ON NECESSARY AND SUFFICIENT CONDITIONS FOR THE STRONG LAW OF LARGE NUMBERS

S. V. NAGAEV
(Translated by B. Seckler)

0. Formulation and Discussion of Results

Let $\xi_{1}, \xi_{2}, \cdots, \xi_{n}, \cdots$ be a sequence of independent random variables with respective distribution functions $F_{1}(x), F_{2}(x), \cdots, F_{n}(x), \cdots$. We shall say that the sequence obeys the strong law of large numbers (S.L.L.N.) if

$$
\mathbf{P}\left\{\frac{1}{n} \sum_{i=1}^{n} \xi_{i} \rightarrow 0\right\}=1
$$

When considering conditions for the S.L.L.N. to be applicable, we may assume without loss of generality that the random variables ξ_{n} are symmetrically distributed (see, for example, [1], Section 1).

Let

$$
I_{r}=\left\{n: 2^{r}+1 \leqq n \leqq 2^{r+1}\right\} \quad \text { and } \quad \chi_{r}=2^{-r} \sum_{n \in I_{r}} \xi_{n} .
$$

Yu. V. Prokhorov [2] showed that the S.L.L.N. is satisfied if and only if

$$
\begin{equation*}
\sum_{r=0}^{\infty} \mathbf{P}\left(\chi_{r} \geqq \varepsilon\right)<\infty \tag{0.1}
\end{equation*}
$$

Thus, the problem of determining necessary and sufficient conditions for the S.L.L.N. reduces to obtaining upper and lower bounds for the probability that a sum of independent random variables exceeds a prescribed level. As a result, the necessary conditions will coincide with the sufficient ones if there exist positive sequences ε_{m} and $\eta_{m}, \varepsilon_{m} \leqq \eta_{m}, m=1, \cdots, \infty$, such that $\eta_{m} \rightarrow 0$ and the lower bound for $\varepsilon=\varepsilon_{m}$ is an upper bound to within a factor constant relative to r for $\varepsilon=\eta_{m}$.

The question naturally arises: In terms of what characteristics of the individual summands must these estimates be formulated if the aim is to obtain sufficient conditions which are at the same time necessary?

In [3], Yu. V. Prokhorov constructed two sequences of independent random variables ξ_{n}^{\prime} and $\xi_{n}^{\prime \prime}$ such that $\mathbf{D} \xi_{n}^{\prime}=\mathbf{D} \xi_{n}^{\prime \prime}$ and one obeys the S.L.L.N. while the other does not.

Hence, it follows that necessary and sufficient conditions for the S.L.L.N. cannot be expressed in terms of variances alone. From general considerations, it is very likely that necessary and sufficient conditions for the S.L.L.N. cannot be formulated with the help of a finite number s of moments, since in most cases lower bounds in terms of moments are excessive.

Such a conjecture was expressed earlier in [3] by Yu. V. Prokhorov.
The following example shows that this is actually so.
Let $L_{s}(x)$ be the Laguerre polynomial $e^{x} d^{s+1}\left(x^{s+1} e^{-x}\right) / d x^{s+1}$. Let a_{s} denote the largest root of $L_{s}(x)$. Let $p_{s}(x)=1 / 2 a_{s}$ for $|x| \leqq a_{s}$, and $p_{s}(x)=0$ for $|x|>a_{s}$. Set $q_{s}=p_{s}+b_{s} e^{-x} L_{s}(x)$ for $x \geqq 0$, where

$$
b_{s}=\frac{1}{2 a_{s}} \min _{0 \leqq x \leqq a_{s}}\left|e^{-x} L_{s}(x)\right|^{-1}
$$

and $q_{s}(x)=q_{s}(-x)$ for $x<0$. Clearly, $q_{s}(x) \geqq 0$ and

$$
\int_{-\infty}^{\infty} q_{s}(x) d x=\int_{-\infty}^{\infty} p_{s}(x) d x=1
$$

Define two sequences of independent random variables ξ_{n}^{\prime} and $\xi_{n}^{\prime \prime}$ as follows. Let ξ_{1}^{\prime} and $\xi_{1}^{\prime \prime}$ have distributions with respective densities $p_{s}(x)$ and $q_{s}(x)$ and let $\xi_{n}^{\prime}=\xi_{n}^{\prime \prime}=0$ for $2^{r}<n<2^{r+1}, r>0$, while $\xi_{2^{r}}^{\prime}$ and $\xi_{2^{r}}^{\prime \prime}$ are distributed, respectively, like $c_{r} \xi_{1}^{\prime}$ and $c_{r} \xi_{1}^{\prime \prime}$, where $c_{r}=2^{r} / \sqrt{\log r}$. The necessary and sufficient condition (0.1) becomes in this case

$$
\begin{equation*}
\sum_{r=1}^{\infty} \mathbf{P}\left(\xi_{1}>\varepsilon \sqrt{\log r}\right)<\infty, \quad \xi_{1}=\xi_{1}^{\prime}, \xi_{1}^{\prime \prime}, \varepsilon>0 \tag{0.2}
\end{equation*}
$$

For sufficiently large r, clearly

$$
\mathbf{P}\left(\xi_{1}^{\prime \prime}>\varepsilon \sqrt{\log r}\right)>b_{s} e^{-\varepsilon \sqrt{\log r}} L_{s}\left(a_{s}+1\right)
$$

Hence, the sequence $\xi_{n}^{\prime \prime}$ does not obey the S.L.L.N. At the same time, it is clear that the sequence ξ_{n}^{\prime} does. On the other hand, $\mathbf{E} \xi_{n}^{\prime k}=\mathbf{E} \xi_{n}^{\prime \prime k}, k \leqq s$, since

$$
\int_{0}^{\infty} x^{k} L_{s}(x) e^{-x} d x=0, \quad k \leqq s
$$

The following assertion answers the question; in what terms can necessary and sufficient conditions for the S.L.L.N. be expressed?

Let

$$
f_{n}(h, \varepsilon)=\int_{-n \varepsilon}^{n \varepsilon} e^{h x} d F_{n}(x)
$$

Define $h_{r}(\varepsilon)$ to be the solution of the equation

$$
\Psi_{r}(h, \varepsilon) \equiv \sum_{n \in I_{r}} f_{n}^{\prime}(h, \varepsilon) / f_{n}(h, \varepsilon)=\varepsilon n_{r}, \quad\left(f_{n}^{\prime}(h, \varepsilon)=\frac{d}{d h} f_{n}(h, \varepsilon)\right)
$$

where $n_{r}=2^{r+1}$, for the case where $\sup _{h} \Psi_{r}(h, \varepsilon) \geqq \varepsilon n_{r}$ (the solution is unique by virtue of the monotonicity of $\left.\Psi_{r}(h, \varepsilon)\right)$. Otherwise, set $h_{r}(\varepsilon)=\infty$.

Theorem. The S.L.L.N. holds if and only if, for $\varepsilon>0$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mathbf{P}\left(\xi_{n}>n \varepsilon\right)<\infty \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{r=1}^{\infty} e^{-\varepsilon h_{r}(\varepsilon) n_{r}}<\infty \tag{II}
\end{equation*}
$$

We shall postpone proving the theorem until Section 1 and in the meantime deduce as corollaries the two validity criteria for the S.L.L.N. due to Yu. V. Prokhorov [3].

Corollary 1. If $\xi_{n}<\varphi(n)$ and $\varphi(n)=O(n / \log \log n)$, then the S.L.L.N. is valid if and only if

$$
\sum_{r=1}^{\infty} \exp \left\{-\frac{\varepsilon}{H_{r}}\right\}<\infty
$$

where $H_{r}=n_{r}^{-2} \sum_{n \in I_{r}} \mathbf{D} \xi_{n}$.
Proof. Without loss of generality, we may assume that $\varphi\left(n_{r}\right)=n_{r} / \log r$.
Necessity. Let $h_{r}(\varepsilon)>\bar{h}_{r}=\varphi^{-1}\left(n_{r}\right)$. Clearly, $f_{n}\left(\bar{h}_{r}, \varepsilon\right)<e$ for $n \leqq n_{r}$. If, in addition, $n \varepsilon>\varphi\left(n_{r}\right)$, then $f_{n}^{\prime}\left(\bar{h}_{r}, \varepsilon\right)>\sigma_{n}^{2} \bar{h}_{r} / e$, where $\sigma_{n}^{2}=\mathbf{D} \xi_{n}$. Therefore,

$$
\bar{h}_{r} \sum_{n \in I_{r}} \sigma_{n}^{2} / e^{2}<\Psi_{r}\left(\bar{h}_{r}, \varepsilon\right) \leqq \varepsilon n_{r} .
$$

Thus, for sufficiently large r,

$$
\begin{equation*}
-e^{2} \varepsilon / H_{r}<-\log r \tag{0.3}
\end{equation*}
$$

Now let $h_{r}(\varepsilon) \leqq \bar{h}_{r}$. Clearly, $f_{n}\left(h_{r}(\varepsilon), \varepsilon\right)<e$ and $f_{n}^{\prime}\left(h_{r}(\varepsilon), \varepsilon\right)>\sigma_{n}^{2} h_{r}(\varepsilon) / e$ for $n \leqq n_{r}$ such that $n \varepsilon>\varphi\left(n_{r}\right)$. Hence, in exactly the same way as (0.3), we can deduce that

$$
\begin{equation*}
-e^{2} \varepsilon / H_{r}<-n_{r} h_{r}(\varepsilon) \tag{0.4}
\end{equation*}
$$

From (0.3) and (0.4) follows the convergence of $\sum_{r=1}^{\infty} \exp \left\{-\varepsilon / H_{r}\right\}$ for $\varepsilon>0$.
Sufficiency. If $\varepsilon h_{r}(\varepsilon)<2 \bar{h}_{r}$, then

$$
f_{n}^{\prime}\left(h_{r}(\varepsilon), \varepsilon\right)<e^{2 / \varepsilon} \sigma_{n}^{2} h_{r}(\varepsilon)
$$

If, in addition, $n \varepsilon>\varphi\left(n_{r}\right)$, then $f_{n}\left(h_{r}(\varepsilon), \varepsilon\right) \geqq 1$. Using these two estimates, we find analogously to (0.4) that

$$
-e^{-2 / \varepsilon} \varepsilon / H_{r}>-n_{r} h_{r}(\varepsilon),
$$

if r is sufficiently large.
Thus, for $\varepsilon>0$,

$$
\sum_{r=r(\varepsilon)}^{\infty} e^{-\varepsilon n_{r} h_{r}(\varepsilon)}<\sum_{r=r(\varepsilon)}^{\infty}\left(r^{-2}+\exp \left\{-e^{-2 / \varepsilon} \varepsilon^{2} / H_{r}\right\}\right)<\infty
$$

i.e., condition (II) of the theorem is satisfied.

Condition (I) is evidently also satisfied.

Corollary 2. If $\mathbf{P}\left(\xi_{n}= \pm a_{n}\right)=p_{n} / 2, \mathbf{P}\left(\xi_{n}=0\right)=1-p_{n}, a_{n}=o(n)$ and there are $c_{1}>0$ and $c_{2}>0$ such that

$$
c_{1} \leqq \min _{n \in I_{r}} a_{n} / \max _{n \in I_{r}} a_{n}, \quad c_{2} \leqq \min _{n \in I_{r}} p_{n} / \max _{n \in I_{r}} p_{n},
$$

then the S.L.L.N. is applicable to the sequence ξ_{n} if and only if

$$
\sum_{r=1}^{\infty} \exp \left\{-\frac{\varepsilon n_{r}}{a_{n_{r}}} \operatorname{arc} \sinh \frac{\varepsilon}{a_{n_{r}} p_{n_{r}}}\right\}<\infty, \quad \varepsilon>0 .
$$

Proof. Necessity. Without loss of generality, we may assume that $n \varepsilon>a_{n}$ for all n. Suppose $\varepsilon / c_{1} a_{n_{r}}<1 / 4$. If, moreover, $\min _{n \in I_{r}} f_{n}\left(h_{r}(\varepsilon), \varepsilon\right)>2$, then

$$
e^{h_{r}(\varepsilon) a_{n}} p_{n}>f_{n}\left(h_{r}(\varepsilon), \varepsilon\right)-1>f_{n}\left(h_{r}(\varepsilon), \varepsilon\right) / 2, \quad n \in I_{r} .
$$

Hence,

$$
\begin{aligned}
\varepsilon n_{r} & =\sum_{n \in I_{r}} \frac{2 a_{n} p_{n} \sinh h_{r}(\varepsilon) a_{n}}{f_{n}\left(h_{r}(\varepsilon), \varepsilon\right)}>\frac{1}{2} \sum_{n \in I_{r}} a_{n}\left(1-e^{-2 h_{r}(\varepsilon) a_{n}}\right) \\
& \geqq \frac{1}{2} n_{r} c_{1} a_{n_{r}}\left(1-e^{\left.-2 c_{1} h_{r}(\varepsilon) a_{n r}\right) .}\right.
\end{aligned}
$$

This implies that $\exp \left\{2 c_{1} h_{r}(\varepsilon) a_{n r}\right\}<2$ and hence $f_{n}\left(h_{r}(\varepsilon), \varepsilon\right)<2^{1 / 2 c_{1}^{2}}$. But if $\min _{n \in I_{r}} f_{n}\left(h_{r}(\varepsilon), \varepsilon\right) \leqq 2$, then $\max _{n \in I_{r}} f_{n}\left(h_{r}(\varepsilon), \varepsilon\right)<2^{1 / c_{1}}+1$. Thus, for $\varepsilon / c_{1} a_{n_{r}}$ $>1 / 4$,

$$
f_{n}\left(h_{r}(\varepsilon), \varepsilon\right)<\Lambda_{1}, \quad n \in I_{r},
$$

where $\Lambda_{1}=\max \left[2^{1 / 2 c_{1}^{2}}, 2^{1 / c_{1}}+1\right]$. Therefore,

$$
\varepsilon n_{r}=\sum_{n \in I_{r}} \frac{2 a_{n} p_{n} \sinh h_{r}(\varepsilon) a_{n}}{f_{n}\left(h_{r}(\varepsilon), \varepsilon\right)}>2 \Lambda_{1}^{-1} n_{r} c_{1} c_{2} a_{n_{r}} p_{n_{r}} \sinh h_{r}(\varepsilon) c_{1} a_{n_{r}} .
$$

Hence, we find

$$
h_{r}(\varepsilon)<\frac{1}{c_{1} a_{n_{r}}} \operatorname{arcsinh} \frac{\Lambda_{2} \varepsilon}{a_{n_{r}} p_{n_{r}}},
$$

where $\Lambda_{2}=\Lambda_{1} / 2 c_{1} c_{2}$ providing that $\varepsilon / c_{1} a_{n_{r}}<1 / 4$.
But if $\varepsilon / c_{1} a_{n_{r}} \geqq 1 / 4$, then

$$
\frac{\varepsilon}{a_{n_{r}}} \operatorname{arc} \sinh \frac{\varepsilon}{a_{n_{r}} p_{n_{r}}} \geqq \frac{c_{1}}{4} \operatorname{arcsinh} \frac{c_{1}}{4} .
$$

The last two estimates and hypothesis (II) of the theorem imply the necessity of the conditions of Corollary 2.

Sufficiency. Observe that $f_{n}(h, \varepsilon) \geqq 1$ for $h>0$. Therefore,

$$
\Psi_{r}(h, \varepsilon) \leqq \sum_{n \in I_{r}} f_{n}^{\prime}(h, \varepsilon) \leqq 2 n_{r} a_{n_{r}} p_{n_{r}} c_{1}^{-1} c_{2}^{-1} \sinh a_{n_{r}} h / c_{1} c_{2}, \quad h>0 .
$$

Hence we obtain

$$
h_{r}(\varepsilon) \geqq \frac{c_{1} c_{2}}{a_{n_{r}}} \operatorname{arc} \sinh \frac{c_{1} c_{2} \varepsilon}{2 a_{n_{r}} p_{n_{r}}} .
$$

From the last estimate it follows that condition (II) of the theorem is satisfied.
Let $\bar{h}_{r}(\varepsilon)$ be the root of the equation

$$
\sum_{n \in I_{r}} \int_{-n}^{n} x e^{h x} d F_{n}(x)=n_{r} \varepsilon
$$

In [1], it is proved that the condition

$$
\begin{equation*}
\sum_{r=1}^{\infty} \exp \left\{-n_{r} \varepsilon \bar{h}_{r}(\varepsilon)\right\}<\infty, \quad \varepsilon>0 \tag{0.5}
\end{equation*}
$$

is sufficient for the S.L.L.N. if $\left|\xi_{n}\right|<n$ for all n. Let us now show that condition (0.5) easily leads to conditions (I) and (II) of the theorem.

Indeed, $h_{r}(\varepsilon) \geqq \bar{h}_{r}\left(\varepsilon^{\prime}\right), \quad \varepsilon^{\prime}=\varepsilon \min _{n \in I_{r}} \mathbf{P}\left(\left|\xi_{n}\right|<n \varepsilon\right)$. Hence condition (II) results if

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(\left|\xi_{n}\right|<n \varepsilon\right)>0, \quad \varepsilon>0
$$

Further, for $2 n_{r} \varepsilon<n$,

$$
\sum_{n \in I_{r}} \mathbf{P}\left(\xi_{n}>2 n_{r} \varepsilon\right)<e^{-2 n_{r} \bar{h}_{r}(\varepsilon) \varepsilon} \int_{2 n_{r} \varepsilon}^{n} e^{\bar{h}_{r}(\varepsilon) x} d F_{n}(x)
$$

Without loss of generality, we may assume that $2 \varepsilon n_{r} \bar{h}_{r}(\varepsilon)>1$. Therefore,

$$
\sum_{n \in I_{r}} \int_{2 n_{r} \varepsilon}^{n} e^{\bar{h}_{r}(\varepsilon) x} d F_{n}(x)<4 \bar{h}_{r}(\varepsilon) \sum_{n \in I_{r}} \int_{2 n_{r} \varepsilon}^{n}\left(e^{\bar{h}_{r}(\varepsilon) x}-e^{-\bar{h}_{r}(\varepsilon) x}\right) x d F_{n}(x)<4 \varepsilon n_{r} \bar{h}_{r}(\varepsilon) .
$$

The last two estimates imply conditions (I) and (II). We can now derive conditions (I) and (II) from Kolmogorov's sufficient condition

$$
\sum_{n=1}^{\infty} \frac{\mathbf{D} \xi_{n}}{n^{2}}<\infty
$$

It is not hard to see that

$$
\begin{aligned}
\int_{-n_{r} \varepsilon}^{n_{r} \varepsilon} e^{h x} x d F_{n}(x) & =\int_{0}^{n_{r} \varepsilon}\left(e^{h x}-e^{-h x}\right) x d F_{n}(x) \\
& <h e^{h n_{r} \varepsilon} \int_{0}^{n_{r} \varepsilon} x^{2} d F_{n}(x)<e^{2 h n_{r} \varepsilon} n_{r}^{-1} \varepsilon^{-1} \int_{0}^{n_{r} \varepsilon} x^{2} d F_{n}(x)
\end{aligned}
$$

On the other hand,

$$
\sum_{n \in I_{r}} \int_{-n_{r} \varepsilon}^{n_{r} \varepsilon} e^{h_{r}(\varepsilon) x} x d F_{n}(x)>n_{r} \varepsilon \min _{n \in I_{r}} \int_{-n_{r-1} \varepsilon}^{n_{r-1} \varepsilon} e^{h_{r}(\varepsilon) x} d F_{n}(x) .
$$

Hence,

$$
e^{-2 h_{r}(\varepsilon) n_{r} \varepsilon}<\sum_{n \in I_{r}} \mathbf{D} \xi_{n} / \varepsilon^{2} n_{r}^{2}\left(1-n_{r-1}^{-2} \varepsilon^{-2} \max _{n \in I_{r}} \mathbf{D} \xi_{n}\right)
$$

This clearly implies condition (II). The validity of condition (I) is a consequence of Chebyshev's inequality.

1. Proof of the Theorem

Necessity. Condition (I) is known to be necessary for the S.L.L.N. (see, for example, [4], p. 60, Theorem 2.7.2).

Let $Q_{r}(h, \delta)=\prod_{n \in I_{r}} f_{n}(h, \delta)$. Let

$$
F_{n}(x, \delta)=\left\{\begin{array}{l}
F_{n}(x),|x| \leqq n \delta \\
F_{n}(n \delta),|x|>n \delta
\end{array}\right.
$$

and $G_{r}(x, \delta)=F_{n_{r-1}+1} * F_{n_{r-1}+2} * \cdots * F_{n_{r}}(x, \delta)$. Denote by $h_{r}(\delta, \varepsilon)$ the root of the equation

$$
\frac{d}{d h} \log Q_{r}(h, \delta)=n_{r} \varepsilon
$$

if it exists. Otherwise, set $h_{r}(\delta, \varepsilon)=\infty$. It is not hard to see that

$$
\begin{equation*}
G_{r}(\infty, \delta)-G_{r}\left(\eta n_{r}, \delta\right)=Q_{r}(h, \delta) \int_{n_{r} \eta}^{\infty} e^{-h x} d \bar{G}_{r}(x, h, \delta) \tag{1.1}
\end{equation*}
$$

for $\eta>0$, where

$$
\bar{G}_{r}(x, h, \delta)=\int_{-\infty}^{x} e^{h y} d G_{r}(y, \delta) / Q_{r}(h, \delta)
$$

Let $\zeta_{r}(h, \delta)$ be a random variable with distribution function $\bar{G}_{r}(x, h, \delta)$. It is not hard to see that

$$
\zeta_{r}(h, \delta)=\sum_{n \in I_{r}} \xi_{n}(h, \delta)
$$

where the $\xi_{n}(h, \delta)$ are mutually independent and

$$
\mathbf{P}\left(\xi_{n}(h, \delta)<x\right)=\int_{-\infty,}^{x} e^{h y} d F_{n}(y, \delta) / f_{n}(h, \delta)
$$

In consequence of (0.1), $\chi_{r} \rightarrow 0$ in probability as $r \rightarrow \infty$. Condition (I) implies that

$$
\lim _{r \rightarrow \infty} \mathbf{P}\left(\max _{n \in I_{r}}\left|\frac{\xi_{n}}{n_{r}}\right|>\delta\right)=0
$$

for $\delta>0$. Now applying the criterion for degenerate convergence, we obtain

$$
\lim _{r \rightarrow \infty} \frac{1}{n_{r}^{2}} \sum_{n \in I_{r}} \int_{|x|<n_{r} \delta} x^{2} d F_{n}(x)=0
$$

(see, for example, [5], p. 317). Hence,

$$
\lim _{r \rightarrow \infty} n_{r}^{-2} \sum_{n \in I_{r}} \int_{-n \delta}^{c / h} e^{h x} x^{2} d F_{n}(x) / f_{n}(h, \delta)=0
$$

for $c>0$ uniformly in $h>0$. Further, for $\eta>0$, there is a $c>0$ such that

$$
\begin{aligned}
& \sum_{n \in I_{r}} \int_{c / h_{r}(\delta, \varepsilon)}^{n \delta} e^{h_{r}(\delta, \varepsilon) x} d F_{n}(x) / f_{n}\left(h_{r}(\delta, \varepsilon), \delta\right)<\left(1-e^{-2 c}\right)^{-1} \\
& \quad \times \sum_{n \in I_{r}} \int_{c / h_{r}(\delta, \varepsilon)}^{n \delta}\left(e^{h_{r}(\delta, \varepsilon) x}-e^{-h_{r}(\delta, \varepsilon) x}\right) x d F_{n}(x) / f_{n}\left(h_{r}(\delta, \varepsilon), \delta\right)<(1+\eta) \varepsilon n_{r} .
\end{aligned}
$$

Hence, for η, there is an r_{0} such that, for $r>r_{0}$,

$$
\begin{aligned}
\mathbf{D} \zeta_{r}\left(h_{r}(\delta, \varepsilon), \delta\right) \leqq & \sum_{n \in I_{r}} \mathbf{E} \xi_{n}^{2}\left(h_{r}(\delta, \varepsilon), \delta\right) \\
\leqq & \sum_{n \in I_{r}}\left[\int_{-n \delta}^{c / h_{r}(\delta, \varepsilon)} e^{h x} x^{2} d F_{n}(x)+\delta n_{r} \int_{c / h_{r}(\delta, \varepsilon)}^{n \delta} e^{h x} x d F_{n}(x)\right] \\
& / f_{n}\left(h_{r}(\delta, \varepsilon), \delta\right)<(1+\eta) \delta \varepsilon n_{r}^{2} .
\end{aligned}
$$

Thus, without loss of generality we may assume that, for $\delta<\varepsilon$,

$$
\mathbf{D} \zeta_{r}\left(h_{r}(\delta, \varepsilon), \delta\right)<\frac{\delta+\varepsilon}{2} \varepsilon n_{r}^{2}
$$

Therefore,

$$
\mathbf{P}\left\{\left|\zeta_{r}\left(h_{r}(\delta, \varepsilon), \delta\right)-\varepsilon n_{r}\right|>n_{r}(\varepsilon-\eta)\right\} \leqq \frac{(\delta+\varepsilon) \varepsilon}{2(\varepsilon-\eta)^{2}},
$$

providing $h_{r}(\delta, \varepsilon)<\infty$ and $\delta<\varepsilon$. Hence we obtain

$$
\begin{gather*}
\int_{n_{r} \eta}^{\infty} e^{-h_{r}(\delta, \varepsilon) x} d \bar{G}_{r}(x, h, \delta)>\frac{\varepsilon(\varepsilon-\delta)-2 \varepsilon \eta+2 \eta^{2}}{2(\varepsilon-\eta)^{2}} e^{-n_{r} h_{r}(\delta, \varepsilon)(2 \varepsilon-\eta)}, \\
2(\varepsilon-\eta)^{2}>(\delta+\varepsilon) \varepsilon . \tag{1.2}
\end{gather*}
$$

From (1.1) and (1.2) it follows that, for $2(\varepsilon-\eta)^{2}>(\delta+\varepsilon) \varepsilon$,

$$
\begin{gathered}
\frac{2(\varepsilon-\eta)^{2}}{\varepsilon(\varepsilon-\delta)-2 \varepsilon \eta+2 \eta^{2}}\left(G_{r}(\infty, \delta)-G_{r}\left(n_{r} \eta, \delta\right)\right) /\left(G_{r}(\infty, \delta)-G_{r}(-\infty, \delta)\right) \\
>e^{-n_{r}(2 \varepsilon-\eta) h_{r}(\delta, \varepsilon)},
\end{gathered}
$$

since $Q_{r}(h, \delta) \geqq G_{r}(\infty, \delta)-G_{r}(-\infty, \delta)$. On the other hand,

$$
\begin{equation*}
0 \leqq G_{r}(x, \infty)-G_{r}(x, \delta) \leqq \sum_{n \in \boldsymbol{I}_{r}} \mathbf{P}\left(\left|\xi_{n}\right|>\delta n\right) \tag{1.4}
\end{equation*}
$$

From (0.1), (1.3), (1.4) and condition (I), we conclude that

$$
\begin{equation*}
\sum_{r=1}^{\infty} e^{-n_{r}(\varepsilon+2 \delta) h_{r}(\delta, \varepsilon)}<\infty, \quad \frac{\varepsilon}{2,3} \leqq \delta<\varepsilon \tag{1.5}
\end{equation*}
$$

Observe that (1.5) is even more valid if all or a part of the quantities $h_{r}(\delta, \varepsilon)$ are infinite.

Suppose that

$$
\sum_{n \in I_{r}} \int_{n \delta}^{n \varepsilon} x e^{h_{r}(\varepsilon) x} d F_{n}(x)>\frac{\varepsilon n_{r}}{3}, \quad \delta<\varepsilon
$$

Then

$$
n_{r} e^{\varepsilon n_{r} h_{r}(\varepsilon)} \sum_{n \in I_{r}}\left(1-F_{n}(n \delta)\right)>\frac{\varepsilon n_{r}}{3}
$$

and hence

$$
\begin{equation*}
e^{-n_{r} \varepsilon h_{r}(\varepsilon)}<\frac{3}{\varepsilon} \sum_{n \in I_{r}}\left(1-F_{n}(n \delta)\right) . \tag{1.6}
\end{equation*}
$$

Now let

$$
\sum_{n \in I_{r}} \int_{n \delta}^{n \varepsilon} x e^{h_{r}(\varepsilon) x} d F_{n}(x)<\frac{\varepsilon n_{r}}{3}, \quad \delta<\varepsilon
$$

Then, for sufficiently large r,

$$
\sum_{n \in I_{r}} \frac{\int_{n \delta \leqq|x| \leqq n \varepsilon} x e^{h_{r}(\varepsilon) x} d F_{n}(x)}{f_{n}\left(h_{r}(\varepsilon), \varepsilon\right)} \leqq \frac{1}{2} \varepsilon n_{r},
$$

since $f_{n}\left(h_{r}(\varepsilon), \varepsilon\right) \geqq 2 / 3$ if n is sufficiently large. This implies that

$$
\sum_{n \in I_{r}} f_{n}^{\prime}\left(h_{r}(\varepsilon), \delta\right) / f_{n}\left(h_{r}(\varepsilon), \delta\right) \geqq \sum_{n \in I_{r}} f_{n}^{\prime}\left(h_{r}(\varepsilon), \delta\right) / f_{n}\left(h_{r}(\varepsilon), \varepsilon\right) \geqq \frac{\varepsilon n_{r}}{2}
$$

and hence,

$$
\begin{equation*}
h_{r}(\varepsilon) \geqq h_{r}\left(\delta, \frac{\varepsilon}{2}\right), \tag{1.7}
\end{equation*}
$$

if r is sufficiently large.
From (1.6) and (1.7), we conclude that

$$
e^{-n_{r} \varepsilon h_{r}(\varepsilon)}<\max \left[\frac{3}{\varepsilon} \sum_{n \in I_{r}}\left(1-F_{n}\left(\frac{n \varepsilon}{4}\right)\right), e^{-n_{r} \varepsilon h_{r}(\varepsilon / 4, \varepsilon / 2)}\right], \quad r>r(\varepsilon) .
$$

Thus, by virtue of (I) and (1.5),

$$
\sum_{r=r(\varepsilon)}^{\infty} e^{-n_{r} \varepsilon h_{r}(\varepsilon)}<\frac{3}{\varepsilon_{n=2^{r(\varepsilon)}}} \sum_{n}^{\infty}\left(1-F_{n}\left(\frac{n \varepsilon}{4}\right)\right)+\sum_{n=2^{r(\varepsilon)}}^{\infty} e^{-n_{r} \varepsilon h_{r}(\varepsilon / 4, \varepsilon / 2)}<\infty
$$

as required.
Sufficiency. On account of (1.1),

$$
\begin{equation*}
G_{r}(\infty, \delta)-G_{r}\left(n_{r} \eta, \delta\right) \leqq e^{-h n_{r} \eta} Q_{r}(h, \delta) . \tag{1.8}
\end{equation*}
$$

Observe that

$$
\frac{d^{2}}{d h^{2}} \log Q_{r}(h, \delta) \geqq 0
$$

i.e., $\log Q_{r}(h, \delta)$ is convex down with respect to h. Therefore,

$$
\int_{0}^{x} \frac{d}{d h} \log Q_{r}(h, \delta) d h \leqq x n_{r} \varepsilon, \quad 0<x \leqq h_{r}(\delta, \varepsilon)
$$

Hence, we obtain

$$
\log Q_{r}(h, \delta)-\log Q_{r}(0, \delta) \leqq \varepsilon n_{r} h_{r}(\delta, \varepsilon), \quad 0 \leqq h \leqq h_{r}(\delta, \varepsilon)
$$

and therefore

$$
\begin{equation*}
Q_{r}(h(\delta, \varepsilon), \delta) \leqq e^{\varepsilon n_{r} h_{r}(\delta, \varepsilon)} \tag{1.9}
\end{equation*}
$$

since $Q_{r}(0, \delta) \leqq 1$.

From (1.8) and (1.9), we see that, for $h_{r}(\delta, \varepsilon)<\infty$,

$$
G_{r}(\infty, \delta)-G_{r}\left(n_{r} \eta, \delta\right) \leqq e^{(\varepsilon-\eta) n_{r} h_{r}(\delta, \varepsilon)}
$$

Now letting $\delta=\varepsilon$ and $\eta=2 \varepsilon$, we have, for $h_{r}(\varepsilon)<\infty$,

$$
\begin{equation*}
G_{r}(\infty, \varepsilon)-G_{r}\left(2 n_{r} \varepsilon, \varepsilon\right) \leqq e^{-\varepsilon n_{r} h_{r}(\varepsilon)} . \tag{1.10}
\end{equation*}
$$

But if $h_{r}(\varepsilon)=\infty$, then

$$
\begin{equation*}
\sum_{n \in I_{r}} M_{n} \leqq \varepsilon n_{r} \tag{1.11}
\end{equation*}
$$

where $M_{n}=\operatorname{ess} \sup \xi_{n}$.
From (1.10), (1.11), (1.14) and conditions (I) and (II), it follows that

$$
\sum_{r=1}^{\infty} \mathbf{P}\left(\chi_{r} \geqq \varepsilon\right)<\infty,
$$

as required.
Received by the editors
April 12, 1971

REFERENCES

[1] Yu. V. Prokhorov, Strong stability of sums and infinitely divisible distributions, Theory Prob. Applications, 3 (1958), pp. 141-153.
[2] Yu. V. Prokhorov, On the strong law of large numbers, Izv. Akad. Nauk SSSR, Ser. Mat., 14, 6 (1950), pp. 523-536. (In Russian.)
[3] Yu. V. Prokнorov, Some remarks on the strong law of large numbers, Theory Prob. Applications, 4 (1959), pp. 204-208.
[4] P. Révész, The Laws of Large Numbers, Academic Press, N.Y. and London 1968.
[5] M. Loève, Probability Theory, Van Nostrand, New Jersey, 3rd ed., 1963.

