = Eexp{(it| 2,1} ([ (220, n™V%, 1) G, (@2))’,
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Q= — L Eexp(it| 2,1 | [z, 92 T1 (@G (),
E(j. k) = Eexp(it| Z,1}) | [ 22, 2yi (22, yy (z, )G, (=), (dy),

R, =--4-£E Eex.p{it ] Z |:}”'(zm‘”*(2z,, z) + 1) (2, ,1/)r1 (2Z,, n""y, £) G, (dr) G, (dy),

R, -—&-t-Ee‘{p{LtlZ[

n o t) ry (22, n 2y, 8) (2, 9) G, (dD) G (dy),

Ty

Ry=—"C Bexp(it|Z, I-‘}”(x, 01 (220, n7 0, 0) B, (d2) Caldy),

Ry = —Z Eexplit| 2 [ { o (220 w720, 1) 1, (22, 071y, 0) (2, 45 T )T, (di),
=4 (it¥ Eexp{it| Z,}*}) J 5 e (22, n™%z, tye (22, n "%y, t) ry (n=%z, ™'y, t) G, (d2) G (dy)-

It is easy to see that for 0< j <1, 0 < k < 1 we have
(@’ oo Co@n = [@ oy (. 0 1= LF + (1 —b,) ) (dy), (2.13)
where Iy = I(|y| 2 ¢ vmp). From here there follows that for 0 s.j <1, 0 <k ¢ 1 we have
[ ((r J)<-,x)’<-, 1" G, (d0) G, (dy) =

5§ z, y) (- I F (dx) F [dy) — Te-(1 — ba) X
Fldn @ (dy)—f (1—b::;F(dy)®(dI)+(1—b)”cD(dz)(D(dy)] (2.14)

n—amy,

In Lemma 2.1 we set now Z = Zg, Y 2 Y(g) = n”/* 3 Y;for 2 2 n—2m,, Y = Y(y) =
S

n—2
3 X; for 2 < n - 2my, X = X(y)
2mpy—1

max EY®|fys(2t) |7, p> 1.

0<len—2

Z-Y, ¥(x, y) = 0. Then, we denote Np(t) =

Applying Lemmas 2.1 and 1.6, we obtain
|Eexp {it| Z:1} § | (2, 9) (-, 2 (- MLl F (da) F (dy) | <
Lc(@N, ) E(IX, P51 X =0 Vimg) E(X, M

itk
AL

1 X, |>0 Vm,.)<cl(p)N (t)Bio®Uthi—4p 2 7, (2.15)
It is easy to see that for any v > 0 we have
1 —b,<EIX,|"/(cVma)" (2.16)
In (2.16) we set v = 3. Then, similarly to (2.13),
(1 —baEexp{it1 2,1 | (2, 4) (20, 2 (21, Y 1F (@dr) D (dg)| < o (p) N, () Blo®0+ W40/, (2.17)

For v = 2 from (2.16) we obtain

on=1—1/m. = 20/21. (2.18)
From (2.14)-(2.18) there follows that
]+lt_2
|E G, B)| < e (p) Ny (0) Bl M40 T ", (2.19)

Similarly, setting this time ¥(x, y) = )\yn'l/2 and using instead of (2.14) the
equality

Sl we o, 902 6,@0 5@y = [ @25 (-, 9 (= LF + (1= b O (d2) Gy (g F< 1, (2-20)

we find
R < Kp(n,t) (6t + a't?), (2.21)

where Kp(n, t) = c(p)Np(t)B§/06n3.
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Setting ¥(x, y) = (A;x + )\2y)n'1/2 and making use of equalities (2.14), (2.20), and
also of the estimate

| @ .02 9 G T <el - 185, (2.22)
we conclude that
[R.| < K,(n,t) (c"[t]® + o°[21%). (2.23)

Now, applying, according to the circumstances, one of the relations (2.14), (2.20),
(2.22), we obtain

FRyl < Ko (n, t) (a®1E1® + 6°181%2),
IR, < K,(n, t) (o* +0%l¢l%),
1Rs! < K,(n, t)a®ltl?,

(Q.] < K,(n, t)o't.

For the estimation of Q; one has to use first the representation (2.8). After that,
proceeding just as before, we find the estimate

19, < K, (n,t) (6%t* +(6%t)?). (2.25)

Collecting now the estimates (2.19), (2.21), (2.23)-(2.25), we obtain as a consequence
of (2.12)

(2.24)

|E/| < K, (n, t) (6"%t° + 0*1¢1). (2.26)

We consider now the quantity

D=E y exp{it n=V? (nil Y; + y) ‘2}51 (dy).

By virtue of Lemma 2.4 we have
D = g(ant) g (1 + it 2 (r="2y, ¢;)*/(1 — 2ita,o})+ O (12| n~ "2y \‘))5,({11/),

where ap = (n — 1)/n.
Similarly to (2.13) we have
(. e)?Buidy) = [ (v, &) (= L,F + (1 —ba) ] ().

From here, taking into account (2.16),

9

5 2(" vz )| -

As a result we obtain

“z(ﬂ V)" [ LF 4 (1 —by) D) (dy) | < cByiotn.

2
1 — 2Ltanr17

IDI < lg(aat) | (o' + o?lt]) 3./ a*n’. (2.27)

From (2.11), (2.26), (2.27), (2.18), and (1.30) there follows the assertion of Lemma
2.5.

3. Proof of Theorems 1 and 2

Proof of Theorem 1. We set

A, = sup

r>0

P(n‘

"”@Z’«) —P(Y,I<n)].

It is easy to see that

A. <A, +c3/cn. (3.1)
For any T > 0, by Esseen's inequality and Lemma 8 of [8] we have
&@[HY !t“[:«z‘,.(t)—ga)]ldt+<olo.,r)"]. (3.2)
. ti<t ‘

446



We select t from the condition
(T A (AT m)? = (0,0,7) 7Y (3.3)
where Yy and n are positive constants, satisfying the condition 2n < y < %/2; more precisely,
the relation between n, y and % will be determined in (3.21).
We set )
Ty = ( ﬁ/ra.l)m l\l_mv T, =2 (’l/rl.I);’:‘:[ Az_’/lv
Ty = (T )7V 2,02,

The cases 1, 2 1; and 1, < 1, are possible. We shall restrict ourselves to the case
T, 2 T,.

We define a function a(t) by the relation

(b (t))™"F ATV o (At () T3 R12)Y, 6> 0. (3.4)
It is easy to see that
ta(t) = A7V (n/T )T, (3.5)
Bounds of t, and 1, are easily described in terms of a(t); namely:
a(t)=1/2, a(t,)=(T. /n)"*""s, (3.6)
From (3.3) we obtain
T= (n/I‘,_,)%(:\}’/'clcz)_#. (3.7)
Simple computations show that
. s, L L
Tty = (/T Y02 T (A 0y0,) (3.8)

If y > 1, 2 > 4, then by virtue of (2) and (3.8) we have 1 > t;. It is easy to see
that

2, (1)
t

L5 (2 () — g () |t < mf [67 (2a(t) — g (1) | B
<tl

k=la<iti<rgy,

5
ldt+ [ |E2er=3 70 .9
i<z "o, k=]
where 1, = 1.
We estimate J,. As a consequence of (3.4) and (3.6), for any 0 < 1 < 1, we have
(£/2)7 ATV > (A T3 nV22)Y, (3.10)

Making use of Lemma 2.5 and taking into account (3.10), we obtain for & < 12p, p > 1,
the estimate

T L cBo/nAY' + Le (L) (Tt V )V Wisap (n) ¢ (1) (Ty,0n)"*P + (3/5)4] ¢ (p), (3.11)

where ¥ (n) = In(n/T% ) for k = 6, ¥ (n) =1 for k # 6. We have also applied here the
equality t$B%0%/n = 1. :

In the sequel we shall make use of (2) without any special mention.

It is known [13] that 4, < B3An"/2 for Bs < =, where A depends on the operator T (see
also {8}). Therefore, in the inequality (3.11) it makes sense to consider only £ > 7. In
the sequel we shall have in view only such &.

Setting p = 14/13, we obtain the estimate
1o < e y) (Ts /Yr) P+ c()Tu i/n (3.12)

for 7 < ¢ < 12. For the sake of the simplicity of the formulation of the result, we dis-
regard the possibility of writing down a somewhat sharper estimate than (3.12).

If ¢ > 13, then by the same method one obtains the estimate
Ji< (e(L ) Th + () T,0)/n. (3.13)

The integrals J, - J, will Le estimated with the aid of Lemma 1.9, selecting a in an
appropriate manner.
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First we consider the integral J,. We set a = 1/2. Taking into account (3.10), we
have

3
13 <C(l) (AT —”2 [(Fl.l/n)f{4 + crexp{— n/S}] In(ty/t,)} = 2-’2;‘-
: 1

Making use of the fact that t,/t, < TzAé/Q, we obtain

Iy < c(l) (Do /), j=2,3.
As a result, )
Jo S CUPu 1)+ (T, /) (3.14)

We define a natural number m(t) by the equality
jm (t)jin — o (t)]—mm\m/n—-a &)N)-

We estimate J,. We set m = m(t). Then a = Vm(t)/n and, as one can easily see,
o —a®(8) ] < 1/n. (3.15)
By virtue of (3.4),(3.5), and (3.15), we have

T

Vi 3 2n
I3 o) CumTFDIn 2 (T [ e'a™ @) de + o exp{—— (»iT, ov]m 2
2 I, 2

Since a(t) = ht™!, where h = AEl/g(n/Pl, Z)Y/(ZY + 1), we have

T 73
t“a“”’ (t)dt = (th“)”"

T

2 2

o

< a—l/? (TS) —_ (Fl.l/'l‘)—l/4+ln/zv'

“

Consequently,

In (/1) + e (1) (Ty,/n)"". (3.16)

<[ 4 corp|~ L7

For the estimation of J,, we set m = m(t;). By virtue of (3.4) and (3.6), for any t >
1?3 we have
P

- [t ("/I’l.t)"/vt—m]‘”.2 ATV < lz\fl’llt (F,,z/n)l—"/v]v.

From here, taking into account (3.15), we obtain
. . - 3
Jo< e, [AV (T um) "] + [c () (T1.0™" + exp {— 7 (/D)7 H In(t/)= XS (3:17)
: . 1 ]
From (3.3) and (3.7), taking into account the inequality Ai/l < 0,0,, there follows

y=n
Ja<<e(l, y)(Ty/nyv+,

(3.18)
Obviously, _ '
Ju<c( v, m)Ty /n (3.19)
Let 0 < ¢ < /2. We find

We perform the substitution u = n/y. Since y/(y + 1) is an increasing function, we have

.a,—_—‘max min(.l—,u, “_—_")_l?)= max min(z ,“’;———'i)—(—l-:q-z—e)).
°<>'f<’/2 = y—1 0<<u<1/2 e e
y=i—e

Now we make use of the following simple fact. If f,;(u) is an increasing while f (u) is a
decreasing continuous function, f,(u,) = f,(uy), uy = [a, b], then

max min (fy @), f, (@) = f1(u,).

agugt

448



4e

-2

In the considered case u; = 2/(l+¢4-+ ). Consequently,

ae=z/(z+4+tf523). _ (3.20)

We set

(3]

! 4
V=3 1=V T e (3.21)

.1_

where € = §2/(4 + 28). Then from (3.16)-(3.20) we obtain that for each § > 0 one has
I+ 1, < c(L78) (L), /n)++o. (3.22)
It remains to estimate Js. It is easy to see that
Je<e | AT S e AT
t>‘tl .
From here
I, < c(Ty JTn)Ye, (3.23)

From (3.1), (3.2), (3.7), (3.9), (3.12)-(3.14), (3.21), (3.22), and (3.23) there follows
the assertion of Theorem 1.

Proof of Theorem 2. We select t = 1, from the condition Ag'l/z(n1/2/F}<it3)2/2 =

(0,0,1)"1. This is equivalent to the requirement
¥ __n)L
(L, l/"’)(zv“ Y ) :

= (0,0,7) . \ (3.24)

From here
L(_\’__D_)
T = (0,0,) N (/T ) PV Y, (3.25)

For the estimation of the integral J, in (3.9), we apply Lemma 1.10. By virtue of (3.24)
and (3.25) we have

1

J, <, (l)max (1, (eocrll’,‘_/f)?) (T'y.4/n)

|~

Fa=3) 4 [cz(l)(Fl.z/n)’“+( sup \v(x)l)""+exp{;' %}]‘ (20

1x(Di>e, 3-

We set € > 0,
/Y =v/(2y+ 1) —nly, y=4I/(8+¢). (3.27)

Then n&/2y = /(16 + €). From (3.16), (3.26), and (3.27) there follows that for any § > 0
we have

I3+ J < e (b ) max(1, (e,0, TV ) (Tpu/n) ™ 4 (1) ( Sup | tz(z)l)"“ In (n/T,y). (3.28)
(1) >so

From (3.1), (3.2), (3.9), (3.13), (3.14), (3.25), (3.27), (3.28), and (3.23) there
follows the assertion of Theorem 2.
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THE BERTRAND PROBLEM

S. Yu. Prishchepionok UDC 514.873

1. 1In 1852 the French mathematician and mechanician Bertrand began the study of the
problem whether a mechanical system has a integral of motion that is quadratic in velocity
and is independent of the total energy (see [1] or [2, Secs. 151 and 152]). In 1901 Darboux
derived an equation which must be satisfied, in the case of systems with two degrees of
freedom, by the potential of a conservative system that has an additional integral of motion
that is quadratic in velocity. Later the two-dimensional case was investigated quite com-
pletely in [3}.

In this article we consider mechanical systems that admit an invariant of motion that
is polynomial in velocity and is of order at most two. We obtain conditions, which the po-
tential of such a system (generalizing the Darboux equation) must satisfy, and a formula
that expresses the force function of the system in terms of the kinetic energy and the in-
variant in case the invariant is regular.

Let (M, T, 7) be a mechanical system with the configuration space M, kinetic energy
T (T is a function of class C® on the tangent bundle T(M) of the C®-manifold M that is a
positive-definite quadratic form on each fiber), and the force functionw (v is a horizon-
tal 1-form on the manifold T(M); if the system has potential V, then m = dV). All the
definitions and notation have been taken from [4] or [5]. The quantities T and 7 can de-
pend on the time t.

Let Q denote a standard symplectic 2-form on the cotangent bundle T*(M) of the manifold
M. If f is a regular smooth function on the manifold T(M), then by Qf we denote the 2-form
of the symplectic structure on Ty induced by the function f [5, p. 132].

We will use local coordinates q = {q;, ..., qp) in the neighborhood U of a point x = M
(q(x) = 0) and the frame {aqi‘E Tq(M), i=1, ..., n}, corresponding to them, in the domain

T(U) € T(M) and the coframe {dqi = T*q(M), i=1, ..., n} in the domain T*(U) ¢ T*(M). In
particular, the coordinates in the domain T(U) of the tangent bundle T(M) will be denoted
by (41, +-+» Qn3 9is ---»> dn)-

For a function f & C®(T(M)) we introduct a matrix-valued function Mg that is defined in
T(U): Mg: (q, q) ~» (aqiaqu)(q, q)- In the domain T(U) the kinetic energy can be expressed

n
in the form T = 2 %.(.Wr)-zj (4,t) g:¢;, and the force function can be expressed in the form m =
fi=1

n

2w (11. ‘(/, t) dg;.
i—=

Let p denote the projection of T(M) x R on T(M). For h e C*°(T(M)) we define the vector
field Y, = Xy, + 3¢ on T(M) x R by the condition

Novosibirsk. Translated from Sibirskii Matematicheskii Zhurnal, Vol. 27, No. 3, pp. 174-
178, May-June, 1986. Original article submitted April 23, 1984.
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