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STRONG LAW OF LARGE NUMBERS
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(Translated by B. Seckler)

0. Formulation and Discussion of Results

Let &,,&,,---, &,, --- be a sequence of independent random variables
with respective distribution functions F;(x), F,(x), - - -, F,(x), --- . We shall
say that the sequence obeys the strong law of large numbers (S.L.L.N.) if

1 n

When considering conditions for the S.L.L.N. to be applicable, we may
assume without loss of generality that the random variables &, are symmetric-
ally distributed (see, for example, [1], Section 1).

Let

I,={n2+1=<n<2"%} and x5, =2"") ¢

nel,

Yu. V. Prokhorov [2] showed that the S.L.L.N. is satisfied if and only if

ne

0.1) P(x, = ¢) < o0.

i

r

Thus, the problem of determining necessary and sufficient conditions
for the S.L.L.N. reduces to obtaining upper and lower bounds for the prob-
ability that a sum of independent random variables exceeds a prescribed
level. As a result, the necessary conditions will coincide with the sufficient
ones if there exist positive sequences ¢, and 7,,&, < f,,m=1,---, 00,
such that ,, — 0 and the lower bound for ¢ = ¢,, is an upper bound to within
a factor constant relative to r for ¢ = 1,,,.

The question naturally arises: In terms of what characteristics of the
individual summands must these estimates be formulated if the aim is to
obtain sufficient conditions which are at the same time necessary?

In [3], Yu. V. Prokhorov constructed two sequences of independent
random variables &, and &, such that D&, = D&, and one obeys the S.L.L.N.
while the other does not.
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Hence, it follows that necessary and sufficient conditions for the S.L.L.N.
cannot be expressed in terms of variances alone. From general considerations,
it is very likely that necessary and sufficient conditions for the S.L.L.N.
cannot be formulated with the help of a finite number s of moments, since in
most cases lower bounds in terms of moments are excessive.

Such a conjecture was expressed earlier in [3] by Yu. V. Prokhorov.

The following example shows that this is actually so.

Let L(x) be the Laguerre polynomial e*d**!(x**! e *)/dx**'. Let a,
denote the {argest root of Ly(x). Let p(x) = 1/2a, for |x| < a,, and p(x) = 0
for |x| > a,. Set ¢, = p, + bye” *L(x) for x = 0, where

1 )
b, =~ min |e *Ly(x) ™",
as, 0<x<as

and g(x) = ¢g(—x) for x < 0. Clearly, g(x) = 0 and

[" awac=[" peoax=1

— 0 0
Define two sequences of independent random variables £, and £ as follows.
Let ¢ and ¢ have distributions with respective densities py(x) and g (x) and
let & =¢&;=0 for 2" <n< 2" r>0, while &), and &’ are distributed,

respectively, like ¢,¢} and ¢, ¢, where ¢, = 2"/,/logr. The necessary and
sufficient condition (0.1) becomes in this case

0.2) i P&, > &/logr) < oo, & =¢&,¢&,e>0.

For sufficiently large r, clearly
P& > e /logr) > bye” V' L (a + 1).

Hence, the sequence ¢, does not obey the S.L.L.N. At the same time,
it is clear that the sequence &, does. On the other hand, EE¥ = EE/% k < s,
since

J x*L(x)e *dx = 0, k <s.
0

The following assertion answers the question; in what terms can neces-
sary and sufficient conditions for the S.L.L.N. be expressed?
Let

filh, &) = JM e’ dF (x).

Define h,(¢) to be the solution of the equation

Wiho) = X Silh V) = on, (0 = o ph, ),

nel,

wheren, = 2"*1, for the case where sup, ¥,(h, ¢) = en, (the solution is unique
by virtue of the monotonicity of ‘¥,(h, ¢)). Otherwise, set h,(¢) = co.
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Theorem. The S.L.L.N. holds if and only if, for ¢ > 0,

W) S P, > ne) < o,

n=

e SO o,

Ms

(1)

r=1

We shall postpone proving the theorem until Section 1 and in the
meantime deduce as corollaries the two validity criteria for the S.L.L.N.
due to Yu. V. Prokhorov [3].

Corollary 1. If ¢, < ¢o(n) and ¢@(n) = O(n/loglogn), then the S.L.L.N.

is valid if and only if
Y exp{—Hi} < 00,

r=1

where H, = n; %Y, D¢,

nel,

Proor. Without loss of generality, we may assume that ¢(n,) = n,/logr.
NEecessiTY. Let h(¢) > h, = ¢~ (n,). Clearly, f,(h,,¢) <e for n < n,.
If, in addition, ne > ¢(n,), then f(h,, &) > o2h,/e, where 2 = D¢, . Therefore,

h, Y olje* < ¥,h,,¢) < en,.

nel,

Thus, for sufficiently large r,
0.3) —e?¢/H, < —logr.

Now let h(e) < h,. Clearly, f,(h(e),e) <e and f(h(e), &) > a2h(e)/e for
n < n, such that ne > ¢(n,). Hence, in exactly the same way as (0.3), we can
deduce that

(0.4) —e*e/H, < —n,h).
From (0.3) and (0.4) follows the convergence of Y * , exp{ —¢/H,} for ¢ > 0.
SUFFICIENCY. If ¢h,(¢) < 2h,, then
[h(e), ) < e aghye).

If, in addition, ne > ¢@(n,), then f,(h(¢),e) = 1. Using these two estimates,
we find analogously to (0.4) that

—e *fg/H, > —nhc),

if r is sufficiently large.
Thus, for ¢ > 0,

Y e < Y (172 + exp{—e ¥%%/H,}) < oo,

r=r(e) r=r(e)

i.e., condition (II) of the theorem is satisfied.
Condition (I) is evidently also satisfied.
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Corollary 2. If P, = t+a,) =p,/2, P&, =0)=1—p,, a, = o(n) and
there are ¢, > 0 and c, > 0 such that

¢; < mina,/maxa,, ¢, < min p,/max p,,

nel, nel, nel, nel,

then the S.L.L.N. is applicable to the sequence ¢, if and only if
}< 00, > 0.

en ,
Y. exp{ ——" arc sinh
r=1 ny anrp ny

ProOOF. NECEssiTY. Without loss of generality, we may assume that
ne > a, for all n. Suppose ¢/c,a, < 1/4. If, moreover, min,; f.(h(e), &) > 2,
then

e @inp, > f(h(e), &) — 1> f(h(e), 8)/2, nel,.
Hence,

2a,p, sinh h(¢)a 1 _
en. = nt’n r n > - an 1 —e 2h,()an
T TOYE W R P )

2 incia, (1 — e 2k

This implies that exp{2c,h,(e)a, } <2 and hence f,(h,(e), ¢) < 2'/%%. But if
min,.; f,(h(e),¢) < 2, then max,; f,(h(c),e) < 2" + 1. Thus, for ¢/c,a,,
> 1/4,

f;t(hr(g)a 8) < Al’ nEIr,
where A, = max[2!/2¢3 21/ 4 1]. Therefore,

_— 2a,p, sinh h(¢)a,
’ nel, f;t(hr(g)a 8)

Hence, we find

> 2A[ 'n,c,c,a, p, sinh h(e)c,a, .

) A,e
arc sinh —>—,
Clanr an,.pn,,

where A, = A,/2c,c, providing that ¢/c,a, < 1/4.
But if ¢/c,a, = 1/4, then

h(e) <

e R c .. C
— arc sinh > L arcsinh .
nr a”rp"r 4

The last two estimates and hypothesis (II) of the theorem imply the
necessity of the conditions of Corollary 2.

SUFFICIENCY. Observe that f,(h, &) = 1 for h > 0. Therefore,
W, (h,e) = Y fih,e) < 2n,a,p,ci'c;  sinha, hjcic,, h>0.

nel,

Hence we obtain

cqC . C1ChE
h(e) = -2 arc sinh 12,
anr anrp"r
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From the last estimate it follows that condition (II) of the theorem is satisfied.
Let h,(¢) be the root of the equation

D x e"™ dF,(x) = n,e.
nel,, ¥ —n
In [1], it is proved that the condition

(0.5) i exp{ —n,eh,(e)} < oo, e>0

r=1

is sufficient for the S.L.L.N. if |,| < n for all n. Let us now show that condition
(0.5) easily leads to conditions (I) and (II) of the theorem.

Indeed, h,(e) = h (), ¢ = emin,, P(&,| < ne). Hence condition (II)
results if

}1_}11010 P(¢&,| < ne) > 0, e> 0.
Further, for 2n,¢ < n,

Y P, > 2n,e) < e‘z”'r"(”ef "% dF (x).

nel, 2n,¢

Without loss of generality, we may assume that 2en,h,(¢) > 1. Therefore,

Z er®x g F,,(x) < 45,.(8) z (ei'nr(e)x _ e—ﬁr(e)x)x d Fn(x) < 48nrhr(8).

nel,. ¥ 2n,¢ nel, Y 2n,¢e

The last two estimates imply conditions (I) and (II). We can now derive
conditions (I) and (II) from Kolmogorov’s sufficient condition

© Dén
2

< 0.

n=1

It is not hard to see that

f " X dE(x) = f (€ — e™)x dE(x)

0

nyeg

<h e’"’"’f x? dF,(x) < e*Mrep g1 f x? dF(x).
0 0

On the other hand,

nye N 1€
Y e"®*x dF (x) > n,e min f et ®* dF (x).

nel, ¥ —n,e nelr 4y _ ¢

Hence,

e 2@me < N DE [e2n2(1 — n 2 e ? max DE,).

nel, nel,

This clearly implies condition (II). The validity of condition (I)is a consequence
of Chebyshev’s inequality.
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1. Proof of the Theorem

NEcEessiTY. Condition (I) is known to be necessary for the S.L.L.N.
(see, for example, [4], p. 60, Theorem 2.7.2).

Let Q,(h, 0) = nmr Sulh, 6). Let
FE,(x),|x| < né,
Fn(x,5)={ (%), x|
FE,(nd), |x| > nd,
* F,

and G,(x,0) = F, w142 % *F, (x,0). Denote by h,(6, ¢) the root

of the equation

r-1+1

d
d_h log Qr(h, 5) = n,

if it exists. Otherwise, set h,(J, ¢) = oo. It is not hard to see that
(L1) G (00,3) = Glnm,8) = Q,hd) [ e dGx,h, ),
nen

for n > 0, where
G,(x, b, 3) = f & dG,(y, 8)/Q,(h. 6).

Let {,(h, 5) be a random variable with distribution function G(x, h, 9).
It is not hard to see that

{uh, 0) = 3, &k, 0),

nel,

where the &,(h, ) are mutually independent and
P(&,(h,0) < x) = f e" dF,(y, 8)/ f.(h, 9).

In consequence of (0.1), y, —» 0 in probability as r — co. Condition (I)
implies that

n

n

r

lim P(max

r—oo nel,

>5)=O,

for & > 0. Now applying the criterion for degenerate convergence, we obtain

1
lim — ) x2dF(x) =0
roo N, nel, Y|x| <n,.é
(see, for example, [5], p. 317). Hence,
c/h
lim n? Z e"*x? dF (x)/ f,(h, §) = 0,

r— o nel, ¥ —né
for ¢ > 0 uniformly in & > 0. Further, for # > 0, there is a ¢ > 0 such that

nd
Y[ et dr o 6,9,8) < (1 - 79

nel, Y c/h(d,¢g)

ndé
X Y (e"@x — g~ hGax)x dF (x)/ f(h,(5,¢), ) < (1 + n)en,.

nel, Y ¢/h(d,¢)
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Hence, for 7, there is an r, such that, for r > r,
D{,(h(0,¢),0) £ Y EEXh(S,¢),9)

nel,

c/hy(d,€) né
=y [J e"*x? dF,(x) + on, f e x dF,,(x)]

nel, —né c/hy(d,€)
108,00 8) < 1+ ) .
Thus, without loss of generality we may assume that, for 6 < ¢,

D, (5, 8), 8) < * " on?

en;..

Therefore,

HMMﬁ&%&—””>m@'m}§£;%§’

providing h,(d, &) < oo and ¢ < &. Hence we obtain

@ 2
e~ "0.9% 4G (x, h, ) > ee — 0) — 2en + 2 o= nrhr(B.8)28= 1)
nn ' 2e —ny

2(e — )* > (6 + e
From (1.1) and (1.2) it follows that, for 2(¢ — 1)*> > (6 + ¢)e,

2(e — n)?
ele — 0) — 2en + 21

(1.2)

2 (G,_(CO, 5) - Gr(nrrl7 5))/(Gr(00, 5) - Gr( — 0, 6))

(1.3) > e~ nr(2e=mhr@.e)
since Q,(h, 8) = G,(c0,8) — G,(— o0, 6). On the other hand,
nel,
From (0.1), (1.3), (1.4) and condition (I), we conclude that
(1.5) i e et 20h0:8) < o & <d<e.
r=1 2, 3

Observe that (1.5) is even more valid if all or a part of the quantities h,(J, ¢)
are infinite.

Suppose that e on
Y| xeMxdF(x) > -, d<e.
nel,. Yné » 3
Then
me O 3 (1= Fn) > 7
nel,.
and hence
3
(1.6) e mrehr(® < Z Z (1 — FE,(no)).

nel,
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Now let

ne En
Y| xe"@*dF(x) < ?', d<e.

nel, ¥ né

Then, for sufficiently large r,

Z fnég |x| <ne x ehr(E)x an(x)
nel, f,,(hr(a), 8)
since f,(h,(¢), &) = 2/3 if n is sufficiently large. This implies that

lIA
N

en,,

> fulh(2), 0)/ £i(h (&), 8) = 3 frh(e), 0 filh o), &) 2 ﬁ;—

nel, nel,

and hence,

(17) e (5,§),

if r is sufficiently large.
From (1.6) and (1.7), we conclude that

3
e "eh® < max |:— Y

& nel,

ne

1 - F”(Z)) , e'”*a""e/“"/z):l , r>re).

Thus, by virtue of (I) and (1.5),
d 3 2 ne d
e—nrahr(a) <Z (1 _ Fn(—)) e—nreh,-(t:/4,s/2) < o0,
r=Zr(e) 9 n=§’(€) 4 n=§(5)
as required.
SUFFICIENCY. On account of (1.1),
(1.8) G,(0,9) — G,(nn,d) < e”""Q (h, J).

Observe that
2

a% log Q,(h, &) 2 0,
i.e., log Q,(h, 6) is convex down with respect to h. Therefore,
f:%log Q,(h,6)dh < xn,e, 0<x=h(,¢).

Hence, we obtain

log Q,(h, 6) — log Q,(0,9) < en,h(d,¢), O =h=h(0,e¢),
and therefore
(1.9) Q,(h(3, ¢), 8) < e,
since Q,(0,6) =< 1.
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From (1.8) and (1.9), we see that, for h,(9, &) < oo,
G(o0,0) — G,(nn, 8) < & Mhr(0:2),

Now letting 6 = ¢ and n = 2¢, we have, for h(¢) < o,

(1.10) G(0,¢) — G,(2ne, &) < e~ @,
But if h,(¢) = oo, then
(1.11) Y M, £ en,

nel,

where M, = esssup &,,.
From (1.10), (1.11), (1.14) and conditions (I) and (II), it follows that

Y Py, 2 ¢) < oo,
r=1

as required.
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