

3. If $0 \le \alpha \le 0.7$ and $x \ge 1$, then Table 1b must be used :

$$G(x,\alpha) = 10^{-4} F_1(x^{-\alpha},\alpha).$$

4. If
$$0.7 \le \alpha < 1$$
 and $0 < x \le 20$, then the values of $G(x, \alpha)$ are derived from Table 3a:

$$G(x, \alpha) = 10^{-4} F_3(y, \alpha) = 10^{-6} G(y, 1) - 10^{-4} D_3(y, \alpha),$$

where $y = (1 - \alpha)^{-1/\alpha}x - (1 - \alpha)^{-1}$ (G(y, 1) is determined from Table 3b). For $0.7 \le \alpha < 1$ and x > 20 the table added to Table 3b is used:

$$G(x,\alpha) = 10^{-4} \tilde{F}_3(z,\alpha) = 10^{-6} G(z,1) - 10^{-4} \tilde{D}_3(z,\alpha),$$

where

$$z = [(1 - \alpha)^{-1/\alpha} x + (1 - \alpha)^{-1}]^{\alpha} = y^{\alpha}.$$

5. If $\alpha = 1$, then one must use Table 3b for the computation of G(x, 1). In this table the values of the function are directly given, multiplied by 10^6 .

The tables were compiled by means of the quadrature formula mentioned in Section 1. The computation was done on EBM "Strela" BECM-6.

Received by the editors April 1, 1969

REFERENCES

- [1] A. YA. KHINCHIN, Limit laws for sums of independent random variables, GONTI, Moscow-Leningrad, 1938.
- [2] V. M. ZOLOTAREV, Mellin-Stieltjes transforms in probability theory, Theory Prob. Applications, 2 (1957), pp. 433–460.
- [3] V. M. ZOLOTAREV, On the representation of stable laws by integrals, Trudy Mat. Inst. V. A. Steklov, AN. SSSR, 71 (1964), pp. 46–50. (In Russian.)
- [4] E. F. FAMA and R. ROLL, Some properties of symmetric stable distributions, J. Amer. Statist. Assoc., 63 (1968), pp. 817–836.

ON THE SPEED OF CONVERGENCE OF THE DISTRIBUTION OF MAXIMUM SUMS OF INDEPENDENT RANDOM VARIABLES

S. V. NAGAEV

(Translated by B. Seckler)

Let ξ_n , $n = 1, 2, 3, \dots$, be a sequence of identically distributed independent random variables such that $\mathbf{E}\xi_1 = 0$. Set

$$\sigma^2 = \mathbf{D}\xi_1, \qquad c_3 = \mathbf{E}|\xi_1|^3, \qquad S_n = \sum_{i=1}^n \xi_i,$$

$$\overline{S}_n = \max_{1 \le i \le n} S_i, \qquad F(x) = \mathbf{P}(\xi_1 < x),$$

$$F_n(x) = \mathbf{P}(S_n < x), \qquad \overline{F}_n(x) = \mathbf{P}(\overline{S}_n < x)$$

In [1], the author proved that

(1)
$$\left| \overline{F}_n(\sigma x \sqrt{n}) - \left(\frac{2}{\pi}\right)^{1/2} \int_0^x e^{-u^2/2} du \right| < \frac{Lc_3^2}{\sigma^6 \sqrt{n}} \min\left[\log n, \frac{1+x^2}{x^2} \right],$$

where L is an absolute constant. The aim of this paper is to obtain a more exact estimate.

Theorem. There exists an absolute constant K such that

$$\sup_{0 \leq x < \infty} \left| \overline{F}_n(\sigma x \sqrt{n}) - \left(\frac{2}{\pi}\right)^{1/2} \int_0^x e^{-u^2/2} du \right| < \frac{K c_3^2}{\sigma^6 \sqrt{n}}.$$

We shall retain the notation of [1] and we shall use it without making any special comments. In particular, the symbol O will be used as in [1] only where the corresponding constant is an absolute one.

In referring to the relations proved in [1], we shall add the number 1 to them, i.e., we shall write (1,j) instead of (j).

PROOF OF THEOREM. Without loss of generality, we may assume that $\sigma^2 = 1$. The estimate $O(n^{-1/2}c_3^2 \min[\log n, (1 + x^2)/x^2])$ which was obtained in [1] instead of $O(c_3^2/n^{1/2})$ is due to the fact that the estimates (1.65) and (1.66) for $\Omega_{1n}(x)$ and (1.70) for $\Omega_{2n}(x)$ are not sufficiently exact. If we succeed in obtaining the estimate $O(c_3^2/n^{1/2})$ for $\Omega_{1n}(x)$ and $\Omega_{2n}(x)$, the theorem will

have been proved.

We first consider the estimation of $\Omega_{2n}(x)$. In [1] the principal role in estimating $\Omega_{2n}(x)$ was played by Lemma 5.

We shall supplement the estimate in this lemma with another one which turns out to be more useful when $x = o(\sqrt{n})$, namely, the following holds.

Lemma.

(2)
$$G'_{n}(x) = O\left(\frac{C_{3}}{\sqrt{n}}\min\left[\frac{1}{|x|}, \frac{|x|}{n}\right] + \frac{c_{3}^{2}}{n^{3/2}}\right) + r_{n},$$

where $\sum_{n=1}^{\infty} |r_n| = O(c_3)$.

PROOF. First of all,

(3)
$$G'_n(x) = \frac{1}{2\pi} \int_{|t| \le c} e^{-itx} (f^n(t) - e^{-nt^2/2}) h(5c_3 t) dt;$$

here and later on $c = (5c_3)^{-1}$. Using (1.14), we obtain

(4)
$$\int_{|t| \le c} e^{-itx} (f^n(t) - e^{-nt^2/2}) h(5c_3t) dt = \int_{|t| \le c} e^{-itx} (f^n(t) - e^{-nt^2/2}) dt + O\left(nc_3^3 \int_0^c t^5 e^{-nt^2/4} dt\right),$$

since

$$h(t)=1+O(t^2).$$

Let us now estimate the integral

$$I_n \equiv \int_{|t| \le c} e^{-itx} (f^n(t) - e^{-nt^2/2}) dt.$$

It is not hard to see that

(5)
$$f(t) - e^{-t^2/2} = t^4 R_1(t) - it^3 I(t) + 1 - \frac{t^2}{2} - e^{-t^2/2},$$

where

$$R_1(t) = \frac{1}{t^4} \int_{-\infty}^{\infty} \left(\cos tx - 1 + \frac{t^2 x^2}{2} \right) dF(x),$$

$$I(t) = \frac{1}{t^3} \int_{-\infty}^{\infty} (\sin tx - tx) \, dF(x).$$

Let us estimate the integral

$$I_{1n} \equiv \int_{|t| \le c} t^3 I(t) \, e^{-nt^2/2} \sin tx \, dt.$$

It is not hard to see that

$$I_{1n} = \int_{-\infty}^{\infty} dF(y) \int_{|t| \le c} (\sin ty - ty) e^{-nt^2/2} \sin tx \, dt.$$

Set

$$\varphi(u)=\frac{\sin u-u}{u^3}.$$

.

Clearly,

(6)
$$I_{1n} = \int_{-\infty}^{\infty} y^3 \, dF(y) \int_{|t| \le c} t^3 \varphi(ty) \, e^{-nt^2/2} \sin tx \, dt$$

Further,

(7)
$$\int_{|t| \leq c} t^{3} \varphi(ty) e^{-nt^{2}/2} \sin tx \, dt = -t^{3} \varphi(ty) e^{-nt^{2}/2} \frac{\cos tx}{x} \Big|_{t=-c}^{t=-c} + \frac{1}{x} \int_{|t| \leq c} \frac{d}{dt} (t^{3} \varphi(ty) e^{-nt^{2}/2}) \cos tx \, dt.$$

Clearly,

(8)
$$\frac{d}{dt}t^{3}\varphi(ty)e^{-nt^{2}/2} = -nt^{4}e^{-nt^{2}/2}\varphi(ty) + 3t^{2}e^{-nt^{2}/2}\varphi(ty) + yt^{3}e^{-nt^{2}/2}\varphi'(ty).$$

Observe that

$$\sup_{u} |\varphi(u)| < \infty \quad \text{and} \quad \sup_{u} |u\varphi'(u)| < \infty.$$

Therefore,

(9)

$$\int_{|t| \leq c} |yt^{3} e^{-nt^{2}/2} \varphi'(ty)| dt = O\left(\int_{0}^{\infty} t^{2} e^{-nt^{2}/2} dt\right) = O(n^{-3/2}),$$

$$n \int_{|t| \leq c} t^{4} e^{-nt^{2}/2} |\varphi(ty)| dt = O(n^{-3/2}),$$

$$\int_{|t| \leq c} t^{2} e^{-nt^{2}/2} |\varphi(ty)| dt = O(n^{-3/2}),$$

$$t^{3} \varphi(ty) e^{-nt^{2}/2} = O(n^{-3/2}).$$

From (6)–(9) it follows that

(10)
$$I_{1n} = O\left(\frac{c_3}{|x|n^{3/2}}\right).$$

On the other hand,

(11)
$$I_{1n} = O\left(|x| \int_{|t| \leq c} t^4 |I(t)| e^{-nt^2/2} dt\right) = O(c_3|x|n^{-5/2}),$$

since $I(t) = O(c_3)$. By (5),

(12)

$$(f(t) - e^{-t^{2}/2}) e^{-kt^{2}/2} f^{n-k}(t) = (t^{4}R_{1}(t) - it^{3}I(t)) e^{-nt^{2}/2} + (f(t) - e^{-t^{2}/2})(f^{n-k}(t) - e^{-(n-k)t^{2}/2}) e^{-kt^{2}/2} + \left(1 - \frac{t^{2}}{2} - e^{-t^{2}/2}\right) e^{-nt^{2}/2}.$$

It is not hard to show that

(13)
$$\int_{|t| \le c} (t^4 R_1(t) - it^3 I(t)) e^{-itx - nt^2/2} dt = \int_{|t| \le c} t^4 R_1(t) e^{-nt^2/2} \cos tx \, dt + I_{1n}$$

The relations (12), (13), (10), (1.19), (1.21), (1.22) and (1.24) lead to the estimate

(14)
$$I_n = O\left(c_3 \min\left[\frac{|x|}{n^{3/2}}, \frac{1}{|x|\sqrt{n}}\right] + \frac{c_3^2}{n^{3/2}}\right) + r_n,$$

where r_n satisfies the condition

$$\sum_{n=1}^{\infty} |r_n| = O(c_3).$$

Taking into account that

$$\int_0^c t^5 e^{-nt^2/4} dt = O\left(\frac{1}{c_3} \int_0^\infty t^4 e^{-nt^2/4} dt\right) = O\left(\frac{1}{c_3 n^{5/2}}\right)$$

we obtain from (3), (4) and (14) the assertion of the lemma.

We now continue with the proof of the theorem. We first estimate $\Omega_{2n}(x)$. From (1.67) we can deduce without difficulty

(15)
$$\Omega_{2n}(x) = \sum_{k=1}^{n-1} \int_{-\infty}^{0} G'_{k}(x-u) \overline{F}_{n-k}(u) \, du.$$

By Lemma 5 of [1],

(16)
$$G'_k(x) = O\left(\frac{c_3}{n}\right)$$

for $k \ge n/2$. Applying (16) and (1.69), we obtain

(17)
$$\sum_{k=n/2}^{n} \int_{-\infty}^{0} G'_{k}(x-u) \overline{F}_{n-k}(u) \, du = O\left(\frac{c_{3}}{n} \sum_{k=1}^{n/2} \overline{a}_{k}\right) = O\left(\frac{c_{3}}{\sqrt{n}}\right).$$

It is not hard to show that

$$\min\left[\frac{1}{|x|}, \frac{|x|}{k}\right] = O\left(\min\left[\frac{1}{|x|+1}, \frac{|x|}{k}\right]\right).$$

Therefore, the estimate (2) can be rewritten as follows:

$$G'_{k}(x) = O\left(\frac{c_{3}}{\sqrt{k}}\min\left[\frac{1}{|x|+1}, \frac{|x|}{k}\right] + \frac{c_{3}^{2}}{k^{3/2}}\right) + r_{k}.$$

Consequently,

(18)

$$\sum_{k=1}^{n/2-1} \int_{-\infty}^{0} G'_{k}(x-u)\overline{F}_{n-k}(u) \, du = O\left(\sum_{k=1}^{(x^{2}+1)c_{3}^{2}} \frac{c_{3}}{\sqrt{k}} \int_{-\infty}^{0} \frac{1}{x-u+1} \overline{F}_{n-k}(u) \, du\right) + O\left(c_{3} \sum_{k=(x^{2}+1)c_{3}^{2}}^{n/2} k^{-3/2} \int_{-\infty}^{0} (x-u)\overline{F}_{n-k}(u) \, du + O\left(\sum_{k=1}^{n/2} \left(|r_{k}| + \frac{c_{3}^{2}}{k^{3/2}}\right)(n-k)^{-1/2}\right),$$

since there is no loss of generality in assuming that $(x^2 + 1)c_3^2 > n/2$. By virtue of (1.69),

$$\int_{-\infty}^{0} (x-u)\overline{F}_n(u) \, du = - \int_{-\infty}^{0} u\overline{F}_n(u) \, du + O(x/\sqrt{n}).$$

By Lemma 4 of [1],

$$\int_{-\infty}^{0} u \overline{F}_n(u) \, du = O\left(\frac{c_3^2}{\sqrt{n}}\right).$$

Therefore,

$$\int_{-\infty}^{0} (x-u)\overline{F}_n(u) \, du = O\left(\frac{|x|+c_3^2}{\sqrt{n}}\right).$$

Hence,

$$\sum_{k=(x^2+1)c_3^2}^{n/2-1} \frac{c_3}{k^{3/2}} \int_{-\infty}^0 (x-u) \overline{F}_{n-k}(u) \, du = O\left(c_3(c_3^2+|x|) \sum_{k=(x^2+1)c_3^2}^{n/2} \frac{1}{(n-k)^{1/2}k^{3/2}}\right).$$

Clearly,

$$\sum_{k=(x^{2}+1)c_{3}^{2}}^{n/2} \frac{1}{(n-k)^{1/2}k^{3/2}} = O\left(\frac{1}{\sqrt{n}} \sum_{k=(x^{2}+1)c_{3}^{2}}^{\infty} \frac{1}{k^{3/2}}\right) = O\left(\frac{1}{\sqrt{n}c_{3}(|x|+1)}\right).$$

Thus,

(19)
$$c^{3} \sum_{k=(x^{2}+1)c_{3}^{2}}^{n/2-1} \frac{1}{k^{3/2}} \int_{-\infty}^{0} (x-u) \overline{F}_{n-k}(u) \, du = O\left(\frac{c_{3}^{2}}{\sqrt{n}}\right).$$

Clearly,

$$\int_{-\infty}^{0} \frac{1}{x-u+1} \overline{F}_n(u) \, du \leq -\frac{\overline{a}_n}{x+1}, \qquad x \geq 0.$$

Therefore,

(20)
$$\sum_{k=1}^{(x^2+1)c_3^2} \frac{c_3}{\sqrt{n}} \int_{-\infty}^0 \frac{1}{x-u+1} \overline{F}_{n-k}(u) \, du = O\left(\frac{c_3}{(x+1)\sqrt{n}} \sum_{k=1}^{(x^2+1)c_3^2} \frac{1}{\sqrt{k}}\right) = O\left(\frac{c_3^2}{\sqrt{n}}\right), \quad x \ge 0.$$

Further,

(21)
$$\sum_{k=1}^{n/2-1} \left(|r_k| + \frac{c_3^2}{k^{3/2}} \right) (n-k)^{-1/2} = O\left(\frac{c_3^2}{\sqrt{n}}\right).$$

From (18)-(21) results

(22)
$$\sum_{k=1}^{n/2-1} \int_{-\infty}^{0} G'_{k}(x-u) \overline{F}_{n-k}(u) \, du = O\left(\frac{c_{3}^{2}}{\sqrt{n}}\right).$$

In turn, (17) and (22) lead by virtue of (15), to the estimate

(23)
$$\Omega_{2n}(x) = O\left(\frac{c_3^2}{\sqrt{n}}\right).$$

Let us now estimate $\Omega_{1n}(x)$. Observe first of all that

$$\tilde{\varphi}_n(t) = -\int_{-\infty}^0 e^{itx} p_n^{(2)}(x) \, dx,$$

where

$$p_n^{(2)}(x) = \int_{-\infty}^x \overline{F}_n(y) \, dy$$

and

$$t^2 e^{-kt^2/2} = S\left(-\frac{x}{\sqrt{2\pi}k^{3/2}}e^{-x^2/2k}\right).$$

Hence,

(24)
$$\Omega_{1n}(x) = \frac{1}{\sqrt{2\pi}} \sum_{k=1}^{n-1} \bar{k}^{-3/2} \int_{-\infty}^{0} (x-y) e^{-(x-y)^2/2k} p_{n-k}^{(2)}(y) \, dy.$$

It is not hard to see that, for $x \ge 0$,

(25)
$$\int_{-\infty}^{0} (x - y) e^{-(x - y)^2/2k} p_{n-k}^{(2)}(y) \, dy \le x e^{-x^2/2k} \int_{-\infty}^{0} p_{n-k}^{(2)}(y) \, dy + \int_{-\infty}^{0} |y| e^{-y^2/2k} p_{n-k}^{(2)}(y) \, dy.$$

Applying Lemma 4 of [1], we obtain

(26)
$$\int_{-\infty}^{0} p_n^{(2)}(y) \, dy = \frac{\overline{b}_n}{2} = O\left(\frac{c_3^2}{\sqrt{n}}\right)$$

From (26) and (1.84) results

(27)
$$x \sum_{k=1}^{n-1} k^{-3/2} e^{-x^{2}/2k} \int_{-\infty}^{0} p_{n-k}^{(2)}(y) \, dy = O\left(c_{3}^{2} x \sum_{k=1}^{n-1} k^{-3/2} (n-k)^{-1/2} e^{-x^{2}/2k}\right) \\ = O\left(\frac{c_{3}^{2}}{\sqrt{n}}\right), \qquad x \ge 0.$$

Clearly,

$$\overline{F}_n(x) \ge \overline{F}_{n+1}(x).$$

Therefore,

$$p_n^{(2)}(x) \ge p_{n+1}^{(2)}(x).$$

Hence,

$$\sum_{k=1}^{n/2} \frac{1}{k^{3/2}} \int_{-\infty}^{0} |y| \ e^{-y^2/2k} p_{n-k}^{(2)}(y) \ dy \le \sum_{k=1}^{n/2} \frac{1}{k^{3/2}} \int_{-\infty}^{0} |y| \ e^{-y^2/2k} p_{n/2}^{(2)}(y) \ dy.$$

In consequence of (1.84),

$$|y| \sum_{k=1}^{n/2} \frac{1}{k^{3/2}} e^{-y^2/2k} \leq \sqrt{n} |y| \sum_{k=1}^{n} \frac{e^{-y^2/2k}}{k^{3/2}(n-k)^{1/2}} = O(1).$$

Taking (26) into account, we find

(28)
$$\sum_{k=1}^{n/2} \frac{1}{k^{3/2}} \int_{-\infty}^{0} |y| e^{-y/2k} p_{n-k}^{(2)}(y) \, dy = O(\overline{b}_{n/2}) = O\left(\frac{c_3^2}{\sqrt{n}}\right)$$

Further

$$\int_{-\infty}^{0} |y| e^{-y^2/2k} p_{n-k}^{(2)}(y) \, dy = O\left(\sqrt{k} \int_{-\infty}^{0} p_{n-k}^{(2)}(y) \, dy\right) = O\left(\frac{c_3^2\sqrt{k}}{\sqrt{n-k}}\right).$$

Therefore,

(29)
$$\sum_{k=n/2}^{n} \frac{1}{k^{3/2}} \int_{-\infty}^{0} |y| \, e^{-y^2/2k} p_{n-k}^{(2)}(y) \, dy = O\left(\sum_{k=n/2}^{n} \frac{c_3^2}{k\sqrt{n-k}}\right) = O\left(\frac{c_3^2}{\sqrt{n}}\right).$$

The relations (24), (25) and (27)-(29) imply

$$\Omega_{1n}(x) = O\left(\frac{c_3^2}{\sqrt{n}}\right)$$

The proof is complete.

Received by the editors September 17, 1968

REFERENCE

[1] S. V. NAGAEV, An estimate for the speed of convergence of the distribution of maximum sums of independent random variables, Sibirsk. Mat. Zh., X, 3, 1969, pp. 614–633. (In Russian.)