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Abstract. The main results of the present paper deal with the asymptotic behavior of the con-
ditional distribution for the whole number of descendants Sn of a single particle in the Galton-Watson
process with respect to the condition that the process degenerates at time n and the expectation for
the number of particles generated by one particle tends to 1 as n o.
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1. Introduction. The Galton-Watson process is one of the simplest models of
random reproduction. Some important facts of the theory of branching processes have
been established first for the Galton-Watson process, or for its analogue, Markov’s
branching process with continuous time. In this connection, it suffices to mention
the papers [1]-[4]. These and some other works of A. N. Kolmogorov and his suc-
cessors have greatly influenced the further development of the theory of branching
processes. The term "branching processes" itself was introduced for the first time by
A. N. Kolmogorov and N. A. Dmitriev in their paper [2].

Further, we consider the Galton-Watson process Zn, n 0, 1,..., with one
type of particles starting with a single particle. We interpret the value of the random
variable Zn as a number of particles in the nth generation. According to our condition
we have Z0 1. Let N min{n: Zn 0}, Pk P(Z1 k), A kPk, fn(X)
E (xZ’), Ixl <= 1, f(x) f(x). We shall use the following notation: B f"(1),
L f’"(1). We assume that P0 > 0 and 0 < B < cx) (the last only for the case A _<_ 1).

For a long time the main object of investigations was the asymptotic behavior
of the probability P(N > n) and of the conditional distribution P(Zn < u N > n)
(see, for example, [1], [4]). But in due course, some more complicated functionals of
trajectories of branching processes have created interest.

In 1971, A. G. Bakes published the article [5], where the asymptotic behavior for
nthe total number of descendants Sn o Zi (we shall use the same notation in the

formulations of our results as well) of a single particle was investigated. More precisely,
Bakes found the limit lim_ P(S/an < u IN > n), where aN E (Sn IN > n}
for a fixed parameter A: A < 1, A 1, A > 1.

Later Bakes turned his attention to the distribution of Sn with respect to the
alternative condition N n, namely, in his work [6] he established the following
relation for A < 1 and L

(1.1) nlim P ((SN --(1 + ’7)N)/TN/2 < x IN n +m) (I)(x),

where and T are some constants that can be explicitly calculated by means of f(x),
and (I)(x) is the standard normal distribution.
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The case A 1 was considered by Kesten (see [7]) who proved by means of
Durret’s principle that there the limit limn_ P(Sn/mn < x N n) G(x) exists.
Here and later on we assume that mn E {Sn IN n}. In [7] no explicit expression
for G(x) was obtained.

In our paper [8] the asymptotic behavior of the distribution function Gn(X)
P(Sn/mn < x IN n) is considered in the most complicated case, when A 1 as
n - cx (processes close to critical). It was established that, in this case,

lim Gn(x) G(x, r), if lim n(1 A) log r.
n--’+ (:X)

Here G(x, r) is a distribution function depending on the parameter r, and the explicit
expression for its Laplace transform is given. This result is presented in Theorem 5
(see 3). For comparison recall that

lim P (Zn/an > X IN > n)= e-A---

where an E (Zn IN > n) independent of the rate of convergence of A to 1 (see [9],
[10]).

The present paper differs from [8] only by its introduction and bibliography.
Unfortunately, when the preprint [8] was published the articles [6], [7] were not yet
known to us. This explains why we give there our own proof of relation (1.1) without
citing [6]. Nevertheless, the present paper contains our proof of the relation mentioned,
since it is based on considerations different from those used by Pakes (see Theorem 6,
3). The only thing the two proofs have in common is the use of the Laplace transform.

Moreover, we use a more complete version of the continuity theorem (compare our
Lemma 26 with Theorem 1 in [6]), though we could refer to the statement proved by
Pakes. We think that the form of the continuity theorem proposed is of independent
interest, that is why we present it in our paper.

Our main task is to investigate the asymptotics for Gn(x). In addition, we also
touch upon some other subjects. In the paper by Kesten, Ney, and Spitzer [11] it was

proved that, for a critical process, n2p(N n) 2B-(1 + o(1)) as n oc. The
remainder term for this relation is estimated in Theorem 1 of the present paper under
the following condition:

(F)" E IZll2+ < oc, 0 =< < 1.
In Theorems 1, 2, and 4 we establish the asymptotics for E (Sn N n). In Theo-
rem 3 we give the estimate for small deviations of the random variable Sn with respect
to the condition N n.

Since we investigate transitional phenomena, we consider the class K of distribu-
tions on the lattice of non-negative integers satisfying the following conditions:

A) l(1- 1)p(F) > b0 > 0 for some b0 and any F e K;
B) lim_. supFe/ _-’ 12v(F) 0;
C) po(F) > a0 > 0 for some a0 and any F E K.
Here pt (F) is an atom of the distribution F concentrated at the point 1. The class

K was introduced in [10].
In view of condition (B), there exists bl < c such that, for any F E K,

<
2
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It is not difficult to see that if the distribution of the random variable (r.v.) Z belongs
to K, then

b0(1.3) f"(X) >--_ - Xn, X > O.

Here no is such that sup{EnC 12pt(F): F e K} <= bo/2.
In what follows we always assume that the distribution of the random variable

Z1 does not leave the class K in case A -- 1, and is fixed in case A const.
Now let us introduce some notations. Let A be the minimum root of the equation

s f(s), 0 __< s __< 1. Let us put Ao f’(A), Bo f"(A), Lo f’"(A). If A =< 1, then
A=l, andhenceAo=A, Bo=B, Lo=L. IfA>l, thenA<landAo<l, Bo<oC,
Lo < c. Let /= ABo/Ao(1 Ao). By the symbol c(. we shall denote a positive
constant depending only on the distribution of Z1 and the argument inside the braces,
and by (. the constant depending only on the class K and the argument inside the
braces. We put KA {F E K: E7 lp(F) At. Let a (I/n, 1- A, 1- s),
al (l/n, 1 A), a2 (1 A, 1 s), a3 (l/n, 1 s). By Qn(s), Qn, Q(s), Q
we denote infinitesimals (depending on F) such that

sup{Qn(s). FEKA} --0 as
sup r e 0
sup e 0
sup{Q. FKA}--,O as

r 0,
0"2 --’ O

We agree to call such a convergence uniform with respect to F KA. Also we need
Qn -* 0 as n -- oc (s) -- 0 asthe following lnfimtesmals: Qn(s) ---, 0 as a3 --, 0, 0 Q0

s -- 1. For convenience of notations, let us identify different infinitesimals belonging
to one of the classes introduced before. Let us explain this. Let ffti, 1, 2, be the
classes of such infinitesimals. Instead of 99(x, y), where x, y 9li, 99 a certain function,
we shall write 99(x,x). If 99(x) ffti, where x E 9lj, 99 a certain function, we shall
write 99(x) y, y 9li. In investigating transition phenomena, we distinguish two
cases:

I) lim sup..o nl i A =< c,
2) liml__,o nil A c.
For the sake of conciseness, to show that the first (second) case takes place, we

shall write 1 (i 2). Let 0 n logAo. Note that 0 __< 0. We consider the
generating functions

(1.4) u,(s) E (sS"; Zn 0), 181 <= 1, n 0, 1...,

(1.5) gn(s) E(sS"; N=n), Is[ <__ l, n=O, 1

2. Auxiliary statements. It is well known (see [5]) that

(2.1) t0(8 0, tn+l(8 8f(Un(8)).
LEMMA 1. The following recurrent relations hold"

o,
(e.e)
(2.3)

(2.4)

gn+l(8) tn+l(8
gn+l(8) sf(u.(s)) tn(8),

9n+1(8) 8(f(?.tn(8)) f(n(8)-
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Proof. The first relation follows from (1.5). Since {N n + 1} (Zn+l
O}\(Zn 0} and (Zn 0} C (Zn+I 0}, we have (2.2) because of (1.4), (1.5).
Relations (2.3), (2.4) may be obtained from (2.2) with the help of the recurrent relation

LEMMA 2. The following representation holds:

n n

Urn+l(1) EII f’(fl(O))fk(O)q- fn+l(O).
k=l l=k

Proof. Differentiating both sides of (2.1) at the point 1, we obtain Un+l(1)
f(u(1)) + f’(u(1))u(1). Since

Un(1)-P(Zn-O)-A(O),

the relation
u+1(1) fn+i(0)+ f’(fn(O))Un(1)

holds. By induction this yields (2.5).
LEMMA 3. Let be a random variable with positive integer values, E <

0_<_6<1, Ix[<_-1, IXol __< l, ( >= 0. Then we have

EIx1- xl <__ Ix- Xo] 6 (E]6o1-6 - 2E(?’]6; T] _>_ og]x- Xo[-1)).
Proof. In view of the inequality Ixv zl =< [z Xolr] we have the estimate

E (Ixv xl; Ix Xo[r] <= a) < Ix XolhEr]6a1-.

The same inequality and the estimate Ixv xl =< 2Ixv x]6 yield

COROLLARY 1. Let the condition (Fh) hold. Then, for a fixed Xo,

(2.7) f" (x) f"(xo) o(Ix Xo]6),

ft (x) f’ (xo) + f" (XO)(X xo) -}- o(Ix x011+6),

f(x) f(xo) + f’(xo)(z xo) + f"(zo)(x zo)2/2 + o(1 xo]2/6).

Proof. According to the definition of a generating function, we have

Let us use the following notation:

Pk k(k 1)pk/E k(k 1)pk.
2

Suppose r] is a random variable such that P(r/= k) Pk. Then E r/ < oc, and the

conditions of Lemma 3 are satisfied. Supposing a [X-Xol 1/2, we obtain E [x’-x’[
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o([x x0lS). Since Exv
pkx

k the last relation leads to (2.7) Formulas (2.8)
(2.9) may be obtained from (2.7) by means of the Taylor formula with Lagrange
remainder.

LEMMA 4. Let A 1 and assume condition (Fs) holds. Then we can write

fn(O) 1 2(Bn)-1 (1 + o(n-a)),
f’ (fn(O)) 1 2n-1 (1 + o(n-a)),

aS ?---- CK).

Proof. Because of (2.9),

fn-[-l(0) f(fn(O)) f(O)+ B(1 fn(O))2/2 + O((1 fn(0)) 2+a)
as fn(O) --* 1. Let us put Xn 1 fn(0), Yn 1/Xn" We write the equality in the

2+5following form: Xn+l Xn Bx2n/2 " O(Xn ). Hence, we have

YnT1 Yn/ (1 Bxn/2 + O(Xn+)) Yn T B/2 + o(y).

It is well known that 1/yn 1- fn(O) 2/Bn as n --. c (see, for example, [12,
p. 19]). Hence, by induction, we obtain Yn Bn/2 + o(nl-a) from the previous
relation. Returning to the old notations, we get (2.10). Relation (2.11) may be
obtained from (2.10) using formula (2.8).

LEMMA 5. Let A 1 and suppose that the condition (Fa) is satisfied. Then we
have

(2.12) Un(1) n(1 + o(n-a))/3
as n--. cx).

Proof. We proceed from relation (2.5). Using the expansion log(1 + x) x +
O(x2), we obtain

H(1 +x,)-exp {log l-I(1 +x,)}--exp {E (xl +O(x))}.
Taking into account (2.11) this yields

H f’(fl(O)) exp -21-1
l--k l=k

Since =1 l-1 C - logs + O(/t-1) as -- cx:),

n

H f’(fl(0>) --exp (2log (k/n)To(k-a)} -(k/n)2(1
l--k

as k - oc. Let us point out that if we multiply both sides of the last relation by fk (0)
(see (2.10)), the asymptotics of the right-hand side remains the same. Substituting
(2.14) and (2.10) into (2.5) and summing the last relation, we obtain (2.12).

Let us consider the case A const : 1. Using the result of [13], we may write

the following asymptotic expansion:

(2.15) fn(O) ) RA R1An + o(A2on),
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as n --* cx, where R, R1 are values depending only on the form of f(x). Let us denote

by wh(n) an arbitrary infinitesimal satisfying the conditions wh(n) o(A(l+)n) for
A < 1, w(n)= O(An) for A > 1.

If the condition (F) holds and A < 1, then

(2.16) f’ (fn(0)) A0(1 RBoA-1 + w(n)).
For a subcritical branching process this follows from (2.15) and (2.8), and for a super-
critical one from (2.15) and the Taylor expansion, since L0 < oc.

LEMMA 6. Let A const - 1, and let the condition (Fe) be satisfied in the case
A < I. Then we have

(2.17) Un(1)
1 Ao R(1 + ,)nA + Axh(n),

as n c, where xh(n) o(n) for A < 1, 5 0 and xh(n) c + o(1) in other cases.

Proof. Using (2.13), (2.16), we obtain

n--1

H f’(fz(O)) A-k exp { RBoA-I(1- A-k)/(1- Ao)+ w(k)},
l=k

as k - oc. Hence it follows that

n--1

II
l:k

Since the asymptotics of fk(0) is known (see (2.15)), we have

n-1

II f’ (fz(O)) fk(O) AA-k R(1 + ") A + R/An-k + A-kwh(k).
l--k

Substituting this expression and the representation (2.15) into (2.5), and summing it,
we get the representation (2.17), where

n-1

+ +
k--1

It is not difficult to see that xh(n) satisfies the condition of the lemma.
Let us consider the equation

(2.18) u sf(u), Isl < 1.

It has a unique solution u* (s) which is analytic in an open unit circle; in addition,
this solution is a generating function of some (may be trivial) distribution, and 0 <
u* (1-)= __< 1 (see, for example, [14]). Hence, we have

(2.19) u (s) __< , 0 __< s __< 1.

Pakes has shown [5] that the sequence of functions {un(s)}, 0 < s < 1, defined by
relations (2.1) strictly increases, and Un(S) -"* (s), 0 < s < 1, as n --, oc. It is also
known that fn(0) as n --, (see, for example, [15, p. 7]). Hence we see that

(2.20) spo <-_ Un(S) < u* (s), n >= 1, 0 <= s <= 1,
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in view of (2.1) and (2.6). To be concise, in what follows we shall omit the argument
s in u*(s).

LEMMA 7. Let 0 < Co <= s <= 1. Then we have

(2.21) A u* <= (c0)(1 s) 1/2.

Proof. Since u* is a solution of (2.18), we have, according to the Taylor formula,

(2.22) u* s(A A0(A u*) + f"(p)(A u*)2/2),
where p E (u*,A). And from the last relation it follows because of (2.19) that
sf"(p)(;- u*)2 <__ 2(u* su*) < 2(1 s). To complete the proof, it is sufficient
to note that f"(p) >= f"(Coao) >= (Co) in view of (2.20) and (1.3).

LEMMA 8. Let A- 1, 0 < s <__ 1. Then the following holds"

(2.23) 1 u* >= (2B-1po(1 s))1/2.
Proof. Putting A 1 in (2.22), we obtain the equality 2(1 s)u* sf"(p)(1
This yields (2.23) taking into account (2.19) and (2.20).
LEMMA 9. Let A 1. Then,

(2.24) gn(1) >-_ f"(po)(2B(n- 1)) -2.

Proof. According to the Taylor formula we can write fn+l(0) f(fn(O))
fn(0) + f"(p)(1 fn(0))2/2, where p E (fn(0), 1). And this together with (2.2) and
(2.6) gives the following relation:

f"(p0) (1 fn(O))2/2 <-_ gn+l(1) fn+l(0)- fn(O) = B(1 fn(O))2/2.
Let xn 1 fn(O). It is evident that Xn decreases monotonically; hence, we can
choose no so that Xn >-_ 3/(4B) for n < no, and Xn < 3/(4B) for n > no. Using the
first inequality from (2.25), we get gn+l(1) >= 3f"(po)B-2 for n _<_ no and thus (2.24)
holds.

Now let n > no. Because of the second inequality in (2.25) we have Xn+l >=
Xn- Bx2n/2. If we put Yn 1/Xn, we arrive at the inequality Yn+l <= yn/(1- Bxn/2).
Noting that 0 <__ Bxn/2 < - and using the inequality (l-x)-1 <= l+(1-x)-2x, x >_ 0,

32we get Yn+l Yn 2_ .32B. Thus, we have y, =< Yo +B(n-no). Noting that Yno < B,
we see that y <= Bn. Hence, we have 1-fn(O) >-_ 3/(4Bn). This together with (2.25)
gives (2.24).

LEMMA 10. Let A 1, 0 < Co _-< s __< 1. Then,

gn(8) <-_ snexp { C(co)n(1 s)1/2},
where C(Co) f" (coPo){2po/B} 112.

f’Proof. Using the Lagrange formula, we obtain gn+l(S) <= s (Un(S))gn(S) from
(2.4). Since because of (1.5) g(s) < 1, we can deduce that

n

(2.27) gn-I-1 (S) <= 1-I f’ (Uk(S))
k--1
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by means of induction. According to the Lagrange formula, f’(u(s)) 1- f" (pk)(1--
Uk(S)), k >= 1, where Pk e (Uk(S), 1). Consequently,

(2.28) f’ (uk(s)) <= 1 f" (coPo)(1 uk(s)).

In view of (2.20) and (2.23), 1- uk(s) >= (2B-lp0(1- s)) 1/2. Applying consecutively
(2.27), (2.28), and the previous inequality, we obtain the inequality

gn+l(8) <= 8n{1- f"(coPo)(2B-lpo(1- 8))1/2}n,
from which (2.26) follows.

In what follows we shall use the notations a a(s) sf’(u*), b b(s)

LEMMA 11. Let 0 < Co <-_ s <= 1. Then,

-1(2.29) us Un(S) <= "5(co)n

Proof. Expanding the right-hand side of (2.1) into a Taylor series, we get

Un+l(S) 8(f(u8) if(u*)) (u* --Un(S)) T ff’(Pn) (U* --Un(8))2/2,
where Pn e (Un(S), U*). We put xn(s) u* --un(s) and, taking into account (2.20)
and (1.3), we obtain the inequality

0 < Xn+l(S) <= aXn(S) 2

The change of variables y(s) 1/Xn(8), easily yields the inequality

(2.30) Yn+ (s) >= yn(s)/a + -5(Co) Yn+l (s)/ayn(S).

Hence, we get Yn+l(s) >-_ yn(s)/a. Substituting the lower bound for yn+(S) obtained
from the last inequality into (2.30), we establish that yn+(s) >= y,(s)/a / -5(Co)/a2.

v’n+i a
-k Since because of (2.19) f’(u*) <Using induction this yields yn+(s) > (c0) k=2

f’(A) =< 1 we have a =< 1. Hence yn+(s) >= -d(co)n. Now returning to the notations
used before, we obtain (2.29).

LEMMA 12. Let rk(A, s) >= 0 and

limsup {sup (rk(A, s): F E KA)} <
0"2--*0

for any

Then,

lim inf rk(A, s)" F KA <
k=0

Erk(A,s)Qk(s)= rk(A,s) Q,(s).
k=0 k=0

Proof. Let q,(s) sup{IQk(s)l" k > n}. For any m < n we have

k=0 k=0

-1 -1

<= cE rk(A, s) rk(A, s) + q,(s).
k=0 k=0
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It is not difficult to see that for any fixed m the first summand vanishes as a 0
uniformly with respect to F E KA. On the other hand, sup{qn(S)" F e KA} -- 0
as a --, 0. This means that the right-hand side of the inequality vanishes as a 0
uniformly with respect to F KA which had to be proved.

It is not difficult to see that, in view of condition (B), f"(x) f" (Xo) / O(H(x
Xo)) as x Xo 0, where H(x) is a function (depending on F) such that sup{H(x)"
F K} 0 as x 0. For 0 < Co < x0 =< 1, using (1.3), we get

(2.31) f"(x) =/"(Xo) (1 + O(H(x x0))).
According to the Taylor formula we obtain from the last relation

(2.32) f’ (x) f’ (Xo) + f" (Xo)(x xo) (1 + O(H(x z0))),
f(x) f(xo) + f’ (Xo)(X Xo)

(2.33) + f"(xo)(X Xo)2 (1 + O(H(x Xo)))/2.
Note that, because of (2.19), (2.20) and condition (C), we have >= u* _>_ c for 0 <
Co < s < 1. Hence, formulas (2.31)-(2.33) hold for Xo u* and x0 .

LEMMA 13. Let A > 1. Then,

(2.34) 1- A 2B-I(A- 1)(1 + Q).

Proof. Applying the Taylor formula we get A f(A) 1 A(1 A)+ f"(p)(1
A)2/2, where p e (, 1). Hence, 1 A _< 2(A 1)/f"(A). Using (1.3) we obtain

(2.35) 1 Q.

Because of (2.33), (2.35) we have 1 A(1 ) + B(1 )2(1 + Q)/2. This yields

COROLLARY 2. Let A > 1. Then,

(2.36) 1- Ao (A- 1)(1 + Q).

Proof. From (2.32) and (2.35)it follows that A0 A-B(1-A)(I+Q). Applying
(2.34), we obtain (2.36).

With the help of (2.36) it is not difficult to obtain
COROLLARY 3. 1) If 1, then

limsup{sup (n(1-A0)" FKA)} <=c,
al 0

liminf {inf (n(Ar) F E KA) } > O.
o’1--*0

2) /fi=2, then

lim {inf (n(1- A)" F KA) }0"1 0

lim {sup (n(A;): F KA) } O.
rl ---0

LEMMA 14. The following representation takes place:

X-a
(2.37) u* un(s) (1 + Qn(s)).-"
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Proof. Because of (2.1), (2.33), and (2.29), we have

(2.38) tn_t_l(8 8(f(zt*) f’(u*)(u* un(s)) + f"(u*)(u* n(8))2(1 -- Qn)/2).Putting Xn(S) u* Un(8), yn(8) 1/Xn(8), we obtain

(2.39) x+l(s) axe(s) bx(s)(1 + Q),

and hence,

(2.40) yn(S) ayn+l(8) (bxn(8)/xn+l(8))(1 -- Qn).According to the Lagrange formula we have a s(Ao f"(p)(A- u*)), where p e
(u*,A). Hence, taking into account (1.2), (2.21), and (2.36) we establish that a
1 + Q(s). On the other hand, by virtue of (2.39),

1{Xn(8)/Xn+l(8 a- 1 + (8)/XnT

This yields Xn(S)/Xn+(s) 1 + Qn(s) on account of (2.29) and (1.2). Hence, (2.40)
admits the following representation:

(2.41) Yn+l(8) a-lyn(S) + b(1 + Qn(s)).
By induction we obtain

n

+ +
k=0

where 0(s) (*)- because of (2.20). Using Lemma 12 (for k(A, s) ak) we

come to the conclusion that +(s) b(k=0a )(l+Q(s)). Returning to the old
notations, we obtain (2.a7).

If we put s 1 in (2.a7) and take into account (2.6), we obtain the following
result.

COROLLARY 4. The representation

(2.42) A-fn(O)= 2(1-A0) (l+Qn)
Bo(An- 1)

holds.
LEMMA 15. The representation

a 1-a
(l+qn(S))(2.43) gn (S) --ff l_an

holds.
Proof. Substituting Un+(s) from (2.38)into (2.2), we get

gn+l(S) (1 a)(u* tn(8)) -- 5(?2* ltn(8))2(1 -- Qn)-Applying (2.37) we deduce that

gn+l(8) {an(1 a)2/b( 1 an)2} (1 -- Qn(8) + anQn(8)).
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Hence (2.43) follows, since a =< 1 (see the proof of Lemma 11).
LEMMA 16. Let 1. Then,

(2.44) Un(1) (2e(sinh )/(1 -e)2) n(1 + Qn),

where 0 n log A0.
Proof. In view of (2.42), (2.36), and (1.3),

(2.45)

From (2.32) it follows that

/’(Sn(0)) A0 + B0(A- In(0)) {1 + O(H(A In(0)))}.
Using (2.42), (2.45), (2.36), this yields

(2.46) f’(fn(O)) Ao(1- (2(1- Ao)/(A’n- 1))(1 + Qn)).
Combining (2.13) with (2.46) we get

(2.47) H n f’(ft(O)) A- exp -2(1 + Qk) E 1 Ao
= = A-- 1

Let us use the formula fl+lg(x)dx g(1) + g’(p)/2, p e (1,1 + 1). We put g(x)
(1 Ao)/(Ax 1). Taking into account Corollary 3, it is not difficult to see that
g’ (p) g(1)Ql. Hence,

n-1 n

(2.48) E g(l) (1 + Qk) [ g(x) dx.
l--k

After the change of variables A0 exp(0/n) has been made in (2.47), the last relation
yields the representation

Hk exp {(1- k/n)+ 2log {(1- exp(Ok/n))/(1- cO)} (1 + Qk)}.
Now using the inequality kin <= (1- exp(0k/n))/(1- ee) =< 1, we conclude that for
any s > 0 we have, for k > n,

(2.49) Hk sinh-2(0/2)sinh2(0k/(2n))(1 + Qk).

Because of (2.5) we can write

(2.50) U’n(1) f,(O)
kne k_ne

Since (2.35) and (2.45) hold, we have

(2.51) fn(0) 1 + Qn.

It follows from (2.49) and (2.51) that

E1 sinh-2(0/2) E sinh2(Ok/(2n)) (1 + Qn).
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Let us put g(x) sinh2(Ox/(2n)). It is not difficult to see that g’(p) g(1)Q. Hence,
formula (2.48) holds. Taking into account the fact that f sinh2x dx 1/4sinh(2x)- x/2,
we obtain the following equality:

(2.52) F, -sinh-2(O/2) {0-1 (sinh0 sinh (0)) (1 )} n(1 +Qnn)/2.

Now let us estimate F2. Since f’(fk(O)) _<- 1 and fk(O) <_- 1, we have IIkfk(O) <= 1.
From this we deduce

(2.53) F2 =< he.

Relations (2.50)-(2.53) allow us to complete the proof of the lemma.
LEMMA 17. Let i 2. Then,

A 2nA(1 + Q).(2.54) u,(1)
1 A0

Proof. Our considerations proceed from (2.50). From Corollary 3 it follows that
under the assumptions of the lemma we have 1/(An 1) A(1 + Q). Hence,
because of (1.3) and (2.36) we can rewrite the representation (2.42) in the form

(2.55) fn(O) + A’Q.

In addition, summing over the right-hand side of relation (2.47), we obtain the follow-
ing for any e > 0, when k > n:

Hk A-k exp ( 2A0 (1 A-k) (1 + Qn) }.
Thus it follows that

n A-k 2A + 2A-k + AQ.

Combining (2.55) with the last representation, we deduce that

Ao 2n(I )A + o{ A(I-) } + n(I )AQ"E= 1-Ao 1-Ao

On account of (2.47), we have Hk _-< A-a. Hence, E __<-neA(-). Now, applying
(2.50), (2.55), (2.35) and Corollary 3 we obtain (2.54).

Let us set, for any Ao < 1, W 2Bo(1 s)/(1 no)2 V (1 + W)/2
LEMMA 18. The following representation holds:

(1 A0)(V 0)(2.56) A u
B0 (1 + Q(s)).

Proof. Since u* is a solution of (2.18), we have, in view of (2.33),

{ 1 2 )))}.u s A- A0(A- u*) + B0(A- u*) (1 + O(H(A- u*

Hence, we obtain

u’)2 (1 + O(,(A- u’)))/2 + (1- sAo)( -u*)- (1- s)= 0.Bo(A
\
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Since 1- sAo 1- Ao + Ao(1- s), using (1.2), (2.21), and (2.35) we can rewrite the
equation (2.57) in the following form:

Bo(A u*)2/2 + (1 Ao)(A u*) (1 s)(1 + Q(s)) O.

Since (2.19) holds, A-u* is a positive solution of this quadratic equation. This solution
is unique and has the following form:

(2.58) k u* 1 Ao 1/2

Bo {(I+W(1 + Q(s)))
Using the equality I+W(I+Q(s)) (l+W){l+(W/(l+W))Q(s)} and the expansion

(1 + x) 1/2 1 + x(1 + o(1))/2, we obtain

(1+ w(, + +

It is ey to see that the inequality W/V(V- 1) c holds. Hence, the representation
(2.58) can be written in the form (2.’56).

LEMMA 19. Let -O(V- 1) c and -OV c. Then,

(2.59) gn(S)
2exp (0Y)(1 Ao)2y2(1 + Qn(s)).

Bo(1 exp (eY)) =

Proof. Combining (2.32), (2.56), and (2.21) we get f’(u*) Ao (1 Ao)(Y
1)(1 + Q(s)). Hence,

(e.0) a Ao -(1 Ao)(Y- 1)(1 + Ao(1 ,)/(1 Ao)(Y- 1)+ (,)).
Let us point out that

1-s /W/
(1-Ao)(V-1) 2B V-1 2B0 V-1

If W c, then W1//(g 1) , and if W , then W/(V- 1) . So, taking into
account (1.a) and (2.a6), we obtain (1 s)/(1 Ao)(g- 1) Q(s). This together
with (2.60) yields

(.1 o ( ol(U- ( + ().
uof (.a) wh -(1 o/o ogo( + ). h it foow from (.a)
that a Ao(1 + (V- 1)log Ao(1 + Q(s))). Using the first condition of the lemma we
obtain

log { 1 + (V 1)log Ao(1 + Q(s)) } (g 1)log Ao(1 + Q(s)).
Hence, a A exp{0(g 1)(1 + Qn(s))}. Using the first condition of the lemma
once again, we come to the conclusion that

(. p(0ul( + ().
Hence, using the second condition, we deduce that

(2.6a) 1 a (1 exp(0V)) (1 + Q(s)).
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Combining (2.31) and (2.21) we get

(.) Bo( + Q())/:.

It follows from (2.61) that- (-0 + u ( (- 0)( + ().

Substituting (2.62)-(2.64) and the last representation into (.4a) we obtain (2.g9).
Let W as 0. We point out that, since (1.2), (1.a), and (2.a6) hold,

this convergence is uniform with respect to F Ka and

(2.65) (1 s)/(1 Ao)2 Q(s).

In addition, using the expansion (1 + x)/2 1 + x(1 + O(x))/2 we obtain

(2.66) V- 1= W(1 + Q(s))/2.

COROLLARY 5. If 2, the conditions of Lemma 19 are satisfied, and W 0
as a2 O, then

(.) n()

Pro@ We deduce from (2.66) and the first condition of Lemma 19 that exp(OV)
A exp(0W/2)(1 + Q(s)). In addition, exp(0W/2) 5 1. Taking into account that,
because of Corollary 3 A Qn, we can write the representation (2.59) in the form

LEMMA 20. Let 2 and L < . If W 0 as a2 0, then

(2.68) gn(8) 2B;l(1- mo)2an(1 + Qn(8)),
(.) d0( ( +) + Zz( + Q())),

--Z Z /( m0).
Proof. In view of (2.56) and (2.66), we have

( do)W ( + Q())(e.o) o 1 do ( + Q())

On the other hand, taking into accoum (2.21) we rewrite (2.57) in the following way:

( do)( *) ( ) So( *)( + Q())/: do( )( *).

Substituting the representations for A- u* from (2.70) imo the right-hand side of the
lt relation, and applying (1.3), (2.36), we obtain

( ) o( ) ( + Q())(2.71) A-u
l-A0 2(1-A0)3

Since L0 5 L < , we have, according to the Taylor formula,

(2.72) f’ (u*) Ao Bo(A u*) + f"’ (p)(A u*)e/2,
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where p e (u*,A), f’"(p) <_ . Using (2.71), (1.3), (2.36), and (2.65) we deduce that
(A- u*)2 (B(1- s)2/(1- Ao)3)Q(s). Combining (2.72), (2.71) and the previous
representation we conclude that

f’(u*) Ao ABo(1- s) + B(1 s)2 (1 + Q(s))1 Ao 2(1 Ao)3

Hence, we have

a Ao(1 (1 + ’7)(1 s) + (/Ao + "7)(1 s)2(1 + Q(s))).
2 QoIt is not difficult to see that z Q(s) and 1 s z- z (1 + (s))/2. Thus, we can

write

a .4o 1 -(1 + ’7)z + (/Ao + + 1))z(1 + Q(s))

Taking into account (1.a) and (2.a6) we obtain (2.69).
Now let us deduce (2.68). To do this, we shall use (2.4a). Owing to (2.61) and

Corollary a, we have a Q(s). om (2.61) and (2.66) it follows that 1-a
(1 A0)(1 + Q(s)). Taking all this into account as well as (2.64), we obtain (2.68).

LEMMA 21. et A const 1. Thee,

(2.3) gn(8) R(1 a)an-1 (1 + (8)),
where R is the same as in (2.15).

Proof. Let us use the considerations we carried out in deducing formula (2.41)
in the proof of Lemma 14. We go out from the representation (2.38), where Qn is

substituted for Qn. Let us also point out that it is not necessary to apply (1.2)
and (2.36). As a result we get Yn+l(S) yn(s)/a + (b/a2)(1 + Qn(S)) (in the same

notations) and moreover, we can write

(2.74) a Ao + Q(s).
nMaking the change of variable Wn(8 a yn(8), we obtain the relation Wn+l(8

n-1
a
k kWn(8)--ban-l(1-[-QOn(8)). Hence, Wn+(s) b-jk= (l+Q(s)). Since -]k= a

(1 a)- < oc, we have wn(s) Co(1 + Qn(S)), where Co is a constant. Returning to
the notations introduced before let us rewrite the last relation in the form

(2.75) tn(8 U* coan(1 + Qn(S)).
Putting s 1 and using (2.6) and the equality a(1) Ao, we see that fn(O)
A- coA(1 + Qn). Comparing the relation obtained with (2.15) we conclude that
Co R. Now combining (2.2) with (2.75) we get (2.73).

LEMMA 22. Let A const = 1, n(1 s) <= c. Then,

(2.76) g(s) R(1 A0)A-1 exp {-(1 + ’7)n(1 s)} (1 + Qn(S)).
Proof. Since u* is a solution of (2.18), we have u* s(A Ao(A u*) + O((A

u*)2)) according to the Taylor formula, and hence, (1 sAo)(A- u*) =/k(1 s) +
O((zk u*)2). Therefore, owing to (2.21), we have A u* O(1 s). As a result we
obtain

(2.77) A- u* A(1 s)/(1 Ao)+ O((1 s)2).
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From the representation (2.77) and the expansion f’ (u*) A0 B0(A- u*)(1 + o(1))
as u* A it follows that a Ao(1 (1 + 7)(1 s)(1 + Q(s))). Further, using
the inequality from the conditions of the lemma we deduce that an A exp{-(1 +
-)n(1-s)}(1 +Q(s)). Combining (2.73), (2.74) and the last representation we obtain
(2.76).

LEMMA 23. Let A --const 1 and < oc, if A < 1. Then,

(2.78) gn(S) RAI(1 Ao)an(1 - Qn(S)),
a Ao(1 -(1 + )z + (/ + (37 / 1)/2)z2 (1 + Q(s))),

where s e-z, (ABo(2 / /) + A2Lo/Ao)/2(1 Ao)2.
Proof. As in the case A 1, the representation (2.57) holds, where H(A- u*)

Q(s) by virtue of (2.21). Let us rewrite it in the form

(1 Ao)(A u*) (1 s) bo(A u*)2 (1 + Q(s))/2 Ao(1 s)(A u*).

Hence, in view of (2.77) we obtain

A(1 s) AAo (1 + 7/2)(1 s)2(2.80) A u*
1 Ao (1 Ao)2 (1 + Q(s)).

According to the Taylor formula we get f’(u*) Ao- Bo(-u*)+ 1/2Lo(-u*)2(1 +
o(1)) as u* --. . Now applying (2.80) we see that the relation f’(u*)= Ao(1-/(1-
s) + (1 s)2(1 + Q(s))) holds. Consequently, we deduce that

: QOUsing the equality z Q(s), 1 s z- z (1 + (s))/2 we obtain (2.79). On
account of (2.73), (2.74) we get (2.78).

LEMMA 24. Let F be a distribution function of random variables. Let it be con-
centrated on the positive semi-axis and assume (t) f e-tYdF(y), t > O. Then,

<: >__ o.
Proof. It is not difficult to see that (t) >= f e-tYdF(y) >= e-tF().
Let F be the distribution function of a certain random variable. Let it be defined

on the whole real axis. Let us consider the bilateral Laplace transform

(2.81) (t) e-tYdF(y), 0 <-_ t < to <= oc,

where to depends on F and the integral exists for t E [0, to) and does, in general, not
exist for t t [0, to).

LEMMA 25. Let 0 <= e < to t, (-oc, oc). Then,

e-tVdF(y) <= e(t + ).

Proof. The definition immediately yields

(t + e) __> e-(t+e)UdF(y) >__ e- e-tYdF(y).
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LEMMA 26 (Continuity Lemma). Let Fn, n >= 1 be a probability distribution with
bilateral Laplace transform n(t) inside the interval [0, t0). Iflimn__, n(t)
oc, 0 < t < to, then limn__, Fn F, where F is a probability distribution (which may
be degenerate) with the transform (t) inside the interval [0, to) (by definition we have
(0) limt--,0 (t)). The limit F is nondegenerate if and only if (0) 1.

Proof. According to the selection theorem (see, for example, [16, p. 267]) the
sequence {Fn} has a subsequence {Fnk } which weakly converges to some limit F. By
virtue of the convergence theorem [16, p. 51], we can write, for any

(2.82) lim e-tdFnk () e-tdF(y), 0 < t < to.

Applying Lemma 215 for e (to t)/2 we obtain

_<_ (t + s),

where the right-hand side may be made as small as required by a choice of u, since
the convergence of (t), 0 < t < to, is bounded. Together with (2.82) this implies
that

lim n(t)= e-tdF(), 0 < t < to.

On the other hand, according to the condition of the lemma we have lim_., (t)
(t) and, hence, (t) is the bilateral Laplace transform of the distribution F.

Since the integral f_: e-tdF() converges for 0 < t < to, it converges in the
strip 0 < Re t < to as well and is analytic in this strip according to the theorem on
the bilateral Laplace transform (see [17, p. 238, 1571). If there exists a distribution F0
such that

e-e0() e-ef() for 0 < t < to,

then using the theorem of uniqueness for analytic functions (see, for example, [18,
p. 122]), we conclude that the last relation holds for 0 < Re t < to. Hence, on account
of the theorem of uniqueness for a bilateral Laplace transform of a complex variable
[17, p. 243], we have F0 F. Thus, all convergent subsequences converge to the same
limit F. Hence, Fn converges to f. Because of (2.81) we have (0) F(+oc), and so,
(0) 1 is the necessary and sufficient condition for the limit F to be nondegenerate.

3. Main results.
THEOREM 1. Let A 1 and let the condition (Fs) hold. Then, as n

(3.1)

1)

(3.2)

2)

3)

P(N n) (2/(Bn2)) (1 + o(n-5)),

1(1+ o(n-5)),E(Sn; N-n)--

1
E(S IN n) Bn2(1 + o(n-5)).

THEOREM 2. Let A const = 1. Then, as n--, oc,
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1)

(3.3) P(N n) R(1 A0)A-1 A2(n-l) o(A);+RI(1 A).-o +
and if, in addition, the condition (Fb) holds in the case A < 1, then

(3.4)

3)

(3.5)

E(Sn; N n) R (1 A0) (1 + /)nA-1 + Ax(n),

where R, RI are the same as in (2.15), and x(n) is defined in Lemma 6.
From (1.15) it follows that

(3.6)
(3.7)

P(N n)= gn(1),
E(Sn;N--n)--gn(1).

Proof of Theorem 1. 1) In view of (2.9),

f(Un(1)) Un(1) + B (1 g fn(O))2/2 + o(1 Un(1))2/2 + o((1 Un(1)) 2+5)
as u,(1) --, 1. Substituting this relation into (2.3) for s 1 and taking into account
(2.6) we obtain

gn+l(1) B(1- fn(O))2/2 + o((1- fn(0)) 2+5)
as f,(0) --. 1. Now using the representation (2.10) we get the relation g,(1)
(2/Bn2)(1 + o(n-5)) which implies (3.1) by virtue of (3.6).

2) Differentiating both sides of the relation (2.3) at the point 1 we obtain

(3.8) gn+l(1) f(Un(1)) (1 f’(Un(1))) U(1).

Consequently, applying (2.6), (2.11), (2.12)we get (1-f’(u(1)))u(1) -+o(n-5).
On the other hand, because of (2.6) and (2.10) we have f(Un(1)) fn+x(O) 1 +
O(n-). Hence, using (3.7) and (3.8)we obtain (3.2).

Proof of Theorem 2. 1) Substituting (2.6) into (2.2) we get g+(1) f+l(0)-
f(0). Using now (2.15) we arrive at (3.3).

2) Differentiating both parts of the relation (2.2) at the point 1 we obtain
gn+l(1)’ Un+’ (1) Un (1). Substituting now the representation of the right-hand
side from (2.17)into the relation obtained, we get (3.4).

Let us put v(x)= {f"(pox)}2pox/(2B).
THEOREM 3. Let A 1. Then, for any 0 < c0 < 1,

P(Sn < u N n) <= 4B2
exp { -v(c)n2 }f"(Po) u-n

+21ogn

for >= (1 + (-V(Co)/log c0)1/2)n.
Proof. Due to Lemma 24 we have

P (SN < u; N n) <= etgn(e-t), t > O.

E(Sn IN n) (1 + 7)n + xb(n),
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Using (2.26) and the inequality 1 -e-t >= e-tt, we obtain

gn(e-t) <= e-ntexp { C(co)n(cot)l/2},
if 0 < Co <= e-t, where c(co) f"(coPo)(2po/B) /2. Thus, we can write

P(S, < 9; N n) <= exp {t nt C(co)n(cot)/2}.
The right-hand side attains its minimum at t min{co(c(co)n/2(- n))2,
-log Co}. Hence, we have

P(Sn < 9; N n) __< exp {-CoC2(co)n2/4( n)}
for Co(C(co)n/2( n))2 _-< log Co, i.e., for satisfying the condition of the theorem.
It remains to apply (3.6) and (2.24).

We set h(x) (x(1 + ex) + 2(1 eX))/(e 1)3_.
Remark 1. It is not difficult to see that h(0) and h(x) >= c > O, x >= O.
THEOREM 4. The following holds as a --. 0:
)

(3.9) P(N n) (2A/Bo) { (1 Ao)/(1 A)} (1 + Qn),

(a.lO) E(SN; N n) 2Aoh(nlog Ao)(l + ), ,
2(1- Ao)nAo(1 + Q), i= 2,

3)

Bo((1 A)/(1 Ao))2h(n log Ao)(1 + Qn), 1,(3.11) n)
(Bon/(1- Ao))(1 + Qn), 2.

Remark 2. In cse 2,

(3.12) P(N n) (2B-1(1 Ao)2A) (1 +

(see Corollary 3).
Remark 3. Let lim__.o n(1- A)- 0. In view of (2.36),

A exp { nil A[ (1 + Q)} 1 nil A (1 + Q).

Using Lemma 12 (for s 1, rk(A, s) k) we obtain

n--1
2E Ak-n-n I1-AI(I+Qn)/2.

k=0

Hence, (1-A’)/(1-Ao) n(1 +Q). Further, using (2.36) and Renrk 1, we deduce
that h(n log Ao) (1 + Qn)/6. As a result, the representation (3.11) (for i= 1) tkes
the following form:

(3.13) E (Sn IN n) Bon2(1 + Q)/6.

Proof. 1) Putting s 1 in (2.43) and using (3.6) we obtain (3.9).
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2) Because of (3.7), (3.8) we have

(3.14) S(.n; i--

Let i-- 1. Consequently, applying (2.6), (2.46), (2.44), and (2.36) we get

(1 f’ (un(1)))Un(1) {2ee(1 + e)(sinhO O)/(e 1)3 } (1 + Qn)

(1- 2eh(0))(1 + Qn).

Hence, using Remark 1 we deduce that

1 2eh(O)(1 +
where eh(O) e > 0 in view of Corollary a. om (2.6) and (2.gl) it follows that
f((1)) f+l(0) 1 +. Now applying (a.14) we obtain (a.10).

Let i= 2. Using (2.6), (2.46), (2.g4), and Corollary a we have

(1
where (1 A0) as ffl 0. urther, owing to (2.6) and (2.g), we can write
I(()) x +. It remains to use (a.4).

a) or the case 1, (a.ll) evidently follows from (a.9) and (a.10). or the case
2, we use Remark 2.
Let m N (S N ), (t) N (exp(-tS/m)lN ).
Evidently, we have m
To prove subsequent theorems, we shall use the continuity theorems for unilateral

(see, for example, [a]) and bilateral (Lemma 26) Laplace transforms.
Toa 5. 1) get lim0 11 AI log r < . The,

lim P(SN/mN < z IN ) a(z, r), z O,

where

I 3t/sinh2((3t)l/2)’
e-tYdxG(x’ r) g(t, r) =- (1 r)2rd(t’r)(d(t, r)) 2

r(1 rd(t’r)) 2

r=l,

1/2
d(t,x) (1 + 2t/(1 x)2h(log x))

2) Let 2. Then, for any e > O,

0<t<.

(3.15) lim P (ISNImN 11 > e N n) O.
rl---0

In addition, if L < -5, then

(3.16) lim P((1 A0)3/2(SN -(1 +/)N)/BoN1/2 < xlN n) O(x)
0.1.._0

where ((x) is the standard normal distribution.

r<l,
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Remark 4. It is not difficult to check that limr__.l g(t, r) g(t, 1).
Proof. Let t > 0. From (1.5) we obtain

fln(t) gn ( exp(-t/mn)) /P(N n).

Let s exp(-t/mn). Because of (3.11), (2.36), and (1.3) we have 1/mn Q,n. Hence,
we can write

(3.1s) 1-s=(t/mn)(l+tQn).

Without restricting generality, we can assume that A --+ 1 but does not attain this
value. As in Lemma 19, we shall use the notation W 2B0(1 s)/(1 Ao)2, V
(1 + W)1/2. From (2.36) it follows that

(3.19)
(a.e0)

n(1- A0) -0(1 + Q),
0 -nI1 A (1 + Q).

1) If r 1, then taking into account (3.18), (3.13) and (2.36), we deduce that
W 12t(1 + tQn)/(n(1 A0))2

--+ as al --+ 0. Hence, in view of (3.19) we obtain

V (-2(3t)/2/0)(1 + tQn). For r < 1, applying (3.18) and (3.11) (i 1), we see

that W 2t(1 + tQn) / 1 A)2h(n log Ao). Hence, we can write

V (1 + 2t(1 + tQn)/(1 eO)2h(O))1/2 d(t(1 + tQn), cO).
It is not difficult to see that the conditions of Lemma 19 are satisfied in both cases.
Using (3.17), (2.59) and (3.9) we arrive at the following representation:

(3.21) On(t)
exp (0V)(1 eO)2V2(1 + Qn)

e (1 exp(OV))2

Note that, because of (3.20), limol_0 e r. Now substituting the expressions for V
obtained above into the right-hand side of (3.21) and passing to the limit as al -- 0
we conclude that liml__.0 n(t) g(t, r). It remains to apply the continuity theorem.

2) Taking into account (3.18), (3.11) (for 2) and (3.19), it is easy to show
that, in the case under consideration, W (-2t/O)(1 + tQ,n) -- 0 as a 0 and the
conditions of Corollary 5 are satisfied. Combining (3.17), (2.67) and (3.12) we obtain

--tOn(t) exp(0W/2)(1 + Qn). Hence, we have lim__.0 On(t) e which is equivalent
to (3.15) because of the continuity theorem.

Now let L < . With the help of (1.5) we deduce that

((1 ")nZ)gn(S)E(exp (Sn (1 + /)N)z)IN n) exp +
P(N n)

where s e-z. Let z t(1 Ao)3/2/Bonl/2. In this case, taking into account (1.3)
and (2.36) we get z tQn and W (2t/(nll A[)l/2)(1 + tQn) --. 0 as al 0, i.e.,
the conditions of Lemma 20 are satisfied. Moreover, we have /z tQn. Using (2.69)
we deduce that

{(1aexp ((1+3,)z) =Ao 1+ /-(1+3,)2 z2(1 + tQ)},
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where/3 B/2(1- A0)3. On account of (1.3) and (2.36) we have (1 + .),)2 3Qn.
Let us also point out that/3z2 t2/2n. Hence, we have

aexp ((1 + q,)z) A0(1 + (t2/2n)(1 + tQn)).
Combining the last representation with (2.68) we conclude that

(3.23) exp ((1 + q/)nz) gn(S) (2(1 Ao)2ABo) exp (t2/2)(1 + t3Qn).

Relations (3.22), (3.23), (3.12) and the continuity theorem give us (3.16).
Putting A 1 in Theorem 5 we obtain the following corollary.
COtOLLAtY 6. Let A 1. Then,

lim P(SN/mN < x N n) G(x), x __> 0,
n---,cx

where

e_tXdG(x) 3t
0 <_ t <_

sinh2 ((3t) 1/2)
Remark 5. Using [19] it is possible to find the inverse Laplace transform for

t/sinh2(tl/2). It has the following form:

4 d 1 k2 k2 2 d /2 d 1
,(x) /2 dx

ex,
=1

x /:dx
x va O,-x

where v3(, x) 1 + 2Z= exp(-xk2) cos(2k,) is a theta function.
THEOREM 6. Let A const 1. Then, for any > 0,

(3.24) lim P(]SN/mN--I]>] N=n) =0.

Moreover, g L < in the case A < 1, then

(.:) i2e(( (1 + )N)/TN/ < x N n)
where (x) is the standard normal distribution, and

T (( + 0)+ :(:0 1)+ :0/0(- 0))/( 0).

Proof. Let t > 0, s exp(-t/m). In view of (3.5), m as n , and
hence, we have

l-s= (l+tQ)=(l+tQ).
n ( +)n

The conditions of Lemma 22 are satisfied. Combining (3.17), (2.76), and (a.3)
come to the conclusion that n(t) exp(-(1 + )n(1 s)) (1 + Q), and hence,

--t
lim n(t)=e
n

Applying the continuity theorem we obtain (3.24).
--ZTo prove (3.25), we start by considering the representation (3.22), where s e

Let z t/Tn/2. By virtue of (2.79) we can write

(( 1 )z tQ)),(a.a p (( + /) o + + (1- (1 +
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where f is defined in Lemma 23. It is not difficult to see that + (1-)/2 T2/2.
Hence, ( + (1- /)/2)z2= t2/2n. Now applying (2.78) and (3.26)we obtain

exp ((1 + ")7tZ)gn(8 R(1- A0)A-1 exp (t2/2)(1 + t3Qn).
Relation (3.25) follows from (3.22), (3.27), (3.3) and the continuity theorem.

REFERENCES

[1] A. N. KOLMOGOROV, On one biological problem, Izv. Nauchno Issled. Inst. Matem. Mechaniki
pri Tomskom Universitete, 2 (1938), pp. 7-12. (In Russian.)

[2] A. N. KOLMOGOROV AND N. A. DMITRIEV, Branching stochastic processes, Doklady Acad. Nauk
SSSR, 56 (1947), pp. 7-10.

[3] A. N. KOLMOGOROV AND B. A. SEVASTYANOV, Final probabilities for branching random pro-
cesses, Doklady Acad. Nauk SSSR, 56 (1947), pp. 783-786.

[4] A. M. YAGLOM, Limit theorems for branching random processes, Doklady Acad. Nauk SSSR, 56
(14), . -s.

[5] A. G. PAKES, Some limit theorems for the total progeny of a branching processes, Adv. Appl.
Probab., 3 (1971), pp. 176-192.

[6] , Some limit theorems for Markov chains with applications to branching processes, Studies
in Probability and Statistics, Ed. by E. G. Williams, Jerusalem Acad. Press, North-Holland,
pp. 21-39, 1974.

[7] H. KESTEN, Subdiffusive behavior of random walk on a random cluster, Ann. Inst. H. Poincare,
22 (1986), pp. 425-487.

[8] S. V. NAC:AEV AND A. V. KARPENKO, Limit theorems for the total number of descendants for
the Galton-Watson branching process, Preprint, Novosibirsk: SO Acad. Nauk. SSR, Inst.
Mat., No 33, 1987.

[9] S. V. NAGAEV AND R. MUCHAMEDCHANOVA, Transition phenomena for branching processes with
discrete time, Zbornik: Limit theorams and statistical conclusions, Tashkent; FAN, pp. 83-
89, 1966.

[10] K. S. FAHADY, M. P. QUINE, AND D. VERE-JONES, Heavy traffic approximations for the Galton-
Watson process, Adv. Appl. Probab., 3(1971), pp. 282-300.

[11] H. KESTEN, P. NEY, AND F. SPITZER, The Galton-Watson Process with mean one and finite
variance, Theor. Probab. Appl., 11 (1966), pp. 579-611.

[12] K. B. ATHREYA AND P. E. NEY, Branching Processes, Berlin, Springer, 1972.
[13] S. V. NAGAEV AND R. MUCHAMEDCHANOVA, Limit theorems from the theory of branching pro-

cesses, Zbornik: Limit theorems and statistical conclusions, Tashkent, FAN, pp. 90-112,
1966.

[14] N. U. PRABHU, Stochastic Processes, New York, Macmillan, 1965.
[15] T. HARMS, The Theory of Branching Processes, Berlin, Springer, 1963.
[16] W. FELLER, An Introduction to Probability Theory and its Applications, Vol. 2, New York etc.,

Wiley, 1971.
[17] D. V. WIDDER, The Laplace Transform, Princeton, Princeton Univ. Press, 1946.
[18] B. V. SHABAT, An Introduction to Complex Analysis, Vol. 2, Moscow, Nauka, 1985. (In Rus-

siam)
[19] V. A. DITKN AND A. P. PRUDNIKOV, Operational Calculus (reference book), Moscow, Vysshaya

Shkola, 1965. (In Russian.)


