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0 x

3. If 0 <- 0 _<_ 0.7 and x _>_ 1, then Table lb must be used"

G(x, a) 10-4Fx(x-, a).

4. If 0.7 __< < and 0 < x =< 20, then the values of G(x, ) are derived from Table 3a"

G(x, 00 10-’F3(y, 00 10-6G(y, 1) 10-4D3(y,
where y (1 00-1/x (1 00-1 (G(y, 1) is determined from Table 3b). For 0.7 <= 0 <
and x > 20 the table added to Table 3b is used"

G(x, 0) 10-4ff3(z, 0) 10-6G(z, 1) 10-4/3(z,
where

z [(1 00-1/x + (1 o0-1] y,.
5. If 0 1, then one must use Table 3b for the computation of G(x, 1). In this table the

values of the function are directly given, multiplied by 106
The tables were compiled by means of the quadrature formula mentioned in Section 1.

The computation was done on EBM "Strela" BECM-6.
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ON THE SPEED OF CONVERGENCE OF THE DISTRIBUTION OF
MAXIMUM SUMS OF INDEPENDENT RANDOM VARIABLES

S. V. NAGAEV

(Translated by B. Seckler)

Let ,, n 1, 2, 3, ..., be a sequence of identically distributed independent random variables
such that EI 0. Set

o.2 DI, c E1113, S, i,
i=1



310 S. V. Nagaev

n max Si, F(x) P(I < x),
<_i<_n

&(x) P( < ), &() P( < x).
In 1, the autho povcd that

e -u2/2 du < ff6min logn, x2 j,
where L is an absolute constant. The aim of this paper is to obtain a more exact estimate.

Theorem. There exists an absolute constant K such that

sup Fn(0.xx/ (-)l/2fO: Kc’
0 <--

e- u2/2 du <
0.6N/.

We shall retain the notation of [1] and we shall use it without making any special comments.
In particular, the symbol 0 will be used as in [1] only where the corresponding constant is an
absolute one.

In referring to the relations proved in [1], we shall add the number to them, i.e., we shall
write (1:]) instead of (j).

PROOF OF THEOREM. Without loss of generality, we may assume that 0
.2 1. The estimate

O(n-1/2c min[log n, (1 + xE)/x2]) which was obtained in [1] instead of O(c/n/2) is due to the
fact that the estimates (1.65) and (1.66) for Dn(x) and (1.70) for flEn(X) are not sufficiently exact.

If we succeed in obtaining the estimate O(c/n1/2) for fln(x) and flEn(X), the theorem will
have been proved.

We first consider the estimation of DEn(X). In [1] the principal role in estimating DEn(X) was
played by Lemma 5.

We shall supplement the estimate in this lemma with another one which turns out to be
more useful when x o(x/), namely, the following holds.

(2)

wheren Irnl 0(c3).

PROOF. First of all,

(3)

G’,(x) O(Cn minI,[1 c

e-itx(fn(t) e -nt2/2 )h(5c3t)dt;

here and later on c (5ca)-a. Using (1.14), we obtain

e-itx(fn(t)- e-ntZ/2)h(5c3t)dt fl e-itx(fn(t)- e-ntz/Z)dt -F 0(4)
,1_-< _,l_-<c

since

h(t)- + O(t2).
Let us now estimate the integral

I, f e-i’’(f"(t) e-"’2/Z) dt.
q<=c

It iS not hard to see that

(5)

where

2

f(t) e -t2/2 t4Ra(t) it3l(t) + - e -t2/2,

nc e-nt2/4 dt

costx- +t22) dF(x),
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Let us estimate the integral

Set

I(t) (sin tx- tx) dF(x).

Clearly,

(6)

11. =- | t3I(t) e -nt2/2 sin tx dt.
tl<=c

Clearly,

(8)

(9)

It is not hard to see that

I,, dE(y)
tl <=c

Further,

(sin ty ty) e -nt2/2 sin tx dt.

sinu u
o(u) u3

[t[

y3 3qg(ty) e -nt2/2 sin tx dr.I, dF(y)
,I <-

t3qg(ty) e -m2/2 sin tx dt -t3tp(ty) e -nt2/2 cos tx

X

f d e-nt2/2)+
1 (t qg(ty) COS tx dr.

X tl<__c

-t3qg(ty)e
-nt2/2 _nt’ e-m2/2q(ty) + 3t2 e-nt2/2qg(ty) + yt e-m2/2q’(ty).

Observe that

Therefore,

sup I0(u)l < and sup lu#(u)l < .

n fltl<-_c ’ e-nt2/2lqg(ty)l dt O(n-3/2),

2 e-nt2/21qg(ty)l dt O(n- 3/2),
tl<=c

t3q)(ty) e-nt2/2 0(n-3/2).

From (6)-(9) it follows that

C3(10) I1-- O
ixln3/2

On the other hand,

(11) 11. O(Ixltl<__c t4lI(t)le-"tZ/2dt)=O(c3lxln-5/2),
since I(t)= O(c3). By (5),

(f(t) e -’’/2) e-*’/2f"-*(t) (PRo(t) itzI(t)) e -nt2/2

(12) + (f(t)- e-’/2)(f"-*(t)- e-"-*)t2/2)e-*t2/2

+ 1---- e -2/2 e -"2/2.
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(13)

(14)

It is not hard to show that

fl (t4Rl(t)- it3I(t))e-itx-nt2/2 dt= fl t4Rl(t)e-nt2/2cstxdt +
tl<=c

The relations (12), (13), (10), (1.19), (1.21), (1.22) and (1.24) lead to the estimate

+ + rnIn 0 c3min 2, n3/21

where rn satisfies the condition

Taking into account that

]r.I-- 0(c3).

we obtain from (3), (4) and (14) the assertion of the lemma.
We now continue with the proof of the theorem. We first estimate D.2n(x). From (1.67) we

can deduce without difficulty

(15) 2n(x) G(x U)Fn-k(U) du.

By Lemma 5 of [1],

(16) G,(x) O()
for k >= n/2. Applying (!6) and (1.69), we obtain

(17) G(x- u)F,_k(U)du 0 - ak 0
k=n/2 k=

It is not hard to show that

min,] O minlx[ + 1,

Therefere, the estimate (2) can be rewritten as follows"

61(x)=O ca min
xl+l’k +k/] +r"

Consequently,

n/l ;0 (xl,c C fG(x u)V,_(u) du 0
= = x u +

F._(u) du

n/2 fO(8) + o c -/ (x- u)?,_u)au
=(x+ 1)c

C
+ 0 Irl + (n- k) 1/2

k=l

since there is no loss of generality in assuming that (x + 1)c > n/2. By virtue of (1.69),

(- uL(u uL(uu + o(x/.
By Lemma 4 of [1],
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Therefore,

Hence,

Clearly,

Thus,

(19)

Clearly,

Therefore,

(20)

Further,

n/2

(x + t)c

o
(x- u)f.(u)au o( Ixl + cl

C3 fO (x- u)F._k(U)du 0
n/2

C3(C + [XI)
k=( 1)c (n ]1/2k3/2

"/x+ 0 Z c7/2 0
k=( 1)%2 (n k)l/2k3/2 k=(x2+ 1)c c3(xl 4- 1)

c (x u)?._(u)du 0 cil
=(=+,)- ,/1"

f] .(u) du <_
oox--u+ x+ 1’

n/2

(21)

From (18)-(21) results

(22)

c l(n k)-

./lfOk=
a’k(X u)F._ k(U) du 0

In turn, (17) and (22) lead by virtue of (15), to the estimate

(23) )2n(X) o(CI
Let us now estimate fi.(x). Observe first of all that

o.(t) ei’’p(,z)(x) dx,

where

p(,,2)(x) F,,(y) dy

and

Hence,

(24)

X2 e -kt2/2 S --N//k3/2 e x2/2k

" n(X n")ff Y)2/2k(2]- 3/2 (X y) e -(x- Pn-k(Y) dy.-k=

x>O.

x>O.
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It is not hard to see that, for x => 0,

(25) (x y) e-(X-Y)Z/2kptn2)_k(y dy <__ x e -xz/2k p(n2)_k(y) dy + lyl e-YZ/2kp(n2)-k(Y) dy.

Applying Lemma 4 of [1], we obtain

/4/(26) j_ p2)(y)dy - 0 l-n]
From (26) and (1.84) results

k=l k=l

ol 41

Hence,

(28)

Clearly,

Therefore,

,(x) >= ,+(x).

pd’(x) => ,,,+.,’ (x).

x>O.

In consequence of (1.84),

e_Y2/2k
k=l

Taking (26) into account, we find

yZ/2k

=< v/lyl
k=, k3/2e-( k)

Further

Therefore,

(29)

o(1).

fo /2kp2(Y) 0(./2) O[ c/lyle-" dy [--].

lYl e- r2/2’pt,, k(Y) dy 0

n/2 n/2

The relations (24), (25) and (27)-(29) imply

The proof is complete.
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