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1. Introduction. Notation. Formulation of Basic Results

A Galton-Watson branching process with immigration and emigration is
studied in this paper. More precisely, a population is considered in which each
particle reproduces according to the scheme of a Galton-Watson process, and

moreover at each time n,n =0, 1, - -, either k particles immigrate into the
population with probability p,, k =0, 1, - - -, or r of the particles existing at the
instant n emigrate from the population with probability q,, r=1, - - -, m, where

m is an arbitrary fixed positive integer,

q-= 1.
1

(agk

Y et
k=0 r
The particles reproduce independently of one another and independently of their
own origin.

We shall now turn to the formal description of the process under study. Let
independent integer-valued random variables

P lwi=1,2,0 0, n=0,1,--,
be assigned, where the {,,n =0, 1, - -, are identically distributed and
P{{n=k}=pk’ k=0’1a”"
P{gn'_‘-r}:qr’ r=1,---,m,
in turn, the .ff"), i=1,2,---,n=0,1,---, are identically distributed with
generating function
f(s)=Es*", Is|=1.

We shall define the process {Z,, n =0, 1, - - -} in the following manner:

(n) (n)
+"'+£Z+{, Zn+{n>0,
=0, Z, ={‘ i
Zo 1o, Z,+¢,=0.

It is not difficult to see that {Z,,n=0,1, -} is a homogeneous Markov
process.
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The random variables Z,, £ and £, n=0,1,-+-,i=1,2,+-, are inter-
preted, respectively, as the number of particles in the population at the time n;
the number of particles generated by the ith of the particles existing at the instant
n, at the (n + 1)st time instant; and the number of particles migrating at the nth
time instant.

Throughout in what follows we assume that

(1) fa-)=1,
() f(0)>0,
3) B =fL_)<oo,
2
4) qm>0,
(%) § kpi — § kq, =0,
k=1 k=1
(6) § k2pi < co.
k=2

It obviously follows from (1), (2) that

o p-LUD

Among the Galton—Watson processes considered earlier with various forms
of immigration, the critical Galton-Watson process with immigration depending
on the state, which was studied in [1]-[3], is the closest to the one cited above.

For the critical Galton-Watson process with immigration defined in [4], limit
theorems were obtained in [5]-[10]. Galton-Watson processes with emigration
were studied in [11], [12].

We also point out that the process {Z,, n =0, 1, - - -} can be represented in
the form of a ¢-branching process considered in [13]-[15]. However, the results
of this paper do not follow from known results for ¢-branching processes.

Let N be the state set of the Markov chain {Z;,,k=0,1,::}, p,(n)
the transition probability from state r to state j over n steps r,jeMN,
n=0,1,--- (p.,(0)=1,reN, and ¢po,(n) the probability that the process {Z,
k=0,1, -}, starting from 0, reaches state r over n steps without coming
to0(n=1,2,--,reM),

[ee)

F(x)= Y 101700(16), x

k=[x]+

v
e

We set

Wol$)= X por(n)s”,  Wols) = Wouls),

where 0=s5 <1, re 1. We denote by f,(s) the nth iteration of the function f(s),
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|s|]=1,n=1,2,: . Let us introduce the generating functions

el

gs)= Y ps*,  W,(s)=Es*= Zmpoi(n)si, G,(s)= 21 oPor(k)s*,
k=0 je

k=

where 0=s=1,reN,n=0,1, .
The basic purpose of this paper is the proof of the following theorems.

Theorem 1. As n —» o0,

F(n)~A0n,

where Ay is a positive constant.

Theorem 2. As n — 0,

r

logn’

pOr(n) -~

where the A, are positive constants, r € i.

Theorem 3. As n —> 0,

n

(8) EZ,~B ,
logn

2
2 N

)] Var Z, ~2B )
logn

Theorem 4. For x €[0, 1],

lim P {log Z"<x} ~x,
n->o0 log n

REMARK. Theorem 4 is an analogue of the limit theorem obtained by Foster
for a Galton-Watson process with immigration depending on the state (see [1]).

We also point out that the representation (17) obtained in Section 2 for the
generating function ¥, (s),0=s=1,n =0, 1, - - - serves as the basis for the proof
of Theorem 4. In the case m =1 a similar representation was given in [1], [2] for
a Galton—Watson process with immigration depending on the state.

2. Study of the Generating Functions Connected with the
Process {Z,,n=0,1,- -}

The following lemma obviously holds.
Lemma 1. Let ®(y)=Y'_,B.y", 0=y <1, and B, =o0(1/n), n >0. Then,
asy->1-,

d(y) = 0(log 11y)’ P'(y)= 0(1 1y> D"(y)= 0<(1—~1—y?>

From (4), (5) it follows that there exists a k =1 such that p; > 0. Therefore
€N #{0}.
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Lemma 2. The set N consists of a single class of information states.

ProOF. Since Z,=0, It coincides with the state set attainable from O.
Hence, for any r € i, there exists a k, =0 such that

por(k,)>0.
Moreover, in view of (2), (4),
(10) pio(1) Z gm{f(O)}"™*™ >0, jeR.
Therefore
(11) pir(k, +1) = p;o(1)po.(k,) >0, j,red.
Corollary. Forrel,
(12) 0<G, (1)< 0.

PROOF. According to Lemma 2 the state 0 is attainable from any state reJt.
Hence (see [16]),

G, (1)<, re.
In turn, from (11) for j = 0 it evidently follows that
G,(1)>0, red.

Lemma 3. The generating functions V,(s), 0=s=1, are connected by the
recurence relation

m k-1
Vosls) = ValFNRUYE+ £ ac[ ¥ulf )= £ porw) )] 7565

' m k—1
(13) +k§1 qk ;0 pOr(”)’ n=0, 1,. Y \I,O(s)=1'

ProOF. Let I be the set of re{-m,---,—-1,0,1,---} such that
P{{o=r}>0. Taking into account the independence of the £, ¢, i=1,2,+- -,
k=0,1,-:-,we have, forany reR, n=0,1,-- -,

Eséir e r>0
Z, _ _ ’ >
E(s +1l§'l - r) - o P —r
Y pox(n)Es®t r + % por(n), r=-m,--,0.
k=—r+1 k=0

Hence, forre, n=0,1, -,
E(SZ"”IZ,, =r)

W, (f(s)f(s), rz0,
(14) =

—r-1 —r—1
[.(f)= T putf &) £+ T potn),  —m=r<.
k=0 k=0
Since, for0=s=1,n=0,1, - -,

U, a(s)=Es%+1= ¥ E(s™|{, =r)P{L, =1},

reiR

it is not difficult to see that (13) follows from (14). The lemma is proved.
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We set
g@=g@+ L as™ %)= T a1,

=+

where 0<s=1,r=0, -, m—1. Obviously, for 0<s=1,

(15) 0<gi(s)<o0, 0=x(s)<c0, r=0,--+-,m—1.

Moreover, by virtue of (1) we have (see [17], Chap. I, § 8)
f()=f(s)=f0), 0=s=1, n=1,2,--:

Hence, taking (2), (15) into account, we obtain

(16) 0<gi(fuls)) <0,  0=2x,(f.(s)) <0,

where 0=s=1,r=0,---,m—1landn=1,2,---.

Lemmad. ForO0=ss=1,n=1,2, -,

m—1 n

(17) Va(©)=cals)= T T A (por(n—k),

r=0 k
where c,(s) = g1(f1(s))g1(f2(s)) * - - g1(fu(s)),
R (s) =2, (fu(s))cnoa(s), n>1, R (s)=2,(f(s)), r=0,+--,m—1.

PrROOF. We represent (13) in the form

m-—1

\Pn+l(s) =\I,n(f(s))gl(f(s))_ Z xk(f(s))POk(”)a n =O’ la Y
(18) k=0
Wols) =1, Oss=1.
Hence (17) follows in an obvious way.
Lemma 5. For 0=s<1,n=1,2,---,
L
(19) cnls) =c(s) (1-m)+hn(s),
Moy _ c(s) i _ o)
(20) hy (s)——-————(l_s)_1+nB k=2r+1qk(k r)+Ay(s),
where
1) 0<cs)= T milfulsn<o, L=E1L L)
k=1
and as n » ©
_ _l (r) _ 1
(22) Mo=o(-),  APE)=o0(3)

uniformly in 0=s<1,r=0,---,m—1.

ProOF. Since conditions (1)-(3) are fulfilled, we have for 0=s<1, n=
1,2, (see [6],[18])

+
1+6,(s) where lim sup 8,(s)=0.

(23) O =1+a=oa e novco 05s<1
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Further, since in view of (5), (6), g1(1-)=0, L =g7(1-)/2 <, we have
(24) gi(s)=1+L(s—1)>+o((s—1)%, s>1-.

From (23) it follows that, as n - 00,

k 1
25 f”k =1 + -t (_)
29 W=yt \s
uniformlyin0=s<1, k=1, -, m. Taking (23)-(25) into account, we conclude

that uniformly in 0=s <1

L 1
(26) gx(fn(s))=l+m+0<7),

27) o (fo($)) = —— S ak—r+o(

(l_s)_1+nB k=r+1 (;>,

where r=0,:-+,m—1, n->00. Obviously (21) follows from (16), (26). Using
(16), (26), we have

n 00 1
cals) = kl;ll 81(fi(s))=c(s) k=l;[+1 i)
=c(s) exp { _éﬂ log (1 a —s)‘L1+kB)2+€"(s))}
© L
=c(s) exp { e @ —s)—1+k3)2+€"(s)}
L
=) (1-Gsrrag) ) 0=s<1,

where as n - 00 uniformly in 0=s <1

1 1 1
e,.(s)=o(—2), £ =o(—>, Au(s)=o0 (—)
n n n
In turn, (20) follows from (19), (27). The lemma is proved.

We set co=1, ¢, =¢,(0), by’ =h$(0), r=0,---,m—1, n=1,2,---. Let
us introduce the generating functions

Uy)= Y cy", H(y)=Y hy" r=0,-+-,m-1, 0=y<l1.
n=0 n=1

Using lemma 8§, it is not difficult to show that the following lemma holds.

Lemma 6. For 0=y <1,

¢  cL
(28) U(y)=1—_-—;+310g(1—y)+a(y),
c m
(29) Hr(y)-Elogl_y k=zr+1 ‘Zk(k_’)"‘ar()’),
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where 0<c <00, a(y) =Yoo Aay"s a,(y) =Yoo ALy", and as n > oo

(30) )\n=o(l>,
n
r) 1
(31) A =o(;>, r=0, -, m—-1.
We set
m—1
H(y)=1+Hy(y)+ ;1 G,(y)H,(y), 0=y<1.

We agree to say that ¥, - =0, if m =1.

Lemma 7. For 0=y <1,
(32) Wo(y)H (y) = U(y).

ProOOF. After multiplying both sides of (17) by y", 0<y <1, and summing
over n for s =0, we obtain

(33) Woly) (Ha)+ D+ S, Wo,(y)H(3)= Uy).

Further, for 0 # r € i we have (see [16])
n—1

(34) por(n) = kgo Poo(k)opo,(n — k), n=12,---
Hence, Wy, (y)= Wo(y)G,(y), 0=y <1, 0#reN. The assertion of the lemma
now follows from (33).

Lemma 8. For %é y <1,
(35) G (y)=b,Go(y),
(36) G/ (y)=bGi(y),
where 0< b, <0, ret.

ProOOF. Obviously, opo,(n)opro(1) =opoo(n+1), 0#reMN, n=1,2,---.
Hence, taking (10) into account, we obtain

oPoo(n+1) _ opoo(n +1)

37 (n)= = , 0#reRN, n=1,2,--:
( ) obo ( ) OprO(l) prO(l)
Hence (35), (36) easily follow. The lemma is proved.
We set
m m—1 m -1
(38) Ac=B( 3 kat'S G 3 (k-na)

By virtue of (3), (4), (7), (12),
(39) 0<Ag<oo.



A CRITICAL GALTON-WATSON PROCESS 521

Lemma9. Asy->1—,

Aq
(40) Vo)~ T ee (=Y
@41) Galy)~-log

1-

Proor. Using (28)-(31) and Lemma 1, it is not difficult to see that (40)
follows from (32). Further (see [16]),

1
42 G =1-—— 0=sy<l1.
(42) -~ Go(y) Woly) y
Since U(y)>0, 0=y <1, we have, in view of (32), (42),
' H'(y) H(y)U'(y)
43 G =— + , 0o=y<l1.

Taking (12), (28)—(31), (35) and Lemma 1 into account, we deduce that, as
y- 1-,

(44) H'(y)
T~ ° 0(Go(y)),
@5) H(y)U(y) Llog_l_

UXy) Ao “1-y
From (43)—(45) follows (41).
Lemma 10. Asy->1—,

1
Go(y)~——.
o(y) Ao1—y)
ProoFr. By differentiating (43) with respect to y, we obtain
p H"(y) % (y) ( 1 )
46 G =——"+2H' , 0=sy<l1.
(46) o(y) Ul ) ) —=— ) \TG) H(y) y
Using (12), 28)-(31) and Lemma 1, it is not difficult to show that
1\ 1
47 (—) H =o(1o 2—), 1.
(47) U0 () g y
Moreover, taking (12), (28)-(31) and Lemma 1 into account, we have
2U'
D[+ T GoH )]
U*(y)
48) 1 1+0(1)
0
" + . 4 — —.
G T G )] -y
In view of (28)—(31), (35), (36), (41) and Lemma 1, we conclude that, as y > 1—,
U'(y) ™ 2 1
49 Gl(y)H.(y) = (10 ——)
) T E, GUnH ()= 0(log" =
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1 m—1 , , _ 1
(50) 5G) L, GHH: () =0(log 1),
(51) mg G (y)H,(y)=0(Go(y)).

The assertion of the lemma follows from (46)-(51).

3. Proof of Theorem 1

In view of a Tauberian theorem (see [19], p. ch. XIII, § 5, ff.), we have from
(41)

n 1
(52) Y. kopoolk)~—1logn, n - 00,
k=1 Ao
It is not difficult to see that
1 [
(53) IG"Y(” L Fey" 0=y<l.

Moreover, according to (40) and (42)
1-Go(y ) 1 1 1

54 ——log—, ->1-
(54) 1=y (-y)Woly) A, 1=y Y
Using (53), (54) and the Tauberian theorem, we obtain
(55) Yy F(k)~ilog n, n -0,

k=0 Ao
But, for n=1, 2, -
(56) 3 F)= 3 opootk)ke +(n+ DF(n).
From (52), (55) and (56) it follows that
57) F(n)= 0(105 n) n - 00,

Taking (52), Lemma 10 and the Tauberian theorem into account, we have
n ) 2 1
Yk oPoo(k) ~——n, n->00,
K=1 Ao

Hence it follows (see [19], ch. VIII, § 9) that lim, .. F(n)n = u exists, where
0 < u =00. We shall show that u < 0. In fact, if u =00, then F(x) is slowly varying
as x » 00, Therefore in view of a known representation for a slowly-varying
function (see [19], p. 282), we obtain

F(n)n
im
n->w logn

=00

b

which contradicts (57). Thus F{(n) ~ u/n, n » 00, where 0<u < 0. Taking (55) into
account, we conclude that u=1/A,.



A CRITICAL GALTON-WATSON PROCESS 523
4. Proof of Theorem 2

By using Theorem 1 and Erickson’s result (see [20], p. 266), we obtain
-1

pootm) ~( & FK)) n>co.
Therefore, in view of (55),
A
(58) pooln) ~1—=, n -,
ogn

According to (34) we have

Por(n) = él oPor (k)pooln — k)

[n/2] n
= kzl oPor(k)pooln —k)+k > ) oPor(k)poo(n —k), n>1,r#0.

- =[n/2]+

(59)

By virtue of (37) and Theorem 1,

n n 1
60 3 wpopln-k)=0( T wak)=0(), ">,
k=[n/2]+1 k=[n/2] n
As a consequence of (58),
L
n>x  poo(n)

uniformly in 0 = k = n/2. Taking (12) into account, we obtain

[n/2]1
(61) 21 oPor(k)poo(n — k) = poo(n)G,(1)(1 +0(1)), n >0,

From (58)—(61) it follows that p,,(n) ~ A,/log n, n - 00, where
(62) A, =G, (1)A,, redn.
In view of (12), (39) we obtain 0< A, <o, rel.

5. Proof of Theorem 3

By differentiating (18) with respect to s and taking (1), (5) into account, we obtain

m—1 m
\I’:H_](l—):\l’:,(l_)‘i" ZO po,(n) A Z . (k_")Qk, n =0’ 1, e
r= =r+

Hence, forn=1,2, -,

m—1 ;m—r n—1
63) EZ,=¥,(1-)= % ('L uda) T porlh).
r=0 \u=1 k=0
By virtue of (38), (62) and Theorem 2,
m—1 m B
(64) Y por(n) ¥ (k=r)qi~ , n—0o.
r=0 k=r+1 logn

Obviously, (8) follows from (63), (64).
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Differentiating relation (18) twice and taking (1), (3), (5) and (6) into account,
we have ¥{(1-) =0, while for n =0

m—1
V(1) =Vi(1-)+ V(1) (1-)+g1(1-) ~ §0 por(n)

X Z (k—r)(k —r+1)ge+f'(1-) Z por(n) Z (k —r)q«.

k=r+1 k=r+1

Hence, we deduce from (63), (64) and Theorem 2 that

(65)

logn’
Since
Var Zn =\I’Z(1_) + EZn - (EZn)za

(9) follows from (8), (65).

6. Proof of Theorem 4
Let us consider the Laplace transform
Eexp (—Z.t/n")=V,(exp (—t/n™)), te[0,0),n=1,:

for arbitrary x €[0, 1]. Setting s =exp (—#/n™) in (17) and using (19)-(22) and
(64) we obtain, for t >0, x €[0, 1], and as n »> oo,

Y. (exp (—t/n*))=c(exp (~t/n"))

(66) e kg ([1__;1__,_+ kB] o ‘yk)(iog(%zi-% d,,_k> +o(1),

where y, =0(1/k), di =0(1/log k), k > c0. Since

lim gi(fe(s) = g:(1-) =1, k=12,
we have, by taking (26) into account, for x € (0, 1], t =0,
(67) lim ¢, (exp (=t/n"))=1.

With the aid of a formula for the partial sum of a harmonic series (see [21], p.
270), it is not difficult to show that

[n/2] 1 -1 1
(68) '!1_130 kzl [ — 7™ +k] log (n—K) =1-x, x€[0,1],t>0.
Moreover,
ol 1 T
(69) 31_{130 k=['§2]+1 [m-}- k] m= 0, x€[0,1],¢>0.

As a consequence of (68), (69), for x €[0, 1], >0,

1 -1 B
_— + — 4d,i)=1-x.
(70) llglokzl([ —e " +kB] Yk)(log(n—k) d k) 1-x
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From (66), (67) and (70) it follows that
Iinox0 ¥, (exp (—t/n*))=x, x€[0,1], te(0,0).

Hence, according to a continuity theorem (see [19], p. 481),

Z,
lim P{;l_x<B} =x

for all B >0, x €[0, 1]. The assertion of the theorem obviously follows from this.
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