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Introduction

Let X be a space of points & and Fx a o-algebra of its subsets. Let p(¢, 4),
te X, A e Fx be a stochastic transition function. For fixed & the function
p(&, A) is a probability measure, and for fixed 4 is measurable with respect
to Fx. The transition probabilities in # steps, p(™ (&, A), are calculated by
the formula

(0.1) (& A) = fi"”‘l’ (n, A)p(&, dn).
4
If the initial probability distribution #(-) is given, then $(-, -) determines
a sequence of random variables

X1, X2, " Xy "7,
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which are connected in a stationary Markov chain and where, moreover,

Pr(v; € 4) = n(A),

(0.2) Pr(vn € 4) = f PV (&, A)m(dE).

X

Let f(§) be a real function defined on X and measurable with respect
to Fx while Fy(x) is the distribution function of the sum

n
(0.3) Sn = ?:— > Hws) — An,
n 1
where A, and B, > 0 are constants.

Just as in the study of sums of identically distributed independent
random variables, there arises the question as to what laws and under what
conditions can a sequence I',(x) converge. But even if this problem is com-
pletely solved for independent random variables, it is far from a final solution
for random variables which are connected in a stationary Markov chain. The
investigation is made more difficult by the fact that the behavior of Fy(x)
depends in an important way on the ergodic properties of the chain. In order
to simplify the problem it becomes necessary to consider chains with sufficiently
strong ergodic properties.

The most completely investigated conditions are the sufficient conditions
for the validity of the central limit theorem. Already Markov had proved the
central limit theorem for three states subject to the condition that all transition
probabilities be positive. Different variants of the proof of this theorem for a
finite number of states have been given by Romanovskii, Mihoc and Schulz.

In 1937, with certain restrictions on the stochastic transition function,
Doeblin [3] proved the central limit theorem for an arbitrary set of states
assuming that f(£) is bounded. Doob in [12], and Dynkin in [11], assume,
instead of boundedness of f(&), that, for some 6 > 0O,

(0.4) f 182 p(dg) < oo,

where p(-) is a stationary probability distribution corresponding to (-, -).
As regards convergence to limit laws other than the normal, this question
has been studied very little. In 1938 Doeblin [4] proved that in the case of a
denumerable chain one can reduce the study of sums of the form (0.3) to
the study of sums of identically distributed independent random variables.
Doeblin’s method makes it possible to assert that for a definite class of denu-
merable chains the set of possible limit laws coincides with the set of stable
laws. Stable laws for the number of occurrences in a fixed state of a denumerable
chain were obtained in 1949 by Feller [13].

Another important trend is the study of the conditions under which the
local limit theorem is valid. The local limit theorem for finite chains was proved
in 1949 by Kolmogorov [9] who used the above-mentioned Doeblin method.
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Finally, the refinement of limit theorems deserves considerable attention.
In 1952 S. Kh. Sirazhdinov [10] succeeded in obtaining refinements of the
local and integral limit theorems for a finite number of states.

With this we conclude the short survey of the fundamental results in
that area of Markov chain theory to which this article is devoted. Its only
purpose was to make the latter’s contents more comprehensible.

The article consists of three chapters. The asymptotic properties of the
characteristic functions of sums of random variables which are connected in a
stationary Markov chain are studied in the first chapter. Convergence to the
normal law and to stable laws other than the normal is investigated in the
second chapter. The local limit theorem is proved and asymptotic expansions
are obtained in the third chapter. The basic method of investigation is the
method of characteristic functions.

CHAPTER 1

SOME PROPERTIES OF CHARACTERISTIC FUNCTIONS

1. Structure of a Linear Operator Determined by a
Stochastic Transition Function

Let p(-, -) satisfy the following condition:
There exists a positive integer % such that
(1.1) sup [p®(E, A) — p®BI(n, A)| =06 <1, §&neX, AeFx.

&, 4

It is easy to show that when condition (1.1) is fulfilled there exists a
probability distribution #(-) such that

(1.2) 1p(A) — pm (&, A)| < s®P—1 e X, AeFx.
Obviously,
(1.3) pa) = [ e, dplas)

X

that is, p(-) is a stationary distribution.
If we set 01/% = p and 671 = y, we get

(1.4) [p(4) — p™(E, 4)| = yp"

unifromly with respect to £ € X and 4 € Fx. Conversely it follows from (1.4)
that condition (1.1) is fulfilled.
Let 9 be the space of all bounded complex-valued functions g(§), & € X,
which are measurable with respect to Fx and with norm ||g(§)|| = sup |g(é)|
feX

and let M * be the space of all complex-valued completely additive set functions
u(A), A e Fx, with norm |jul| =V |u| (V |#| is the total variation of u(-)
on X).
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Define the operators P and P* in the following manner:

»

Py(r) = | gl@)p(-, d2),
(1.5) x
Prul) = [ (6, Jui@s).

Obviously,
1Pl = [1P*.

In the future we often will call the completely additive set function
D, A), Ee X, AeFx, with bounded total variation for fixed &, which
determines in I an operator of the type P, the kernel of this operator.

Let P; be an operator in It determined by a stationary probability
distribution $(-). Obviously,

(1.6) PPy = PP = P, = P72,
and P; projects IM onto the one-dimensional subspace My which is generated
by the function y(-) = 1.

It is easy to see that the spectrum of the operator P is equal to the sum

of the spectra of the operators P; and P — P; which are considered in ¢t

and M, respectively, where M2 consists of those elements g for which P1g = O.
It follows from (1.6) that

(1.7) (P — Py» = Pr» — P;.
Denote by V,(§, A) the total variation of the measure
p™ (&, B) — p(B)

on the set 4.
As a consequence of (1.4),
(1.8) Valé, 4) = 2ppm.
Therefore
(1.9) (P — P1)*|| = 2yp™

Since all points z for which
2] > lim (P — Py){/n

belong to the resolvent set of the operator P — Pj, it follows from (1.9)
(see [16], p.454)TN-1 that the spectrum of the operator P — P; lies in the
circle of radius p with center at 0. The spectrum of the operator Py, obviously,
consists of the single point 1. Consequently, the region, which is exterior
to the circle of radius p with center at the point O, from which the point 1
has been deleted, lies entirely within the resolvent set of the operator P.
It is easy to see that the resolvent of the operator P is
1 oo

(1.10) R() = = Pt X (P — Pr)snd

where |z| > p.

TN-1 The relevant reference to editions in all languages and issues is Section 148.
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2. The Operator P(0) and its Spectral Decomposition

Now consider the operator P(f) in 9 which is generated by the kernel of

p(0, & A) = fei"f(’?)p(S, an), A eFyx,

A

where f(n) is a real function which is measurable with respect to Fx. If
IP(0) — P|| < 1/||R(z)l, then the series

(1.11) § R()[(P(0) — P)R()]*

converges and determines the resolvent operator R(z, 6) for P(0).

Let I; and I3 be circles with centers at 1 and O, respectively, and radii
p1 = (1 — p)/3 and pz = (1 + 2p)/3.

In the future we will always denote by (g, #) the functional

| euas), ge M, e,
X
Lemma 1.1. There exists an ¢ > O such that for |[P — PO)|| < ¢
(1.12) Pr(f) = An(0)P1(6) + O(p2"),
where

1
Py(0) = - — | R(z, 0)ds,

(1.13) n
PO p)
O =—pomp

and by O(pa™) we denote the operator T, whose norm ||T 4| = O(p2™).

Proor. Let My be the sup ||R(z)|| in the region which lies outside the circles
with centers at 0 and 1 and radii é + p and §, respectively, and also where
0 < p1 and § + p < pa.

It is easy to see that if
1
1.14 PH) — P < —,
(1.14) 1P(0) I < M,
then 7; and I lie within the resolvent set of the operator P(f).
Consider the projections

1
P1(0) = S R(z, 0)dz,
I,

(1.15)
Pald) — —— | Rz, 0)dz

2m1
I

Let M1(0) be the subspace onto which P;() projects M. If
(1.16) IP1(6) — Pall < 1,
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then 9MM1(0) is one-dimensional. Indeed let us assume the contrary. Then there
exist two linearly independents element 4; and hAs in IMi(0). Obviously
Pihy = yP1hs, where v is some complex number.

If & = k1 — yha, then P1h = 0. Consequently,

(P1(6) — P1)h = b,

but this contradicts (1.16).

So let us assume that (1.16) is fulfilled. Denote by y(6) the element which
determines M;(6). Obviously,

(1.17) P(0)P1(0)p(6) = P1(O)P(6)y(6) = A(6)y(0).

On the other hand, we can choose y(0) so that (0) = P1(0)y.
Then it follows from (1.17) that

(1.18) (P(6)P1(0)y, p) = A(6)(P1(6)y, £).
Further,

(1.19) Pr(9) = Pr(0)P1(0) + Pn(0)Ps(0),

(1.20) Pr(0)Py(0) = 7;—[ 2"R(z, 0)dz.

I
It follows from (1.17) that

(1.21) Pn(6)P1(6) = An(6)P1(0).
By virtue of (1.20)
(1.22) IPP(6)Pa(6)]| < sup [R(z, )] pz».

zels

If ¢ is such that (1.14) and (1.16) are fulfilled, then the assertion of the
lemma follows from (1.18), (1.19), (1.21) and (1.22).

3. Construction of the Eigenvalue of the Operator P(0)
with Maximum Modulus

Denote the operator (P(6) — P)R(z) by A(z, 0). Then, by virtue of (1.11)
and (1.15),
1 o
Pi6) =P1+— X fR(z)Ak(z, 0)dz,
2m1 1

(1.23) - h
POYP1(0) = Py +—— X sz(z)Ak(z, 0)dz.
2m 1
I
It follows from (1.13) and (1.23) that

(1.24) M) = ————,
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where

By(0) = 71— (sz (2)A*(z, 0)dzy, ;‘)) ,

A
I

(1.25)
Cile) = —— < f R(z2)A*(z, 6)dzy, p).

1

Lemma 1.2. If |3 Cn(0)| < 1, then

.26 0) = | etrérp(d > 07 p(d Of o) pk (£, d
(1.26 M)Jewﬂ@+§{ﬁ<wuﬁew¢@m

X X

— ( f ewﬂ&)p(dg))} + W),

where

(o]

W) = — 3 Cl0) + 3 Bml0) + 3 (— DEE C(0))*
(1.27) ’ ’

(=] o) (o]

+ 2 Bn(0)[Z (— DH(Z Cn(0))*].

1 1 2

Proor. Denote P(0) — P by G(0). The operator G(0) is determined by
the kernel of

(1.28) ff(n, 0)p(&, dn),
where !
(1.29) fon,0) = itta) [ .

0

Let us transform the expressions for C;(f) and B1(f) in (1.25). To do
this consider the integrals

1
K= R
1= 2R(2)A (2, 0)dz
I

and
1
Ko=—— | R(z)A(z, 0)dz.
21
I
Denote Pi/(z—1) and X3 (P* — P1)z~%~1, respectively, by Ri(z) and Ra(2).
Through simple computations we get

Ky = P1G(0)P1 + PlG(O)Rz(l) -+ Rz(l)G(O)Pl,
Ky = P1G(0)R2(1) + Ra(1)G(6)P1.

(1.30)
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Since Ry(1)y = O, it follows from (1.30) that

Buo) = [ e plan) — 1,

(1.31) R
C1(6) = 0.
Similarly,
(1:32) Balp) — Calt) = S{ [ e @piae) [[enprie,any — ([ e opagy Y.

(1.26) follows from (1.24), (1.31) and (1.32).
Lemma 1.3. There exists a constant A, depending on v and [(-), such
that for |0 <4, 0<<a =1, 0<y £1,

1.3 |20 — [ pas)| < sup [y o6, an)- [ inplanoier
X X X

ProOF. By virtue of (1.24),
(1.34)  4(0) = fe""f‘"’zﬁ(dn) +2 (=DF (§ Cm(0)* [ Br(0) + 1] + %Bk(e)
1
X
if |27 Cu(0)] < 1.
It is easy to see that

(1.35) Crl0) =~2—71; f P1R()G () A*-1(z, 6)pdz.
By virtue of (1.28), "
(1.36 1462, 0)] = 2 IR sup [ o)l o6, i) Il
:
Further,
PiRE)(PO) — P) = —— (Pr(6) — P,
(1.37)

Pr(0) — Pall = 2 [ i)™ pla) 0P

From (1.35)—(1.37) it follows that i

(138) ICL(O)] = Qur-t jo-Tsup [ o)l p(6, an = [ 10l p(an),

where Q1 is a constant independent :f E, « v and f(-).XSimilarly,

(1.39)  IBHO)] = QuF o+ sup [ ()} (&, st [ 1)} ),
K K

where Q3 is a constant independent of %, «, » and /(-). The assertion of the
lemma follows from (1.34), (1.38) and (1.39).
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4. Estimate for A"(9)

Lemma 1.4. There exist a function ©(t) > 0 and a constant A > O, both
independent of f(-), such that

lim @) =0
and .
(1.40) |4"(6) — 2"(0)] < P(Mb) ffZ(g)p(dg)
X

if 6] < A/M, where M = sup |f(£)|.
feX

ProOF. Let us first estimate B"(0) and Cx"(0) for & = 2. Let the operators
GD(h) and G@(0) be determined by the corresponding kernels of

a
| T, 0106, )

4
and
a2
| s Fon, 010, din.
4
By virtue of (1.25), By"(6) consists of terms b}i2:/% (6) of the form
1 . . .
(1.41) 7—-( f2RilG(”)(9)Rig(z)G(“)(O)‘ - GIO)R,,, (2)dzy, P) .
7t

I

where 7y, and j, take on the values 1,2 and 0, 1, 2, respectively, 3% jp, = 2,
and GO (9) = G(6).

If g1 =2, then B2 (0) = O since Ra(z)y = 0. Therefore we can
consider 741 = 1.

By the definition of Rs(2),
(1.42) G (0)Re(2) - - - GE¥)(0) Ro(2) G*+)(6)

= > G“")(O)(P’“ — Pl)‘ . -(P"" _ PI)G(ikH)(O)z—’M*’nB'“—nk"'k.

ni,Ne, " **, Nk

The operator
M'nl’na""?;clil(e) — PIG(’I:I)(B)(P’”A _ PI)G(iz)(G)(P’M — Py)- o (P™ — Pl)G(i"“)(G),

T1ta

O0=ZEin=2,m=12,- k41,
is determined by the kernel of

[ e, opptazn [ ¢ien, oyepm(er, ate) — plasa)
(1.43) “ x
e fg(ik+l)(§k+1’ 9)(p(nk+1)(§k, d5k+1) _ P(d§k+1))-
X
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Let us first consider the case when some 4; = 2, [ £ 41, iy, = O, m # [.
By Holder’s inequality

M (0)]) < f 1¢(E1, )] pldEr) f (E, O)] Vs (61, dEo)
: f 10 (E g, 0)) Vs (Ex, dErsn)

<[ (e, orpaen] [ [pae)( [ 1694 01 Vol de)
X X X

. 1/s
. f g™ (Exr1, 0)| Vi1 (€ d5k+1)>8:| ,
X

(1.44)

(1.45) flg(“)(fz» O Vs 1(61, db2) - f 18" (Exr1, O)] Vipyoy 1 (85 dEien)

X

SV (6L X |: f Vpis1(&1, d&2) |g9 (&2, 6 < f 18 (&3, 0)| V,11(E2, dE3)

N §711/s
o f 10 Erer, )] V(s d§k+1)> ] ,
X

where 1/s 4 1/r = 1.
By applying inequalities (1.45) and (1.8) in succession, and taking into
account the fact that V(& 4) < p(4) + p™(&, A), we get

Mg O)] = 2%y5p <Em+k) ( sup [g“(¢, O))F-
(1.46) & g+l
B [y, 0)|7 BT |g®(x, 0)],

where x; has a stationary distribution and E denotes the expectation. As a
consequence of (1.28)

sup [g“)(€, 0)] = M |6],
(1.47) Sl
82(&, 0)] = 1*(8),

whence it follows that |g(®@ (&, )| < |f(4)] |0],
(1.48) gl |g(0)(x1’ G)Ir El/sfz.s(xl) <M |el Elr l]t(xl)lr&El/s |f(x1)|28_68-
If we set s = 2/(2 — §), then it follows from (1.46) and (1.48) that

gz @) < 2teae ok 72 (5700) Bpege)
or, since é can be made arbitrarily close to 2,

(1.49) iz 0] < 24 opa(E) B

T2 RRRE P 8]
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It is easy to see that estimate (1.49) is true also in the case when 73 = 2,
itm = 0 and m £ 1.

If for some s and p, ¢ =1, ip = 1, ¢y, = O, and m = p, s, then similar
reasoning yields the estimate
(1.50) iz 0)) < 2bpearet o1 () By

T1te T+l
Further, by starting with (1.46), it is easy to show that

IV k f‘.m+k . k+1.
YEME(6]F o " E [f(x)] i Xm =1,
1

(151) M3 0] =

2kykIE+L |g[k+1 P?"‘*’“ if Y im=0.
1

Denote the operator

R1(z)G(0)Ra(2) - - - Ra()G(0) Ra(2) G (0)

by
L(il» iz; ) ik’ 2, 0)~
From (1.43) and (1.50)—(1.52) we conclude that
. . . . Zk k k‘i‘l—kilim
”L(ily 12, » VE+1, R, 0)“ é IT::TI Ve IMGI :
(1.52) 1 -
X~ B |f(x)| T
(-5)
l2|
On the other hand,
< f ZR1(2)GIV(O)R,, (2) - - - GIP(0) Ry (2)dzy, 75>
I
(153) - ( JZL(“’ 7'2: tty, jsl! 2, Q)L(j81+l’ Tt 7.32’ %, 0)
I
Ll o2 ORI, )
if
’i812182= T :1/Sm= 1'
It is easy to see that
( [Retacm R, ORIz, 1)

(1.54) I

= szle(z)G(fl)(G)RiZ(z)- <+ GYD(O)Ry(2)pdz = O.
I
It follows from (1.41) and (1.52)—(1.54) that

(1.55) B2, (0)] = B [MOJB=2 Ef2(x),

AV LR I
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where B is a constant independent of % and f(-). The number of different
combinations of indices j,, is equal to %2, while the number of different com-
binations of indices 4, when ¢; = g1 = 1 is equal to 2¥-1.

Therefore

(1.56) |B"(0)] < 28-1B%kk2 |MO|k-2 Ef2(x1).
Similarly

(1.57) |Cx"(0)] < 2k-1CFkE2 |MO|%—2 Ef2(x1),

where C is a constant which is independent of £ and f(-).
Note that B;'(0) = 0 and C'(0) = 0 for 2 = 2. Consequently,
|Bi'(0)] = sup |By"(f)] 0] = 2F-1Bkk2M¥=2 |0k~ Ef2(x1),

It = 16|

Ci'(0)] < sup |Ci"(1)] |0] < 2-1CkR2ME—2 |95-1 Ef2(xy).
: |

It = 6]

(1.58)

As regards By(0) and Cg(6), it is easy to obtain the following estimates:

|Bx(0)] = sup || (Sup IR(z)[)*+1 | MO|*,

(159) zel1 zelx
ICx(0)] = (SUP [R(z)I)E+1 | MO|E.
It "
(1.60) 0] < — N
where

N = zmax (B, C, sup |R(2)|]),
zel
then the series »7° By(0), X" Bi'(0), X7 Bx"(0), X7 Cx(0), X3° Ci'(0) and
?° Cx"(0) converge absolutely and uniformly, and
a2
— [Z Cm(0)]%

FTE
(1.61)

= b{t — DI Cal0)152 T - Cul®) + HS CulO)F1 E 15 Conl).
2 2

If at the same time

(162) |MN6| < &,
' |MNO|2N < %

then
|2 Cr(®)] < 1,

2
and from (1.27), (1.56)—(1.59) and (1.61) it follows that

(1.63) (W7 (0)] < AM [6] Ef3(x1),

where 4 is a constant which is independent of f(-). Let us now take up the
estimate of the difference [B"(8) — C2"(0)] — [B2"(0) — C3"(0)].
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From (1.39) we find that
By'(6) — C2'(6) = E (2B Bf2(30)e @) 4 2B2f (1))
(1.64) — E(f(#1) + f(op41)) 26"V @0F ),
By(0) = o' (0) = — 2 3 [Bftm)f(een) — E¥(e)].
Using the same reasoning as in the derivation of (1.57), it is easy to get that

IB2//<0) - Cz”(@) -2 § [E2]((x1)67:of($1) . E]t(xl)f(xk_H)e’iﬂ(f(x1)+f(wk+1))]‘
(1.65) ' .
=4y %pk({Mﬁl + |MO|2)Ef2(x1).

On the other hand it is easy to see that
|Ef(xl)f(xkﬂ)ew(f(acl)w(xm)) — Ezf(xl)ei"f(’“)l < 2y1/2pk/2Ef2(x1),
(1.66) |E2f(x1)e™™) — E2f(x1)| < 2M |0] E2 [f(x1)],
|Ef (1) f (x141) V@D — Bf (1) f(x541)| = 2M |0] Ef2(x1).
It follows from (1.64)—(1.66) that

[B2"(0) — C2"(6) — Ba"(0) + C2"(0)| = 4y l—i— (M 6] + |MO|2)Ef?(x1)
(1.67) P

oo 1
£ o S R Ef() + 8M | Bfel).
[11/06]1/2] |M0[

(Square brackets denote the largest integer not exceeding the given number).
The assertion of the lemma follows from (1.63), (1.64) and (1.67).

CHAPTER II

LIMIT THEOREMS

1. General Form of Limit Distributions

Throughout this entire chapter we will assume that condition (1.1) is
fulfilled.

Theorem 2.1. A sequence of distribution functions Fy(x) of sums of the
form (0.3) can converge only to a stable law. If the stable law to which Fy(x)
converges has characteristic exponent «, then

(2.1 By = nl/*h(n),
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where h(n) s a slowly varying function, that is,

(k)
)

for an arbitrary integer k& > O.

Proor. Let us assume that x; has a stationary distribution. The general
case is easily reduced to this special case. Let the sequence F,(x) converge
to some proper distribution function F(x). Then

B, — oo,

B n+1

1.
B,

Let a; and ap be two arbitrary positive numbers. Choose two sequences
m = m(n) and [ = I(n) so that

. Bn a1

lim B =
(22) n—>o0 n as

lim ¥(n) = oo,
and
1
p lim FZ flx) =0

N—>00 n 1

(the symbol p lim denotes limit in probability).
n—>oo
Consider the sum

1 1 n n+l1
‘_“<_—‘“2f(xk)“‘An—bl)+ X f(xx)
a1 \ By 1 A1Dn nt1
(2.3)
Bm ( 1 ntl+m A 5 > _ 1 n+l+mf c
a1By, B—mn+lz+l f(xk) Cam TR a1By ? (xk) o
where
1
Cn = (BnAn + BmAm + ban + szm)~
aan

The distribution functions of the first and third summands of the left
side of (2.3) converge to F(aix + b1) and F(asx + bg), respectively. On the
other hand, it is easy to see that
a]_Bn, B na1 >

Fopiiem <—‘——x — Apsmri + Cn
Bn+l+m Bn+l+m

(2.4)
— F(ax + by) % Fpy (%Ifix + b2>

m

=< 2ypel.

By virtue of (2.2) and (2.4) the distribution function of the left side of
(2.3) converges to the composition of F(ax; + b1) and F(axs + bg).
The distribution function of the right side can converge only to a distri-



392 S. V. Nagaev

bution function of the form F(asx + b3), where a3 > O and bs are some
constants.
Consequently,

(2.5) F(aix + b1) % F(agx + bg) = F(asx + bg),

that is, F(x) is a stable law.

For the proof of the second part of the theoiem we will use a method
suggested by V. M. Zolotarev. Let F,(x) converge to a stable law with ex-
ponent «. If v(f) is the characteristic function of this law, then, as is well-
known ((6], p. 101),

[o(6)] = =%, ¢ > 0.

Consequently,

|

. | 0 —clo]®
2.6 1 < > clol®
(2.6) nlm Un - i =e

where v,(0) is the characteristic function of Y f(xx). On the other hand it
is easy to show that

(2.7 li Iv <0>l Ii v<0>k
. m = l1m >
n—>00 nE Bk | n—>oco " Bk
from which in consequence of (2.6) it follows that
(2.8) lim | v, <—0——> = g ClOIk,
Nn—>00 Bnk‘
From (2.6) and (2.8) it follows that
B
(2.9) lim % — g1,
Nn—>00 n
Obviously relation (2.9) is equivalent to (2.1).
2. Central Limit Theorem
Theorem 2.2. If
(210 | 1 plan) < oo
x
and
(2.11) hmE[ — > (f(xx) ff p(dn)) :| =02 >0,
n—>00 1

then for an arbitrary initial distribution
x

@12 lim Pr{ \;% z( f(xn) f i) dn><x} - \/Zn f N

—00
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This theorem is an analogue of a famous theorem due to P. LEvy concerning
sums of identically distributed independent random variables.

ProOOF. As before, we will restrict ourselves to the case when the x; are
identically distributed. Without loss of generality we can assume that
Ef(x;) = 0. Let us consider, along with the function f(-), the function f,(-)
which is defined in the following manner:

fa(8) = £&) it /(&) < M(n),
n(6) =0 if [(§)] = M(n),
where M (n) is a constant which is independent on #. Denote (1/4/%) 37} f(*x)

and (1/4/n) X% fa(rx) by Sy and Sy’, respectively. It is easy to see that

(2.13) [Pr(Sp < x) — Pr(Ss’ < %)| < 2n f aF(x),

|zl = M(n)
where

Since

it follows that
(2.14) n f ar(x) =0

for arbitrary ¢ > 0.
Consequently it is possible to choose a sequence p(#) > O such that

limy(n) =0
and n_m
(2.15) lim » f aF(x) = 0.
T eizeova

Suppose
(2.16) M(n) = p(n)y/n.

It is easy to see that
(217) Beoss = (Pt (I )v pa(0))

The operator P,(0) is defined by the kernel of

puld £, 4) = [ p, an),
4

and py(0, A) is the completely additive set function fexp (10fn(n))p(dn).

By virtue of (1.28) 4

(2.18) [Pn(0) — Pll = M(n) [0].
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Consequently, by Lemma 1.1, from some # = »(0) on,

(2.19) Pnn<jﬁ>=/1n (\?n>P1n<\3 )+0(pz)

Expanding log A,(0/4/#) into a series, we obtain
9 2
7)) -1 ol () - )

b 2. e
ln<~\—/7¢—>*1+\/~ln()+%—ln(0)+%

6 -
X [ln” (W> *ln"(O)], 0 < |6 < |6].
It follows from (1.26), (1.64) and (1.66) that

(2.20) log Ay™ (

On the other hand,

— lim 2,7(0) = Ef2(s0)+ 2 3 Ef(m)(sx11)

(2.21) . .
~iin T [7;—2 () — B | = o

It follows from (1.40) and (2.16) that
2.22 li I:Z ”< 0 > A ”(O)] 0
. m —_—] — = VL.
(2.22) Jm | 4\ n
Further, as is easy to see,

A/ (0) =i f XdF(x) = — i f xdF (x),

223 lzl < M(n) Izl = M(n)
(2.23) 1/2 1/2
|42"(0)] §< f x%F(x)) < f dF(x)) .
2l 2 M(n) Izl = M(n)
In consequence of (2.15), (2.16) and (2.25),
(2.24) lim 4/74,'(0) = 0.
n—>oc0

It is easy to obtain from (2.20)—(2.24)

2
2.25 lim log A," -P—_— = — 02—6—~.
g NG

Nn—>o0o

By virtue of (2.16) and (2.18),
lim || Ry <z,
n—c0
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and consequently

(2.26) hm Pu ( >
Similarly
.21 tim | 52 (-0) 1 “

From (2.17), (2.19), (2.22) and (2.25)—(2.27) we finally conclude that
(2.28) lim Ee%S"" = ¢=0"/2

n—>oo

but by virtue of (2.13) this is equivalent to the assertion of the theorem.

3. Convergence to Laws other than the Normal
Theorem 2.3. Let uy, ug, - -, 4y, -+ be a sequence of independent
random variables with the distribution function
F(x) = Pr(f(x1) < =),

where x1 has a stationary distribution.
If for some sequence of constants Ay and By > 0

2 Uk
(2.29) lim Pr IB — Ay < x| = V),

n

where V (x) 1s a stable law with exponent o, and for some 0 < v < 1 and sowme
a>e>0,
@30 limaB sy [ ) ple dn) =0,

17| < Bat

for any > 0, then, for arbitrary initial distribution,
1 n
(2.31) lim Pr <——— Sfwr) —An < x) = V,(%).
n—oo Bn 1

Proor. We will again restrict ourselves to the case when the x; are
identically distributed. Since (2.30) is fulfilled for arbitrary =, it is possible
to choose a sequence y(n) > O so that

lim p(n) = oo,

n—>o00
(2.32) lim By —*-mine=0) o f H)I? (&, dn) =0,
e 1)) < Baw(n)
tim ¥ _ o
oo M

for any 6 > 0.
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Let f4(-) be defined as follows:
() = 1) 3 ()] < Bay(n),
fa(*) =0 it |f()] = Bay(n).
Let S, and S, denote

1 » 4
B, % f(xr) — A
and
1 n
'E; - fn(xk) — Ay,
respectively.
Let Py(0) be determined by the kernel of
feiof"(”)ﬁ(é, d’?)~
A
By virtue of (1.28)
(239) IPue) = PU=2sup [ il p(E dn) o,
* on < Bavw
By Theorem 2.1, B, = n!/*h(n), where k(n) is a slowly varying function.
Therefore it follows from (2.32) that
(2.34) lim B, sup f lf(m)|” p(&, dn) = O.
n—oo

&
1f)| < Bay(n)

Consequently, by Lemma 1.1

(2.35) Py» (-57) = An" (—]—%) P1in <—£7> + O(p2")

for all #n = n(6).
Further, by Lemma 1.3, since

[ iy plan) < oo, 0<e<a
X

(see [14], p. 192 TN-2)  we have

0 0
n =nl -
log 2 (B,,) " Og"’"<3n>+
(2.36)
0 (s [ 0),
£ 1f ()| < Bay(n)
where

ral0) = [ e p(an)

X

TN-2 The page reference in the English language edition is p. 180.
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It is easy to see that

] 0
08y _ ,—i0dn n—1 —
(2:37) Fe <P ( B ) v P ( B >>
where p,(0) is the completely additive set function
f‘fiof"(")ib(dﬂ)-
A

Let uz™ be a sequence of independent random variables with the distri-
bution function

Fp(x) = Pr(fu(x1) < ).

It is easy to verify that

1 1 »
lPr<§‘Z“k“A"<"> <§*§ i — 4y < 1)

n 1

(2.38)
=2n f adF(x).
|zl 2 Bay(n)

It is well-known that ([14], p. 195 TN-3),

m #F(Bpx) =

n—>co |

for x <0,

lim n(l — F(Bgx)) =c—i for x > 0,

n—>0o x

where ¢1 > 0, ¢g > O are certain constants.
Therefore

(2.39) lim 7 f dF (%) = 0.
e |z| = Bny(n)

It follows from (2.38) and (2.39) that

0 . 6 .
2.40 lim @,” < ) e~ r = lim ¢ <——> e~ W04n,
It follows from (2.30), (2.35)—(2.37) and (2.40) that
(2.41) lim E¢?S = ¢ (6),

n—>oo

where ¢,(0) is the characteristic function of the law V(x).
On the other hand it is easy to see that

|Pr(Sn < ) — Pr(Sy < %) < 2n f ar(x),
|x] = Bay(n)

TN-3 The page reference in the English language edition is p. 182.
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and this in consequence of (2.39) and (2.41) means that
lim Pr(Sy < x) = Vy(x),

n—oo

which is what was to be proven.
ReMARK. It is quite likely that condition (2.30) can be weakened. How-
ever some sort of restrictions on the order of magnitude of

sp [ 11 26, dn)
fmlI <N
as a function of N ought to be imposed just the same. It is possible to construct
examples in which
swp [ o) (&, dn) = O@)
fmI <N

and the limit distributions for the sums

1 » 1 »
B ugy — An and B_Zf(xk)_An

n 1 n 1

do not coincide. On the other hand, it can be shown that always

lim Ee¥S* = lim Zn"<

0 Y -
Nn—>00 n—>00 Bn

We will not dwell on this.
Theorem 2.4. If

[ #01ptan) < oo, 0<u<2,
X
then, for some choice of constants Ay and arbitrary initial distribution
. 1z
(2.42) il_f?o Pr< a ?f(xk) — A, < x> = E(x),

where E(x) is an improper law.
This theorem is proved by the same method as Theorem 2.1. The function
fa(:) is defined as follows:

fal) = 1() it |f(+)] = nt/op(n),
fa(*) =0 it [f(-)] > nlp(n),
where the sequence y(#) is chosen so that

(2.43) lim p(n) =0
and

lim j dF(x) =0
nﬁoﬁwl > ntay(n)

(we keep the notation of §2 and § 3).
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It is easy to see that
(2.44) An(0) = @a(0) + O(Efn2(x1)02).

At the same time

(2.45) Efn?(x1) < n?o"192=¢m)E |fn(x1)|*.
Consequently
. 0 . 0
o4 s o () = o ()

The rest of the proof is left to the reader.

CHAPTER III

THE LOCAL LIMIT THEOREM AND ASYMPTOTIC EXPANSIONS

1. The Local Theorem

Suppose that X is a denumerable set of points &; and that condition (1.1)
is fulfilled for 2 = 1. Then, as is easy to see,

(3.1) inf ¥ min(pek, psx) > O,
(1,7) k—1
where pir = p(&, k) (concerning condition (3.1) see, for example, [15]).

Let us suppose further that all states &; are essential and constitute a
positive class (see [5)).

By wvirtue of (3.1) this class consists of one subclass. Suppose
f(&) = a + kih, where k; is an integer, a is an arbitrary real number and
h>0.

Theorem 3.1. If the greatest common divisor of the k; is equal to 1,

S P(Epi < oo

and
(3.2) >0

(the p; are final probabilities and o is defined in the same way as in Theorem 2.1),
then

(3.3) lim <i’%i P onls) — _\71_276_2%./2> _o,

N—>o0

umiformly in s, where

n

Poals) = Pr (3 f(xi) = an + sh),

1
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under the condition that the initial distribution is m; = w(&;), and that

oo

oN/N s = amw + 1) + sh — (n + 1) X f(&)ps.
1
The following lemma will be needed in the proof.
Lemma 3.1. If the greatest common divisor of the k; is equal to 1, then
for e £ 10| = 2n/h) — & and n > no

(3-4) |Pna(0)] < een,

where Y (0) is the chavactevistic function of the vandom variable Y7 f(x;) subject
to the condition that the initial distribution ts m; = 7(&;) and c is a positive
constant which is independent of e.

Proor. Denote k; — k; by A4j. Obviously, the greatest common divisor
of the A4y is equal to 1. Let Si be the set of those 4y for which pz; > 0 and
pri > 0. It is easy to see that the greatest common divisor d of the numbers
Ais € X7 Si is equal to 1. Indeed, let us assume that d > 1. Then 5 =0
if k; = as + myd, where as and m are integers which depend on s and v,
respectively. If ay s a; (mod d) for some & and 7, then the inequalities pz; > O
and p¢y > O cannot be fulfilled simultaneously and this contradicts (3.1).
But if ay = a; (mod d) for arbitrary ¢ and %, then pg = O for ¢ such that
ki £ a1 (mod d) and all s, but this obviously is impossible.

Let us choose from ¥7° Si a finite set of S such that the greatest common
divisor of Ay €S is equal to 1. Index the 44 €S in some manner. Let 4y,
Ag, -, Ay be the resulting sequence. If 45 €S, then for some i(s) and j(s)
we have p,i) > 0 and ;) > 0. In consequence of (3.1) there exists an
index »(s) such that

(3.5) Piowsy > 0 and P, > 0.

Denote 322 pispse™@+™ by pg}’)(e).
By virtue of (3.5), for

2nk 2n(k + 1)
———tesll| = ——F —¢
W14 =50,
(3.6) P%)y(s) — l?%w(s)(eﬂ > ps(e) > O,
where ps(e) is a constant which is dependent on s and e.
Further,
(3.7) Z PO = 1 — Pl Bitame — Pliare )
?

where p{"*(6) is an element of the matrix Pm+2(6). (P(6) is the characteristic
matrix {psx exp(i6xg)}).

Without loss of generality we can assume that 4; is in absolute value
the smallest of the differences 45 € S. Suppose |41| % 1. If |0| = 2rk/h |44],
k < |44|, then it is always possible to choose j(%) and 44k € S, so that

2mj(k) 27(j(k) + 1)

3.8 _— < 18] <
(58 b\ Ay | i h | Ay
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Indeed, otherwise
7 k

[4d 4]

for all 4;€ S, that is 4; = n41, where n; is an integer, but this contradicts
the fact that the greatest common divisor of the 4; € S is equal to 1.
By virtue of (3.6) and (3.8), when ¢ < |0| = (2n/h) — ¢,

(3.9) msaif (pflz(;)v(s) - ipfzz(;)v(s)(o)l) > p(e) >0,
=

where p(e) is a constant which is dependent on e.
It follows from (3.7) and (3.9) that

(310 max 3 [p0)] S 1 — min pliele).
By virtue of (1.4), since all final probabilities p; > O, it is possible to
choose m so that

(3.11) pimly > >0

for all 2 and s < N.
On the other hand it is easy to see that

1

(3.12) |Pun(0)] = (max 3 [pr+2(6)]) =D/ n+2)-1,
i

The lemma’s assertion follows from (3.10)—(3.12).

Proor or THEOREM 3.1. The following two inequalities play a funda-
mental role in the proof of the local limit theorem for independent identically
distributed random variables using B. V. Gnedenko’s method:

2
(3.13) a0)] < e=en for & =< |0] ng—e
and
| Y —62/4
(3.14) fn\—=— 1<e it for (6] <e,
By,

where f,(0) is the characteristic function of the sum of the first » random
variables, By2 is the variance of this sum, and ¢ is sufficiently small.

Lemma 3.1 shows that inequality (3.13) remains true also under the
conditions of Theorem 3.1. On the other hand, as is easy to see, it follows
from (3.7) that

|
(3 15) i Pnn <——T> l < g—b262’

where 62 > 0 is some constant.

Utilizing Theorem (1.1) and inequalities (3.13) and (3.15), and reasoning
in the same way as in the case of independent random variables (see [14],
§ 49), we easily obtain (3.3).
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2. Asymptotic Expansions

Suppose

(3-16) f |f(n)|¥-2+0m(dn) < oo, f f(n) | E*2p(€, dn) < M < o0
X X

for some integer £ = 3 and J > 0.
Expanding exp(¢0f(n)) into a series, we get

0\ 2 0\ k
(3.17)  P() = P + i6P® + %6?— PO 4 .. 4 ~% P 4 O(6%+),

where P is determined by the kernel of
) —8 a 107 (n) d
v 5 ¢ lo=0 p(£, dn).
4

Obviously
1Psl| < sup f H)ls (& dn).
¢ X

It is easy to conclude from (3.17) and (1.11) that
k
(3.18) R(z, 0) = R(2) + ¥ R®(2)(:6)s + O(6%+9),
1

where R(s)(zj is a combination of R(z) and PW, §j <'s.
It follows from (1.13) and (3.18) that, for |P(0) — P| < &, we have

k
Py(0) = Py + X P(i0)s + O(6%+9),
1

2

(3.19) A0) = 1 + T 20 (16)s -+ O(6%+9),
1

where

1
P = — f RO (2)dz,

I

and A® is a combination of (P{’y, $) and fz(R(fhp, p)dz, | <s.
Further, I

(3.20) log 4(0) = 3, w®(i0)* + O(6E+),

1

where «() is a combination of the A®, j <'s.
Henceforth we will assume that

o) = AW (0) = 0.

It is easy to see that
0 0 0 0
o8 ¢n (a\/n> it o\/n tlog{F1 o\/n v o\/n

62 % 70 s—2 Qk—2+d
== + n% (a(8) 4 Bls—2)) <-¢;/7) +0 <W3)—/2~> + O(6p2™),

(3.21)
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where @y,(0) is the characteristic function of 37" f(x%), 7(f) is the completely

additive set function fexp(i@f(n))yz(dn), and f® is the coefficient of the term

A
containing (¢0)¢ in the expansion of log (P1(0)y, (0)).

The following expansion for ¢,,(0/c+/n) corresponds formally to expansion
(3.21):

(3.22) o012 <1 + oz:‘, Py, (40) <—\~/17>8> ,

where Pg,(0) is some polynomial of degree 3s whose coefficients depend on
the initial distribution #(-).
Lemma 3.2. If |0] < v/nd1 (41 is some constant), then

)= (1 rim ()

(3.23)
< om0t + 1) = O(gpan)
- (V)2

where c(k) is a constant which depends on k, and lim é(n) = O.

n—>oo0

The proof is quite analogous to the proof of Theorem 1 in § 41 of mono-
graph [14].

Theorem 3.2. If the conditions of Theorem (3.1) and condition (3.16) are
satisfied, then

A k-2 ] 1
Painf®) = {plend + 3 Pl plend)] + 0 (et )
Here g(z) = (1/V/2m) exp (— 22/2) and P, (— @) is computed in the same way

as P, (— u) with the substitution of o for ur.

This theorem is proved in the same way as the analogous assertion for
independent random variables ([14], § 51, Theorem 1). Lemmas 3.1 and 3.2
are used for this.

Theorem 3.3. Let X be the real line. If condition (3.16) is satisfied, then

(3.24) 0<m < pol&,n) <M < oo, neC, £eX,

where po(&, n) is the density of the component of the function p(&, A) which is
absolutely continuwous with respect to the Lebesgue measure, C € Fx, meas C > 0
(Lebesgue measure is meant), and

(3.25) gim inf f f sin2(f(&) — f(n))0dndé > 0,
then ©e
(3.26)  Foa(x) — @) = 71; e kE ?w(:;) o ( S )

Here F,,(x) is the distribution function of (X7 f(xk))/or/n subject to the
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condition that the initial distribution is (),

x

D(x) =% fe“‘z/z dt,

where P (— @) 1s computed in the same way as Ps(— u), with the substitution
of @M for ur.

Proor. Let u(é, -) be the singular component of p(¢, ). It is easy to
see that

wma&A>=fdg[ﬂmwwmm@mmamo¢r+mwaan
A

X

where p®@ (0, &, A) is the kernel of the operator P2(6), and

,u(Z)(G, £, A) — fd@feiﬂ(f(n)ﬂ(&;))po(n’ Z)ﬂ(g» d’Y)
b'e

pz

+ fdnfeiﬂ(f(n)+f(£))po(§, Ny, d2) + feief("),u(&, dﬁ)feiof(C)M(ﬂ» ).
X 4 D¢

A

Consequently,

HﬂW&&MHéh—f@{fm&mmW$ﬂn
(3.27) o x
. |
—lfm@mmmawmwﬂ.
X

Further,

M e Npo(€, m)po(n, C) ‘=ff o(&, n)po(n, £)
X

X po(&, Dpo(2, £) cos O(f(n) — F(Z))dnda.

Hence, in consequence of (3.24),

<fm&mmm®my—1fWMM@mmmamz

029 =2ffm5nmm)m@@m%@ﬁﬁ%vw—KMMﬂ

> 2m4 f f sm2 — H(2))dnda.
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(3.29)

On the other hand, for ¢eC,

‘ f Do (€, ) pon, g)dnl + f po(&, m)po(n, £)dn
X

<

<2 f pol&, )poln, O)dn < 2M.

X

It follows from (3.28) and (3.29) that

|
f?O(E» N)po(n, {)dn — . fpo(g, npoln, O dn
X X

(3.30) » )
> 22| [ sine 2 () — s
c cC
for teC.
Hence,
[z, [ oo w2 — | [ e ot ot 300 |
X X X

4
> —%’;—measc f f sinz—g—(f(n) — [(3))dnda.
c C

It follows from (3.25), (3.27) and (3.28) that
@, & 4)| <1 — o, te X, |6] > 4,

where o > 0 is some constant, that is,
[P2(0)]| <1 — o

for (0| > 41.
The remainder of the proof is carried out in exactly the same way as

the proof of the theorem in § 45 in [14]. Lemma 3.2 is used here.

Recetved by the editors,
June 25, 1957.

REFERENCES

[1] A. A. MarKov, Extension of limit theorems in the theory of probability to sums of quantities which
are connected in a chain, Transactions of the Physico-mathematical Division of the Academy
of Sciences, Series VIII, Vol. 22, No. 9. (In Russian.)

[2] MavuricE FRECHET, Recherches théoviques modernes sur le calcul des probabilités. II. Méthode des
fonctions arbitraives. Théorie des événements en chaine dans le cas d'un nombre fini d’états

possibles, Paris, 1938.
[3] W. DoEBLIN, Eléments d’une théorie générale des chaines simple constantes de Markoff, Ann. Sci.

Ecole Norm. Sup. (3) 37, 1940, pp. 61-111.
[4] W. DOEBLIN, Sur deux problémes de M. Kolmogoroff concernant les chatnes dénombrables, Bull. Soc.

Math. France, 66, 1938, pp. 210-220.
[5] A. N. KoLmMoGorov, Markov chains with a countable number of possible states, Bull.M ath. Univ.

Moscow, 1, No. 3, 1937, pp. 1-16. (In Russian.)



406 S. V. Nagaev

[6] A. YA. KuINcHIN, Limit Theorems for Sums of Independent Random Variables, State United
Science and Technology Publishing House, 1938. (In Russian.)

[7] O. ONiceEscu AND G. MiHoc, L’application de la notion de fonction caractéristique dans la théorie
des chaines de Markoff, Premier Mémoire (cas discontinu), Mathematica Cluj, 1938.

[8] O. ONicEscu AND G. MiHoc, Sur les sommes de variables enchainées, Second Mémoire, Bull. Math.
Soc. Roum., 41, 1939, pp. 99-116.

[9] A. N. KoLmoGorov, 4 local limit theorem for stationary Markov chains, Izv. Akad. Nauk SSSR,
Ser. Mat., 13, 1950, pp. 287-300. (In Russian.)

[10] S. KH. SIRAZHDINOV, Refinement of limiting theovems for stationary Markov chains, Dokl. Akad.
Nauk SSSR (N.S.) 84, 1952, pp. 1143-1146. (In Russian.)

[11] E. B. DyNKIN, On some limit theorems for Markov chains, Ukrain. Mat. Z. 6, 1954, pp. 21-27.
(In Russian.)

[12] J. L. DooB, Stochastic Processes, New York, 1953.

[13] W. FEeLLER, Fluctuation theory of recurrent events, Trans. Amer. Math. Soc. 67, 1949, pp. 98-119.

[14] B. V. GNEDENKO AND A. N. KoLMoGOROV, Limit Distributions for Sums of Independent Random
Variables, Moscow—Leningrad, 1949. (In Russian.) TN-4

[15] R. L. DoBRUSHIN, Central limit theorem for nonstationary Markov chains. I, Theory Prob. Appli-
cations, 1, 1956, pp. 65-80. (Translation in English, this journal.)

[16] F. Riesz AND B. Sz.-Nacy, Legons d’Analyse Fonctionelle, Budapest, 1952. (Translated to Rus-

sian,) TN-5

SOME LIMIT THEOREMS FOR STATIONARY MARKOV CHAINS
S. V. NAGAEV (TASHKENT)
(Summary)
Let X be a space of points, Fx a oc-algebra of its subsets, and p(§, 4), e X,

A € Fx, a stochastic transition function satisfying the following condition:
an integer A = 1 exists such that

(1 sup [p®I(E, A) — ptB)(y, 4)] < 1.
n,éeX,AeFx
Let us define the sequence of random variables ¥y, xg, - - -, 5, - - - as follows:

Pr(x1€ Ay, va€de, -+, 2n€dy) = fﬂ(dEl) fﬁ(fl, akg) - -+ f;b(é'n—b dén),
A2 Aa

1

where 7 (-) is the initial distribution.
Let f(&) be a real function of £ € X measurable with respect to Fx.

In Chapter I the asymptotic behaviour of the characteristic function of X% f(x;) is
studied. Chapter II is devoted to limit theorems. The central limit theorem is proved
under the assumption that

@ f PEPE) < oo,
X

where p (-) is a stationary absolute probability distribution corresponding to p (-, -).
The sufficient conditions for convergence to stable laws are given. In chapter III the
local limit theorem is proved, and asumptotic expansions are given. The characteristic
function method is the basic one used.

TN-4 There is an English translation: Gnedenko, B. V., and Kolmogorov, A. N.,
Limit Distributions for Sums of Independent Random Variables, Cambridge, Mass., 1954.

TN-5 The original edition was in French, printed at Budapest, Hungary, 1952. There
are now three French editions: 1952, 1953, 1955. There is also an English translation:
Functional Analysis, translated from the second French edition. New York, 1955.



