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A NON-UNIFORM BOUND OF THE REMAINDER

TERM IN THE CENTRAL LIMIT THEOREM FOR

BERNOULLI RANDOM VARIABLES

S.V. Nagaev1, V. I. Chebotarev2, and A.Ya. Zolotukhin3

A bound for the remainder in the Esseen expansion is obtained in the case of Bernoulli random
variables. The bound consists of two parts, uniform and non-uniform. The uniform part depends
only on n and p, and the non-uniform part depends also on x. This bound is compared with other
known bounds. It is shown how this result can be applied to the problem of the absolute constant in
the Berry–Esseen inequality.

1. Introduction

Let Z be a two-point random variable with the distribution

P(Z = 1) = p, P(Z = 0) = q, p+ q = 1, (1)

and Z1, Z2, . . . , Zn be independent copies of Z. Denote

Xj =
Zj − p√

pq
, j = 1, . . . , n, βk(p) = E|X1|k, ln(p) =

β3(p)√
n
, αk(p) = EXk

1 , (2)

Fn(x) = P

(
1√
n

n∑

j=1

Xj < x

)
, ϕ(t) =

1√
2π

e−t2/2, Φ(x) =

x∫

−∞

ϕ(t) dt, ∆n(p) = sup
x

|Fn(x)−Φ(x)|.

(3)

It was proved in [1] that for all n > 1 and 0 < p 6 0.5

∆n(p) 6 0.4215 ln(p).

As is well known [2], the constant in the Berry–Esseen inequality is no less than CE ≡ 3+
√
10

6
√
2π

=

= 0.409732 . . . . To date, the following bound is obtained,

∆n(p) < 0.4099539 ln(p). (4)

The proof of this bound required, in particular, rather time-consuming computations, and the authors
thank the Department of Mathematical Statistics of the Faculty of Computational Mathematics and
Cybernetics, Lomonosov Moscow State University, for support in the organization of their access to the
supercomputers of Moscow State University.

The aim of the present paper is to obtain the non-uniform bound for Fn(x)−Φ(x). Using the results,
methods, and techniques from [1], we deduce the bound of the type

|Fn(x)− Φ(x)| 6 ln(p)G0(p, x) + l2n(p)
(
G1(p, x) + c+ ln(p)G2(p, x)

)
, (5)
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where G0(p, x), G1(p, x), and G2(p, x) are functions which for every fixed p exponentially decrease in x,
and c is a sufficiently small constant.

The starting point of our reasoning is the statement that can be called the smoothing equality. For
arbitrary distribution function Ψ(x) and Borel bounded function f(x), denote

(Ψ ∗ f)(x) =
∞∫

−∞

f(x− y) dΨ(y). (6)

Let G(x) be a left-continuous non-decreasing step function, h > 0 be the least distance between the
discontinuity points of G, P (x) be the uniform distribution on [−h/2, h/2], and G0(x) be a continuous
function. Denote

δ(x) = G(x)−G0(x), B±
0 (h, x) =

1

h

h∫

0

[G0(x± s)−G0(x)] ds.

Lemma 1. Let x0 be a discontinuity point of the function G. Then

δ(x0±) = (P ∗ δ)(x0 ± h/2) +B±
0 (h, x0). (7)

Remark 1. Note that the first summand in (7) is a continuous function in contrast to the initial
difference δ(x). The second summand in (7) plays the role of the rate of smoothing. The simplicity of
this exact result is due to the fact that just the uniform distribution is used as the smoothing one. Also
note that, as a rule, the known statements associated with the smoothing distributions take the form of
inequalities (see, for instance, [3–6]). All these claims require much more complicated proofs than that
of Lemma 1; see Section 2.

In what follows we denote the discontinuity points of the function Fn by the symbol xk, k =
0, 1, . . . , n. Obviously,

xk =
k − np√
npq

, k = 0, 1, . . . , n,

and the distance between the neighboring points is equal to

hn =
1√
npq

.

Introduce the following notation:

Qn(p, x) = −α3(p)

3!
√
n
ϕ′′(x), cn =

√
n

n− 1
, Q̃n(p, x) = c3nQn(p, xcn), (8)

Φn(p, x) = Φ(x) + Q̃n(p, x), δn(p, x) = Fn(x)− Φn(p, x),

Pn(x) = P(ζn < x),

where ζn has the uniform distribution on [−hn/2, hn/2].
Using the method and the results of [1], in Section 3 we prove the following statement.

Lemma 2. Under the conditions

0.02 6 p 6 0.5, n > 200, (9)

the following bound holds:

|(Pn ∗ δn)(x)| 6 T (p, n) ≡
4∑

j=1

Tj(p, n), (10)



A Non-uniform Bound of the Remainder Term in the Central Limit Theorem 85

where T1(p, n) and T4(p, n) are the functions defined by formulas (64) and (67) respectively, and

T2(p, n) = K2(p, n), T3(p, n) = K3(p, n)

are the functions defined in [1, pp. 217, 218]. Moreover, nT (p, n) decreases in n for every p,

T (p, n) < 0.246 l2n(p), (11)

and if n > 500, then

T (p, n) < 0.1602 l2n(p). (12)

Remark 2. Some comment on the behavior of T (p, n). Using the explicit form of the functions
included in T (p, n) it is not difficult to verify that

lim
n→∞

T (p, n)

l2n(p)
=W (p) ≡ 3|1− 6pq|+ 4(1− 2p)2 + 3

36π(1 − 2pq)2
.

Indeed, this formula is a consequence of the equalities

lim
n→∞

T1(p, n)

l2n(p)
=

ω4(p)

12π(1 − 2pq)2
=

|1− 6pq|
12π(1 − 2pq)2

, lim
n→∞

K3(p, n)

l2n(p)
=

1

12π(1 − 2pq)2
,

lim
n→∞

K2(p, n)

l2n(p)
=

ω2
3(p)

9π(1− 2pq)2
=

(1− 2p)2

9π(1 − 2pq)2
, lim

n→∞
T4(p, n)

l2n(p)
= 0.

Note that max
p∈[0.02,0.5]

T (p,n)
l2n(p)

< 0.1602 if n > 500 while max
p∈[0,0.5]

W (p) = W (0.5) = 1
2π = 0.159154 . . . .

Graphs of the functions T (p,n)
l2n(p)

∣∣
n=200

, T (p,n)
l2n(p)

∣∣
n=500

and W (p) for p ∈ [0.02, 0.5] are shown in Fig. 1. Note

that in this figure the origin is shifted to the point (0.02, 0).
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Fig. 1.

Let us introduce the function

S(x) = ⌈x⌉ − x− 1

2
, (13)

where ⌈x⌉ is the least integer that is no less than x.
The main statement of this work is

Theorem 1. Let the condition (9) be fulfilled. Then for every point x: xk−1 < x 6 xk, k = 1, . . . , n
we have

Fn(x)− Φ(x) = Q̃n(p, x) +
1√
npq

S(np+ x
√
npq)ϕ(x) +R1(p, n, x), (14)
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where

|R1(p, n, x)| 6 T (p, n) +
1

npq

(7
6

max
xk−16y6xk

|ϕ′(y)|+ 1− 2p

4
max

xk−16y6xk

|ϕ(3)(y)|
)
; (15)

the function T (p, n) is defined in Lemma 2 and satisfies the bounds (11) and (12).

Note that (14) is similar to the known result by C.-G. Esseen for lattice distributions [7]. To formulate
it we introduce the following notations: X, X1, X2, . . . , Xn is a sequence of i.i.d. random variables
with zero mean, unit variance, and finite third moment,

Gn(x) = P
( 1√

n

n∑

i=1

Xi < x
)
, αk = EXk, Qn(x) = − α3

6
√
n
ϕ′′(x). (16)

It was proved in [7, p. 56] (see also [8, p. 228]) that if X is a lattice random variable taking values
of the form w + kh, k = 0,±1,±2, . . . , then

Gn(x)− Φ(x) = Qn(x) +
h√
n
ψn(x) + o

( 1√
n

)
(17)

uniformly in x, where ψn(x) = S1
(x√n−nw

h

)
ϕ(x), and S1(x) = [x] − x+ 1

2 , [x] is the integer part of x.
Note that in his work Esseen considers distribution functions that are defined in discontinuity points
as the half-sum of the left and right limits (see [7, p. 9]). In our work, the distribution functions are
left-continuous by definition. Therefore, Eq. (17) is not true in discontinuity points of such functions
Gn. However, the problem disappears if the function ψn is slightly changed, namely, if S1(·) is replaced
by the function S(·) defined in (13). In what follows we will consider (17) with such a correction.

We can see that (14) has the form of (17) in the particular case of Bernoulli random variables with
the replacement of o

(
1√
n

)
by R1(p, n, x). Moreover, the difference is that instead of Qn(x) in (17) we

have Q̃n(p, x) in (14). This is due to the fact that, in particular, we use the Bergström method (compare
(51) and [9, pp. 2,3]). One can say that Theorem 1 gives the bound of the remainder in the so-called
short Bergström expansion. In the following statement we pass over to the function Qn(p, x) and get
the bound in the short Edgeworth expansion. We shall use the notation ω(p) = p2 + q2.

Corollary 1. Let

0.02 6 p 6 0.5, n > 500. (18)

Then for every point x : xk−1 < x 6 xk, k = 1, . . . , n, we have

Fn(x)− Φ(x) = Qn(p, x) +
1√
npq

S(np+ x
√
npq)ϕ(x) +R2(p, n, x), (19)

where

|R2(p, n, x)| 6 l2n(p)

[
T (p, n)

l2n(p)
+

1

ω2(p)

(7
6

max
xk−16y6xk

|ϕ′(y)|+ 1− 2p

4
max

xk−16y6xk

|ϕ(3)(y)|
)]

+

+ l3n(p)
pq(1− 2p)

12ω3(p)

(
|x|c2n max

|x|6|y|6|x|cn
|ϕ(3)(y)|+ 3c3n|ϕ′′(xcn)|

)
, (20)

T (p, n) satisfies the bound (12).

Introduce the special notations for the intervals of two types:

J+(h, x) =
(
x, x+ h

)
, J−(h, x) =

(
x− h, x

)
.

Theorem 1 implies
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Corollary 2. Let condition (18) be fulfilled. Then for every k = 0, 1, . . . , n, we have

Fn(xk±)− Φ(xk) = Q̃n(p, xk)±
1

2
√
npq

ϕ(xk) +R±
1 (p, n, xk), (21)

Fn(xk±)− Φ(xk) = Qn(p, xk)±
1

2
√
npq

ϕ(xk) +R±
2 (p, n, xk), (22)

where R±
1 (p, n, xk) and R

±
2 (p, n, xk) satisfy the inequalities

|R±
1 (p, n, xk)| 6 l2n(p)

[
0.1602 +

1

ω2(p)

(7
6

sup
y∈J±(hn,xk)

|ϕ′(y)|+ 1− 2p

4
sup

y∈J±(hn,xk)
|ϕ(3)(y)|

)]
≡

≡ R̃±
1 (p, n, xk), (23)

|R±
2 (p, n, xk)| 6 R̃±

1 (p, n, xk) + l3n(p)
pq(1− 2p)

12ω3(p)

(
|xk|c2n max

|xk|6|y|6|xk|cn
|ϕ(3)(y)|+ 3c3n|ϕ′′(xkcn)|

)
. (24)

Estimating the right-hand side of the inequality (24) we obtain the following simpler version of
Corollary 2. Denote the greatest root of the equation ϕ(4)(y) = 0 by

y0 =

√
3 +

√
6 = 2.334 . . . .

We shall also use the functions

G1(p, x) = |x|
(x2
4

+
5

12

) 1

ω2(p)
ϕ(x), G2(p, x) = 0.084(x4 + 0.0031x2 − 3)

pq(1− 2p)

ω3(p)
ϕ(x),

G+
1 (p, x) =




G1(p, x), if x > 0,

G1(p, |x| − hn), if x < 0,
G−

1 (p, x) =




G1(p, x− hn), if x > 0,

G1(p, x), if x < 0.

Corollary 3. Let 0.02 6 p 6 0.5, n > 500, x be a discontinuity point of the function Fn. If

|x| > y0 + hn, then

Fn(x±)− Φ(x) = Qn(p, x)±
1

2
√
npq

ϕ(x) +R±
2 (p, n, x), (25)

where

|R±
2 (p, n, x)| 6 l2n(p)

(
G±

1 (p, x) + 0.1602 + ln(p)G2(p, x)
)
.

Proof. Note that under the condition |x| > y0, the function |ϕ(3)(x)| decreases in |x|. Considering,
for instance, the case x > y0 + hn, we have

7

6
sup

y∈J+(hn,x)
|ϕ′(y)|+ 1− 2p

4
sup

y∈J+(hn,x)
|ϕ(3)(y)| 6 7

6
|ϕ′(x)|+ 1

4
|ϕ(3)(x)| =

=
(7
6
|x|+ |x3 − 3x|

4

)
ϕ(x) = |x|

(x2
4

+
5

12

)
ϕ(x),

1

12

(
c2n|x| |ϕ(3)(x)|+ 3c3n|ϕ′′(x)|

)
=
c2n
12

(
x4 + 3(cn − 1)x2 − 3cn

)
ϕ(x) 6 0.084(x4 + 0.0031x2 − 3)ϕ(x).

The last inequality holds because n > 500. The statement of the corollary in this case follows from these
bounds and (22)–(24). In other cases, the proof is similar. Thus, for example, if x+ hn < −y0, then

sup
y∈J+(hn,x)

|ϕ(3)(y)| = |ϕ(3)(x+ hn)| = |ϕ(3)(|x| − hn)|,
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max
|x|6|y|6|x|cn

|ϕ(3)(y)| = |ϕ(3)(x)|.

Remark 3. Note that the following simpler bound is true: for |x| > y0 + hn

|R±
2 (p, n, x)| 6 l2n(p)

(
G1(p, |x| − hn) + 0.1602 + ln(p)G2(p, x)

)
. (26)

Denote

E(p) = 2− p

3
√
2π [p2 + (1− p)2]

, E1(p) =
1− 2p

6(p2 + q2)
√
2π
, E2(p) =

1

2
√
2π(p2 + q2)

.

The Esseen function E(p) is connected with the problem of finding the absolute constant in the Berry–
Esseen inequality (see [1]). It is easy to see that

E(p) = E1(p) + E2(p), max
p

E(p) = CE . (27)

It is not hard to verify that

1

ln(p)
Qn(p, x) = e−x2/2(1− x2) E1(p),

ϕ(x)

β3(p)2
√
pq

= e−x2/2E2(p),

1

ln(p)
Q̃n(p, x) = e−x2c2n/2 c3n(1− x2c2n) E1(p).

Using these equalities, from Theorem 1 we obtain

Corollary 4. Let condition (18) be fulfilled. Then for every k = 0, 1, . . . , n

Fn(xk±)− Φ(xk) = ln(p)
(
e−x2

k
c2n/2 c3n(1− x2kc

2
n) E1(p)± e−x2

k
/2E2(p)

)
+R±

1 (p, n, xk) = (28)

= ln(p) e
−x2

k
/2
(
(1− x2k) E1(p)± E2(p)

)
+R±

2 (p, n, xk), (29)

where R±
1 (p, n, xk) and R

±
2 (p, n, xk) satisfy inequalities (23) and (24) respectively.

It is known that there exists a discontinuity point xk of the function Fn such that

∆n(p) = Fn(xk+)− Φ(xk) or ∆n(p) = Φ(xk)− Fn(xk).

Corollary 4 implies the following representation of the quantity 1
ln(p)

∆n(p) as the sum of the main

term and the remainder, while Theorem 1.1 from [1] gives only the inequality for this quantity.

Corollary 5. Let condition (18) be fulfilled. Then for some k = 0, 1, . . . , n either the equality

∆n(p) = ln(p) e
−x2

k
/2
(
(1− x2k) E1(p) + E2(p)

)
+R+

2 (p, n, xk) (30)

or the equality

∆n(p) = ln(p) e
−x2

k
/2
(
− (1− x2k) E1(p) + E2(p)

)
−R−

2 (p, n, xk) (31)

holds, where R±
1 (p, n, xk) and R

±
2 (p, n, xk) satisfy the inequalities (23) and (24) respectively.

In addition, as will be shown below, Corollary 4 can be used to optimize the algorithm for computing
the quantity 1

ln(p)
∆n(p) when the parameter n is large.

It follows from [1, Theorem 1.1] that for every ε > 0 there exists N such that for n > N > 200

max
0.026p60.5

1

ln(p)
∆n(p) 6 CE + ε. (32)
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To obtain the bound (32) for all n, it suffices to calculate max
0.026p60.5

1
ln(p)

∆n(p) for 1 6 n 6 N − 1. How-

ever, if ε is small enough, the number N may be rather large, and this can lead to long calculations. For
example, if ε 6 0.00022, i.e., CE+ε < 0.409953, then N > 5 · 105. And when n takes values, for instance,
in the range from 145000 to 181000, it took about 30 hours to calculate quantities max

p

1
ln(p)

∆n(p) on

one of the supercomputers of Moscow State University.
For fixed n and p the procedure for computing the quantity 1

ln(p)
∆n(p) is reduced to the computation

of 1
ln(p)

|Fn(xk±)− Φ(xk)| for k∈I(n), where I(n) is the set of all integers from the interval [0, n]. The

non-uniform nature of the bounds obtained in Corollary 4, instead of I(n) allows one to use a more
narrow interval (see Corollaries 6 and 7).

Corollary 6. Let the condition (9) be fulfilled, and x be the discontinuity point of the function Fn.

If x ∈ A = {x : x > y0 + hn or x 6 −y0 − hn}, then
1

ln(p)
|Fn(x±)− Φ(x)| < 0.222. (33)

Proof. Denote

g±1 (p, n, x) = e−x2c2n/2 c3n

(
1− x2c2n

)
E1(p)± e−x2/2 E2(p), g2(p, n) = 0.246 ln(p),

g±3 (p, n, x) =
1√

npq (p2 + q2)

[
7

6
sup

y∈J±(hn,x)
|ϕ′(y)|+ 1− 2p

4
sup

y∈J±(hn,x)
|ϕ(3)(y)|

]
.

Note that under condition (9) the inequality holds which differs from (23) only by replacement of

0.1602 by T (p,n)
l2n(p)

. Using this inequality and (11), (28) as well, we get:

1

ln(p)
|Fn(x±)−Φ(x)| 6 |g±1 (p, n, x)|+ g2(p, n) + g±3 (p, n, x). (34)

It is easily seen that

g2(p, n) 6
1.69√
n

6
1.69√
200

< 0.1196. (35)

Moreover, for |x| >
√
3

|g±1 (p, n, x)| 6 c3ne
−x2/2

(
x2 − 1

)
E1(p) + e−x2/2E2(p) 6

6 e−x2/2

((200
199

)3/2
(x2 − 1)E1(0.02) + E2(0.5)

)
≡ v1(x).

The function v1(x) decreases for x > 0. Consequently,

|g±1 (p, n, x)| 6 v1(y0 + hn) < v1(y0) < 0.046. (36)

Let j = 1 or 3. Since
sup

y∈J±(hn,x)
|ϕ(j)(y)| 6 |ϕ(j)(y0)| if x ∈ A,

using the bounds |ϕ′(y0)| < 0.06106, |ϕ(3)(y0)| < 0.1496, we obtain

g±3 (p, n, x) <
1√

npq (p2 + q2)

[
7

6
0.06106 +

1− 2p

4
0.1496

]
.

The right-hand side of this inequality decreases in p ∈ (0.02, 0.5]. Calculating it for p = 0.02, we obtain

g±3 (p, n, x) <
0.797√
n

< 0.0564. (37)
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It follows from (34)–(37) that under the condition (9) and x ∈ A, the bound

1

ln(p)
|Fn(x±)− Φ(x)| < 0.1196 + 0.046 + 0.0564 = 0.222

holds. Thus, Corollary 6 is proved.

Denote

D(p, n) = max
k∈I(n)

1

ln(p)
|Fn(xk±)− Φ(xk)|.

Corollary 7. The equality

sup
0.026p60.5,n

D(p, n) = sup
0.026p60.5,n

max
k∈I(p,n)

1

lp(n)
|Fn(xk±)− Φ(xk)|

is valid, where

I(p, n) =
{
k : np− y0

√
npq − 1 < k < np+ y0

√
npq + 1

}
.

Proof. Since sup
p,n

D(p, n) > CE, the statement of Corollary 7 follows from Corollary 6.

Example 1. Let n = 5 · 105, p = 0.4. It follows from Corollary 7 that, when finding D(p, n), we can
use only 1618 values of k instead of all k ∈ I(5 · 105): 199191 6 k 6 200809.

Comparison with the known bounds. 1. Although the limiting properties of the binomial
distribution have been studied for more than three centuries, until now this field still attracts the
attention of specialists in probability theory. For instance, in 2012 A.M. Zubkov and A.A. Serov [10]
obtained very precise lower and upper bounds for Fn(xk+), simplifying a result obtained in 1984 by D.
Alfers and H. Dinges [11]. Introduce the notation

H(x, p) = x ln
x

p
+ (1 − x) ln

1− x

1− p
,

Wn(p, x) = I(x = 0) qn + I(0 < x < n)Φ
(
sgn

(x
n
− p

)√
2nH

(x
n
, p
) )

+ I(x = n) (1− pn).

Here I(x ∈ A) = 1, if x ∈ A, and I(x ∈ A) = 0 otherwise.

Theorem A [10]. For every k = 0, 1, . . . , n− 1 and p ∈ (0, 1) the following inequality is true:

Wn(p, k) 6 Fn(xk+) 6Wn(p, k + 1). (38)

Consider, for example, the case k > np. Let n → ∞, where c1 <
k−np√
npq < c2 for some constants c1,

c2. Then one can show that

Wn(p, k) = Φ

(√
2nH

(k
n
, p
) )

∼ Φ(xk)−
α3(p)

6
√
n
x2k ϕ(xk).

However, in view of (22),

Fn(xk+) = Φ(xk) +
α3(p)

6
√
n

(1− x2k)ϕ(xk) +
1

2
√
npq

ϕ(xk) +R+
2 (p, n, xk), (39)
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where according to (24) we have R+
2 (p, n, xk) = O

(
1
n

)
with the bound in the explicit form. Consequently,

Theorem A gives an approximation to Fn(xk+) of the form O
(

1√
n

)
while (39) is a more accurate

approximation of the form O
(
1
n

)
.

2. Let us compare Corollary 1 with the following result from the monography by J.V. Uspensky
published in 1937 [12]. We formulate it using our notations and with more accurate constants.

Theorem B [12]. The quantity U from the representation

Fn(x)− Φ(x) = Qn(p, x) +
1√
npq

S(np+ x
√
npq)ϕ(x) + U (40)

satisfies the inequality

|U | 6 0.1809 + 0.2694|p − q|
npq

+ 0.9742 e−3
√
npq/2 (41)

provided that npq > 25.

Remark 4. Note that instead of (41) the bound

|U | 6 0.2 + 0.25|p − q|
npq

+ e−3
√
npq/2 (42)

is in [12, p. 130]. However, there is a mistake in [12] when deducing the factor 0.25.

Let us compare the summand T (p, n) from the right-hand side of (20) with the right-hand side of
(42). Show that under the conditions

0.02 6 p 6 0.5, n > 200, npq > 25

the following bound is valid:

npq T (p, n) < 0.1809 + 0.2694 |p − q|+ 0.9742npq e−3
√
npq/2. (43)

Using the notation and formulas (63), (64), (67) and [1, p. 219], as a result of elementary but rather
bulky calculations (which we omit here), we obtain the bound

σ2n T (p, n) < T (p) + 0.00462σ2n e
−3σn/2, (44)

where

T (p) =
ω4(p)

12π

(200
199

)2
+

ω5(p)

40
√
2π 5

(200
199

)5/2
+

ω6(p)

90π 25

(200
199

)3
+ 0.01223ω2(p) + 0.03006+

+ 0.00533
ω(p)ω3(p)

√
2

36π

(200
199

)3
+

1

π

5∑

j=1

γj+5Aj+5(200)Vj+5(p)

5j−1

[
1 +

2γ̃j+5

99
exp

{ 61/3

251/3 4ω4/3(p)

}]
.

Comparing the right-hand side of inequality (44) with the right-hand side of (43), we can see that
the summand with the exponential dependence on σn is included in (44) with the coefficient which is
almost 60 times less than the factor on the right-hand side of (43). Moreover, in Fig. 2 one can see that
the graph of T (p) is significantly lower than the straight line u(p) = 0.1809 + 0.2694 |p − q|.
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p

T (p)

u(p)

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

Fig. 2. Graphs of the functions T (p) and u(p).

3. Compare Corollary 3 with the current best non-uniform bound of a general type obtained by
I. G. Shevtsova in [13]. In the particular case of Bernoulli random variables considered here the bound
proved in [13] for arbitrary independent random variables has the form

(1 + |x|3)|Fn(x)− Φ(x)| 6
{
17.37 β3(p)√

n
, if β3(p) < 6.07,

15.7 β3(p)+0.646√
n

, if β3(p) > 6.07.
(45)

Note that β3(p) is a decreasing function on (0, 0.5]; therefore, β3(p) 6 β3(0.02) < 6.87, when p ∈
[0.02, 0.5]. We compare (25) and (45) in the case β3(p) < 6.07. Note that the root of the equation
β3(p) = 6.07 is equal to 0.02517 . . . . One can show that under the condition 0.0252 6 p 6 0.5 the
bound (25) is more accurate than (45) if

√
6 < x < 2.36n1/6 and n > 200. In view of limitations on the

size of the paper, we skip these arguments.
4. Now we mention one result of W. Feller [14] and C. Lenart [15], which we formulate in our

notations and for the case of Bernoulli summands.
Theorem C. If 0 < x < 1

12

√
np
q then

1− Fn(x) = e−x2Λ(x/
√
n)/2

(
1− Φ(x) + τn

√
q

np
e−x2/2

)
,

where |τn| < 7.465, Λ(z) =
∞∑
ν=1

qνz
ν , q1 = α3(p) =

1−2p√
pq , |qν | 6 1

8

(
12
√

q
p

)ν
, ν = 2, 3, . . . .

It follows from Theorem C that

Fn(x)− Φ(x) =
(
1− Φ(x)

)(
1− e−x2Λ(x/

√
n)/2

)
− τn

√
q

np
exp{−x2/2− x2Λ(x/

√
n)/2}. (46)

The absolute value of the right-hand side of (46) for x > 0 and 0 < p 6 0.5 is majorized by the expression

A ≡ ϕ(x)√
npq

(
(1− 2p)

6
x3M(x) + τnq

√
2π

)
,

where M(x) := 1−Φ(x)
ϕ(x) is the Mills function. Compare this expression with the main term from (19)

which in turn is majorized by

B ≡ ϕ(x)√
npq

( |x2 − 1|(1− 2p)

6
+

1

2

)
.

Put x = 3. If p→ 0.5, then A/B → τn
√
2π < 18.712, and if p→ 0, then

A/B →
(
6τn

√
2π + 8.224

)
/11 < 10.96.
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Computations show that 10.9 < A/B < 18.712; for example, for p = 0.25 we have A/B ≈ 12.6.
5. Note that in the work of V.V. Senatov [16, Theorem 5] the bound

Gn(x)− Φ(x) = Qn(x) +R

is obtained for the case of lattice distributions, where x belongs to a special lattice, R = O(1/n), and
for R the bound is found in an explicit but rather complicated form.

2. Proof of Lemma 1

Let x0 be a discontinuity point of the function G. Since G(x) is constant for x0 < x < x0 + h and
x0 − h < x < x0, for 0 < s < h we have

G(x0 ± s) = G(x0±). (47)

Consider the case “+.” It follows from (47) that δ(x0 + s) = δ(x0+)−
[
G0(x0 + s)−G0(x0)

]
. Then

(P ∗ δ)(x0 + h/2) =
1

h

h/2∫

−h/2

δ(x0 + h/2− y) dy =

= δ(x0+)− 1

h

h/2∫

−h/2

[
G0(x0 + h/2 − y)−G0(x0)

]
dy = δ(x0+)− 1

h

h∫

0

(
G0(x0 + s)−G0(x0)

)
ds.

Similarly we obtain (7) in the case “−.”

3. Proof of Lemma 2

Lemma 3. Let U(x) be a distribution function, G(x) and G0(x) be some functions with the bounded

variations. Denote

δ(x) = G(x)−G0(x), Û(t) =

∞∫

−∞

eitxdU(x),

Ĝ(t) =

∞∫

−∞

eitxdG(x), Ĝ0(t) =

∞∫

−∞

eitxdG0(x), (U ∗ δ)(x) =
∞∫

−∞

δ(x− y) dU(y).

If
∞∫

−∞

|(U ∗ δ)(x)| dx <∞, (48)

∞∫

−∞

1

|t|
∣∣(Ĝ(t)− Ĝ0(t)

)
Û(t)

∣∣ dt <∞, (49)

then for every x ∈ R the following equality holds:

(U ∗ δ)(x) = 1

2π

∞∫

−∞

Ĝ(t)− Ĝ0(t)

−it e−itx Û(t) dt.
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Proof. One can prove this lemma using, for example, [8, pp. 211, 212] or [17, p. 127]. We shall

follow [8]. Condition (48) ensures the possibility of integration by parts of
∞∫

−∞
eitxd(U ∗δ)(x). As a result

we obtain

Ĝ(t)− Ĝ0(t)

−it Û(t) =

∞∫

−∞

eitx(U ∗ δ)(x) dx. (50)

It follows from condition (49) that the right-hand side of Eq. (50), being the Fourier transform of the
function (U ∗ δ)(x), is absolutely integrable. Therefore, the inversion formula holds:

(U ∗ δ)(x) = 1

2π

∞∫

−∞

e−itx

∞∫

−∞

eity(U ∗ δ)(y) dy dt,

which coincides with the equation to be proved.

Denote by f(t) the characteristic function of the random variable X = Z−p√
pq (see (1)).

As in [1], we will use the algebraic equality

an − bn = n(a− b)bn−1 + (a− b)2
n−2∑

j=0

(j + 1)an−2−jbj , (51)

putting a = f(t/
√
n), b = e−t2/(2n).

We shall also use the notation

aj =
ij E(Xj − Y j)

j!
, ãj = ij

1∫

0

(1− θ)j−1

(j − 1)!
E
[
eitθXXj − eitθY Y j

]
dθ,

where Y is the standard normal random variable.

Lemma 4. The following equality holds:

fn(t/
√
n)− e−t2/2 − (it)3α3(p)

3!
√
n

e−(n−1)t2/(2n) =

( 5∑

j=4

tj aj

n−1+j/2
+
t6

n2
ã6

)
e−(n−1)t2/(2n)+

+
(
f(t/

√
n)− e−t2/(2n)

)2
n−2∑

j=0

(j + 1)fn−2−j(t/
√
n) e−jt2/(2n). (52)

Proof. By virtue of the Taylor formula for every k > 4

f(t)− e−t2/2 =
k−1∑

j=3

tj aj + tk ãk. (53)

Putting k = 6, we get from (53) that

f(t/
√
n)− e−t2/(2n) =

( it√
n

)3 α3(p)

3!
+

5∑

j=4

tj aj

nj/2
+
t6

n3
ã6. (54)

Formula (52) is a consequence of equalities (51) and (54).
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Introduce the notation

P̂n(t) =

∞∫

−∞

eitx dPn(x) =
sin(hnt/2)

(hnt/2)
, (55)

v(t) =
fn(t/

√
n)− e−t2/2 − α3(p)

3!
√
n
(it)3 e−(n−1)t2/(2n)

−it P̂n(t) e
−itx, (56)

I(x) =

∞∫

−∞

v(t) dt (57)

(cf. [1, p. 217]). Note that

α3(p)

3!
√
n
(it)3 e−(n−1)t2/(2n) = c3n

∞∫

−∞

eitx dQn(p, xcn).

Putting in Lemma 3

G(x) = Fn(x), G0(x) = Φn(p, x), δ(x) = δn(p, x), U(x) = Pn(x),

we can verify that the conditions of the lemma are fulfilled, and consequently,

(Pn ∗ δn)(x) =
1

2π
I(x), x ∈ R.

Using (52) we can write
v(t) = v1(t) + v2(t),

where

v1(t) =
1

−it

( 5∑

j=4

tj aj

n−1+j/2
+
t6

n2
ã6

)
e−(n−1)t2/(2n)P̂n(t) e

−itx, (58)

v2(t) =
(f(t/

√
n)− e−t2/(2n))2

−it P̂n(t) e
−itx

n−2∑

j=0

(j + 1)fn−2−j(t/
√
n) e−jt2/(2n) . (59)

Denote τn =
(

6
√
n

β3(p)

)1/3
,

I1(x) =

∫

|t|6τn

v1(t) dt, I2(x) =

∫

|t|6τn

v2(t) dt, I3(x) =

∫

|t|>τn

v(t) dt. (60)

It is not hard to verify that
I(x) = I1(x) + I2(x) + I3(x). (61)

Hence,

(Pn ∗ δn)(x) =
1

2π

(
I1(x) + I2(x) + I3(x)

)
, x ∈ R. (62)

Denote (see [1])

σn = σn(p) =
√
npq, ω3(p) = q − p,

ω4(p) = |q3 + p3 − 3pq|, ω5(p) = q4 − p4, ω6(p) = q5 + p5 + 15(pq)2,
(63)
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T1(p, n) =
ω4(p)

σ2n 12π
c4n +

ω5(p)

40
√
2πσ3n

c5n +
ω6(p)

90π σ4n
c6n. (64)

Note that the function T1(p, n) is less than K1(p, n) from [1, p. 218] by the quantity ω3(p)

4σn

√
2π(n−1)

(
1+

1
4(n−1)

)
.

Lemma 5. The following inequality holds:

1

2π
|I1(x)| 6 T1(p, n). (65)

Proof. It follows from (58) and (60) that

|I1(x)| 6
5∑

j=4

|aj |
n−1+j/2

∞∫

−∞

|t|j−1e−(n−1)t2/(2n) dt+
|ã6|
n2

∞∫

−∞

|t|5e−(n−1)t2/(2n) dt.

We have

∞∫

−∞

|t|j−1e−(n−1)t2/(2n) dt =
( n

n− 1

)j/2√
2πE|Y |j−1, E|Y |3 = 4√

2π
, EY 4 = 3, E|Y |5 = 16√

2π
,

EY 6 = 15, |a4| =
1

4!
|α4(p)− 3|, |a5| =

|α5(p)|
5!

=
α5(p)

5!
, |ã6| 6

EX6 +EY 6

6!
=
α6(p)

6!
+

1

48
.

Hence
1

2π
|I1(x)| 6

|α4(p)− 3|
12πn

c4n +
α5(p)

40
√
2π n3/2

c5n +
α6(p) + 15

90π n2
c6n. (66)

Taking into account the notation (63), it is easy to verify that the right-hand side of inequality (66)
coincides with T1(p, n).

The following statement is proved in [1, pp. 227–230].

Lemma 6. The bound
1

2π
|I2(x)| 6 K2(p, n)

holds, where K2(p, n) is the function defined in [1, p. 253].

Lemma 7. Under condition (9) the following bound holds:

1

2π
|I3(x)| 6 K3(p, n) + T4(p, n),

where K3(p, n) is the function from [1, p. 219],

T4(p, n) =
ω3(p)

√
2

6πσn
c3nΓ

(
3

2
,
( 6σn
ω(p)

)2/3 1

2c2n

)
, (67)

and Γ(α, x) =
∞∫
x
tα−1e−t dt is an incomplete gamma-function.

Proof. It was proved in [1, see p. 219 and pp. 230–237] that under condition (9)

1

2π

∫

|t|>τn

|fn(t/√n)|+ e−t2/2

|t| |P̂n(t)| dt 6 K3(p, n).



A Non-uniform Bound of the Remainder Term in the Central Limit Theorem 97

Therefore, to obtain the statement of the lemma, it suffices to show that

α3(p)

3! 2π
√
n

∫

|t|>τn

t2e−(n−1)t2/(2n) dt = T4(p, n). (68)

We have

∫

|t|>τn

t2e−t2(n−1)/(2n) dt =
( 2n

n− 1

)3/2
∞∫

τ2n(n−1)
2n

x1/2e−x dx =
( 2n

n− 1

)3/2
Γ
(3
2
,
τ2n(n− 1)

2n

)
.

Taking into account the equalities

τn =
( 6σn
ω(p)

)1/3
, α3(p) =

ω3(p)√
pq

,

it is easy to prove the validity of (68).

Proof of Lemma 2. Inequality (10) follows from (62) and Lemmas 5–7.
Analyzing every summand on the right-hand side of (10), it is easy to verify that T (p, n) = O(1/n),

decreasing in n, and moreover, the bounds (11) and (12) hold (see also Remark 2). These arguments
lead to the conclusion that nTj(p, n), j = 1, 2, 3, decrease in n as well (but do not converge to 0). It

remains to show the decrease of nT4(p, n) in n. To this end it suffices to prove that
√
nΓ

(
3
2 ,

(
6σn

ω(p)

)2/3 1
2c2n

)

decreases. After elementary calculations we conclude that the function x3/2Γ
(
3
2 , x

)
decreases for x > 2.2.

It remains to note that x =
(
6σn

ω(p)

)2/3 n−1
2n > 2.6 under condition (9).

4. Proof of Theorem 1

The following Lemmas 8 and 9 are of a general nature. Therefore we will introduce special notations.
By Qn(x) we denote the first term of the Edgeworth expansion for the distribution function of

1√
n

∑n
j=1 ξj, where ξ1, ξ2, . . . are i.i.d. random variables with Eξ1 = 0, Eξ21 = 1, Eξ31 = α3. It is known

that Qn(x) = − α3

3!
√
n
ϕ′′(x). Denote Φn(x) = Φ(x) +Qn(x).

Lemma 8. For all x ∈ R and h > 0

1

h

h∫

0

(
Φn(x+ s)− Φn(x)

)
ds =

h

2
ϕ(x) + r+1 (h, x), (69)

where

|r+1 (h, x)| 6
h2

6
sup

y∈J+(h,x)
|ϕ′(y)|+ h |α3|

12
√
n

sup
y∈J+(h,x)

|ϕ(3)(y)|. (70)

Proof. The lemma is easily derived from the representations

Φ(x+ s)− Φ(x) = sϕ(x) +
s2

2
ϕ′(x+ λ1s), 0 6 λ1 6 1, (71)

ϕ′′(x+ s)− ϕ′′(x) = sϕ(3)(x+ λ2s), 0 6 λ2 6 1. (72)

Let ξ1 be a discrete random variable. Denote

Gn(x) = P
( 1√

n

n∑

j=1

ξj < x
)
, δn(x) = Gn(x)− Φn(x).

Let x0 be a discontinuity point of the function Gn, and assume that the interval (x0−h, x0+h) contains
no other such points. As above, let P (x) be the uniform distribution on [−h/2, h/2].
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Lemma 9. For every x ∈ J+(h, x0) the following equality holds:

δn(x) = (P ∗ δn)(x0 + h/2) +
(h
2
− x+ x0

)
ϕ(x) + r+(h, x), (73)

where

|r+(h, x)| 6 7

6
h2 sup

y∈J+(h,x0)

|ϕ′(y)|+ h |α3|
4
√
n

sup
y∈J+(h,x0)

|ϕ(3)(y)|. (74)

Proof. Since the function Gn is constant in the interval J+(h, x0), Gn(x) = Gn(x0+). Hence,

δn(x) = δn(x0+)−
(
Φn(x)−Φn(x0)

)
. (75)

In view of (71) and (72),

Φn(x)− Φn(x0) = (x− x0)ϕ(x0) + r2(h, x), (76)

where

r2(h, x) =
(x− x0)

2

2
ϕ′(x0 + λ(x− x0)

)
− α3

3!
√
n
(x− x0)ϕ

(3)
(
x0 + λ(x− x0)

)
.

Obviously,

|r2(h, x)| 6
h2

2
sup

y∈J+(h,x0)

|ϕ′(y)|+ h |α3|
6
√
n

sup
y∈J+(h,x0)

|ϕ(3)(y)|. (77)

Using Lemmas 1 and 8 we get

δn(x0+) = (P ∗ δn)(x0 + h/2) +
h

2
ϕ(x0) + r+1 (h, x0). (78)

It follows from (75), (76), (78) that

δn(x) = (P ∗ δn)(x0 + h/2) +
h

2
ϕ(x0) + r+1 (h, x0)− (x− x0)ϕ(x0)− r+2 (h, x). (79)

The lemma follows from (70), (77), (79) and the simple bound: for x ∈ J+(h, x0)

∣∣∣
(h
2
− x+ x0

)(
ϕ(x0)− ϕ(x)

)∣∣∣ 6 h2

2
sup

y∈J+(h,x0)

|ϕ′(y)|.

Lemma 10. Let n > 1. For all x ∈ J+(hn, xk) the following equality holds,

δn(p, x) = (Pn ∗ δn)(xk + hn/2) + hnS(np+ x/hn)ϕ(x) +R+(hn, x), (80)

where

|R+(hn, x)| 6
7

6
h2n sup

y∈J+(hn,xk)
|ϕ′(y)|+ hn α3(p)

4
√
n

sup
y∈J+(hn,xk)

|ϕ(3)(y)|. (81)

Proof. According to Lemma 9,

δn(p, x) = (Pn ∗ δn)(xk + hn/2) +
(hn

2
− x+ xk

)
ϕ(x) +R+(hn, x) (82)

for x ∈ J+(hn, xk), where R
+(hn, x) satisfies the inequality (81).

Note that k < np + x/hn < k + 1 for x ∈ J+(hn, xk). By the definition of the function S(x) for
x ∈ J+(hn, xk), we have

hnS(np+ x/hn) = xk − x+
hn
2
.

Proof of Theorem 1. The statement of the theorem follows from Lemmas 2 and 10.
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5. Proof of Corollary 1

Lemma 11. The following bound holds:

∣∣Q̃n(p, x)−Qn(p, x)
∣∣ 6 α3(p)

12n3/2

(
|x|c2n max

|x|6|y|6|x|cn
|ϕ(3)(y)|+ 3c3n|ϕ′′(xcn)|

)
. (83)

Proof. Using the Taylor formula, it is easy to verify that

ϕ′′(xcn)− ϕ′′(x) = x(cn − 1)ϕ(3)
(
x
(
1 + θ(cn − 1)

))
, 0 < θ < 1, cn − 1 = ε1, 0 < ε1 <

1

2n
c2n,

and c3n = 1 + ε2, 0 < ε2 <
3
2n c

3
n as well. Hence,

c3nQn(p, xcn)−Qn(p, x) = Qn(p, xcn)−Qn(p, x) + ε2Qn(p, xcn) =

= −α3(p)

6
√
n
xε1ϕ

(3)
(
x
(
1 + θ(cn − 1)

))
− α3(p)

6
√
n
ε2ϕ

′′(xcn),

which implies the lemma.

Proof of Corollary 1. The statement of the corollary follows from Theorem 1 and Lemma 11.
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