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1. Introduction. Let Zn be a Galton–Watson process. In what follows it is as-
sumed, unless otherwise noted, that Z0 = 1. Put pk = P{Z1 = k}, f(s) =

∑∞
k=0 pks

k.
We shall consider only the critical case, i.e., f ′(1) = 1. Suppose that Z1 has the finite
second moment and denote B = f ′′(1) = DZ1. Let d be the greatest common divisor
of {k : pk > 0}. Denote the kth iteration of the function f(s) by fk(s). Obviously,
fk(s) is the generating function of Zk.

The main goal of the present work is to prove the local limit theorem for Zn under
minimal restrictions to moments of Z1.

The first paper in which local limit theorems are proved for branching processes
belongs apparently to Zolotarev [1], in which the asymptotic behavior of P{Zt = k}
with k given is studied for a Markov branching process with continuous time. For
Galton–Watson processes this problem was investigated in [2], and for critical Bell-
man–Harris processes in Vatutin’s paper [3].

Under the condition that there exists the fourth moment of the number of direct
offspring, Chistyakov [4] gave an asymptotic formula for P{Zt = k}, while t, k → ∞,
where Zt is the Markov branching process with continuous time. It is also mentioned
in [4] that N. V. Smirnov obtained an analogous result for discrete time. However,
neither the statement nor the proof of this result has been published since then.

In the joint paper of Kesten, Ney, and Spitzer [2] the following result is stated:
If k and n tend to infinity in such a way that their ratio remains bounded, then

lim
n→∞

n2 exp

(
2kd

Bn

)
P{Zn = kd} =

4d

B2
.(1.1)

The authors of [2] note that this formula is valid without any excessive moment
restrictions, i.e., the condition B < ∞ is sufficient. However, they accomplished their
proof (1.1) only under the stronger condition

EZ2
1 log(1 + Z1) < ∞.(1.2)
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They also remark that this assumption is made only for simplicity of the presenta-
tion. However, in the monograph of Atreya and Ney [5] they write that up to the
moment of the appearance of their book the proof of the local limit theorem without
condition (1.2) had not been published anywhere. Almost at the same time as [2] the
paper of Nagaev and Mukhamedkhanova [6] appeared in which the next equality is
proved under condition EZ4

1 < ∞,

B2n2

4
P{Zn = k} = exp

(
− 2k

Bn

)
+ αkn + O(k−1 log n),(1.3)

where αkn → 0 as n → ∞ uniformly with respect to k. Equality (1.1) follows from
this formula only if k−1 log n tends to zero. On the other hand, it follows from (1.3)
that (1.1) remains valid if k/n tends to infinity slowly enough.

For the critical Bellman–Harris process Topchii [7] proved the analogue of (1.1).
It was assumed in this paper that condition (1.2) holds for the embedded Galton–
Watson process.

We formulate now the results which are proved in the present paper.
Theorem. Let B < ∞ and let k and n tend to infinity in such a way that the

ratio k/n remains bounded; then

lim
n→∞

B2n2

4d

(
1 +

2d

Bn

)k+1

P{Zn = kd} = 1.(1.4)

Obviously, by replacing the factor (1 + 2d/(Bn))k in the left-hand side of this
equality with the equivalent expression exp(2kd/(Bn)) we obtain exactly (1.1). The
reason for this formulation is that we approximate the distribution of the process Zn

by the geometric distribution with parameter 2/(Bn) instead of the exponential one.
This approach looks more natural since the distribution of Zn is concentrated on the
set of nonnegative integers. In addition, approximating by the geometric distribution
is, generally speaking, more precise. For example, for the bilinear generating function,

P{Zn = k} =
4

B2n2

(
1 +

2

Bn

)−k−1

for any k � 1. Thereby (1.4) holds for every k, and (1.1) is valid only for k = o(n2).
The proof of the theorem is based on the next statement which is of independent

interest as well.
Proposition. If B < ∞, then there exists the constant C = C(f) such that

sup
n,k�1

n2P{Zn = k} � C.(1.5)

Our approach to proving the local theorem differs essentially from that of [2],
though we apply some of their results.

It is shown in [2] that the next formula is valid in the case d > 1,

P{Zn = kd} =
1

d
P{Z∗

n = k} + O(n−3),(1.6)

where Z∗
n is the auxiliary Galton–Watson process with generating function [f(s1/d)]d.

It follows from equality (1.6) that it is sufficient to prove the theorem and the propo-
sition for d = 1. Therefore we suppose d = 1 in what follows.
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We denote by c, c1, c2, . . . constants which depend only on the distribution {pk}.
Since the remainder term in (1.4) is not estimated in our paper, it does not matter
how exactly constants depend on {pk}. In this connection, we provide constants with
lower index only in the case when a misunderstanding is possible.

For every analytical at zero function ρ(s) we will denote by al[ρ(s)] the coefficient
at sl in the Taylor expansion of this function in the neighborhood of zero. Put
‖ρ(s)‖1 =

∑∞
l=0 |al[ρ(s)]|.

2. Auxiliary statements.
Lemma 1. There exists a constant c such that for every n, k � 1

P{1 � Zn � k} � c
k

n2
.(2.1)

Proof. For any s ∈ (0, 1) we have

skP{1 � Zn � k} �
k∑

i=1

P{Zn = i} si � E{sZn ; Zn > 0} = fn(s) − fn(0).

Consequently

P{1 � Zn � k} � s−k
(
fn(s) − fn(0)

)
.

Setting s = fk(0) in this inequality, we obtain

P{1 � Zn � k} �
(
fk(0)

)−k(
fn+k(0) − fn(0)

)
.(2.2)

It is known (see, for instance, [2]) that

Qk := P{Zk > 0} = 1 − fk(0) =
2

Bk

(
1 + o(1)

)
(2.3)

if EZ2
1 < ∞.

It follows from (2.3) that there exists the constant c such that

1 − fk(0) � c

k
(2.4)

for every k � 1. Thus,

(
fk(0)

)−k �
(

1 − c

k

)−k

< c1.(2.5)

Since f ′′
k (s) increases,

fk(s) − s = fk(s) − 1 − f ′
k(1)(s− 1) <

f ′′
k (1)

2
(1 − s)2 =

Bk

2
(1 − s)2.

Letting s = fn(0) in this inequality and using bound (2.4), we conclude that

fn+k(0) − fn(0) � Bk

2

(
1 − fn(0)

)2 � c
k

n2
.(2.6)

Combining (2.2), (2.5), and (2.6), we arrive at the required inequality.
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Applying the identity a = b− ab(a−1 − b−1), we obtain the representation

1 − fn(s) =

(
1

1 − s
+

Bn

2

)−1

− hn(s) gn(s),(2.7)

where

hn(s) =
1

1 − fn(s)
− 1

1 − s
− Bn

2
,

gn(s) =
(
1 − fn(s)

)( 1

1 − s
+

Bn

2

)−1

=

∞∑
i=0

gn,is
i.

Put

u(s) =
1

1 − f(s)
− 1

1 − s
=

∞∑
i=0

uis
i, μk(s) = u

(
fk(s)

)
.

Lemma 2. As n → ∞ ∥∥hn(s)
∥∥

1
= o(n).(2.8)

Proof. It follows from Theorem 1 of [2] that

a0

[
hn(s)

]
=

1

1 − fn(0)
− 1 − Bn

2
= o(n).(2.9)

Clearly,

al
[
hn(s)

]
= al

[
1

1 − fn(s)
− 1

1 − s

]
, l � 1.(2.10)

Observing that μk(s) = [1 − f(fk(s))]
−1 − [1 − fk(s)]

−1, we obtain

1

1 − fn(s)
− 1

1 − s
=

n−1∑
k=0

(
1

1 − fk+1(s)
− 1

1 − fk(s)

)

=
n−1∑
k=0

(
1

1 − f(fk(s))
− 1

1 − fk(s)

)
=

n−1∑
k=0

μk(s).(2.11)

By Lemma 6 of [2],
∑

j�0 |uj | < ∞. Consequently,

∞∑
l=1

∣∣al[μk(s)]
∣∣ =

∞∑
l=1

∣∣∣∣∣
∞∑
j=1

ujal
[
f j
k(s)

]∣∣∣∣∣ �
∞∑
j=1

|uj |
∞∑
l=1

al
[
f j
k(s)

]
=

∞∑
j=1

|uj |
(
1 − f j

k(0)
)
.

Here we used the inequalities

∞∑
l=1

al
[
f j
k(s)

]
= P(Zk > 0 | Z0 = j) = 1 − f j

k(0).
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Since fk(0) → 1 as k → ∞ and
∑∞

j=1 |uj | < ∞, we conclude from the previous bound
that

∞∑
l=1

∣∣al[μk(s)]
∣∣−→ 0 as k → ∞.

Consequently,

n−1∑
k=0

∞∑
l=1

∣∣al[μk(s)]
∣∣ = o(n).(2.12)

Bound (2.8) follows from (2.9), (2.12), and the inequality

∥∥hn(s)
∥∥

1
�

∣∣a0[hn(s)]
∣∣ +

n−1∑
k=0

∞∑
l=1

∣∣al[μk(s)
]∣∣.

Lemma 3. The equality

1 − fn(s) =

(
1

1 − s
+

Bn

2

)−1(
1 + o(1)

)
(2.13)

holds uniformly in s from the unit disk.
Proof. It follows from representation (2.7) that

1 − fn(s) =

(
1

1 − s
+

Bn

2

)−1(
1 − hn(s)

(
1 − fn(s)

))
.

We conclude from the equality ‖1 − fn(s)‖ = 2Qn and bounds (2.4), (2.8) that∥∥hn(s)(1 − fn(s))
∥∥

1
�

∥∥hn(s)
∥∥

1

∥∥1 − fn(s)
∥∥

1
= o(1).

Noticing that the convergence to zero in the norm ‖·‖1 implies the uniform convergence
to zero in the unit disk, we obtain the desired result.

Lemma 4. Let ρ(s) be a probability generating function and ρ′(1) < ∞. Then for
every a > 0

al
[
ρ(s)

]
�

(
96

95

)2
1

al

∫ a

−a

∣∣ρ′(eit)∣∣ dt.(2.14)

Proof. Obviously, ρ′(s)/ρ′(1) is a probabilistic generating function. The next
bound for the concentration function is known (see, for example, [8])

sup
x

P{X = x} �
(

96

95

)2
1

a

∫ a

−a

∣∣φ(t)
∣∣ dt,

where φ(t) is the characteristic function of the random variable X, a > 0. By applying
this bound to the random variable with the generating function ρ′(s)/ρ′(1), we get

sup
l

al

[
ρ′(s)

ρ′(1)

]
�

(
96

95

)2
1

a

∫ a

−a

∣∣∣∣ρ′(eit)ρ′(1)

∣∣∣∣ dt.
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Hence, noting that for any l � 1

al
[
ρ(s)

]
=

1

l
al−1

[
ρ′(s)

]
,

we obtain the assertion of the lemma.
Lemma 5. For |s| � 1, s → 1, the equality

log f ′(s) = −B(1 − s) + o(1 − s)(2.15)

holds.
Here and in what follows, log s denotes the principal branch of the logarithm.
Proof. Using the equality log(1 + x) = x + O(x2), we have

log f ′(s) = log
(
1 + (f ′(s) − 1)

)
=

(
f ′(s) − 1

)
+ O

(
(f ′(s) − 1)2

)
.(2.16)

Further, we conclude from the condition B < ∞ that

f ′(s) − 1 = B(s− 1) + o(s− 1).

By applying this equality to both summands in the right-hand side of (2.16) we obtain

log f ′(s) = −B(1 − s) + o(1 − s) + O
(
(1 − s)2

)
.

Hence (2.15) follows.
Lemma 6. For every ε > 0, there exists N = N(ε) such that for all s from the

unity disk

∣∣f ′
n(s)

∣∣ � exp

(
−B(1 − ε)

n−1∑
j=N

Re
(
1 − fj(s)

)
+ ε

n−1∑
j=N

∣∣ Im (
1 − fj(s)

)∣∣).(2.17)

Proof. It is easily seen that

f ′
n(s) =

n−1∏
j=0

f ′(fj(s)).
Since |f ′(fj(s))| � 1, whatever j � 0, the bound

∣∣f ′
n(s)

∣∣ �
∣∣∣∣∣
n−1∏
j=N

f ′(fj(s))
∣∣∣∣∣ =

∣∣∣∣∣ exp

(
n−1∑
j=N

log f ′(fj(s))
)∣∣∣∣∣

= exp

(
n−1∑
j=N

Re log f ′(fj(s))
)

(2.18)

is valid for every N . According to Lemma 5

log f ′(s) = −
(
B + α(s)

)
(1 − s), α(s) → 0 for s → 1.

Hence, for |s| � 1 the bound

Re log f ′(s) � −
(
B −

∣∣Reα(s)
∣∣) Re(1 − s) +

∣∣ Imα(s)
∣∣∣∣ Im(1 − s)

∣∣(2.19)

holds.
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It follows from the inequalities |1− fj(s)| � 2(1− fj(0)) and (2.4) that fj(s) → 1
as j → ∞ uniformly in s from the unity disk. Consequently, we can choose N such
that ∣∣Reα

(
fj(s)

)∣∣ � εB,
∣∣ Imα

(
fj(s)

)∣∣ � ε

for all j � N . Applying these inequalities to estimating the right-hand side in (2.19),
we obtain

Re log f ′(fj(s)) � −B(1 − ε) Re
(
1 − fj(s)

)
+ ε

∣∣ Im (
1 − fj(s)

)∣∣.
Hence, in view of (2.18) the assertion of the lemma follows easily.

Put

ϕ(x) =
2(Bx + 1)

(Bx + 1)2 + c2
,

where c is an arbitrary constant.
Lemma 7. For every k � 1,∣∣∣∣∣

k−1∑
j=0

ϕ(j) − 1

B
log

(
1 +

(Bk + 1)2

c2

)∣∣∣∣∣ � 1.(2.20)

Proof. We will use the well-known Euler formula (see, for example, [9])

k−1∑
j=0

ϕ(j) =

∫ k

0

ϕ(t) dt +

n−1∑
ν=1

Bν

ν!

[
ϕ(ν−1)(k) − ϕ(ν−1)(0)

]

− Bn

n!

∫ 1

0

[
Bn(t) −Bn

] n−1∑
j=0

ϕ(n)(j + 1 − t) dt.

Here Bν and Bν(t) are, respectively, Bernoulli numbers and Bernoulli polynomials.
Setting n = 1 in this equality, we get

k−1∑
j=0

ϕ(j) =

∫ k

0

ϕ(t) dt−
∫ 1

0

t

k−1∑
j=0

ϕ′(j + 1 − t) dt.(2.21)

It is easily seen that

∣∣ϕ′(x)
∣∣ =

∣∣∣∣2B(c2 − (Bx + 1)2)

(c2 + (Bx + 1)2)2

∣∣∣∣ � 2B

(Bx + 1)2
.

With the aid of this inequality we get the bound∣∣∣∣∣
∫ 1

0

t

k−1∑
j=0

ϕ′(j + 1 − t) dt

∣∣∣∣∣ � 1

2

k−1∑
j=0

sup
0�t�1

∣∣ϕ′(j + 1 − t)
∣∣

�
k−1∑
j=0

B

(Bj + 1)2
�

∫ ∞

1

dx

x2
= 1.(2.22)
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We conclude from (2.21) and (2.22) that∣∣∣∣∣
k−1∑
j=0

ϕ(j) −
∫ k

0

ϕ(t) dt

∣∣∣∣∣ � 1.

Hence, noting that∫ k

0

ϕ(t) dt =
1

B
log

(
c2 + (Bn + 1)2

)
− 1

B
log c2 =

1

B
log

(
1 +

(Bn + 1)2

c2

)
,

we obtain the desired result.
Lemma 8. For every ε > 0, there exist N and the constants a = a(ε,N),

b = b(ε,N) such that for all |t| � π/2

n−1∑
j=N

Re
(
1 − fj(e

it)
)

� (1 − ε)

B
log

(
1 + (Bn + 1)2 tan2 t

2

)
− a,(2.23)

n−1∑
j=N

∣∣ Im (
1 − fj(e

it)
)∣∣ � ε

B
log

(
1 + (Bn + 1)2 tan2 t

2

)
+ b.(2.24)

Proof. Fix an arbitrary ε > 0. It follows from Lemma 3 that there exists N such
that for any j � N the inequalities

Re
(
1 − fj(s)

)
� (1 − ε) Re

(
1

1 − s
+

Bj

2

)−1

− ε

∣∣∣∣ Im
(

1

1 − s
+

Bj

2

)−1∣∣∣∣,(2.25)

∣∣ Im (
1 − fj(s)

)∣∣ � εRe

(
1

1 − s
+

Bj

2

)−1

+ (1 + ε)

∣∣∣∣ Im
(

1

1 − s
+

Bj

2

)−1∣∣∣∣(2.26)

are valid.
Thus to prove the lemma we need to estimate the sum of the real and imaginary

parts of ((1 − s)−1 + Bj/2)−1.
Put s = eit. Using the equality

1

1 − s
=

1

(1 − cos t) − i sin t
=

1

2
+

i sin t

2(1 − cos t)
=

1

2
+

i

2
cot

t

2
,

we obtain

Re

(
1

1 − s
+

Bj

2

)−1

=
2(Bj + 1)

(Bj + 1)2 + cot2(t/2)
,

Im

(
1

1 − s
+

Bj

2

)−1

= −2
tan(t/2)

1 + (Bj + 1)2 tan2(t/2)
.

Setting c = cot(t/2) in the previous lemma and noting that 0 < ϕ(x) � 2 for all
x � 0, we have∣∣∣∣∣

n−1∑
j=N

ϕ(j) − 1

B
log

(
1 + (Bn + 1)2 tan2 t

2

)∣∣∣∣∣ � 1 +
N−1∑
j=0

ϕ(j) � 2N + 1.(2.27)
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Obviously, the function

ψ(x) =

∣∣∣∣ Im
(

1

1 − s
+

Bx

2

)−1∣∣∣∣ =
2| tan(t/2)|

1 + (Bx + 1)2 tan2(t/2)

decreases. Therefore

n−1∑
j=N

∣∣∣∣ Im
(

1

1 − s
+

Bj

2

)−1∣∣∣∣ �
∫ ∞

0

ψ(x) dx � 2

B

∫ ∞

0

dx

1 + x2
=

π

B
.(2.28)

Combining (2.25), (2.27), and (2.28), we obtain (2.23). Correspondingly inequal-
ity (2.24) follows from (2.26), (2.27), and (2.28). Lemma 8 is proved.

Lemma 9. For all n, k � 1, the inequality

P{Zn = k} � c

nk
(2.29)

holds.
Proof. It follows from Lemmas 6 and 8 that

∣∣f ′
n(eit)

∣∣ � c(ε)

(
1

n| tan(t/2)|

)2((1−ε)2−ε/B)

.

Applying the obvious inequality | tanx| > |x|, we obtain

∣∣f ′
n(eit)

∣∣ � c(ε)

(
2

n|t|

)2((1−ε)2−ε/B)

.

Hence, choosing ε such that (1 − ε)2 − ε/B = 3
4 , we obtain the bound

∣∣f ′
n(eit)

∣∣ � c
(
n|t|

)−3/2
.

Consequently, ∫
1/n<|t|<π/2

∣∣f ′
n(eit)

∣∣ dt � c

n3/2

∫
1/n<|t|<π/2

dt

|t|3/2 <
c1
n
.(2.30)

Obviously, |f ′
n(eit)| � 1. Therefore∫

|t|<1/n

∣∣f ′
n(eit)

∣∣ dt � 2

n
.(2.31)

Putting en = fn, a = π/2 in the inequality of Lemma 4 and taking into account (2.30)
and (2.31), we arrive at the required inequality.

We need the following bound for the concentration function of a sum of indepen-
dent identically distributed (i.i.d.) random variables (see, for example, [8]).

Lemma 10. Let Sk = X1 + · · · + Xk be a sum of i.i.d. random variables. Then

Q(Sk, λ) � A√
k
Q(X1, λ)

(
1 −Q(X1, λ)

)−1
,(2.32)

where A is an absolute constant.
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Let {ξ(n)
i }∞i=1 be the sequence of i.i.d. random variables with the distribution

which is defined by the equalities P{ξ(n)
i = j} = P(Zn = j |Zn > 0), j � 1. Put

S
(n)
k =

∑k
i=1 ξ

(n)
i .

Lemma 11. There exists a constant c such that for every k � 2 the bound

sup
l�1

P{S(n)
k = l} � c

n
√
k

(2.33)

holds.
Note that in Lemma 9 in [2] the bound similar to (2.33) is obtained. Proving this

result, the authors of [2] used the local limit theorem for a critical Galton–Watson
process which was proved by them. We do not use this theorem. In contrast, the
bound (2.33) is the important component in the proof of our main result.

Proof. We conclude from Lemma 9 and (2.3) that for j � l/2 the bound

P{ξ(n)
1 = j} =

P{Zn = j}
P{Zn > 0} � c

j
� c1

l

is valid. Consequently,

P{S(n)
2 = l} =

l−1∑
j=1

P{ξ(n)
1 = j}P{ξ(n)

1 = l − j}

� 2 sup
i�l/2

P{ξ(n)
1 = i}

∑
j�l/2

P{ξ(n)
1 = j} � c

l
P

{
ξ
(n)
1 � l

2

}
.(2.34)

By the definition P{ξ(n)
1 � i} = P{1 � Zn � i}/P{Zn > 0}. Applying (2.1)

and (2.3), we obtain

P{ξ(n)
1 � i} � ci

n
.(2.35)

It follows from (2.34) and (2.35) that

sup
l�1

P{S(n)
2 = l} � c

n
.(2.36)

Suppose first that k = 2m, m > 1. Then the random variable S
(n)
k can be

represented as the sum of m i.i.d. random variables X
(n)
i which coincide in distribution

with S
(n)
2 . Applying the previous lemma, we have

Q(S
(n)
k , λ) � A√

m
Q(S

(n)
2 , λ)

(
1 −Q(S

(n)
2 , λ)

)−1
.

Taking into account (2.36), we conclude that for sufficiently large n

sup
l�1

P{S(n)
2m = l} � c

n
√

2m

(
1 − 2c1

n

)−1

� c2

n
√

2m
,(2.37)

which proves the lemma for even values of k. If k = 2m + 1, one should use the

obvious bound Q(S
(n)
2m+1, λ) � Q(S

(n)
2m , λ) and thereafter apply bound (2.37).

Put l0 = min{l � 1: pl > 0}.
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Lemma 12. If l0 > 1, then P{Zn = l} = 0 for all 1 � l < l0 and n � 1. In
addition, for every l0

P{Zn = l0} = pl0

n−1∏
i=1

f ′(fi(0)
)
> 0.(2.38)

Proof. If the event {Zn > 0} occurs, then at least one particle in the (n − 1)th
generation had a nonzero number of offspring. By the definition of l0 this number
cannot be less than l0. This means that the events {Zn > 0} and {Zn � l0} coincide
and, consequently, P{Zn = l} = 0 for every 1 � l < l0.

It follows from the definition of l0 that for every i � l0 the equality

P(Zn = l0 | Zn−1 = i) = ipi−1
0 pl0(2.39)

is valid.
Consequently,

P{Zn = l0} = E
(
E
(
I(Zn = l0) | Zn−1

))
= pl0E

(
Zn−1f

Zn−1−1(0)
)

= pl0f
′
n−1

(
f(0)

)
which implies the second assertion of the lemma.

Lemma 13. The inequality

lim
n→∞

n2P{Zn = l0} > 0(2.40)

takes place.
Proof. It is proved in [2] that for every fixed j

lim
n→∞

B

2
n2P{Zn = j} = μ(j) < ∞,(2.41)

where the sequence μ(j) satisfies the system of equations

∞∑
l=1

μ(l)P (l, j) = μ(j), j � 1,

∞∑
l=1

μ(l) pl0 = 1.

Here P (l, j) are the transition probabilities of the process Zn, i.e.,

P (l, j) = P(Z1 = j | Z0 = l),

since in view of Lemma 12 P{Zn = l} = 0 for all n and 1 � l < l0, μ(l) = 0 for every
1 � l < l0 as well.

Let us show that μ(l0) > 0. For this purpose we rewrite (2.39) in the follow-
ing way:

P (i, l0) = ipi−1
0 pl0 .

Consequently,

μ(l0) =

∞∑
i=l0

μ(i) ipi−1
0 pl0 � l0

pl0
p0

∞∑
i=l0

μ(i) pi0 = l0
pl0
p0

> 0.

Setting j = l0 in (2.41), we obtain the desired result.
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Lemma 14. For every 1 � j < k, the inequality

k−1∏
i=j

f ′(fi(0)) � c
j2

k2
(2.42)

is valid, where c is a constant.
Proof. It follows from (2.38) and (2.40) that as j, k → ∞

k−1∏
i=j

f ′(fi(0)
)

=
P{Zk = l0}
P{Zj = l0}

∼ j2

k2
,

whence the desired bound follows immediately.
Lemma 15. For every j � 3, q ∈ (0, 1), the following inequality holds:

∞∑
i=j

Cj
i q

i−jpi =
1

j!
f (j)(q) � 2B

j2q(1 − q)j−2
.(2.43)

Proof. Obviously,

∞∑
i=j

Cj
i q

i−jpi =
1

j!

∞∑
i=j

i!

(i− j)!
qi−jpi =

1

j!

∞∑
i=j

(
(i− 2)!

(i− j)!
qi−j

)
i(i− 1) pi.

Using the Abel identity, we have

j!
∞∑
i=j

Cj
i q

i−jpi =

∞∑
i=j

(
i∑

k=1

k(k − 1) pk

)
qi−j

(
(i− 2)!

(i− j)!
− (i− 1)!

(i + 1 − j)!
q

)

− (j − 2)!

j−1∑
k=1

k(k − 1) pk.

Further,

(i− 2)!

(i− j)!
qi−j − (i− 1)!

(i + 1 − j)!
qi+1−j <

(i− 1)!

(i + 1 − j)!
qi−j(1 − q).

On the other hand, for every i the bound

i∑
k=1

k(k − 1) pk � B

holds.
Consequently,

∞∑
i=j

Cj
i q

i−jpi <
B(1 − q)

j!

∞∑
i=j

(i− 1)!

(i + 1 − j)!
qi−j <

B(1 − q)

j! q

∞∑
i=j−1

(i− 1)!

(i + 1 − j)!
qi+1−j .

Noticing that

dj−2

dqj−2
qi−1 =

(i− 1)!

(i + 1 − j)!
qi+1−j ,
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we arrive at the identity

∞∑
i=j−1

(i− 1)!

(i + 1 − j)!
qi+1−j =

dj−2

dqj−2
(1 − q)−1 = (j − 2)! (1 − q)−j+1.

As a result, we have the inequality

∞∑
i=j

Cj
i q

i−jpi <
B

j(j − 1) q(1 − q)j−2
.

It remains to notice that 1/(j(j − 1)) < 2/j2.
Lemma 16. For every k < n, the identity

P{Zn = k} = P{Zk = k}
n−1∏
i=k

f ′(fi(0)
)

+

n−1∑
j=k

rj(k)

n−1∏
i=j+1

f ′(fi(0)
)

(2.44)

is valid, where

rj(k) =

∞∑
i=2

Qi
jP{S(j)

i = k}
∞∑
l=i

Ci
l (1 −Qj)

l−i pl.

Proof. Using the Markov property of Zn, we have

P{Zn = k} =

∞∑
l=1

plP(Zn−1 = k | Z0 = l).

The process beginning with l particles in zero generation can be represented as the
sum of independent processes, each of which starts with one particle. Obviously the
probability that l − i processes will degenerate to the moment n is equal to l − i
Ci

lQ
i
n−1(1 − Qn−1)

l−i. The distribution of every nondegenerated process coincides

with that of ξ
(n−1)
1 . Therefore

P(Zn−1 = k | Z0 = l) =

l∑
i=1

Ci
lQ

i
n−1(1 −Qn−1)

l−iP{S(n−1)
i = k}.(2.45)

Consequently,

P{Zn = k} = Qn−1P{S(n−1)
1 = k}

∞∑
l=1

l(1 −Qn−1)
l−1 pl

+

∞∑
i=2

Qi
n−1P{S(n−1)

i = k}
∞∑
l=i

Ci
l (1 −Qn−1)

l−i pl.

Since

Qn−1P{S(n−1)
1 = k} = P{Zn−1 = k}

and
∞∑
l=1

l(1 −Qn−1)
l−1 pl = f ′(fn−1(0)),
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the first summand in this representation is equal to

P{Zn−1 = k} f ′(fn−1(0)).

Therefore

P{Zn = k} = P{Zn−1 = k} f ′(fn−1(0)
)

+ rn−1(k).

Repeating the procedure n− k − 1 times we arrive at (2.44).
Lemma 17. For every 1 � k � j, the bound

rj(k) � c

j2

(
P{S(j)

2 = k} +
k

j2

)
(2.46)

holds.
Proof. According to definition

rj(k) = Q2
jP{S(j)

2 = k}
∞∑
l=2

C2
l (1 −Qj)

l−2 pl

+

∞∑
i=3

Qi
jP{S(j)

i = k}
∞∑
l=i

Ci
l (1 −Qj)

l−i pl.(2.47)

Setting q = 1 −Qj in Lemma 15, we obtain for every i � 3 the inequality

∞∑
l=i

Ci
l (1 −Qj)

l−i pl � 2B

i2Qi−2
j (1 −Qj)

.

Hence, noticing that P{S(j)
i = k} = 0 for i > k, we arrive at the bound

∞∑
i=3

Qi
jP{S(j)

i = k}
∞∑
l=i

Ci
l (1 −Qj)

l−i pl �
2BQ2

j

(1 −Qj)

k∑
i=3

P{S(j)
i = k}
i2

.(2.48)

Applying (2.4) we conclude that

Q2
j

(1 −Qj)
� c

j2
.(2.49)

It follows from (2.33) and (2.35) that uniformly in i � 3

P{S(j)
i = k} =

k−1∑
l=1

P{S(j)
i−1 = l}P{ξ(j)

1 = k − l}

� P{ξ(j)
1 < k} sup

l
P{S(j)

i−1 = l} � ck

j2
.(2.50)

By using (2.49) and (2.50) to estimate the right-hand side of (2.48), we obtain the
inequality

∞∑
i=3

Qi
jP{S(j)

i = k}
∞∑
l=i

Ci
l (1 −Qj)

l−i pl � ck

j4
.(2.51)
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We now estimate the first summand in the right-hand side of equality (2.47). It
is easily seen that

∞∑
l=2

C2
l (1 −Qj)

l−2 pl =
f ′′(1 −Qj)

2
<

B

2
.

Hence, applying (2.4), we obtain the bound

Q2
jP{S(j)

2 = k}
∞∑
l=2

C2
l (1 −Qj)

l−2 pl <
cP{S(j)

2 = k}
j2

.(2.52)

The assertion of the lemma follows from (2.47), (2.51), and (2.52).
Lemma 18. Let ξn be a random variable having a binomial distribution with

parameters n and p. Then the inequalities

(np)−1/2 < E{ξ−1/2
n ; ξn > 0} < A(np)−1/2,(2.53)

np(1 − p)n−1 < E{ξ−1/2
n ; ξn > 0} < np(2.54)

are valid. The constant A does not exceed 2.73.
In Lemma 13 of [10] the following inequality is deduced:

E{ξβn ; ξn > 0} � c(β)(np)β , β � 1.

The proof of the upper bound in (2.53) repeats almost word for word the proof of the
latter. The only new element is the numerical bound for the constant A = c(− 1

2 ).

Proof. The function x−1/2 is convex. Hence, by the Jensen inequality,

E{ξ−1/2
n ; ξn > 0} >

(
E{ξn; ξn > 0}

)−1/2
= (np)−1/2.

On the other hand,

E{ξ−1/2
n ; ξn > 0} < P

{
ξn <

np

2

}
+

(
np

2

)−1/2

.

By the Bennet–Hoefding inequality [8, p. 77]

P

{
ξn <

np

2

}
< exp

{
−np

2

[
(3 − 2p) log

(
1 +

(
2(1 − p)

)−1)− 1
]}

.

It is easily seen that min0�p�1(3− 2p) log(1 + (2(1− p))−1) is attained for p = 0 and

equals 3 log 3
2 .

Since supx�0

√
xe−αx = (2eα)−1/2, we have e−αx � (2eα)−1/2x−1/2. Letting in

this bound x = np, α = (3 log 3
2 − 1)/2, we get

P

{
ξn <

np

2

}
< exp

{
−np

2

(
3 log

3

2
− 1

)}
< 1.31(np)−1/2.

Thus, (2.53) is proved. The constant A in this bound does not exceed 1.31+
√

2 < 2.73.
Obviously,

E{ξ−1/2
n ; ξn > 0} < Eξn, E{ξ−1/2

n ; ξn > 0} > P{ξn = 1}.

The inequalities (2.54) follow easily from these bounds.
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3. Proof of the proposition. If k � n, then, applying (2.29), we obtain

P{Zn = k} � c

n2
.(3.1)

Now let k < n. It follows from (2.42) and (3.1) that

P{Zk = k}
n−1∏
i=k

f ′(fi(0)
)

� c

n2
.(3.2)

Using (2.42) and (2.46), we have

rj(k)

n−1∏
i=j+1

f ′(fi(0)) � c

n2

(
P{S(j)

2 = k} +
k

j2

)
.(3.3)

Combining (2.44), (3.2), and (3.3), we arrive at the inequality

P{Zn = k} � c

n2

(
1 +

n∑
j=k

P{S(j)
2 = k} +

n∑
j=k

k

j2

)

� c1
n2

(
1 +

n∑
j=k

P{S(j)
2 = k}

)
.(3.4)

Here we used the fact that for every k � 1 the bound

n∑
j=k

k

j2
� 1

k
+ k

∫ ∞

k

dx

x2
� 2

holds. Estimating the quantities P{S(j)
2 = k} with the aid of (2.36), we have

P{Zn = k} � c

n2

(
1 +

n∑
k

j−1

)
� c1(1 + log(n/k))

n2
.

Hence, applying (2.3), we conclude that

sup
l�k/2

P{ξ(j)
1 = l} � c (1 + log(2j/k))

n
.(3.5)

It follows from (2.35) and (3.5) that

P{S(j)
2 = k} =

k−1∑
i=1

P{ξ(j)
1 = i}P{ξ(j)

1 = k − i}

� 2 sup
i�k/2

P{ξ(j)
1 = i}P

{
ξ
(j)
1 � k

2

}
� c

log(2j/k) + 1

j2
.

Applying this inequality to the right-hand side of (3.4), we arrive at the bound

P{Zn = k} � c

n2

(
1 +

n∑
j=k

k
log(2j/k) + 1

j2

)
.(3.6)
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Since for t > 0 the function t−2(1 + log(2t)) decreases, we have

1 + log(2j/k)

(j/k)2
1

k
�

∫ j/k

(j−1)/k

1 + log(2t)

t2
dt.

Consequently, for every n and k

n∑
j=k

k
log(2j/k) + 1

j2
=

n∑
j=k

1 + log(2j/k)

(j/k)2
1

k

� 1 + log 2

k
+

∫ n/k

1

1 + log(2t)

t2
dt < ∞.

From (3.6) and the preceding inequality the desired result follows easily.

4. Proof of the theorem.
Lemma 19. There exists a constant c such that for every n � 1

gn,0 � c

n2
,(4.1)

sup
i�1

|gn,i| � c

n3
,(4.2)

where gn,i = ai(gn(s)).
Proof. We will use the identity(

1

1 − s
+

Bn

2

)−1

=
1

1 + Bn/2
− 1

(1 + Bn/2)2

∞∑
j=1

(
1 +

2

Bn

)−j+1

sj .

Put q = (1 + 2/(Bn))−1. Then the preceding equality will be rewritten as(
1

1 − s
+

Bn

2

)−1

=
2

Bn
q − 4

B2n2

∞∑
j=1

qj−1sj .(4.3)

According to (2.3),

gn,0 =
P{Zn > 0}
1 + Bn/2

∼ 4

B2n2
,

whence the inequality (4.1) follows immediately.
It follows from the definition of gn(s) and identity (4.3) that

|gn,i| � P{Zn > 0} 4

B2n2
qi−1 + P{Zn = i} 2

Bn
q +

i−1∑
j=1

P{Zn = j} 4

B2n2
qi−j−1.

Estimating P{Zn > 0} with the aid of (2.4) and P{Zn = j} with the aid of the
proposition, we obtain

|gn,i| � c1
n3

+
c2
n4

i−1∑
j=1

qi−j−1 � c1
n3

+
c2

n4(1 − q)
� c3n

−3.

This completes the proof of the lemma.
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It follows from the identities (2.7) and (4.3) that

P{Zn = l} =
4

B2n2
ql+1 + al

[
hn(s) gn(s)

]
.(4.4)

Thus, to prove the theorem we have to show that the second summand in the right-
hand side of (4.4) goes to zero as l, n → ∞ faster than n−2.

Lemma 20. There exists a constant c such that for every N and j

∞∑
k=N

sup
l�1

P(Zk = l | Z0 = j) � c

(
I(j � N) +

j

N
I(j < N)

)
.(4.5)

Here and in what follows, I(A) denotes the indicator of the set A.
Proof. Combining the assertions of Lemma 11 and the proposition we conclude

that the inequality

sup
l�1

P{S(k)
i = l} � c

k
√
i

is valid for all i � 1 (in Lemma 11 this bound is deduced only for i � 2). By using
this inequality to estimate the right-hand side in (2.45), we obtain

sup
l�1

P(Zk = l | Z0 = j) � c

k

j∑
i=1

1√
i
Ci

jQ
i
k(1 −Qk)

j−i =
c

k
E{ξ−1/2

j,k ; ξj,k > 0},

where ξj,k is the number of successes in j Bernoulli trials with the probability of a
success Qk. Hence,

∞∑
k=N

sup
l�1

P(Zk = l | Z0 = j) � c

∞∑
k=N

1

k
E{ξ−1/2

j,k ; ξj,k > 0}

= c

(
(N∨j)−1∑

k=N

1

k
E{ξ−1/2

j,k ; ξj,k > 0} +

∞∑
k=N∨j

1

k
E{ξ−1/2

j,k ; ξj,k > 0}
)
.

At first we estimate the first sum in the right-hand side of this inequality. If j > N ,
then, applying the right inequality from (2.53), we arrive at the bound

(N∨j)−1∑
k=N

1

k
E{ξ−1/2

j,k ; ξj,k > 0} � c

j−1∑
k=N

1

k(jQk)1/2
� c1j

−1/2

j∑
k=1

k−1/2 � c2.

Here we used (2.4) and the bound
∑j

k=1 k
−1/2 � cj1/2. If j � N , then the upper

index in the considered sum becomes less than the lower one, and, consequently, its
value is equal to zero. Combining these two cases, we obtain the inequality

(N∨j)−1∑
k=N

1

k
E{ξ−1/2

j,k ; ξj,k > 0} � cI(j > N).

Estimating the second sum with the aid of (2.54), we obtain

∞∑
k=N∨j

1

k
E{ξ−1/2

j,k ; ξj,k > 0} � j

∞∑
k=N∨j

Qk

k
� cj

∞∑
k=N∨j

k−2 � c1
j

N ∨ j

= c1I(j > N) + c1
j

N
I(j � N).
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The assertion of the lemma follows from the last two inequalities.
Lemma 21.

lim
l→∞

al
[
hn(s)

]
= lim

l→∞
al

[
1

1 − fn(s)
− 1

1 − s

]
= 0(4.6)

uniformly in n � 1.
Proof. It follows from (2.10) that it is sufficient to prove that

lim
l→∞

al

[
1

1 − fn(s)
− 1

1 − s

]
= 0.

In view of (2.11)

1

1 − fn(s)
− 1

1 − s
=

N−1∑
k=0

μk(s) +

n−1∑
k=N

μk(s) =
1

1 − fN (s)
− 1

1 − s
+

n−1∑
k=N

μk(s).

Consider first
∑n−1

k=N μk(s). It is easily seen that for every l � 1∣∣∣∣∣al
[

n−1∑
k=N

μk(s)

]∣∣∣∣∣ �
∞∑

k=N

|al
[
μk(s)]

∣∣ �
∞∑
j=1

|uj |
∞∑

k=N

al
[
f j
k(s)

]

=

∞∑
j=1

|uj |
∞∑

k=N

P(Zk = l | Z0 = j).

Applying (4.5), we get the bound

sup
l�1

∣∣∣∣∣al
[

n−1∑
k=N

μk(s)

]∣∣∣∣∣ � c

(
N−1

∑
j<N

j|uj | +
∑
j�N

|uj |
)
.

It is easily seen that

N−1
∑
j<N

j|uj | < N−1/2
∑

j�
√
N

|uj | +
∑

√
N<j<N

|uj |.

Consequently,

sup
l�1

∣∣∣∣∣al
[

n−1∑
k=N

μk(s)

]∣∣∣∣∣ � c

(
N−1/2

∑
j�

√
N

|uj | +
∑

j>
√
N

|uj |
)
.

Hence, in view of the finiteness of
∑

|uj | we conclude that for every ε > 0 one can
select N such that for all n � 1 the following inequality holds:

sup
l�1

∣∣∣∣∣al
[

n−1∑
k=N

μk(s)

]∣∣∣∣∣ � ε.(4.7)

Further, according to the renewal theorem (see, for example, [11]),

lim
l→∞

al

[
1

1 − fN (s)
− 1

1 − s

]
= 0.
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Hence, in view of (4.7), we conclude that uniformly in n � 1

lim sup
l→∞

∣∣∣∣al
[

1

1 − fn(s)
− 1

1 − s

]∣∣∣∣ � ε.

Because of the arbitrariness of ε this implies the desired result.
Now we are able to complete the proof of the theorem.
It is easily seen that

∣∣∣al[hn(s) gn(s)
]∣∣∣ �

l∑
i=0

|gn,i|
∣∣al−i

[
hn(s)

]∣∣ � gn,0
∣∣al[hn(s)

]∣∣ +
∥∥hn(s)

∥∥
1
sup
i�1

|gn,i|.

Using (4.1) and (4.6) for estimating the first summand, and bounding (4.2) and (2.8)
with the aid of the second one, we arrive at the equality

lim
l,n→∞

n2
∣∣al[hn(s) gn(s)

]∣∣ = 0.(4.8)

Obviously,

q−l−1 = e2l/(Bn)(1 + o(1)) < c(4.9)

if l, n → ∞ and l/n is bounded. Combining (4.4), (4.8), and (4.9), we obtain the
equality

lim
l,n→∞

B2n2

4

(
1 +

2

Bn

)l+1

P{Zn = l} = 1.

This completes the proof of the theorem.

Acknowledgments. In conclusion we would like to thank the referee who called
our attention to a number of inaccuracies and misprints and made useful remarks that
improved the presentation.

REFERENCES

[1] V. M. Zolotarev, More exact statements of several theorems in the theory of branching
processes, Theory Probab. Appl., 2 (1958), pp. 245–253.

[2] H. Kesten, P. Ney, and F. Spitzer, The Galton–Watson process with mean one and finite
variance, Theory Probab. Appl., 11 (1967), pp. 513–540.

[3] V. A. Vatutin, A local limit theorem for critical Bellman–Harris branching processes, Trudy
Mat. Inst. Steklov, 158 (1981), pp. 9–30 (in Russian).

[4] V. P. Chistyakov, Local limit theorems in the theory of branching random processes, Theory
Probab. Appl., 2 (1958), p. 345–363.

[5] K. B. Athreya and P. Ney, Branching Processes, Springer-Verlag, New York, Heidelberg,
1972.

[6] S. V. Nagaev and R. Mukhamedkhanova, Some limit theorems of theory of branching pro-
cesses, in Limit Theorems and Statistical Inference, FAN, Tashkent, 1966, pp. 90–112 (in
Russian).

[7] V. A. Topchii, A local limit theorem for critical Bellman–Harris processes with discrete time,
in Limit Theorems of Probability Theory and Related Questions, Nauka, Novosibirsk, 1982,
pp. 97–122 (in Russian).

[8] V. V. Petrov, Sums of Independent Random Variables, Springer-Verlag, Berlin, New York,
1975.

[9] A. O. Gel’fond, Calculus of Finite Differences, International Monographs on Advanced Math-
ematics and Physics, Hindustan Publishing Corporation, Delhi, India, 1971.

[10] S. V. Nagaev, Error estimation for approximation by stable laws. I, Theory Probab. Math.
Statist., 56 (1998), pp. 151–165.

[11] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed., John
Wiley, New York, 1968.


