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Introduction

Let X be a space of points and Fx a a-algebra of its subsets. Let p(, A),
X, A Fx be a stochastic transition function. For fixed the function

p(, A) is a probability measure, and for fixed A is measurable with respect
to Fx. The transition probabilities in n steps, p(n)(, A), are calculated by
the formula

(0.1) pn(, A) f p(n-1)(7, A)p(, d7).

If the initial probability distribution r(.) is given, then p(., .) determines
a sequence of random variables

Xl, X2, "’, Xn, ",
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which are connected in a stationary Markov chain and where, moreover,

Pr(x A) (A),

(0.2) Pr(xn A) f p(n-1)(, A)z(d).
.X

Let /() be a real function defined on X and measurable with respect
to Fx while Fn(x) is the distribution function of the sum

l(x,) A(O.3)

where An and Bn > 0 are constants.

Just as in the study of sums of identically distributed independent
random variables, there arises the question as to what laws and under what
conditions can a sequence Fn(x) converge. But even if this problem is com-

pletely solved for independent random variables, it is far from a final solution
for random variables which are connected in a stationary Markov chain. The
investigation is made more difficult by the fact that the behavior of Fn(x)
depends in an important way on the ergodic properties of the chain. In order
to simplify the problem it becomes necessary to consider chains with sufficiently
strong ergodic properties.

The most completely investigated conditions are the sufficient conditions
for the validity of the central limit theorem. Already Markov had proved the
central limit theorem for three states subject to the condition that all transition
probabilities be positive. Different variants of the proof of this theorem for a
finite number of states have been given by Romanovskii, Mihoc and Schulz.

In 1937, with certain restrictions on the stochastic transition function,
Doeblin 3 proved the central limit theorem for an arbitrary set of states
assuming that ]() is bounded. Doob in [12, and Dynkin in 11, assume,
instead of boundedness of /(), that, for some d > 0,

(0.4) f I1(,)1 p(d) < oo,

X

where p(.) is a stationary probability distribution corresponding to p(., .).
As regards convergence to limit laws other than the normal, this question
has been studied very little. In 1938 Doeblin [4 proved that in the case of a
denumerable chain one can reduce the study of sums of the form (0.3)to
the study of sums of identically distributed independent random variables.
Doeblin’s method makes it possible to assert that for a definite class of denu-
merable chains the set of possible limit laws coincides with the set of stable
laws. Stable laws for the number of occurrences in a fixed state of a denumerable
chain were obtained in 1949 by Feller [13.

Another important trend is the study of the conditions under which the
local limit theorem is valid. The local limit theorem for finite chains was proved
in 1949 by Kolmogorov [9 who used the above-mentioned Doeblin method.
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Finally, the refinement of limit theorems deserves considerable attention.
In 1952 S. Kh. Sirazhdinov [10] succeeded in obtaining refinements of the
local and integral limit theorems for a finite number of states.

With this we conclude the short survey of the fundamental results in
that area of Markov chain theory to which this article is devoted. Its only
purpose was to make the latter’s contents more comprehensible.

The article consists of three chapters. The asymptotic properties of the
characteristic functions of sums of random variables which are connected in a

stationary Markov chain are studied in the first chapter. Convergence to the
normal law and to stable laws other than the normal is investigated in the
second chapter. The local limit theorem is proved and asymptotic expansions
are obtained in the third chapter. The basic method of investigation is the
method of characteristic functions.

CHAPTER I

SOME PROPERTIES OF CHARACTERISTIC FUNCTIONS

1. Structure o a Linear Operator Determined by a
Stochastic Transition Function

Let p(., .) satisfy the following condition"
There exists a positive integer k such that

(1.1) sup Ip(c)(, A) p()(, A)[ d < 1, , r X, A Fx., /, A

It is easy to show that when condition (1.1) is fulfilled there exists a

probability distribution p(.) such that

(1.2) p(A) p()(, A)I <= 6/-, X, A Fx.
Obviously,

(1.3) p(A) f p(#, A)p(d),
X

that is, p(.) is a stationary distribution.
If we set cl/ =p and -1 ),, we get

(1.4) p(A) p(n)(, A)I =
unifromly with respect to X and A Fx. Conversely it follows from (1.4)
that condition (1.1) is fulfilled.

Let gJ be the space of all bounded complex-valued functions g(), X,
which are measurable with respect to Fx and with norm IIg()ll sup

and let g)* be the space of all complex-valued completely additive set functions
#(A), A Fx, with norm II/ll V I1 (v I[ is the total variation of ,(.)
on X).
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(1o)

Define the operators P and P* in the following manner:

Pg( j g()p( ., d),

P*#( f p(, )#(d).
x

Obviously,

In the future we often will call the completely additive set function
(, A), X, A Fx, with bounded total variation for fixed , which
determines in gJ an operator of the type P, the kernel of this operator.

Let P1 be an operator in 9R determined by a stationary probability
distribution p(.). Obviously,

(1.6) PP1 PIP P1 P1,
and P1 projects J onto the one-dimensional subspace 1 which is generated
by the function 9(’) 1.

It is easy to see that the spectrum of the operator P is equal to the sum
of the spectra of the operators P1 and P- P1 which are considered in
and 932, respectively, where . consists of those elements g for which Pig O.

It follows from (1.6) that

(1.7) (P- P1)" pn_ P1.
Denote by Vn(, A) the total variation of the measure

p(n(, B) p(B)
on the set A.

As a consequence of (1.4),
(1.8) Vn(, A) <= 2,p.
Therefore

(1.9) ][(P- P1)n[] =< 2ypn.
Since all points z for which

Izl > lim ]](P- P1)n][1/n

belong to the resolvent set of the operator P- P1, it follows from (1.9)
(see [16, p. 454) TI-I that the spectrum of the operator P- P1 lies in the
circle of radius p with center at 0. The spectrum of the operator P1, obviously,
consists of the single point 1. Consequently, the region, which is exterior
to the circle of radius p with center at the point 0, from which the point
has been deleted, lies entirely within the resolvent set of the operator P.

It is easy to see that the resolvent of the operator P is

(1.10) R(z) P1 @ , (P P1)z-n-1
z--1 0

where ]z] > p.

TI-I The relevant reference to editions in all languages and issues is Section 148.
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2. The Operator P(0) and its Spectral Decomposition

Now consider the operator P(O) in gJ which is generated by the kernel of

p(o, , A) f d’(,p(, d), A Fx,
A

where /() is a real function which is measurable with respect to Fx. If
P(O) P < l/JR(z) then the series

(1.11) E R(z)(P(O) P)R(z) c
o

converges and determines the resolvent operator R(z, O) for P(O).
Let I1 and 12 be circles with centers at and O, respectively, and radii

pl--(1 --p)/3 and p2 (1 + 2p)/3.
In the future we will always denote by (g, #) the functional

g()#(d), e 92, e*.g
x

Lemma 1.1. There exists an e> O such that /or P--P(O) <s

(1.2) pn(o) 2n(O)Pl(O) + O(p2n),

(1.123)
j R(z, O)dz,PI(O)

2i
11

(P(O)Pl(O)V’, P)
(o)

(P1 (O)y, p)

and by O(p2n) we denote the operator Tn whose norm ]lTnl] O(p2n).
PROOf. Let Ma be the sup IIR(z)ll in the region which lies outside the circles

with centers at 0 and and radii d + p and d, respectively, and also where
d < Pl and d + p < p2.

It is easy to see that if

(1.14) liP(0) P]] <,Ma
then I1 and I. lie within the resolvent set of the operator P(O).

Consider the projections

Pl(O) R(z, O)dz,
2i

(1.15)
1

ifP.(O) R(z, O)dz.
2:i

I.

Let gJl(0) be the subspace onto which PI(0) projects 9X. If

(1.16) IIPI(O) PII < 1,
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then gJl(0) is one-dimensional. Indeed let us assume the contrary. Then there
exist two linearly independents element hi and h. in gJl(0). Obviously
Plhl --yPlh2, where y is some complex number.

If h hi yh2, then Plh 0. Consequently,

(Pl(O) P1)h-- h,

but this contradicts (1.16).
So let us assume that (1.16) is fulfilled. Denote by (0) the element which

determines 1(0). Obviously,

(1.17) P(O)Pl(O)o(O) Pl(O)P(O)o(O) (0)(0).

(1.18)

Further,

(1.19)

(1.20)

On the other hand, we can choose y(0) so that y(0)--PI(0).
Then it follows from (1.17) that

(P(O)Pl(O)o, p) 2(O)(Pl(O)o, p).

(1.21)

By virtue of (1.20)
(1.22)

Pn(O) Pn(O)PI(O) + Pn(O)P2(O),

P’(olf(ol
i

’(, o1.
12

It follows from (1.17) that

(0/1(0/= x(0/(0/.

Pn(O)P2(O)I[ < sup [R(z, O)l102.
If e is such that (1.14) and (1.16) are fulfilled, then the assertion of the

lemma follows from (1.18), (1.19), (1.21) and (1.22).

3. Construction of the Eigenvalue of the Operator P(0)
with Maximum Modulus

Denote the operator (P(O) P)R(z) by A (z, 0). Then, by virtue of (1.11)
and (1.15),

PI(O) P1 + R(z)A c(z, O)dz,

(1.23)
P(O)P(O) P +-5 X, zR(z)A(, 0).

It follows from (1.13) and (1.23) that

-+- Y Bk(O)
(1.24) 2(0)

-+- E C(O)
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where

2il ( f zR(z)A O)dzo, p)
11

l(f )Cg(O)
2zd

R(z)A(z, O)dzp, p

Lemma 1.2. I Y_.’ c (O)l < 1, then

(1.26)

where

(1.27)
W(O) Cm(O) -t- Bin(O) -t- (-- 1)c( Cm(O)) c

3 3 2 2

+ Bm(O)[_E (-- 1)( Cm(O))g].
2

PROOF. Denote P(O)- P by G(O). The operator G(O) is determined by
the kernel of

(1.28) ff(, o)p(, d),
_/1

where

(1.29)
0

Let us transform the expressions for C1(0) and B1(0) in (1.25). To do
this consider the integrals

and

f zR(z)A (z, O)dzK1
2i

f R(z)A (z, O)dz.K2
2i

Denote P1/(z-- 1) and E’ (Pg P1)z-/c-l, respectively, by Rl(z) and R2(z).
Through simple computations we get

(1.30)
K1 P1G(O)P1 -- PIG(O)R2(1) -+, R2(1)G(O)P1,

K2 P1G(O)R2(1) + R.(1)G(O)P1.
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Since R,(1) O, it follows from (1.30) that

BI(O) et(>p(d) 1,
(1.31) i

J

(0) =o.
Similarly,

(1.32) B2(0)- C2(0)--- {fl eiJ(*)P(d) eiJ(’)p(’ d) ( f eim)p(d))2}.
X X X

(1.26) follows from (1.24), (1.31) and (1.32).
Lemma 1.3. There exists a constant A, depending on v and /(.), such

that /or 101 < A, 0 < a g 1, 0 < v 1,

(1.33) A(0) (io,(,)(W) < sup (/() [ (, W). ([/() [(WW)101+.
J J d
x x x

PROOF. By virtue of (1.24),

(1.34) A(0) e(’)P(d) + Z (--1) (Z C(O)) [Z B(O) + 1] + Z B(O)
2 2

X

if Z? c(0) < 1.
It is easy to see that

(1.35) C(O) f PR(z)(O)A-(z,
2i

By virtue of (1.28),

(1.2)
d
x

Further,

P1R(z)(P(O) P) (PI(0) P1),
z--

(1.37)
[Pl(0) Pl[ =< 2 _I I/()la p(d) 10lo

x

From (1.35)-- (1.37) it follows that

l()l p(, )- [l()l p(),(1.38) IC<0) [O[e+(/c-1)V[sup
d d
X X

where Q1 is a constant independent of k, o, v and /(.). Similarly,

IO +(-l)vVsup (I/()l (, d)- I/()l p(d),(1.39) B(0) Q2-I
d

x x

where )2 is a constant independent of k, a, v and/(.). The assertion of the
lemma follows from (1.34), (1.38) and (1.39).
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4. Estimate for k"(O)

Lemma 1.4. There exist a /unction #(t) > 0 and a constant A > O, both
independent o] /(.), such that

and

lim q)(t) 0
t0

(1.40) 1)."(0) "(0)] < (MO)f ]2()p(d)
X

/ IOl < /M, where M sup

PROOf. Let us first estimate B"(O) and C"(O) for k >__ 2. Let the operators
G(1)(0) and G(2)(0) be determined by the corresponding kernels of

and

d
-6-f(, o)p(, dv)

A

d2

-yd;](, o)p(,, d).
A

By virtue of (1 25), Bc"(O) consists of terms h’lj’’’’’ (0) of the form-ii. i+

(1.41)
2i z (O)R,(z)G)(O) ...G)(O)R+‘(z)dz% p

where im and m take on the values 1, 2 and 0, 1, 2, respectively, ]m 2,
and G<)(O) G(O).

If i+ 2, then b’" (0 0 since R(z) O. Therefore we can

consider i+ 1.
By the definition of R2(z),

(1.42) G(i)(O)R2(z) G(i)(O)R2(z)G(i+)(O)

X G)(O)(Pn- P1)’" "(P-- P1)G+>(O)z-n-n -.
The operator

(0) P1G<’)(O)(P P1)G<)(O)(P- P1)""" (e-- P1)G+)(O)ii +

0 im 2, m= 1,2, ...,k + 1,

is determined by the kernel of

(1.43)
a x

J g"+)(+l, o)(p+)(, +) P(d+)).
X
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Let us first consider the case when some i-- 2, :/: il, im 0, m :/: l.
By Hhlder’s inequality

Mnn"’n (O)l] < 1g(i)($1, 0)1 p(dl) [g()(, O)l gn+l(l d2)ii "i+

X X

+(+, 0) V+(, d+)

(1.44)

[ f lg"’>(l, O)l r p(l)]l/r [ fp(dl)( f l(i)(2, 0)1 V+(, d2)
x x x

]g<*’(+, 0) V+(, d+)
x

l(k, d+l)
x x

+(, x) Vn,+(, d2) (, O)" (, 0)] Y+ (, d)
x x

8 1/sf ’g(i+)(+l’O)l Vn+ (k’dk+l)/ ]
x

where l/s+ l/r: 1.
By applying inequalities (1.45) and (1.8) in succession, and taking into

account the fact that Vn(, A) p(A) + p(n)(, A), we get

f
_._,,..+ (0)lI < 2y/ "’+ (sup

(1.46)
E lg(x, O)ir E/ ig(x, 0),

where Xl has a stationary distribution and E denotes the expectation. As a

consequence of (1.28)

sup Ig(, 0)] M
(1.47)

(, 0) /(),

whence it follows that lg<0(, 0) ]()]

(1.48) E/ g(m(Xl, 0)r E/S[S(Xl) M 01 E/ ][(Xl)irE/s [(Xl) s-s.
If we set s 2/(2- ), then it follows from (1.46) and (1.48) that

-.-i,..i+ (0)ll 2k/2M 101// nt+k E/2(xI

or, since 6 can be made arbitrarily close to 2,

(1.49) Mnn’"n (O)ll 27M lOlo n,+k E/2(Xl-’-ixi" "i+
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It is easy to see that estimate (1.49) is true also in the case when il 2,
im 0 and m :/: il.

If for some s and p, is-- 1, ip-- 1, im --0, and m :A-P, s, then similar
reasoning yields the estimate

(1.50) ,..M1’’’.+ (0)l[ =< 2cyMc-1 lo[ -lp *’+ E/e(Xl).

Further, by starting with (1.46), it is easy to show that

(1.51)

by

2vMk+i [0[k+l pn,+l

Denote the operator

Rl(Z)G(il)(O)Rz(z)

L(ii, iz, ", ic, z, 0).

k+l

im-- 1,

k+l

(1.52)

From (1.43) and (1.50)-- (1.52) we conclude that

L(il, i2, ", ic+l, z, 0)[ <-

On the other hand,

, IMO[+ 1-- Z in

lZ--

n I/(xl)l

(1.53)

if

( f zRI(z)G(a’(O)Ri*(z)’" "G(’)(O)RI(z)dzw, P)
----( f zL(]l, ]2,’’’, is1’ Z, O)L(]s+x, ", ]s, z, O)

-.L(],+I, ..., ], z, O)Rl(z)dz/, p)
is1 is2 is, 1.

(1.54)

It is easy to see that

It follows from (1.41) and (1.52)-- (1.54) that

(1.55)
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where B is a constant independent of k and /(.). The number of different
combinations of indices ’m is equal to k2, while the number of different com-
binations of indices im when il--i+1 is equal to 2-1.

Therefore

(1.56) [B"(O)[ <= 2-BkZIMOI-2 E/2(Xl).

Similarly

(1.57) Ic"(0)l =< 2te-lCtek2 IMOI-2 E/2(Xl),

where C is a constant which is independent of k and [(.).

Note that B’(0) 0 and C’(0) 0 for k 2 Consequently,

IB’(0)] sup iB"(t)i IO 2-IBk2M-2 lOI -1 E/2(Xl),

C’(O)I sup C"(t)[ [0 2-ICkeM-2 [0l-I E/2(Xl).
Itl 101

As regards B(O) and C(O), it is easy to obtain the following estimates"

]B(0)I sup Izl (sup IlR(z)ll)+ IMOI,
zI 1

(1.59)
IC(0)l (sup R(z)ll)+1 IMOI,

zI
If

(1.60)

where
MN’

N z max (B, C, sup IIR(2)II),
zI

then the series ]7 B(O), 27 Bc’(O), 27 B"(O), 2 C(O), 2 C’(O) and
C"(O) converge absolutely and uniformly, and

d2

2 c(o)
dO2

2
(1.61)

d d2

( 1)X c(o)- X c(o) + 2 c(o)- X c(o).
2 2 dO2

If at the same time

IMNOI < 1/2,
(1.62)

]MNO] 2 N < 1-,
then

12 Cc(O)I < 1,
2

and from (1.27), (1.56)--(1.59)and (1.61)it follows that

(1.63) IW"(0) < AM [01 E/2(Xl),
where A is a constant which is independent of/(.). Let us now take up the
estimate of the difference [Bz"(0) C9."(0)] [B2"(0) C2"(0)].
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From (1.39) we find that

(1.64)

B."(O) C2"(0) Y [2Eei() E/Z(xl)eit(x) + 2E’/(xl)eit(x)

n(/(Xl) +/(xlc+l))zeiq(x:)+t(x’+:>>],

Bz"(O) C2"(0) 2 X E/(Xl)/(X+l) E2/(Xl).

Using the same reasoning as in the derivation of (1.57), it is easy to get that

]Bz"(O) Cz"(O) 2 2 [EZ/(x)ei/(**) El(x)/(x+)e(t(*)+t(*+))]

<= 4, E pc(IMO[ + IMOI)E/(Xl).

On the other hand it is easy to see that

(1.66)

It follows from (1.64)--(1.66) that

(1.67)
IBz"(O) C2"(O) Bz"(O) + C,"(O)[ < 4

p
(M [01 + ]MOlZ)]Z(x)

2U ,1/2 ] pk/2 E/Z(Xl) + 8M 101 iMOll/
E/’(Xl).

[I 1/MOI /]

(Square brackets denote the largest integer not exceeding the given number).
The assertion of the lemma follows from (1.63), (1.64) and (1.67).

CHAPTER II

LIMIT THEOREMS

1. General Form of Limit Distributions

Throughout this entire chapter we will assume that condition (1.1) is
fulfilled.

Theorem 2.1. A sequence o] distribution/unctions Fn(x) o/sums o] the
]orm (0.3) can converge only to a stable law. I/ the. stable law to which Fn(x)
converges has characteristic exponent o, then

(2.1) Bn nl/h(n),
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where h(n) is a slowly varying [unction, that is,

lira----

/or an arbitrary integer k > O.
PROOF. Let us assume that Xl has a stationary distribution. The general

case is easily reduced to this special case. Let the sequence Fn(x) converge
to some proper distribution unction F(x). Then

Bn cxD

Bn+l
Bn

Let al and a2 be two arbitrary positive numbers. Choose two sequences
m re(n) and/= l(n) so that

(2.2)

Bm al

n-+o,, Bn a2

and

lim l(n) co,

p lim Z/(x,) 0
n--+oo Bn

(the symbol p lim denotes limit in probability).

Consider the sum

(2.3)

where

X l(x )Z/(x) A ,, bl +
a,1

+ Y l(x)--Am--be Y /(xc)--Cn,
alBn n+/+l alBn

alBn
(BnAn + BreAm + blBn + b2Bm).

The distribution functions of the first and third summands of the left
side of (2.3) converge to F(alx + bl) and F(a2x + b2), respectively. On the
other hand, it is easy to see that

( alBn Bnal )x- A n+m+l -- CnFn+l+m
Bn+l+m Bn+l+m

(2.4)
alBn

F(alX + bl) Fm Bm
2ye.

By virtue of (2.2) and (2.4) the distribution function of the left side of
(2.3) converges to the composition of F(aXl + bl) and F(axe + be).

The distribution function of the right side can converge only to a distri-
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bution function of the form F(a3x + b3), where aa > 0 and ba are some
constants.

Consequently,

F(alx + bl)- F(aex + be) F(aa + ba),

that is, F(x) is a stable law.
For the proof of the second part of the theolem we will use a method

suggested by V. M. Zolotarev. Let Fn(x) converge to a stable law with ex-
ponent . If v(O) is the characteristic function of this law, then, as is well-
known ([6], p. 101),

Iv(0)l e-ll c>0.
Consequently,

(2.6) lim Vn e-cl01

where vn(O) is the characteristic function of G’ [(xk). On the other hand it
is easy to show that

0
lim vn(2.7) -lim vnc Bn -+oo -B;c

from which in consequence of (2.6) it follows that

(2.8) lim Vn e-OlOl/k.

From (2.6) and (2.8) it follows that

Bnlc(2.9) lim k1/.
n-- e/’b

Obviously relation (2.9) is equivalent to (2.1).

2. Central Limit Theorem

Theorem 2.2. I/

(2.10) y It()12 #(@) <
X

and

(2.11) lim E -v’-- 1 (/(x)
X

then/or an arbitrary initial distribution

(2.12) n-oolimPr ,V 1 /(x)-- /()p(d)
X

=2> O,

e-u’/2" du.
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This theorem is an analogue of a famous theorem due to P. Lvy concerning
sums of identically distributed independent random variables.

PROOF. As before, we will restrict ourselves to the case when the x, are

identically distributed. Without loss of generality we can assume that
E](x,)- 0. Let us consider, along with the function [(.), the function
which is defined in the following manner:

ln()--l(:) if [l(*)l < M(n),
ln() 0 if 11(*)1 >= M(n),

where M(n) is a constan’t which is independent on n. Denote (1/y/n) W, [(x)
and (1/V/n) [n(x) by Sn and Sn’, respectively. It is easy to see that

(2.13) [Pr(Sn < x) Pr(Sn’ < x) f dF(x),
Ixl > M(n)

where

Since

it follows that

F(x) Pr(/(xd < x).

if F(x) <
2

Ixl > eV Ixl > eV

(2.14) n I dF(x) 0

Ixl >

for arbitrary e > O.
Consequently it is possible to choose a sequence (n) > 0 such that

and

lim (n) 0

lim n f dF(x) O.

Ixl > (n)V-
Suppose

(2.16) M(n)

It is easy to see that

((0)EeiOSn’-- Vnn-1 --The operator Pn(O) is defined by the kernel of

pn(O, , A) f ei1n()p(, d),
A

and pn(o, A) is the completely additive set function
By virtue of (1.28)

exp (iOln(v))p(d).

(2.18) IIPn(O) PII - M(n)101.
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Consequently, by Lemma 1.1, from some n-----n(O) on,

(0)(2.19) Pnn V/
$n -- Pin V + O(pg,n).

Expanding log 2(O//n) into a series, we obtain

0

On the other hand,

0 ) 0 02 02
A W/n- -I-- V7n Art’(O)-I------n An"(O)-I- 2--n-

o < 0[ < lOl.

It follows from (1.26), (1.64) and (1.66) that

lim Xn"(O) E/2(Xl) + 2 Y E/(Xl)/(xc+l)

oolim E /= 2 (/(x) E/(x))

It follows from (1.40) and (2.16) that

(2.22)

Further, as is easy to see,

(2.23)

In consequence of (2.15), (2.16) and (2.25),

(2.24) V,x (o) o.

It is easy to obtain from (2.20)--(2.24)

(2.25) lim log nn a.
b--> 2

By virtue of (2.16) and (2.18),

lim (o)Rn z,.. R(z) =0,
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and consequently

(2.26)

Similarly

lim

(2.27) lira

0
Pnl ( %/ ) P1

From (2.17), (2.19), (2.22) and (2.25)--(2.27) we finally conclude that

(2.28) lira Eeisn" e-/2,

but by virtue of (2.13) this is equivalent to the assertion of the theorem.

3. Convergence to Laws other than the Normal

Theorem 2.3. Let Ul, u2, "", un, be
random variables with the distribution /unction

a sequence o/ independent

F(x) Pr(/(Xl) < x),

where Xl has a stationary distribution.
I//or some sequence o/ constants A n and Bn > 0

(2.29) lim Pr

n

Bn
A < x)= V.(x),

where V(x) is a stable law with exponent , .and/or some 0 < v < and some

sup(2.30) lim nBn-v-min(l’-v)__ O,
d

/or any > O, then, ]or arbitrary initial distribution,

(2.31) lim Pr (-n- 1 )/(xg) An < x V(x).

PROOF. We will again restrict ourselves to the case when the xi are

identically distributed. Since (2.30) is fulfilled for arbitrary , it is possible

lim p(n) co,

sup ( I[()[ p(, d)(2.32) lira hen-v-rain(I, -8) 0,
d

I]()1 < Bnp(n)

lim
(n)

O,

for any >0.

to choose a sequence p(n) > 0 so that
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Let/n(’) be defined as follows"

I,,(’) 0 if I1(’)1 ->-
Let Sn and Sn’ denote

and

n

l(x,J A
Bn

l(xb A
Bn

respectively.
Let Pn(O) be determined by the kernel of

e()p(, d).

By virtue of (1.28)

IlPn(O) PII < 2 sup(2.33)
1107)1 <

By Theorem 2.1, Bn llh(n), where h(n) is a slowly varying function.
Therefore it follows from (2.32) that

sup 1/()1 p(, d,)(2.34) lim Bn-v O.
d

I]()[ < Bnv/(n)

Consequently, by Lemma 1.1

(o) (o) (o)(2.35) Pnn --B-- nn --- Pin ---- @ O p2n)

for all n > n(O).
Further, by Lemma 1.3, since

ll()l -" p() < oo,

(see [14], p. 192 TN-2), we have

log nn n log n
(2.36)

-J-O (IgBn-v-min(l’-e) sup f I/(,fll" P(, )),
I/()1 < B,,,(n)

where

x

T-2 The page reference in the English language edition is p. 180.
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It is easy to see that

(2.37) Eeisn" e-iAn (Pnn-l l----) Pn

where pn(o) is the completely additive set function

Let u(n) be a sequence of independent random variables with the distri-
bution function

Fn(x) Pr(/n(Xl) < x).

It is easy to verify that

(2.38)

Pr u- An < x Pr u(n) An <

<_ 2n f dF(x).
Ixl

__
Bo(n)

x)

It is well-known that ([I 4], p. 195

Cl
lim nF(Bnx) for x < 0,

lxl
C2

lim n(1 --F(Bnx)) for x>0,
n-oo X

where Cl > 0, c, > 0 are certain constants.
Therefore

 f(x)(2.3’:)) lira O.

Ixl > B,ao(n)

It follows from (2.38) and (2.39) that

(2.40) lim qgnn e-iOA’= lim %on
n-+oo n-oo

g--iOAn.

It follows from (2.30), (2.35)--(2.37) and (2.40) that

(2.41) lim Ees"’ q(O),

where (0) is the characteristic function of the law V(x).
On the other hand it is easy to see that

IPr(Sn < x) Pr(S’ < x)l < 2n f
Ixl > B(n)

dF(x),

The page reference in the English language edition is p. 182.
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and this in consequence of (2.39) and (2.41) means that

lim Pr(Sn < x) Vow(x),

which is what was to be proven.
REMARK. It is quite likely that condition (2.30) can be weakened. How-

ever some sort of restrictions on the order of magnitude of

sup f 1/()1*p(, d)
11(7)1 < N

as a function of N ought to be imposed just the same. It is possible to construct
examples in which

sup f I/(n)l O(N)
I.f(n)l < N

and the limit distributions for the sums

n n

Bn "1 UIc A n and - 1/(x) A n

do not coincide. On the other hand, it can be shown that always

lim EeiS" lim iOAg

We will not dwell on this.
Theorem :.4. I!

II( )l oo,

X

then, [or some choice o/constants A n and arbitrary initial distribution

(2.42) lim Pr ni/ /(x) An < x E(x),

(2.43)

and

where E(x) is an improper law.
This theorem is proved by the same method as Theorem 2.1. The function

In(’) is defined as follows"

In(’) 1(’) if ]1(’)1 _--< nlly(n),

/n(’) 0 if I/(’)1 > nl/(n),

where the sequence p(n) is chosen so that

lim p(n) 0
n-+oo

lim f dF(x) 0

Ixl >

(we keep the notation of 2 and 3).
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It is easy to see that

(2.44) n(O) cyn(O) + O(E/n2(Xl)O2).

At the same time

(2.45) E/n2(Xl) < t2/a-l2-a(n)E J/n(xl)I a.

Consequently

(2.46) lim ;tnn lim nn
n--+oo n--+oo

The rest of the proof is left to the reader.

CHAPTER III

THE LOCAL LIMIT THEOREM AND ASYMPTOTIC EXPANSIONS

1. The Local Theorem

Suppose that X is a denumerable set of points i and that condition (1.1)
is fulfilled for k 1. Then, as is easy to see,

(3.1) inf ] min(pi, p) > 0,
(i,i) k-

where p, p(,, ) (concerning condition (3. l) see, for example, 15).
Let us suppose further that all states are essential and constitute a

positive class (see 5).
By virtue of (3.1) this class consists of one subclass. Suppose

/()--a + kih, where ki is an integer, a is an arbitrary real number and
h>0.

Theorem 3.1. I/ the greatest common divisor o/ the k, is equal to 1,

and

(3.2) > 0

(the p, are final probabilities and a is defined in the same way as in Theorem 2.1),
then

uni/ormly in s, where

-z=,,,/2) =o,

n

rrn(S) Pr (Z/(x,) an + sh),
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under the condition that the initial distribution is :--:(), and that

aV/ zn, a(n + I) + sh- (n + 1) [(,)p,.

The following lemma will be needed in the proof.
Lemma 3.1. I/the greatest common divisor o/the k, is equal to 1, then

/or e <= [01

_
(2:/h) e and n > no

(3.4) <
where qn(O) is the characteristic ]unction o/the random variable E /(x,) subiect
to the condition that the initial distribution is :--:(i) and c is a positive
constant which is independent o] e.

PROOE. Denote k- ki by Ai. Obviously, the greatest common divisor
of the A, is equal to 1. Let S be the set of those Aj, for which pj > 0 and
p, > 0. It is easy to see that the greatest common divisor d of the numbers
Ais Eo S is equal to 1. Indeed, let us assume that d > 1. Then Psi 0
if ki as + mid, where as and m are integers which depend on s and i,
respectively. If a a, (mod d) for some k and i, then the inequalities p > 0
and P0" > 0 cannot be fulfilled simultaneously and this contradicts (3.1).
But if as ai (rood d) for arbitrary i and k, then Psi--0 for i such that
k, al (rood d) and all s, but this obviously is impossible.

Let us choose from Eo S a finite set of S such that the greatest common
divisor of J/ S is equal to 1. Index the J, S in some manner. Let J1,
/12, ..., J2v be the resulting sequence. If , S(,), then for some i(s) and/’(s)
we have P(8)i(s)> 0 and p(s)j( > 0. In consequence of (3.1) there exists an
index v(s) such that

(3.5) Pi(8>(s) > 0 and pi(s>(s)> 0.

Denote s=l pispsei(’+) by p:)(0).
By virtue of (3.5), for

2:k 2x(k + 1)

where ps(e) is a constant which is dependent on s and e.

Further,

where p!.+ )(0) is an element of the matrix Pm+2(O) (P(O) is the characteristic
matrix {Pi exp(iOx)}).

Without loss of generality we can assume that A1 is in absolute value
the smallest of the differences As S. Suppose JAil # 1. If 101 2:k/h IAll,
k < JAil, then it is always possible to choose/’(k) and Ai() S, so that

2z4(k) 2zO’(k -[- 1)
(3.8)

h IA,<m>l
< I01 < h IA,< )I
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Indeed, otherwise

’, k

for all A, S, that is A,--n,A1, where n, is an integer, but this contradicts
the fact that the greatest common divisor of the A, S is equal to 1.

By virtue of (2.6) and (2.8), when , <= 101 ,
(3.9) max ,r,,- IP,<,(0)I) > p(e) > 0,

where p(e) is a constant which is dependent on e.

It follows from (3.7) and (3.9) that

I+2(0)[ < rain(3.10) max 2 ,,
sN,i

By virtue of (1.4), since all final probabilities pi > 0, it is possible to
choose m so that

is > > 0

for all i and s N.
On the other hand it is easy to see that

(3 12) I(0) (max E [ii

The lemma’s assertion follows from (3.10)-- (3.12).
PROOF O TRaoR 3.1. The following two inequalities play a funda-

mental role in the proof of the local limit theorem for independent identically
distributed random variables using B. V. Gnedenko’s method"

2n
(3.13) I/n(0)l < for 101 <

and

0 ) -o’/.4(3.14) ln ----- < e for 101 <

where /(0) is the characteristic function of the sum of the first n random
variables, Bn2 is the variance of this sum, and e is sufficiently small.

Lemma 3.1 shows that inequality (3.13) remains true also under the
conditions of Theorem 3.1. On the other hand, as is easy to see, it follows
from (3.7) that

"(0) -b

where b> 0 is some constant.
Utilizing Theorem (1.1) and inequalities (3.13) and (3.15), and reasoning

in the same way as in the case of independent random variables (see [14,
49), we easily obtain (3.3).
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2. Asymptotic Expansions

Suppose

X

for some integer _>_ 3 and d > O.
Expanding exp(iO/()) into a series, we get

(i0)2
p(2)+... +_(3.17) P(O) P + iOP(1) --2 t--

where p(s) is determined by the kernel of

i- e(10=o p(, @).
dO

A

Obviously

(3.19)

where

IIP*II <= sup f
X

(iO)
k!

P() + 0(0+),

ifPl(S) R(s)(z)dz,
2i

and 2(s) is a combination of (P’), p) and (z(R()y, p)dz, <= S.

Further,

(3.20) log 2(0) ] o(s)(iO) s + 0(0+),

where a(s) is a combination of the (), " g s.
Henceforth we will assume that

0t(1) .(1)(0) 0.

It is easy to see that

(o)log n. n log

(2.21) Ok-2+a )n(k_2+a)/2 -1- O(Op2n),

It is easy to conclude from (3.17) and (1.11) that
k

(3.18) R(z, O) R(z) + X R(s)(z)(iO) s + 0(0+),

where R(s)(z is a combination of R(z) and P(), " < s.
It follows from (1.13) and (3.18) that, for P(O) PI[ < e, we have

k

PI(0) P1 + ] PS)(iO)s + 0(0+3),
k

(0)- 1+ X &(s)(iO)s + O(Oc+),
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n+l l(xlc) 7(0) is the completelywhere qn(O) is the characteristic function of 1
additive set function t exp(iO/())z(d), and fl(s) is the coefficient of the term

containing (i0) in the expansion of log (PI(0), (0)).
The following expansion for ,(0/) corresponds formally to expansion

(3.21):

(3.22) e-/2 + 2 Ps(iO)
s

where P(O) is some polynomial of degree 3s whose coefficients depend on
the initial distribution x(.).

Lemma 3.2. I/ [0] < A1 (A1 is some constant), then

(3.23)

0
e-/2 + Ps(iO)

()
-(V)_2 ()(IOl + [Ol3<->)e-/ + o(op2),

where c(k) is a constant which depends on k, and lira b(n) 0.

The proof is quite analogous to the proof of Theorem in 41 of mono-
graph 14.

Theorem 3.2. I/the conditions o/Theorem (3.1) and condition (3.16) are
satis/ied, then

h{ Ic121 I(1)(+(s) o--V- () + 7P(- (z,)) + o (_/

Here (z): (1/2) exp (--z2/2) and P(--) is computed in the same way
as P(--u) with the substitution o/ (r) /or ur.

This theorem is proved in the same way as the analogous assertion for
independent random variables (14], 51, Theorem 1). Lemmas 3.1 and 3.2
are used for this.

Theorem 3.3. Let X be the real line. I/condition (3.16) is satis/ied, then

(3.24) 0<m<p0(,) <M<, C, X,

where Po(, ) is the density o/ the component o/ the /unction p(, A) which is
absolutely continuous with respect to the Lebesgue measure, C Fx, meas C > 0
(Lebesgue measure is meant), and

(3.25) liminff f0--->oo
C C

then

sin2(/() --/01))Odld > O,

(3.26) Fn (x) #(x) (- + 0
n(]c_2) 2

Here Fn(x is the distribution ]unction o/ (Z2 /(xg))/V subiect to the
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condition that the initial distribution is (.),

(x)

X

f/
e dt,

where Psi(-- q) is computed in the same way as P,(-- u), with the substitution

ol qr /or u.
PROOF. Let #(, .) be the singular component of p(, .). It is easy to

see that

where p(’)(O, , A) is the kernel of the operator P2(0), and

X A X A

Consequently,

.p()(O, , A)[, <1-- ; d [ Po(, )po(rl, )d

(3.27)
x x

Further,

(3.28)

Po(, )Po(,
X

X

x po(, Z)po(Z, ) cos o(1()

Hence, in consequence of (3.24),

f po(, )po(, )d
X

f e(’)Po(, n)Po(, )dv
X

ff o
2 Po(, )Po(, )Po(, A)Po(A, ) sin’ -(/() --/(A))dTdA
X X

f; o
> 2m4 sin- ([()- [(.))dd..
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On the other hand, for a C,

(3.29)
f e(nPo(, )Po(, )d + f Po(, )Po(, )d

x

<__ 2 f P0(, )P0(, )d
x

It follows from (3.28) and (3.29) that-

(3.30)

Po( , n)po(n,  )dn
x

< 2M.

It follows from (3.25), (3.27) and (3.28) that

p(2>(o, A) <
where > 0 is some constant, that is,

101 > A1,

IIP2(O)II < ,x

for [0[ > A1.
The remainder of the proof is carried out in exactly the same way as

the proof of the theorem in 45 in [14]. Lemma 3.2 is used here.

Received by the editors,

June 25, 1957.
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SOME LIMIT THEOREMS FOR STATIONARY MARKOV CHAINS

S. V. NAGAEV (TASHKENT)

(Summary)

Let X be a space of points, Fx a a-algebra of its subsets, and p(, A), X,
A Fx, a stochastic transition function satisfying the following condition"

an integer k __>_ exists such that

(1) sup ]p()(, A) p()(, A)I < 1.
7, eX, A Fx

Let us define the sequence of random variables , ,..., n, as follows"

where x (.) is the initial distribution.
Let/() be a real unction o X measurable with respect to Fx.

In Chapter I the asymptotic behaviour of the characteristic function of Y/(x,) is
studied. Chapter II is devoted to limit theorems. The central limit theorem is proved
under the assumption that

/’(e)p(de) < c,(2)
x

where p(.) is a stationary absolute probability distribution corresponding to p(., .).
The sufficient conditions for convergence to stable laws are given. In chapter III the
local limit theorem is proved, and asumptotic expansions are given. The characteristic
function method is the basic one used.

I-4 There is an English translation: Gnedenko, B. V., and Kolmogorov, A. N.,
Limit Distributions [or Sums o[ Independent Random Variables, Cambridge, Mass., 1954.

I-5 The original edition was in French, printed at Budapest, Hungary, 1952. There
are now three French editions: 1952, 1953, 1955. There is also an English translation:
Functional Analysis, translated from the second French edition. New York, 1955.


