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PROBABILITY INEQUALITIES FOR SUMS OF INDEPENDENT RANDOM VARIABLES 

WITH VALUES IN A BANACH SPACE* 

S. V. Nagaev UDC 519.21 

In the present paper we improve in a certain sense the inequalities obtained in [i]. 
Partially, these inequalities have been communicated in [2] (see below Theorem i and Corol- 
lary i). A progress in comparison with [i] is achieved by the modification of the method of 
proof. 

Thus, let X I, X 2 ..... X n be independent random variables with values in a separable 
h 

Banach space B with norm I" I. We set Sh = ~X~, M~ max I Si~ I. Let ~ be any number such 
1 l ~ h ~ n  

that P(2M,>I ~)< i. For the sake of brevity we set 

6 = P (2M~ >/~) ,  k~ = [y/a], 

[" ] P(y) = m i n  8 ,  ~P(IX~l>~y) �9 

THEOREM 1. For  any Y1>a and i>/8~>~8 we have  

~-*  ,k~--k  ~/~-I (Y-- (::+ l) a /  

1 0 

0 

where ~ ---- O. 
1 

n n 

We introduce the notations A t =~EIXjl t, Ag_--EEexp{g(IX~l)} , where g is an arbitrary 
Borel function, i i 

COROLLARY i. For any t>0, 11---?>8, y>= we have 

P(M.  >1 y) <~ c(t, ~)A,ly t + 2 ( y l~ )~  '~/2~-2, (2 )  

where  c (t, ~) = T F (t + 2) ~-~ ( - l n  ~)-*-2. 

P r o o f .  Wi t h o u t  l o s s  o f  g e n e r a l i t y ,  we can assume t h a t  y>~ 2a. F i r s t  we e s t i m a t e  t h e  
integral 

y/~--I y/2c~--I yl~--I 

,__ (. + S = , , + i , .  
0 0 y/2~--I 

*Dedicated to A. D. Aleksandrov. 
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If O~u~y/2=--l, theny-(a+l)a>y/2. Consequently, for these values of u we have 

p (Y-- (~ -  t)~) <.~ A, (2u/y),. 

As a result we obtain the estimate 

I~ ~ A, (2/y)' ~ u'+~e~mVdu = A~ (2/y)' (--  In ?)- ' -=F (t + 2). 
0 

On the other hand, 

Thus, 

I2 <~ ? ,f uyi'du < (Y/~ 
y/2~z--1 

I ~  c(t, 7)AJy' ~(y/a)27 ~/2~. 

From this estimate, by virtue of (I), there follows inequality (2). 

COROLLARY 2. Assume that the continuous function g(y) + and g(0) = 0. 

where 

(V(y~>ez, 1 > 7 > ~ 6 ) )  (P(M~>~y)<~Po(Y, cz, ?)+2(y/a)2'ff/2~-~), 

Then 

[Agv-~ (yVSa 2) exp { -  g (y/2Uo)}, 
=- ~ i f  g (a) ~ -- (y/2a) In y,. 

Po (Y, ~z, "f) [Age-g(a)~] -2 (-- hi y)-2,  

[ if g (a) ~ --  (y/2a) In ?, 

u 0 b e i n g  t h e  r o o t  o f  t h e  e q u a t i o n  g ( y / 2 u )  + u in  $ = O. 

P r o o f .  L e t  I ,  I I ,  and 12 be d e f i n e d  in  t h e  same way as  in  t h e  p r o o f  o f  C o r o l l a r y  1. 

S i n c e  y--(u+t)a>11]/2 f o r  O<~a<~y/2a- t ,  we have  

p ( Z - ( u~  i ) ~Z ) ~ Age,g(y/~u) . 

Therefore, 

It is easy to see that 

Thus, 

yl2o~ 

1 l<~Ag ~ uexp{- -g(y /2u)+ulny}du .  
0 

g(y/2uo)-- uo In ? ~ 2 (g (y /2u) - -  u In 7), 

Ii <~ A~(g'/8~z2)exp {-g(y/2uo) }. 

I f  g (a) > -- (g/2a) In ~, t h e n  g (~) I g (g/2u0) and 

yl.~cz 
I , ~  Age -~(~) ~ ueuln~'du < Age-g(oo (-- ]n y)-~. 

o 
As f a r  as  12 i s  c o n c e r n e d ,  we make u s e  o f  t h e  a v a i l a b l e  e s t i m a t e  ( 4 ) .  
f o r m u l a s  ( 1 ) ,  ( 3 ) ,  we o b t a i n  i n e q u a l i t y  ( 5 ) .  

We p r o c e e d  t o  t h e  p r o o f  o f  Theorem 1. For  t h i s  we need  s e v e r a l  a u x i l i a r y  s t a t e m e n t s .  
Let ~i=min{k: i<-k<-n, ISk[ ~a} if {k: l<~k<~n, [S~[>~a}#=~. Otherwise we set x i = n + i. 
Further we define ~j for j > 1 by induction, setting 

i f  t h e  . c o r r e s p o n d i n g  s e t  o f  v a l u e s  o f  k i s  nonempty .  O t h e r w i s e ,  <j = n + 1. 

Obviously, ~<%+~ and if 

(4) 

(5) 

Returning now to the 
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We set 

Y~=[&tl--~, 

i f , ~ < n . .  For ~j = n + 1 we have Yj = O. 

Let  a -  be t he  o - a l g e b r a  g e n e r a t e d  by the  random v a r i a b l e s  X~, X,~ , . . . ,X  k and l e t  ~ 
be the  o - a l g e b r a  g e n e r a t e d  by the  Markov moment ~k" 

LEMNA 1. For any j ~ < m ~ n  we have 

P (rm <~ n/.~) <~ 6~-;P (,~ ~ n/.~). 

Proof .  By d e f i n i t i o n ,  

{z, ,_t=i ,  % < n } = { ~ , , _ t = * ,  {<,4,~maxlSzl~l&l+~}" 

On the other hand, 

I&l>~ls,,l+ xq ~ .  

= = ~Xq ~(z , we have the inclusion 
t i < / - < ,  n " 

L e t A ~ , ] < k - - l .  Then 

i - - 1  

P (D/,-1,iEiA) = ~ P (DI~-IjEiDi,tA). 
/ = 1  

By d e f i n i t i o n  D~.zA~-~. T h e r e f o r e ,  

P (Dk-,, ~E~Dj. ,A) = P (E~)P (Dk-r ~Dj. ,A). 

From the  e q u a l i t i e s  ( 7 ) ,  (8)  t h e r e  f o l l o w s  t h a t  

P (Dk-,, {E~A) = e (E,)P (D,_,, ,A) .  

This  means t h a t  

P (Dk_,. ,EJ.~)= P (E 0 P (D,_,, ,/.~). 

Obviously, 

(6) 

(7) 

(s) 

(9) 

n--I 

{~h<~n}=Dk U D~-l.i. (10) 

By virtue of the formulas (6), (9), (i0) we have 

n--i n--1 n--I 

P(%<~ n/~j) = ~ P (Dk-taDh/&j) ~ ~ P (Dh-~,~Ei/~j)= ~ P (E 0 P (~:t,-x = i/:~j). 
i=l i=l i=l 

It is easy to see that for any k we have 

max ~_~ X~ ~ 2~[n. 
h < l ~ n  | k+l 

Therefore, 

(11) 

P (Eh)~< P (2M,, >/co)= 8. (12)  

From (ii), by virtue of the relation (12), there follows that 

p(~  <~ n/~j)<~ ~P ('~_, <~ n - t 1 ~ )  <~ 8P(T~-, <~ h i & ) ,  j < k - t.  ( 1 3 )  

I f  A E ~ ,  then P(D~.~EcA)=P(EOP(D~.',A). Thus, e q u a l i t y  (9) i s  s a t i s f i e d  a l s o  f o r  k - 1 = j .  
Consequently, inequalities (13) remain valid also for k - i = j. 

Applying successively inequalities (13) for = m, j + I, we obtain the assertion of the 
lemma. 
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COROLLARY 3. For  any k ~ n  we have  

P(r~ < . n ) <  6 k. 

LEMMA 2. For any y > 0 we have 

Further, 

Thus, 

Proof. Obviously, 

P(Yk i> Y)~< 5~-~,P (y). 

P (Yh ~ Y) = ~ P (Yh ~ Y, z~. = ~). 
i = l  

P(Yk~  > y, x~ = i)~< P (]S,] - .  IS,-,l >~ y, ,~-, < i)<~ P (IX, I ~ y, zk-, < i) = P(IX, I >~ y)P (zk-, < i). 

P ( Y h > v ) ~ P ( * k - I  <-~n) ~ P ( ] X ~ I > y ) .  
1 

Applying now Corollary 3, we obtain that 

P (Yh ~ Y)< 6k-1 ~ P ( [ Xi [ ~> Y). 
1 

On the other hand, by virtue of the same Corollary 3, 

P(Yk> v ) ~ P ( ~ <  n ) ~  5 h. 

From the inequalities (14) and (15) there follows the assertion of the lemma. 

Proof of Theorem i. First we assume that y = ms, where m is an integer. 

Let 

Here ~0 = 0, S o = 0. 

It is easy to see that 

Further, 

From here 

m 

{Mn ~ ms} = U Ak. 
1 

A k c  % < n ,  ~ y j ~ ( m - - k ) s .  
1 

h 

(V (0 < k < m)) P (Ah) ~ ~ P (Yj > (m -- k) s/k, % ~ n). 
1 

Making now use of Lemmas 1 and 2, we have 

(v (0 < k < m) ) (P (Y~ >i (m - k )  s /k ,  ,c~ ~ n) <~ 6~-JP (Yj > s (m - k ) /k ,  .~ <~ n) <~ 6~-'P ( (ra - k) s /k)  ). 

On t h e  o t h e r  hand ,  by v i r t u e  o f  C o r o l l a r y  3 we have  

P Yj>~O, xm~-~ = P ( 'q~<n)  <~ 6'~- 

From f o r m u l a s  ( 1 6 ) - ( 2 0 )  we o b t a i n  
~ ' t -1  X ,,(,m -2, § 

Observing that 

(v (y > 0) ) (P (m~ ~ y) < P (M. a k=s)), 

and s e t t i n g  in  (21) m = ks ,  we o b t a i n  t h e  f i r s t  o f  t h e  i n e q u a l i t i e s  ( 1 ) .  

(14) 

(i5) 

(16) 

(17) 

(18) 

(i9) 

(20)  

(2i) 
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It is easy to see that 
h+l 

(v 1o)< .I 
h 

From here 

/h.r162 k -- k _~ 

1 0 

From (21), (22) there follows the second of the inequalities (i) for y ~ 2 a .  If ~ y < 2 a ,  
then 

(V (1/> ~i~ dt)) (P (M~, ~ y) ~ 6 ~ 6~/a-~ylo:). 

Theorem i is completely proved. 

LEMMA 3. If the random variables Xj are symmetric, then 

P(M~>~ y)<~ 2e(lS~l >/y). 

The proof  can be found in [3-5] .  

We in t roduce  the  n o t a t i o n s  
h ~ - - I  

[k~-- k ~ k-1 ~ 
Pl (y, a, ?)---- 

1 

Y/(~--I 

0 

P3 (Y, a, ? )=  2'F(t 4- 2)~-2 ( - ln  ?)-t-2Affy' 4- 2(y/a)2~ y/2~-z, 
PdY, a, ?).=P0(y, a, ?)+ 2(y/a)2~ wz~-~, 

~ =P(21S, I >~a). 

(23) 

COROLLARY 4. Assume that the random variables Xj are symmetric and $ < 1/2. Then 

(V(y~>~))(P(lS,]>-y)<~Pj(y, ~, 2~), 1 = 1 + 4 ) .  (24) 

Proof. As a consequence of the inequality (23) we have 

8<2~.  (25) 

It remains to use Theorem i and Corollaries i, 2. 

LEMMA 4. For any integer m > i we have 
n 

P (Mn ~ Y) ~ Pm (M~ ~ y/4m) 4- (P (Mn < y/4m)) -1 ~ P (I xj I > yl2m) 

(see [I, Proposition 4]). 

COROLLARY 5. For any integer m > i and y ~4m= we have 
T~ 

P (Afn ~ Y) ~ PT (y/4m, ~, 6)4- (P(Mn <y/4m) ) -~P( [X j l>y /2m) ,  ] = t  +4 .  (26) 
1 

I n e q u a l i t y  (26) i s  ob ta ined  e a s i l y  from Theorem 1, C o r o l l a r i e s  1, 2, and Lemma 4. 

COROLLARY 6. Assume that the random variables Xj are symmetric and ~ < 1/2. 
any integer m and y ~ 4ma we have 

n 

P (IS,,l>~y)~PT(y/4m, a, 2D + (l-2f~)- '~P(IX~l~y/2m), ] = 1 + 4. (27)  
1 

I n e q u a l i t y  (27) i s  de r ived  from formulas  (25) ,  (26) and the  e s t i m a t e  

P(M,, >~y/4m)< 2P (IS,,I i> a). 

fo r  y>_-4ma, which is  a consequence of i n e q u a l i t y  (23) .  

For any random variable X, we denote its symmetrization by X s. 

Then for 
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LEMMA 5. Let X be any random variable with values in B. Then 

(V (u >v))(~ I'([x~l >~ 2u) <~ P(ixI ~> u)~<P(I X' [~>u- @/p ([xk< @. (28) 

The proof of Lemma 5 can be found, for example, in [i, p. 160]. 

We set  P ( y , ? ) = m i n  y, P ( I X i l ) Y )  , 

[.~1-1 
P5 (g, a, ?):-- ~ 2hkP ( ~  a, ?)yh-1 + (27)M. 

1 

THEOREM 2. Let ~ < 1/4. Then 

(V (g >~ 2a))(P (1S~I >~ g)~< ~ P s ( ~ ,  a, 2~)). (29) 

Here 

Proof. First of all, by virtue of Lemma 5 we have 

(V (y>~)) (P ( I S. I/> y) <~ e ( I s i 7> g -- ~)/e ( 1S. I <~ a)), (30) 
(V (y >7 a)) (P (I S~[/> a) ~< 2P (21S~ [ >/a) = 28 < 1/2). ( 3 1 )  

Inequality (31) allows us to apply Corollary 4 to P( iS~l~>y- -a ) ;  as a result we obtain 

(V (g/> 3a)) (P[S~ I >7 g -- a) ~< P~ (g -- ~, 2a, 213~)). (32) 

Further, 

Therefore, 

[k a - -  k ) ? h-1 hr 

l 

P~(y, ?)=min[?, ~P(IX~]>~y)],~l ff~=P(IS:l~>a)" 

from Lemma 5 we obtain 

P(IX~l>~2y)<2p(Ixjl>~y). 

P,(2g, 2~)< 2P(g, ~). 

(33) 

(34) 

From here 
k2~--I 

Pls (Y, 2a, 2?) ~< 

h consequence of the inequa l i ty  (31) is 

2hkP [k.,~ -- k ) yl~-I \-- k a, y + (2y) ~z~. 

From (35) and (36) there follows that 

P~ (y, 2a, 2~,) < P~ (y/2~, a, 2~). 

Formulas (30),  (32),  and (36) lead to the es t imate  (29). 

COROLLARY 7. If ~ < i/4, then for any t > 0 and g~>~2~ we have 

r (i s~ 1/> y) <-~ c (t, 28) ~ + (4~/~-~)/4~-~ 

where c(t, ~) = 2t-~?-z (--!)~ 27)-~-2F(t + 2). 

Proof. First of all, for y~>2 and 2~ < i we have 
Y--I 

i?-2 f (27)%P ( u - u - ' a ,  ?)du + (27 = t +  g)(27) u-2 
\ / 

1 

(35) 

(36) 

(37) 

(3a) 

y--I 

i -2 .f (2?)"uP ((y 1) a/u, ?) du + (27)Y-2g. 
0 

(39) 
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F~ u < Y/2 - i' making use ~ the estimate P( y-u-lu ~"?) ,, <(2u/yoO~At, for ~ < 1/2 we obtain 

y/2--I 

< (2/ya) t (-- In 27)-t-2F (t + 2) A,. 
o 

On the other hand, by virtue of the inequality (4), we have 

) (V ( 7 < I/2)) <~ y2 (27)~/2 . 
\ y / ~ - I  

From (39)-(41) there follows that 

(V(g>~4))(P~(y, ~, ~)<~c(t, "f ) (~y)- tA,+ 3 g~ -2" (2~)"/~-~, ~ < i /2),  

where c(t, 4 ) =  2 ' - '?-2( - ln(2~)) - t -2P(  t +  2). 
i n e q u a l i t y  (38)  f o r  y ~ 5a. 

Then 

(4o) 

(41) 

(42) 

Estimating Ps in (29) with the aid of (42), we obtain 

For 2= ~ y < 5= the estimate (38) is trivial. 

COROLLARY 8. Let ~ < 1/4 and assume that the function g is the same as in Corollary 2. 

(V (y >~ 2r162 P (I S. I ~> Y) ~ -6 \ --~-- ,  

%(-~1n7) ' g(~) ' ~ 0 ( a ) i s  t h e  r o o t  of  t h e  e q u a t i o n  

g( t /a )+  au = O. 

P r o o f .  Wi thou t  l o s s  o f  g e n e r a l i t y ,  we can assume t h a t  y>~3a.  
( 3 9 ) - ( 4 1 )  and 

P ' J - - u - - l a ,  7 ~ . ~ e  
l.,t 

u < y/2 - i, we obtain the estimate 

y/2 

- t -2 A ~" P~(y, a, ? ) ~ y  gj  uexp{--g(ay/2u)- t-uln(2y)}du +. --7 Y~(2?)u/2-~' 
0 

Further, 
y/2 ~ y2 

I - -  u exp {-- g (y~/2u) + u In (2y)} du < g- oxp {-- g (ay/2ui) }, 
0 

where u I is the root of the equation 

g (ya/2u) + u In (2~) = O. 

We have made use of the inequality 

g (y~/2ut) - ui In (24) ~ 2 (g (~y/2u) - u In (24)). 

Ifg(~)+~ln(2?)>0, then 

exp {--  g (oQ}. 

(46) turns into the equation 

g ( l lv ) + (y(zvl2 ) ln 2'y= 0. 

By the substitution u = y=v/2, Eq. 

Applying inequalities 

(43) 

?< 1/2, y ~ 2 .  (44) 

(45) 

(46) 

(47) 

(48) 

(49) 

Thus, 

From formulas (44)-(48) there follows that 

P, (y, r 21~) <~ ~ P6 (~, ~,, z'-I~) + 2P (4~) y~'-', y ~> 4. 

Combining the estimates (29) and (49), we obtain the inequality (43). 
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THEOREM 3. Let 8 < 1/4. Then for any integer m > i and y ~ > ( 8 m + l ) ~  we have 
n 

4 ~ y - =  2 ~ + 5 . _ ,  P(Is'~I>~Y)<~ ~ P~ (-g2g, ~, s (1 - 4~)-~ ~P(Ixj l>~(y-~l /4m).  
1 

Proof. Estimating P(]S~[~y--a)in the inequality (30) by means of (27) and taking 
into account (32), for y~>(Sm+1)a we have 

where  P l s  and gs a r e  d e f i n e d  by t h e  e q u a l i t i e s  ( 3 3 ) .  From ( 5 1 ) ,  by v i r t u e  o f  t h e  f o r m u l a s  
(34), (36), (37), there follows the assertion of Theorem 3. 

COROLLARY 9. If $ < 1/4, then for any t > 0, integers m > I and y~>(8m+l)= we have 

[y _ ~ ~-t  A y _ a 2 ~6,~= 8 (I 4~) -1  ~ P (1X~ I /"  (Y - -  ~ ) /4m) ,  e(l&l~>y)~<~ c(t, 2~)i'-'g~m ) t + 2  (4~1) +--f -- 

where  c ( t ,  13) i s  t h e  same as  in  t h e  i n e q u a l i t y  ( 3 8 ) .  

P r o o f .  As a c o n s e q u e n c e  of  ( 4 2 ) ,  we have  

[ 8m ~t A v - - ~  ~ ~,~o: "~ 

It remains to apply Theorem 3. 

COROLLARY i0. Suppose that the assumptions of Corollary 8 are satisfied. 
tegers m > 1 and y~>(Sm+i)(z we have 

P(ISnl~jy)~ '~~ 4 ( 3 p  ( y - - a  : (4~)i~m: -2) rn 

Proof; The required inequality follows from the formulas (49), (50). 

THEOREM 4. For any t~ i we have 

EM$ < ci (t, ~) (A~ + t=9, 

where  ci (t, 8) = 2'-iF (t + 2) 6 -~ ( - l n  5)-'-2. 

P r o o f ,  O b v i o u s l y ,  

EM~n = t ~ yt-lp (Mn ~ Y) dy. 
0 

By virtue of the second of the inequalities (i) we have 
oo co oo o~ 

0 0 ( u + l ) ~  o 

Further, 

Since 

I =  

oo 

(u+l)(~ 0 

~.~ 2 ~-2 { u  t z~ - lP  (g) d z  -t= G$ t - 1  ( ~  "~ t )  f: P (z) dz . 
\ 0 0 

(v  (0 < / ~< t, t > 1,, = > 0)) / (u) du ~< = + ~1- , .  / (u) u*, l &  , 

we obtain the estimate 

( 5 0 )  

I <~ 2 ~-~ ( (u ~ + (u + t)~)AJt + (u + i)'c~): 

(51) 

(s2) 

Then for in- 

(53) 

(54) 

(55) 

(56) 
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From ( 5 3 ) ,  (54), and (56), with the aid of the estimate 

,f u (u + l)!5"du < 6-1F (t + 2) (-- In 6) -L-2 
0 

and the relation 
oo 

S YtS'//u-2dY = 8-2CCt+aI' (} + 1) (-- In ~)--l--1' 
0 

we obtain the assertion of the theorem. 

THEOREM 5. For any [3 < 1/4 and t > 1 we have 

EIS.,,I' ~< c~(t, ~) (A, +(t  + i ) a ' ) ,  

where cz(t, ~)=22*-2(t+i)c,( t ,  4~)/ (1--~)  [c,(t, ~) i s  d e f i n e d  in  Theorem 4] .  

Proof. It is easy to see that 
oo 

E IS.  I' = t J yt- 'P (I Sn 1 ~  Y) d y <  a t + t S y t - lp  (I Sn I~ y) dy_~a '+  tI(o:). 
D 

As a consequence of inequality (30) we have 
oo 

I 
0 

From t h e s e  r e l a t i o n s ,  t a k i n g  i n t o  a c c o u n t  (55) we c o n c l u d e  t h a t  

t 2 t-2 / 

Obviously, 

EIS~V <~ EIM,~(s)] t, 
whore M n ( s ) =  max Is l By virtue of the inequalities (23), (28), we have 

l~k-.<n 

P (3/. (s)~> ~)~< 2P (] S~l >~ a) < 4P (21Sn I >I ~) = 48. 

Apply ing  now Theorem 4 to  EIMn(s) l  t ,  we o b t a i n  

n IS~ I t • 2t-lCl (t, 4[5) (A t + ta').  

Combining (58)  and ( 5 9 ) ,  we o b t a i n  i n e q u a l i t y  ( 5 7 ) .  

I f  B has  t y p e  2, t h e n  we d e n o t e  by c(B) a c o n s t a n t  f o r  which f o r  any n we have  

E Z~ <~c(B)~,EIZ~IL. 
1 

where Zj are arbitrary independent random variables with values in B with EZj = O. 

COROLLARY ii. Assume that B has type 2, EXj=0, ]=l+n, and I~t<2. Then 

EIS.I' <~ 55(t+ I)2%(t, I/5)e(B)A, 

[c2(t, 8) is defined in Theorem 5]. 

Proof. We shall make use of inequality (57). 
Let 

X;, = Xh Inda (~ Xk I), X,", = Xk -- X'h, 

where Index( ' )  i s  t h e  i n d i c a t o r  o f  t h e  s o t  {y: [//I <r y ~ R t } .  

It is easy to see that 
n 

1 
n 

where S, = ~X~. Obviously, 
1 

P(I  nl ~>a)<~ EIS~I2/~2. 

(57) 

(58) 

(59) 

To this end we select = so that 8 < 1/4. 

(60)  

(61) 
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Further, 

n 

Since ESn =--~EXh, 
1 

On t h e  o t h e r  hand ,  

E I S~ [~ < 2 (El S i : -  ES'. I ~ + I ES'n [9. 

we have the estimate 

E[ S'.-- ES'.I ~ ~< c(B) ~ E I X ~ -  Ex;~I ~, 
1 

E[X; -:- Ex'~I = ~< 4E [ X% [ ~ ~< 4==-'E I X~ [ '. 

Thus, 
E �9 ! I s .  nSn t ~ < 4~ (B) ~*-U,. 

From ( 6 1 ) - ( 6 4 )  there follows that 

The last inequality, together with (60), leads to the estimate 

P (I s~ I1> ~) ~< (so (B) + 1) ~ - %  + 2~-'~A~. 
From h e r e  we o b t a i n  t h a t  f o r  

we have the estimate 

a '  = T 6 ( S c ( B ) +  i)A, 

~---- P([S,]  ~ a/2)~< t/5. 

S e t t i n g  now in  (57)  [3 = 1 / 5 ,  a t = 2 t 6 ( 8 c ( B )  + 1)A t and t a k i n g  i n t o  a c c o u n t  
o b t a i n  t h e  r e q u i r e d  i n e q u a l i t y .  

We introduce the notation B~ ---- ~ E l Xj [2. 
1 

COROLLARY 12. Assume that B has type 2,EXj=0, ]=|+n. Then 

(v(t>~ 2)) (EiS.I '  < c=,(t, 4/25) (A, + ( t +  l)  (5c~n(B)B~)')), 

where  c : ( ' ,  . )  i s  d e f i n e d  in  Theorem 4. 

P r o o f .  Le t  a = 5 B n c l / 2 ( B ) .  Then 

- -  P ( 2 [S,~ I >1 a) ~ 4c (B) B~/a ~ = 4/25 < t/4. 

I t  r ema ins  to  a p p l y  i n e q u a l i t y  (57)  w i t h  t h e s e  v a l u e s  a and 6. 

Assuming that B has type 2, we derive some estimates for the quantile 

=(6)=inf {=: P(IS~I >=)< 6}. 

We set  G ( y ) = ~ P ( I X l ~ [ > ! t ) ,  
1 

/xh, I xhl <~ y, 
xk(v) = to, IX~l > v .  

I t  

n 

where Sn (y) = ~ Xh (Y). 
1 

Setting now 

where E (y) ----- ES~ (y). 

is easy to see that 

( V ( y > 0  , a > 0 ) ) ( P ( I S ~ I > ~ u ) < P ( I S , , ( Y ) i > ~ u ) + G ( Y ) )  , 

Further, 

E ISn (y) -- ESn (y) [~ -~< 4c (B) ~ n ] Xh (y) I ~. 
l 

n 

D (y) = ~ E[ X~ (y) [2, y (p) = in[ {y: G (y) ~< p} , we obtain that 
i 

P.(IS,,[ ~ 2(c(B)D(y(p)  )/p), 'n q- [E(Y(P) ).I). <- 2p, 

Thus,  
(6) -<.< 2 (2c (B)D (y (6/2))/6)  i/z + fE (y (a/2)) I. 

that c(B)> i, 

(62) 

(63)  

(64) 

we 
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If the random variables X k are symmetric, then 

a ( 6 ) <  2(2c(B)D(y(8 /2)  )/5) '/2. (65)  

Now we derive a lower estimate for a(6) in the case of symmetric terms. To this end 
we make use of the inequality 

P(IS~I>y)~> i ' >v)  -T P(max] Xkl 

(see, for example, [5]). 

It is easy to see that 

i f .G  (Y) ~< i / 2 .  

t> -~ a (v), . (ma lXhl> ) 

Consequently, for p ~ 1/2 we have 

P(ISnl > y(p) ) ~ p / 4 .  

Therefore, for 6 ~ I/8 we have 

a ( 6 ) >  y (46). (66)  

The examples given below show that the lower and upper bounds for a(6) in the inequali- 
ties (65) and (66) can differ strongly and, moreover, both of them are attainable in a de- 
finite sense. In addition, we shall assume that B = RI, while X k are identically distributed 
and symmetric. We shall use the notation 7(6) for constants depending on 6. Correspondingly, 
c denotes a constant that does not depend on 6. In addition, we set F(u)=P(IX~[<u). 

Example i. Assume that IXII takes the values 1 and x 0 with probabilities 1 - i/4n and 
i/4n, respectively. Then D(y) = n - i/4 for i~y<x0. At the same time y(p) = 1 for i/4~p 

i, n > i. Therefore, the upper bound of the inequality (65) is equal to 2~2(n-- I/4)~/26 ~I/2 for 
I/2~6~I. On the other hand, 

lira P (1 S= I > u V ~ ,  max I Xh [ <  xo) = 2e -tta (1 - -  @ (u)). 

From here 

�9 lim inf (z (6)/]/rn ~ ? (6), 

i.e., the bound in the inequality (65) is sharp with respect to the order of increase for 

As f a r  as  t h e  lower  bound o f  t h e  i n e q u a l i t y  (66)  i s  c o n c e r n e d ,  i t  t u r n s  o u t  t h a t  i t  i s  
u n d e r s t a t e d  f o r  t / t 6  ~< 5 ~ i/4. 

Example 2. Assume t h a t  F ( x )  in  t h e  i n t e r v a l  Ixl < x0 i s  d e f i n e d  by t h e  d e n s i t y  

p ( x ) = d ( l + l x l ) ~ + t ,  ' O < v < 2 ,  

and for Ixl > x 0 it is a constant, with the exception of the points _+xl, x I > x0, where it 
has jumps of magnitude i/8. 

It is easy to see that 

lira sup ~ (t/2)/nl/V < oo, 
n - - e  ao  

if xo/n I/`-+ co. 

On the other hand, y(I/4) = x 0 and D(xo)>cnx~ -v. Hence for x0=n '/~+8 D1/Z(xo)>cnt/v+~, ~]= 
(e/2)(2--v), i.e., the upper bound of the inequality (65) is overstated for 6 = 1/2. 

Example 3. Assume that F(x) is defined by the density 

p@)=c/(t+ Ixl) TM, O < v < 2 .  

Then for n + ~ we have 

y(~)~?(~)n t/~, m(y(8))~?(8)n '/', 

i , e . ,  t h e  l ower  and t h e  u p p e r  bounds have  t h e  same o r d e r  n 1 /v .  

Comments. The above  o b t a i n e d  e s t i m a t e s  f o r  P ( M , > y ) a n d  P ( IS ,  I >Y)  a r e  new ev en  i n  t h e  
o n e - d i m e n s i o n a l  c a s e .  
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In all the inequalities (as, fneidentally, also in [I]) the quantity 

n 

B~ (y) = ~ E(min (y, [ Xk I)) = 
I 

is missing and it is replaced by the quantile ~. 

We note that the ratio a/Bn(y) may be arbitrarily small (see Example 2). In this case, 
the normal term exp{--c(alB~(y))Z}, which occurs in many inequalities in [6], becomes consider- 
ably larger than ~ul= if ~ <B,(y)(B~(y)/=) ~ , while the ratio u/~ is large. 

The estimate (2) is sharper than one corresponding inequality from [I] (Theorem i) be- 
cause of the dependence on y; on the other hand, in the latter the coefficient of At/Y t in- 
creases slower when t + ~. 

Corollary 9 is the infinite-dimensional analogue of the inequality (47) from [6]. Other 
generalization variants of this inequality to the infinite-dimensional case can be found in 
[7,  8 ] .  

O b v i o u s l y ,  

exp {-- (u/Bn) ~} > (AduOV ~ (u/B.)t exp {-- u2/yB~} > AJB~. 

This means that the normal term in the inequalities (46)-(48) of [6] can be dominating for 
u, large in comparison with B n only when the Lyapunov ratio At/B ~ is sufficiently small. 
This agrees well with the central limit theorem. 

Since the inequalities (29) and (50) do not contain terms of the form (At/ut)7, they 
may turn out to be more accurate than the similar inequalities from [6]. 

We note that the exponential estimate of the form e-TU is attained, for example, when 
X k are real, identically distributed, and X I takes the values 0 and i with the probabilities 
i - i/n and l/n, respectively. 

Corollary i0 can be considered as a generalization of the one-dimensional inequality 
from [9] (see also [i0]). First time this inequality has been carried over to the infinite- 
dimensional case with the preservation of the form in [II]. A more general and at the same 
time a more accurate form (including the one-dimensional case) has been found in [12]. 

Theorem 5 differs from Theorem 4 of [i] only by constants. 

Corollary ii, within the accuracy of a constant, is a generalization of the von Bahr- 
Esseen inequality [13], while Corollary 12 can be easily extracted from Theorem 2 in [8] 
(again, within the accuracy of constants). 

Similar inequalities for EI[S~I- EIS,[I t , without constraints on B, can be found in [7, 
14, 15]. 

The method applied here goes back to [15, p. 454 of the Russian edition]. An alternate 
approach has its origin in [16]. It is based on the expansion 

IS . [ - -EISni  = ~ Y ~ ,  (67)  
1 

where 

and 

y~ = E{IS.[/gr'~} - E{IS,~I/Y'~-I}, t ~ k ~ n, 

E{IS.I/Y-o} = EIS.[, 

For t = 2 we have a more accurate estimate 

E{[ Yk I2/2z'k-~} ~ inf E IX h @ x l s (69)  
x ~ B  

( s e e  [ 1 7 ] ) .  

We note that the random variables X k form a martingale-difference. Therefore, the ex-. 
pansion (67) in combination with the estimates (68) and (69) allows us to use probabilityin- 
equalities for martingales (regarding the latter, see, for example, [18, 19]). This circum- 
stance has been mentioned for the first time in [7] and, almost simultaneously, in [ii]. 
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Later, similar considerations have been used in [14]. At the described approach it is more 
natural and convenient to derive inequalities for P([[S~[- EIS.I[ > y)' and EIIS~I--EIS.II', than 
for P([S,[ >y) and EIS~I t. This is done in the already mentioned investigations [7, 14]. 

In conclusion, the author expresses his gratitude to V. I. Chebotarev for the careful 
reading of the manuscript and for useful remarks. 
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