
3. If $0 \leqq \alpha \leqq 0.7$ and $x \geqq 1$, then Table 1 b must be used:

$$
G(x, \alpha)=10^{-4} F_{1}\left(x^{-\alpha}, \alpha\right) .
$$

4. If $0.7 \leqq \alpha<1$ and $0<x \leqq 20$, then the values of $G(x, \alpha)$ are derived from Table 3a:

$$
G(x, \alpha)=10^{-4} F_{3}(y, \alpha)=10^{-6} G(y, 1)-10^{-4} D_{3}(y, \alpha),
$$

where $y=(1-\alpha)^{-1 / \alpha} x-(1-\alpha)^{-1}(G(y, 1)$ is determined from Table $3 b)$. For $0.7 \leqq \alpha<1$ and $x>20$ the table added to Table 3 b is used:

$$
G(x, \alpha)=10^{-4} \widetilde{F}_{3}(z, \alpha)=10^{-6} G(z, 1)-10^{-4} \tilde{D}_{3}(z, \alpha),
$$

where

$$
z=\left[(1-\alpha)^{-1 / \alpha} x+(1-\alpha)^{-1}\right]^{\alpha}=y^{\alpha} .
$$

5. If $\alpha=1$, then one must use Table 3 b for the computation of $G(x, 1)$. In this table the values of the function are directly given, multiplied by 10^{6}.

The tables were compiled by means of the quadrature formula mentioned in Section 1. The computation was done on EBM "Strela" BECM-6.

Received by the editors
April 1, 1969

REFERENCES

[1] A. Ya. Khinchin, Limit laws for sums of independent random variables, GONTI, MoscowLeningrad, 1938.
[2] V. M. Zolotarev, Mellin-Stieltjes transforms in probability theory, Theory Prob. Applications, 2 (1957), pp. 433-460.
[3] V. M. Zolotarev, On the representation of stable laws by integrals, Trudy Mat. Inst. V. A. Steklov, AN. SSSR, 71 (1964), pp. 46-50. (In Russian.)
[4] E. F. Fama and R. Roll, Some properties of symmetric stable distributions, J. Amer. Statist. Assoc., 63 (1968), pp. 817-836.

ON THE SPEED OF CONVERGENCE OF THE DISTRIBUTION OF MAXIMUM SUMS OF INDEPENDENT RANDOM VARIABLES

S. V. NAGAEV

(Translated by B. Seckler)
Let $\xi_{n}, n=1,2,3, \cdots$, be a sequence of identically distributed independent random variables such that $\mathbf{E} \xi_{1}=0$. Set

$$
\sigma^{2}=\mathbf{D} \xi_{1}, \quad c_{3}=\mathbf{E}\left|\xi_{1}\right|^{3}, \quad S_{n}=\sum_{i=1}^{n} \xi_{i},
$$

$$
\begin{aligned}
\bar{S}_{n} & =\max _{1 \leqq i \leqq n} S_{i}, \quad F(x)=\mathbf{P}\left(\xi_{1}<x\right), \\
F_{n}(x) & =\mathbf{P}\left(S_{n}<x\right), \quad \bar{F}_{n}(x)=\mathbf{P}\left(\bar{S}_{n}<x\right)
\end{aligned}
$$

In [1], the author proved that

$$
\begin{equation*}
\left|\bar{F}_{n}(\sigma x \sqrt{n})-\left(\frac{2}{\pi}\right)^{1 / 2} \int_{0}^{x} e^{-u^{2} / 2} d u\right|<\frac{L c_{3}^{2}}{\sigma^{6} \sqrt{n}} \min \left[\log n, \frac{1+x^{2}}{x^{2}}\right], \tag{1}
\end{equation*}
$$

where L is an absolute constant. The aim of this paper is to obtain a more exact estimate.
Theorem. There exists an absolute constant K such that

$$
\sup _{0 \leqq x<\infty}\left|\bar{F}_{n}(\sigma x \sqrt{n})-\left(\frac{2}{\pi}\right)^{1 / 2} \int_{0}^{x} e^{-u^{2} / 2} d u\right|<\frac{K c_{3}^{2}}{\sigma^{6} \sqrt{n}} .
$$

We shall retain the notation of [1] and we shall use it without making any special comments. In particular, the symbol O will be used as in [1] only where the corresponding constant is an absolute one.

In referring to the relations proved in [1], we shall add the number 1 to them, i.e., we shall write (1.j) instead of (j).

Proof of theorem. Without loss of generality, we may assume that $\sigma^{2}=1$. The estimate $O\left(n^{-1 / 2} c_{3}^{2} \min \left[\log n,\left(1+x^{2}\right) / x^{2}\right]\right)$ which was obtained in [1] instead of $O\left(c_{3}^{2} / n^{1 / 2}\right)$ is due to the fact that the estimates (1.65) and (1.66) for $\Omega_{1 n}(x)$ and (1.70) for $\Omega_{2 n}(x)$ are not sufficiently exact.

If we succeed in obtaining the estimate $O\left(c_{3}^{2} / n^{1 / 2}\right)$ for $\Omega_{1 n}(x)$ and $\Omega_{2 n}(x)$, the theorem will have been proved.

We first consider the estimation of $\Omega_{2 n}(x)$. In [1] the principal role in estimating $\Omega_{2 n}(x)$ was played by Lemma 5.

We shall supplement the estimate in this lemma with another one which turns out to be more useful when $x=o(\sqrt{n})$, namely, the following holds.

Lemma.

$$
\begin{equation*}
G_{n}^{\prime}(x)=O\left(\frac{C_{3}}{\sqrt{n}} \min \left[\frac{1}{|x|}, \frac{|x|}{n}\right]+\frac{c_{3}^{2}}{n^{3 / 2}}\right)+r_{n} \tag{2}
\end{equation*}
$$

where $\sum_{n=1}^{\infty}\left|r_{n}\right|=O\left(c_{3}\right)$.
Proof. First of all,

$$
\begin{equation*}
G_{n}^{\prime}(x)=\frac{1}{2 \pi} \int_{|t| \leqq c} e^{-i t x}\left(f^{n}(t)-e^{-n t^{2} / 2}\right) h\left(5 c_{3} t\right) d t \tag{3}
\end{equation*}
$$

here and later on $c=\left(5 c_{3}\right)^{-1}$. Using (1.14), we obtain
(4) $\int_{|t| \leqq c} e^{-i t x}\left(f^{n}(t)-e^{-n t^{2} / 2}\right) h\left(5 c_{3} t\right) d t=\int_{|t| \leqq c} e^{-i t x}\left(f^{n}(t)-e^{-n t^{2} / 2}\right) d t+O\left(n c_{3}^{3} \int_{0}^{c} t^{5} e^{-n t^{2} / 4} d t\right)$, since

$$
h(t)=1+O\left(t^{2}\right)
$$

Let us now estimate the integral

$$
I_{n} \equiv \int_{|t| \leqq c} e^{-i t x}\left(f^{n}(t)-e^{-n t^{2} / 2}\right) d t
$$

It is not hard to see that

$$
\begin{equation*}
f(t)-e^{-t^{2} / 2}=t^{4} R_{1}(t)-i t^{3} I(t)+1-\frac{t^{2}}{2}-e^{-t^{2} / 2} \tag{5}
\end{equation*}
$$

where

$$
R_{1}(t)=\frac{1}{t^{4}} \int_{-\infty}^{\infty}\left(\cos t x-1+\frac{t^{2} x^{2}}{2}\right) d F(x)
$$

$$
I(t)=\frac{1}{t^{3}} \int_{-\infty}^{\infty}(\sin t x-t x) d F(x) .
$$

Let us estimate the integral

$$
I_{1 n} \equiv \int_{|t| \leqq c} t^{3} I(t) e^{-n t^{2} / 2} \sin t x d t
$$

It is not hard to see that

$$
I_{1 n}=\int_{-\infty}^{\infty} d F(y) \int_{|t| \leqq c}(\sin t y-t y) e^{-n t^{2} / 2} \sin t x d t .
$$

Set

$$
\varphi(u)=\frac{\sin u-u}{u^{3}} .
$$

Clearly,

$$
\begin{equation*}
I_{1 n}=\int_{-\infty}^{\infty} y^{3} d F(y) \int_{|t| \leqq c} t^{3} \varphi(t y) e^{-n t^{2} / 2} \sin t x d t . \tag{6}
\end{equation*}
$$

Further,
(7)

$$
\begin{aligned}
\int_{|t| \leq c} t^{3} \varphi(t y) e^{-n t^{2} / 2} \sin t x d t= & -\left.t^{3} \varphi(t y) e^{-n t^{2} / 2} \frac{\cos t x}{x}\right|_{t=-c} ^{\mid=c} \\
& +\frac{1}{x} \int_{|t| \leq c} \frac{d}{d t}\left(t^{3} \varphi(t y) e^{-n t^{2} / 2}\right) \cos t x d t .
\end{aligned}
$$

Clearly,

$$
\begin{equation*}
\frac{d}{d t} t^{3} \varphi(t y) e^{-n t^{2} / 2}=-n t^{4} e^{-n t^{2} / 2} \varphi(t y)+3 t^{2} e^{-n t^{2} / 2} \varphi(t y)+y t^{3} e^{-n t^{2} / 2} \varphi^{\prime}(t y) . \tag{8}
\end{equation*}
$$

Observe that

$$
\sup _{u}|\varphi(u)|<\infty \quad \text { and } \sup _{u}\left|u \varphi^{\prime}(u)\right|<\infty .
$$

Therefore,
(9)

$$
\begin{array}{r}
\int_{|t| \leqq c}\left|y t^{3} e^{-n t^{2} / 2} \varphi^{\prime}(t y)\right| d t=O\left(\int_{0}^{\infty} t^{2} e^{-n t^{2} / 2} d t\right)=O\left(n^{-3 / 2}\right), \\
n \int_{|t| \leqq c} t^{4} e^{-n t^{2} / 2}|\varphi(t y)| d t=O\left(n^{-3 / 2}\right),
\end{array}
$$

$$
\int_{|t| \leqq c} t^{2} e^{-n t^{2} / 2}|\varphi(t y)| d t=O\left(n^{-3 / 2}\right),
$$

$$
t^{3} \varphi(t y) e^{-n^{2} / 2}=O\left(n^{-3 / 2}\right)
$$

From (6)-(9) it follows that
(10)

$$
I_{1 n}=O\left(\frac{c_{3}}{|x| n^{3 / 2}}\right) .
$$

On the other hand,

$$
\begin{equation*}
I_{1 n}=O\left(|x| \int_{|t| \leqq c} t^{4}|I(t)| e^{-n^{2} / 2} d t\right)=O\left(c_{3}|x| n^{-5 / 2}\right) \tag{11}
\end{equation*}
$$

since $I(t)=O\left(c_{3}\right)$. By (5),

$$
\begin{align*}
\left(f(t)-e^{-t^{2} / 2}\right) e^{-k t^{2} / 2} f^{n-k}(t)= & \left(t^{4} R_{1}(t)-i t^{3} I(t)\right) e^{-n t^{2} / 2} \\
& +\left(f(t)-e^{-t^{2} / 2}\right)\left(f^{n-k}(t)-e^{-\left(n-k t^{2} / 2\right.}\right) e^{-k t^{2} / 2} \tag{12}\\
& +\left(1-\frac{t^{2}}{2}-e^{-t^{2} / 2}\right) e^{-n t^{2} / 2} .
\end{align*}
$$

It is not hard to show that

$$
\begin{equation*}
\int_{|t| \leqq c}\left(t^{4} R_{1}(t)-i t^{3} I(t)\right) e^{-i t x-n t^{2} / 2} d t=\int_{|t| \leqq c} t^{4} R_{1}(t) e^{-n t^{2} / 2} \cos t x d t+I_{1 n} \tag{13}
\end{equation*}
$$

The relations (12), (13), (10), (1.19), (1.21), (1.22) and (1.24) lead to the estimate

$$
\begin{equation*}
I_{n}=O\left(c_{3} \min \left[\frac{|x|}{n^{3 / 2}}, \frac{1}{|x| \sqrt{n}}\right]+\frac{c_{3}^{2}}{n^{3 / 2}}\right)+r_{n} \tag{14}
\end{equation*}
$$

where r_{n} satisfies the condition

$$
\sum_{n=1}^{\infty}\left|r_{n}\right|=O\left(c_{3}\right)
$$

Taking into account that

$$
\int_{0}^{c} t^{5} e^{-n t^{2} / 4} d t=O\left(\frac{1}{c_{3}} \int_{0}^{\infty} t^{4} e^{-n t^{2} / 4} d t\right)=O\left(\frac{1}{c_{3} n^{5 / 2}}\right)
$$

we obtain from (3), (4) and (14) the assertion of the lemma.
We now continue with the proof of the theorem. We first estimate $\Omega_{2 n}(x)$. From (1.67) we can deduce without difficulty

$$
\begin{equation*}
\Omega_{2 n}(x)=\sum_{k=1}^{n-1} \int_{-\infty}^{0} G_{k}^{\prime}(x-u) \bar{F}_{n-k}(u) d u . \tag{15}
\end{equation*}
$$

By Lemma 5 of [1],

$$
\begin{equation*}
G_{k}^{\prime}(x)=O\left(\frac{c_{3}}{n}\right) \tag{16}
\end{equation*}
$$

for $k \geqq n / 2$. Applying (16) and (1.69), we obtain

$$
\begin{equation*}
\sum_{k=n / 2}^{n} \int_{-\infty}^{0} G_{k}^{\prime}(x-u) \bar{F}_{n-k}(u) d u=O\left(\frac{c_{3}}{n} \sum_{k=1}^{n / 2} \bar{a}_{k}\right)=O\left(\frac{c_{3}}{\sqrt{n}}\right) \tag{17}
\end{equation*}
$$

It is not hard to show that

$$
\min \left[\frac{1}{|x|}, \frac{|x|}{k}\right]=O\left(\min \left[\frac{1}{|x|+1}, \frac{|x|}{k}\right]\right) .
$$

Therefore, the estimate (2) can be rewritten as follows:

$$
G_{k}^{\prime}(x)=O\left(\frac{c_{3}}{\sqrt{k}} \min \left[\frac{1}{|x|+1}, \frac{|x|}{k}\right]+\frac{c_{3}^{2}}{k^{3 / 2}}\right)+r_{k}
$$

Consequently,

$$
\begin{align*}
\sum_{k=1}^{n / 2-1} \int_{-\infty}^{0} G_{k}^{\prime}(x-u) \bar{F}_{n-k}(u) d u= & O\left(\sum_{k=1}^{\left(x^{2}+1\right) c_{3}^{2}} \frac{c_{3}}{\sqrt{k}} \int_{-\infty}^{0} \frac{1}{x-u+1} \bar{F}_{n-k}(u) d u\right) \\
& +O\left(c_{3} \sum_{k=\left(x^{2}+1\right) c_{3}^{2}}^{n / 2} k^{-3 / 2} \int_{-\infty}^{0}(x-u) \bar{F}_{n-k}(u) d u\right. \tag{18}\\
& +O\left(\sum_{k=1}^{n / 2}\left(\left|r_{k}\right|+\frac{c_{3}^{2}}{k^{3 / 2}}\right)(n-k)^{-1 / 2}\right),
\end{align*}
$$

since there is no loss of generality in assuming that $\left(x^{2}+1\right) c_{3}^{2}>n / 2$. By virtue of (1.69),

$$
\int_{-\infty}^{0}(x-u) \bar{F}_{n}(u) d u=-\int_{-\infty}^{0} u \bar{F}_{n}(u) d u+O(x / \sqrt{n}) .
$$

By Lemma 4 of [1],

$$
\int_{-\infty}^{0} u \bar{F}_{n}(u) d u=O\left(\frac{c_{3}^{2}}{\sqrt{n}}\right)
$$

Therefore,

$$
\int_{-\infty}^{0}(x-u) \bar{F}_{n}(u) d u=O\left(\frac{|x|+c_{3}^{2}}{\sqrt{n}}\right)
$$

Hence,

$$
\sum_{k=\left(x^{2}+1\right) c_{3}^{2}}^{n / 2-1} \frac{c_{3}}{k^{3 / 2}} \int_{-\infty}^{0}(x-u) \bar{F}_{n-k}(u) d u=O\left(c_{3}\left(c_{3}^{2}+|x|\right) \sum_{k=\left(x^{2}+1\right) c_{3}^{2}}^{n / 2} \frac{1}{(n-k)^{1 / 2} k^{3 / 2}}\right) .
$$

Clearly,

$$
\sum_{k=\left(x^{2}+1\right) c_{3}^{2}}^{n / 2} \frac{1}{(n-k)^{1 / 2} k^{3 / 2}}=O\left(\frac{1}{\sqrt{n}} \sum_{k=\left(x^{2}+1\right) c_{3}^{2}}^{\infty} \frac{1}{k^{3 / 2}}\right)=O\left(\frac{1}{\sqrt{n} c_{3}(|x|+1)}\right) .
$$

Thus,

$$
\begin{equation*}
c^{3} \sum_{k=\left(x^{2}+1\right) c_{3}^{2}}^{n / 2-1} \frac{1}{k^{3 / 2}} \int_{-\infty}^{0}(x-u) \bar{F}_{n-k}(u) d u=O\left(\frac{c_{3}^{2}}{\sqrt{n}}\right) . \tag{19}
\end{equation*}
$$

Clearly,

$$
\int_{-\infty}^{0} \frac{1}{x-u+1} \bar{F}_{n}(u) d u \leqq-\frac{\bar{a}_{n}}{x+1}, \quad x \geqq 0
$$

Therefore,

$$
\begin{equation*}
\sum_{k=1}^{\left(x^{2}+1\right) c_{3}^{2}} \frac{c_{3}}{\sqrt{n}} \int_{-\infty}^{0} \frac{1}{x-u+1} \bar{F}_{n-k}(u) d u=O\left(\frac{c_{3}}{(x+1) \sqrt{n}} \sum_{k=1}^{\left(x^{2}+1\right) c_{3}^{2}} \frac{1}{\sqrt{k}}\right)=O\left(\frac{c_{3}^{2}}{\sqrt{n}}\right), \quad x \geqq 0 \tag{20}
\end{equation*}
$$

Further,
(21)

$$
\sum_{k=1}^{n / 2-1}\left(\left|r_{k}\right|+\frac{c_{3}^{2}}{k^{3 / 2}}\right)(n-k)^{-1 / 2}=O\left(\frac{c_{3}^{2}}{\sqrt{n}}\right) .
$$

From (18)-(21) results

$$
\begin{equation*}
\sum_{k=1}^{n / 2-1} \int_{-\infty}^{0} G_{k}^{\prime}(x-u) \bar{F}_{n-k}(u) d u=O\left(\frac{c_{3}^{2}}{\sqrt{n}}\right) . \tag{22}
\end{equation*}
$$

In turn, (17) and (22) lead by virtue of (15), to the estimate

$$
\begin{equation*}
\Omega_{2 n}(x)=O\left(\frac{c_{3}^{2}}{\sqrt{n}}\right) \tag{23}
\end{equation*}
$$

Let us now estimate $\Omega_{1 n}(x)$. Observe first of all that

$$
\tilde{\varphi}_{n}(t)=-\int_{-\infty}^{0} e^{i t x} p_{n}^{(2)}(x) d x
$$

where

$$
p_{n}^{(2)}(x)=\int_{-\infty}^{x} \bar{F}_{n}(y) d y
$$

and

$$
t^{2} e^{-k t^{2} / 2}=S\left(-\frac{x}{\sqrt{2 \pi} k^{3 / 2}} e^{-x^{2} / 2 k}\right)
$$

Hence,

$$
\begin{equation*}
\Omega_{1 n}(x)=\frac{1}{\sqrt{2 \pi}} \sum_{k=1}^{n-1} \bar{k}^{-3 / 2} \int_{-\infty}^{0}(x-y) e^{-(x-y)^{2} / 2 k} p_{n-k}^{(2)}(y) d y \tag{24}
\end{equation*}
$$

It is not hard to see that, for $x \geqq 0$,
(25) $\int_{-\infty}^{0}(x-y) e^{-(x-y)^{2} / 2 k} p_{n-k}^{(2)}{ }_{-}(y) d y \leqq x e^{-x^{2} / 2 k} \int_{-\infty}^{0} p_{n-k}^{(2)}(y) d y+\int_{-\infty}^{0}|y| e^{-y^{2} / 2 k} p_{n-k}^{(2)}(y) d y$.

Applying Lemma 4 of [1], we obtain

$$
\begin{equation*}
\int_{-\infty}^{0} p_{n}^{(2)}(y) d y=\frac{\bar{b}_{n}}{2}=O\left(\frac{c_{3}^{2}}{\sqrt{n}}\right) . \tag{26}
\end{equation*}
$$

From (26) and (1.84) results

$$
\begin{array}{rlr}
x_{k=1}^{n-1} k^{-3 / 2} e^{-x^{2} / 2 k} \int_{-\infty}^{0} p_{n-k}^{(2)}(y) d y & =O\left(c_{3}^{2} x \sum_{k=1}^{n-1} k^{-3 / 2}(n-k)^{-1 / 2} e^{-x^{2} / 2 k}\right) \\
& =O\left(\frac{c_{3}^{2}}{\sqrt{n}}\right), & x \geqq 0 . \tag{27}
\end{array}
$$

Clearly,

$$
\bar{F}_{n}(x) \geqq \bar{F}_{n+1}(x)
$$

Therefore,

$$
p_{n}^{(2)}(x) \geqq p_{n+1}^{(2)}(x)
$$

Hence,

$$
\sum_{k=1}^{n / 2} \frac{1}{k^{3 / 2}} \int_{-\infty}^{0}|y| e^{-y^{2} / 2 k} p_{n-k}^{(2)}(y) d y \leqq \sum_{k=1}^{n / 2} \frac{1}{k^{3 / 2}} \int_{-\infty}^{0}|y| e^{-y^{2} / 2 k} p_{n / 2}^{(2)}(y) d y
$$

In consequence of (1.84),

$$
|y| \sum_{k=1}^{n / 2} \frac{1}{k^{3 / 2}} e^{-y^{2} / 2 k} \leqq \sqrt{n}|y| \sum_{k=1}^{n} \frac{e^{-y^{2} / 2 k}}{k^{3 / 2}(n-k)^{1 / 2}}=O(1)
$$

Taking (26) into account, we find
(28)

$$
\sum_{k=1}^{n / 2} \frac{1}{k^{3 / 2}} \int_{-\infty}^{0}|y| e^{-y / 2 k} p_{n-k}^{(2)}(y) d y=O\left(\bar{b}_{n / 2}\right)=O\left(\frac{c_{3}^{2}}{\sqrt{n}}\right)
$$

Further

$$
\int_{-\infty}^{0}|y| e^{-y^{2} / 2 k} p_{n-k}^{(2)}(y) d y=O\left(\sqrt{k} \int_{-\infty}^{0} p_{n-k}^{(2)}(y) d y\right)=O\left(\frac{c_{3}^{2} \sqrt{k}}{\sqrt{n-k}}\right)
$$

Therefore,

$$
\begin{equation*}
\sum_{k=n / 2}^{n} \frac{1}{k^{3 / 2}} \int_{-\infty}^{0}|y| e^{-y^{2} / 2 k} p_{n-k}^{(2)}(y) d y=O\left(\sum_{k=n / 2}^{n} \frac{c_{3}^{2}}{k \sqrt{n-k}}\right)=O\left(\frac{c_{3}^{2}}{\sqrt{n}}\right) \tag{29}
\end{equation*}
$$

The relations (24), (25) and (27)-(29) imply

$$
\Omega_{1 n}(x)=O\left(\frac{c_{3}^{2}}{\sqrt{n}}\right)
$$

The proof is complete.

REFERENCE

[1] S. V. NagaEv, An estimate for the speed of convergence of the distribution of maximum sums of independent random variables, Sibirsk. Mat. Zh., X, 3, 1969, pp. 614-633. (In Russian.)

