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1. Introduction. Notation. Formulation of Basic Results

A Galton-Watson branching process with immigration and emigration is
studied in this paper. More precisely, a population is considered in which each
particle reproduces according to the scheme of a Galton-Watson process, and
moreover at each time n, n =0, 1,..., either k particles immigrate into the
population with probability Pk, k 0, 1,. , or r of the particles existing at the
instant n emigrate from the population with probability qr, r 1," , m, where
m is an arbitrary fixed positive integer,

Y’. p+E q=l.
k=O r=l

The particles reproduce independently of one another and independently of their
own origin.

We shall now turn to the formal description of the process under study. Let
independent integer-valued random variables

I"), ’,, 1, 2, n=0,1,...,

be assigned, where the ’n, n 0, 1,. , are identically distributed and

p {r, k} p, k O, 1,. .,
P {( =-r} qr, r 1,..., m,

in turn, the i i= 1,2,..., n =0, 1,..., are identically distributed with
generating function

f(s) Es ’"’, is[ <-- .
We shall define the process {Z,, n 0, 1,...} in the following manner:

:") +" + Cz.+., Z. + & > 0,
Zo--O, Zn+l-- O, Zn-’nO.

It is not difficult to see that {Z,, n 0, 1,...} is a homogeneous Markov
process.
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The random variables Zn, In) and sr, n 0, 1,..., 1, 2,..., are inter-
preted, respectively, as the number of particles in the population at the time n;
the number of particles generated by the ith of the particles existing at the instant
n, at the (n + 1)st time instant; and the number of particles migrating at the nth
time instant.

Throughout in what follows we assume that

(1) f’(1-) 1,

(2) f(0) > 0,

f"(1-)
(3) B <,

2

(4) q., >0,

(5) E kpu. Y’. kq, O,
k=l k=l

(6) 2 k2p/ < cx3.

It obviously follows from (1), (2) that

f"(1-)
(7) B= >0.

2

Among the Galton-Watson processes considered earlier with various forms
of immigration, the critical Galton-Watson process with immigration depending
on the state, which was studied in [1]-[3], is the closest to the one cited above.

For the critical Galton-Watson process with immigration defined in [4], limit
theorems were obtained in [5]-[10]. Galton-Watson processes with emigration
were studied in [11], [12].

We also point out that the process {Z,,, n 0, 1,...} can be represented in
the form of a C-branching process considered in [13]-[15]. However, the results
of this paper do not follow from known results for C-branching processes.

Let 92 be the state set of the Markov chain {Zk, k =0, 1,...}, pri(n)
the transition probability from state r to state /" over n steps r, je,
n 0, 1,... (pr(0)= 1, r , and oPor(n) the probability that the process {Zk,
k =0, 1,...}, starting from 0, reaches state r over n steps without coming
to 0 (n 1, 2,. , r ),

F(x)= Y. oPoo(k), x >-O.
k =[x]+l

We set

Wor(S) E po(n)s",
n=0

Wo(s) Woo(s),

where 0 -<_ s < 1, r e J. We denote by f. (s) the nth iteration of the function f(s),
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[sl--< 1, n 1, 2,. .. Let us introduce the generating functions

g(s)= pks k, n(s)=Esz" Y poi(n)s, Gr(S) Y. opor(k)s k,
k=O j k=l

where 0<-_s -< 1, r9t, n =0, 1,....
The basic purpose of this paper is the proof of the following theorems.

Theorem 1. As n ,
1

Aon’
where Ao is a positive constant.

Theorem 2. As n

Pot(n)

where the A are positive constants, r .
Theorem 3. As n -9 c,

Ar
log n

n
(8) EZ ---B

logn’

(9) Var Zn 2Bz
2n

log n

Theorem 4. For x [0, 1 ],

lim P { lg Zn < x}.n--,, log n

REMARK. Theorem 4 is an analogue of the limit theorem obtained by Foster
for a Galton-Watson process with immigration depending on the state (see [1]).

We also point out that the representation (17) obtained in Section 2 for the
generating function n(s), 0 _<- s <_- 1, n 0, 1,.. serves as the basis for the proof
of Theorem 4. In the case m 1 a similar representation was given in [1], [2] for
a Galton-Watson process with immigration depending on the state.

2. Study ot the Generating Functions Connected with the
Process {Z., n = O, 1,...}

The following lemma obviously holds.

Lemma 1. Let (y) Y.,, =o/3ny 0 _-< y < 1, and fin o (1 / n), n c. Then,
as y-, 1-,

(y)=o lOgl_) (y)=o 1-) "(Y)= ii Y)
From (4), (5) it follows that there exists a k _-> 1 such that pk > 0. Therefore, {0}.
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Lemma 2. The set consists of a single class of information states.

PROOF. Since Zo 0, coincides with the state set attainable from 0.
Hence, for any r s ff, there exists a kr >_- 0 such that

Por(kr)>O.
Moreover, in view of (2), (4),

(10) P]o(1) >- qm{f(o)}max(O’i-m)> O,

Therefore

(11)

(12)

pi(kr + 1 >= pio(1)po(k) > O, f, r

Corollary. For r

0 < G(1) < oo.

PROOF. According to Lemma 2 the state 0 is attainable from any state re.
Gr(1) < oo, r.

Hence (see [16]),

In turn, from (11) for/’ 0 it evidently follows that

Gr(1) > 0, r 9.

Lemma 3. The generating functions ,(s), 0_-< s-<_ 1, are connected by the
recurence relation

xIn+l(S)-- n(f(s))g(f(s))+ qk n(f(s))- po(n)f(s) (s)

k-1

(13) + Y. qk Y. por(n), n=0,1,..., o(s)=l.
k=l r=0

PROOF. Let be the set of r e{-m,...,-1,0,1,...} such that
P{’0 r} > 0. Taking into account the independence of the :I, ’k, 1, 2,. ,
k =0, 1,..., we have, for any rel, n =0, 1,...,

f (-)+...+z(")

[ k=-+l Pk(n)Ese"’*’"*et% + k=OZ pod(n), r=--,’’’, O.

Hence, for r , n 0, 1, ,

Wn (f(s))f(s),
(14)

[ --r--1

if
-r-1

,(f(s))- ’. Pok(n)fk(s) (S)+ E POk(n),
k =0 k =0

Since, for 0 -<_ s -< 1, n 0, 1, .,
XI/’n+I(S ESZ’+l E(sZ-+lr. r)P{’. r},

r>-O,

-m<=r<O.

it is not difficult to see that (13) follows from (14). The lemma is proved.
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We set

gl(s) g(s)+ Y qkS -k, r(S) Y. qk(S r-k- 1),
k=l k=r+l

where 0 < s -<_ 1, r 0,. , m 1. Obviously, for 0 < s <- 1,

(15) 0<gl(s)<, 0-<x(s)<c, r=0,...,m-1.

Moreover, by virtue of (1) we have (see [17], Chap. I, 8)

f, (s) >= f(s) >= f(O), 0-<_s<=l, n=l,2,...

Hence, taking (2), (15) into account, we obtain

(16) O<g(f,(s))<o, 0_<-n(f, (s)) <,
where 0-<s_<- 1, r 0, , m- 1 and n 1, 2, .

Lemma 4. For 0 <-_ s <-_ 1, n 1, 2, ,
m--1

(kr)(17) ,(s) =c,(s)- E h (s)po(n-k),
r=0 k=l

where c,,(s)= gl(fl(s))g(f2(s)) g(f,,(s)),

h’)(s) ,(fn(s))cn-(S), n > 1 h(()(s) ,(f(s)), r=0,.., rn- 1

PROOF. We represent (13) in the form
m--1

a’I/n+l(S) Xltn(f(s))gl(f(S))-- Y. *k(f(s))pot,(n),
k=O

(18)
o(S) 1,

Hence (17) follows in an obvious way.

Lemma5. For O<_-s < l, n l, 2,

n=0,1,...,

O__<s__<l.

( L )(19) c.(s)=c(s) 1 (l_s)_a+nB, +A.(s),

(20) h (*) (s)
c( qk(k-r)+Ar)(s),,

(1 -s)- + nB k=r+l

where

(21) O<c(s)= 1-I gl(fk(s))<oo,
k=l

and as n -+ oo

L
g’ (1-) B-f’(1-)

2 2

uniformly in 0 <= s < 1, r 0, .., m 1.

PROOl. Since conditions (1)-(3) are fulfilled, we have for 0<_-s<l, n
1, 2,... (see [6], [18])

1 +6.(s)
(23) /,,(s) 1+

(1 s)-a+nB where n-.oolim 0_-<s<lsup 6,(s) 0.
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Further, since in view of (5), (6), g (1-) 0, L g (1-)/2 < oo, we have

(24) gl(s) 1 + L(s 1)2 + o((s 1)2), s 1-.

From (23) it follows that, as n oo,

(25) (s) 1 +
(1_ s)_ + nB+O

uniformly in 0 _<-s < 1, k 1,. , m. Taking (23)-(25) into account, we conclude
that uniformly in 0-<_ s < 1

(26) gl(f,,(s))=l+((l_s)_X+nB)2+o

(27) (,r(L (S))
1

Y’. qk(k--r)+o
(1 s)- + nB k=r+

where r 0, ., m 1, n oo. Obviously (21) follows from (16), (26). Using
(16), (26), we have

c.(s)= I-I gx(f(s))=c(s) + ot,t

=c(s)exp{- log(l+
k =n+l ((1 s)-a + kB)

+ e

c(s) exp
L

k= +1 ((1 -s)- + kB)
+ Y.(s)

( L )=c(s) 1 (l_s)_X+nB +A,(s), 0<-s<l,

where as n oo uniformly in 0_-<s < 1

e.(s)=o e. =o X.(s)=o

In turn, (20) follows from (19), (27). The lemma is proved.
We set co l, c, c, (0), h (r. =h (. (0),r=0,...,m-1, n=l,2,....Let

us introduce the generating functions

g(y)= Y c,y", Hr(y) ’. h)y ", r=0,...,m-1, 0_-<y<l.
n=0 n=l

Using lemma 5, it is not difficult to show that the following lemma holds.

Lemma 6. For 0 <- y < 1,

C
(28) U(y)

1-y
cL

log (1 y + a(y+
c 1

(29) H(y) log
1 y k=r+l

qk(k r) +cer(y),
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where 0<c <eo, a(y) =y’.,=o h,y at(y) y.,__o h)y and as n -o

(30) hn =o

(31) A (r) (n1-) r=0,...,m-1.

We set

m-1

H(y) 1 +Ho(y) + Y’. Gr(y)Hr(y),
r=l

m--1We agree to say that Yr=l O, if m 1.

Lemma 7. For 0 <- y < 1,

0y<l.

(32) Wo(y)H(y)= U(y).

PROOF. After multiplying both sides of (17) by y", 0< y < 1, and summing
over n for s 0, we obtain

m-1

(33) Wo(y)(Ho(y) + 1) + E Wor(y)Hr(y) U(y).
r=l

Further, for 0 # r e 92 we have (see [161)

(34) Por(n) F. Poo(k)oPor(n k), n 1, 2,...
k=0

Hence, Wor(y) Wo(y)Gr(y), 0<-y<l, 0#r?. The assertion of the lemma
now follows from (33).

Lemma 8. For 1/2 <- y < 1,

(35) G’r(y) <-_ brG’o(y),

(36) G’r’ (y) __-< brGo (y),

where 0<br<oo, reJ.

PROOF. Obviously, oPor(n)oPro(1) <- oPoo(n + 1), 0 r J, n 1, 2, .
Hence, taking (10) into account, we obtain

(37) oPor(n)<-_ p(n+l)=p(n+l) 0r92, n=1,2,...
oPro(1) pro(l)

Hence (35), (36) easily follow. The lemma is proved.
We set

(38) Ao= B kqk + Y Or(l) ,
=1 r=l k=r+l

(k --r)qk)
By virtue of (3), (4), (7), (12),

(39) O<Ao<.

-1
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Lemma 9. As y I-,
Ao(40) Wo(y)

(1- y) log ((1- y)-l)
1 1

(41) G (y)--o log 1-"
PROOF. Using (28)-(:31) and Lemma 1, it is not difficult to see that (40)

follows from (:32). Further (see [16]),

1
(42) Go(y) 1

Wo(y)’
0 <_- y < 1.

Since U(y)> O, 0 _<- y < 1, we have, in view of (32), (42),

H(y)U’(y)H’(y)
0 <- y < 1(43) G(y)= U(y----- U2(y)

Taking (1:2), (28)-(31), (35) and Lemma 1 into account, we deduce that, as
y-, 1-,

(44) H’(y)
o(O(y)),

U(y)

(y) Ao l-y"U

From (43)-(45) follows (41).

Lemma 10. As y 1-,

G (y)---
A0(1-y)"

PROOF. By differentiating (43) with respect to y, we obtain

(46) G(y)=
H"(y)

+2H’(y) H(y), 0-<y<l.u(y- u(y) u(y
Using (12), 28)-(31) and Lemma 1, it is not difficult to show that

(47) U(y) i y Y - 1-.

Moreover, taking (12), (28)-(31) and Lemma 1 into account, we have

(48)

2U’(y)
H’o(y)+ Z G,(y)H’(y)uz(y) r=l

.-x ] 1+o(1)1
H/J (y)+ Y G(y)H’ (y)

U(y) r=l Ao(1-y)’

G’r(y)H,.(y) O log2
1

(49) U(y) r=l i --y

In view of (28)-(31), (35), (36), (41) and Lemma 1, we conclude that, as y 1-,
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(5O)
U(y) r=l O’(y)H’r(y) 0 logi,

1 m--1

(51)
U(y) r=,E G (y)Hr(y) o(G’ (y)).

The assertion of the lemma follows from (46)-(51).

3. Proof of Theorem 1

In view of a Tauberian theorem (see [19], p. ch. XIII, 5, ft.), we have from
(41)

1
(52) k---," koPoo(k)----o log n,

It is not difficult to see that

(53) i-Go(y)_ y,. F(n)y 0 < y < 1
1-y

Moreover, according to (40) and (42)

(54) 1-Go(y)_ 1 1
log

1
1 y (1 y)Wo(y)"A-- 1---’ Y - 1-.

Using (53), (54) and the Tauberian theorem, we obtain

1
(55) k=O" F(k)’--oo log n, n

But, for n=l, 2,..

F(k)= opoo(k)k +(n + 1)F(n).
k=O k=l

(56)

From (52), (55) and (56) it follows that

(57) F(n)=o(lgn),
\ n

Taking (52), Lemma 10 and the Tauberian theorem into account, we have

1- k2opoo(k -s n, n c.
k=l .-o

Hence it follows (see [19], ch. VIII, 9) that lim,,_,F(n)n =/z exists, where
0 < <=. We shall show that/z < c. In fact, if =, then F(x) is slowly varying
as x c. Therefore in view of a known representation for a slowly-varying
function (see [19], p. 282), we obtain

F(n)n
,,-, log n

which contradicts (57). Thus F(n).--. tz/n, n -, where 0</x <. Taking (55) into
account, we conclude that t 1/Ao.
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4. Proof of Theorem 2

By using Theorem 1 and Erickson’s result (see [20], p. 266), we obtain

Therefore, in view of (55),

(58)

According to (34) we have

pot(n)= opo,.(k)poo(n-k)
k=l

(59)
t,/21

E opo(k)poo(n k) +
k-1

By virtue of (37) and Theorem 1,

-1

Poo(n)-Ao
log n’

opo,.(k)poo(n k),
k =[n/2]+l

(60) Y opo(k)poo(n k) 0 opo(k) 0
1

k =[n/2]+ k =[n/2]

As a consequence of (58),
poo(n k)

lim 1.
"-’ Poo(n

uniformly in 0 <-k <-n/2. Taking (12) into account, we obtain

In/2]

(61) 2 opor(k)poo(n-k)=poo(n)G(1)(1 +o(1)),
k=l

From (58)-(61) it follows that po,(n) A,/log n, n m, where

(62) a=o,()Ao,

In view of (12), (39) we obtain 0< Ar < m, rsVP.

n>l, re:0.

5. Proof of Theorem 3

By differentiating (18) with respect to s and taking (1), (5) into account, we obtain
(1-) 0,

m--1

I,’.+(1-) I,’.(1-) + Z po (n) Y’. (k r)qt,, n O, 1,...
r=0 k =r+l

Hence, for n 1, 2,. .,
(63) EZ, ’,,(1-)= Z uq+, Por(k).

r=0 u=l k=0

By virtue of (38), (62) and Theorem 2,
m--1

(64t E por(n) E
r=0 k=r+l

B
(k r)qk "log n’

Obviously, (8) follows from (63), (64).
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Differentiating relation (18) twice and taking (1), (3), (5) and (6) into account,
we have (1-)- 0, while for n _-> 0

m--1

XP’+I(1--)--XP’(1--)+XIn(1--)f"(1--)+g(1--) POt(n)
r=O

m-1

E (k-r)(k-r+l)qk+f"(1-) E Pot(n) Y’. (k-r)qk.
k=r+l r=O k=r+l

Hence, we deduce from (63), (64) and Theorem 2 that
2

(65) q(1-) 2B2 n

log n’
Since

Var Z, ’,’(1-) + EZ,- (EZ,)2,

(9) follows from (8), (65).

6. Proot of Theorem 4

Let us consider the Laplace transform

E exp (-Znt/n x) n(exp (-t/nx)), [0, oo), n= 1,...

for arbitrary x [0, 1]. Setting s=exp (-t/n x) in (17) and using (19)-(22) and
(64) we obtain, for > 0, x [0, 1], and as n - eo,

n(exp (-t/nx))= c(exp (-t/nX))

(66) -c(e-e"x)
t,=l 1 -e-e"x+kB +Yk log(n k)4-dn-k +O(1),

where Yk =o(1/k), dk o(1/log k), k oo. Since

lim gx(f(s))= g1(1-)= 1,

we have, by taking (26) into account, for x (0, 1], _-> 0,

(67) lim c. (exp (-t/nX))= 1.

k=1,2,...,

With the aid of a formula for the partial sum of a harmonic series (see [21], p.
270), it is not difficult to show that

(68) lim _,/,, + k 1 x, x [0, 1] > 0.
,-oo k=l (1--e )B log(n-k)

Moreover,

(69) lim Y _t/,.,x + k O, x [0, 1 ], > 0.--- =t./z3+a (1 e )B log (n k)

As a consequence of (68), (69), for x e [0, 1], t> 0,

(70) ,-.lim
k =1 1 e-t/"x + kB + Yk log (n k)

+ dn-k 1 X.
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From (66), (67) and (70) it follows that

lim n (exp (-t/nX)) x, x [0, 1], (0,

Hence, according to a continuity theorem (see [19], p. 481),

lim P/Z<fl} =x
for all fl > 0, x [0, 1]. The assertion of the theorem obviously follows from this.
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