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Introduction

Let {Xj}: be a sequence of random variables (r.v.) such that

2 B2 2 EIXj[3Fj(x) P(Xj < x); EXj 0, EX aj, aj,
j=l

Let

< x),
j=l

--U2/2(I)(x) (2zr) 1/2 e du, A(x) F(x) (I)(x), 6 sup [A(x)[.
--03 X

We agree to denote by L and b, with or without subscripts, absolute
positive constants.

The problem of obtaining estimates for the quantity 6 in which the right-
hand sides tend to zero as the distributions of the summands approximate
the normal distribution was apparently first considered in [1]. (Earlier in [2],
the case was investigated where they become close to stable laws.)

In particular, for a pair of distributions (F, G) [1] and [2] introduced
the quantity

()(F, G) Ixll(f a)(dx)l

into consideration, termed the r-th absolute pseudomoment, and obtained
the estimate (cf. [1])

(0.1) 6 <= Lo(/B)/,
where Lo 0.28845, , : j and j ,)(Fj(x), (x/aj)).
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108 S. V. Nagaev and V. I. Rotar’

In [3], along with the pseudomoment t, another characteristic of the
distributions was considered which is more natural to the estimation of the
closeness of distributions in the uniform metric. The quantity introduced
there differs merely by the absence of the factor r from the quantity

v()(F, G) r Ixl lF(x) a(x)[ dx,

which in the following we shall call the r-th absolute difference moment of the
pair (F, G). In particular, it was noted in [3] that

v()(F, G) <= t)(F, G).

In the estimation of the closeness of the distributions of two convolutions in
the Ldvy metric, an inequality was obtained in [3 differing from (0.1) in that
the pseudomoments are replaced by difference moments.

In the general case, estimates of type (0.1) do not lead to the estimate of
the Berry-Esseen theorem (cf. [4]):

(0.2) 6 Lo2 /S
j=l

Nevertheless, as will be shown below, the estimate (0.1) is exact within the
limits of the applicable information about the distributions of the r.v. Xs.

We observe first of all that a sequence of distribution functions G,,(x)
(m 1,.-. o) exists such that ,, (G,,, O) 0 as m while

x/, To construct an example, we merely have to setsuplG,,(x) O(x)[ _>_ b 1-,,
1/m X2G,,,(x) (x) for Ix[ > 1/m; 6,,,(x)= (-l/m) + o, where el m20

x d(x), for -1/m < x < 0; G,,(x) O(-1/m) + 0 1%- 2, where 2
2 [./m d(x) 2e, for 0 < x < 1/m. (The existence of such a sequence of

functions was pointed out to us by V. . Sazanov.)
Suppose now a2 a, 0 and P(X < x)= Gm(x). Then the

estimate (0.1) is true. Observe that, in that case, a 1. A less trivial example
with a2,. ., a, all non-vanishing is also not hard to construct if the variances

2 X, are normally distributed,a22, a, are sufficiently small, the r.v. X2,
and the familiar smoothing theorems are used (see, for example, [4]).

The case described above is of the nature of an extreme case. In other
cases, estimates of a different type prove to be exact. Thus, for identically
distributed summands, the convolution method was used in [5] when a 1
to obtain the estimate

(0.3) A(x) go3 max{, l/4}/N
where (3)(Fs, O). It is easy to see that (0.3) leads to (0.2).

The convolution method was also used in [6] to obtain estimates for
identically distributed multidimensional summands which reduce in the
one-dimensional case to the estimate (0.3) with an additional factor of
(1 + Ix13) -.
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This paper obtains estimates for the quantity 6 in the case of non-
identically distributed summands. They imply, in particular, inequalities
(0.1)-(0.3). In deriving these estimates, we shall make use of the method of
characteristic functions.

Some of the results were reported briefly in 7].
The authors wish to express their thanks to V. M. Zolotarev for having

pointed out an inaccuracy in the proof of Lemma 1.

1. Formulation and Discussion of Results

Apparently, the most graphic consequences of the theorems stated
below are the following estimates.

, 3 v3)(Fj(x) dp(x/aj))and A v. ThenLet C j: 10"j, Vj n=
(1.1) 6 <= LI max{A/B; (A/B)/(C/B)/}.

Further, if BZ/n 1, v A/n and mini aj >= v 1/, then

(1.1") 6 <= 4.2v/’/x.
There is no loss of generality in the condition that B n is finite.

In order to bring the resultant estimates into general form, we need some
additional notation.

Let us agree that max aj a >= (72 an min aj. Let a(u) be a
polygonal path defined on [1, n + 1] with nodes at the points (1, al), (2, o’2)
-., (n, r,), (n + 1, 0). Let BZ(u)= aZ(u)[u]

3
+ =,+1 a ([u] is the integral

part of u) and C(u) a(u)u] + =,+ aj. Observe that B(u) and C(u) are
continuous functions of u.

Theorem 1. Thefollowing estimate holds"

(1.2) 6 <: L12 min{A/B(u) + (A/B)I/4(C(u)/B(u))/}.

Corollary 1.1. Since B(1) B and C(1) C, estimate (1.1)follows from
(1.2).

Denote the first term in the braces on the right-hand side of (1.2) by
A(u) and the second term by Az(tt). A(u) is non-decreasing and Az(U non-
increasing with increasing u. (The last follows, for example, from the fact that
Az(U is differentiable for non-integral values of u and its derivative is non-
positive.) Further, for A __< C, A 1(1) __< A2(1) and the equation A (u) A2(u)
has a solution. This last equation is equivalent to

(1.3) AB B(u)C(u).

Corollary 1.2. Suppose A <= C and u is any solution of(1.3). Then

A
(1.4) <_ L Ba(u 1),
and (1.4) is equivalent to (1.2) up to a constantfactor.
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In many situations, an estimate which is equivalent to (1.2) up to a
constant factor can be more convenient and yields the following.

Theorem 2. Thefollowing inequality holds"

(1.5) _< L4 min
( +B u)

The evaluation .of L, which we shall omit, shows that L =< 2.1.
If v A/n and

(1.6) a, vl/4(B/N//) 1/4,

then A/B(n) a(n)/B, from which one can obtain
Corollary 2.1. Under condition (1.6),

(1.7) 2L4(A/B)I/4n-/s.

If B2/n 1, (1.7) reduces to the estimate (1.1") and condition (1.6) to the
condition a, v 1/.

In exactly the same way as (1.2) led to (1.4), (1.5) leads to
Corollary 2.2. Let A 1B2 and let u 2 be a solution of the equation

(1.8) AB B(u)a(u).
Then
(1.9) 6 5 L15A/B3(u2),
where L 4.2, and (1.9) is equivalent to (1.5) up to a constantfactor.

The equivalence of the estimates (1.2) and (1.5) will be proved later but
at this point we state that Theorem 2 is interesting, in particular, in that a
direct proof of it is much simpler than the proof of Theorem 1. However,
since a direct proof of (1.2) is, in the opinion of the authors, of methodological
interest in its own right, we shall prove Theorems 1 and 2 separately.

We shall now make some remarks about the theorems.
REMARK 1. Since C B 3, (1.1) implies (0.1). It is not hard to verify that

(1.1) can be reduced in the case of identically distributed summands to (0.3)
and since vj < pj + 4a/ and aj pj, (1 1) implies also (0.2).

REMARK 2. If A C, it follows from (1.2) that

(1.10) 6 L16A/B3.

B2 These are trivialThis same estimate also follows from (1.5) if A a
cases because when A aB2 (and when A C), (1.10) follows from (0.2)
since pj vj + 4a}/.

RZMhg 3. Let l= u2] and a, a(u2). Since a,/B A/B3(u2)
A/(la)3/2, we have a, (AB)/l-3/8 and, under the condition A aB2,

v/4
L17 *

where v, A/B3 and L7 4.2.
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Let us now prove the equivalence of (1.2) and (1.5). We shall confine
ourselves to the case A <= C (and, hence, A __< o-1B2) and prove the equiva-
lence of (1.4) and (1.9). From (1.3) and (1.8) it is not hard to deduce that
ux =< u 2 and hence that B(Ul) >= B(u2).

Let us show that

(i.11) B(Ul) <= 2B(u:).

If

then

[uz]
2O’j2 __.> 0.2(b/ 1)[Ul] -- 2 O’j,

j=[u2]+ j=[ux]+

B2(Ul)-- o-2(u1)[u1] -- 2 2<22 O’j .qt_ O’j
j=[ul]+ j= [u2]+

2 < 2B(u2)"O’j
j [u2] +

Now let

[U2]
22 < O.2(U )Eu _.[_ 2 O’j.O’j

j=[u2]+ j=[ul]+

Let us prove that then

(1.12) a(u2)B2(u2) <__ 2C(Ul).
Indeed,

a(u2)B2(u2) <- a(u2) 2(u2)[u2] + 0"2(Ul)Ul] -- _
O"

j=[u]+

O’(b/2 f(O’2(Ig2)[Igl] -- O’2(Igl))[Igl] -- O’2(b/2)([R2] lUll)

2 < 2C(Ul)"-[" 2 O’j
j-[u]+

Moreover, from (1.3) and (1.8) it follows that

(1.13) (u2)B3(u2)-- C(u)B(Ul).

From (1.13) and (1.12) results (1.11).
We now pause to consider the possibility of increasing the power 1/4

occurring in the estimates. In the general case, for example, for n 1, this
cannot be done. However, a number of considerations indicate that for suffi-
ciently large n the estimates can be improved in this direction. Thus the follow-
ing is valid.

Theorem 3. Suppose the r.v. Xj, j 1,..., n, are identically distributed,
O" 1 and v Yj 1. Then

v 1/3 0.23 exp{- 0.2n}
(1.14) 6 _<_ 6--- +
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Corollary 3.1. For all n such that n-1/2 exp(-0.2n) <= v 1/3

(1.15) 6 <= 6.23v//x/.
2. Subsidiary Results

Let z (z,..., Zm) (1’"""’ m)’ m _>_ 2, and

q(z, fl)= l-I e- + tiff, M max q(z,
j= z,fl

where max,,(z, fl) is chosen under the conditions

(2.1) zj__>0, flj0, j= 1,...,m,

(2.2) z D,
j=l

3/2 E,(2.3) Z zj
j=l

m

(2.4) Z flj K,
d=l

D and E being such that U"), the set of all z determined by conditions (2.1)-
(2.3), is non-empty.

Lemma 1o Let

(2.5) (3E/D)2,

(2.6) q [D3/27E2].
Then

(2.7) M _<_ (e + K1)(1 + K2)m-q,

where K and K2 are non-negative numbers satisfying Klq + Kz(m q) K.

POOF. Point z is an interior point of the set (2.1) if and only if all of its
coordinates are strictly positive. Assume that the extremum point z is interior.
Using Lagrange’s method for finding a conditional extremum, we have

-e-’(e-’ + fl.i) 1-[ e-" + fl,) + )1 + -)2Z/2 O,

(2.8)
1/2 0,

ki,j

(e-’ + ,) (e -= + ) + o,
(2.9) ki,j

e-=’ + ) H (-= + )+ 7, 0,
k,i,j

where 71,72, and 7 are constants and (i, j) is a selection from the set (1, , m).
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From (2.8) and (2.9) it is not hard to find that

(2.10) 73(e -Z’- e -z) -72(zJ/2 z]/2),
e -e

Let v x, 7 32/27 and h exp(-v2). Then (2.10) can be
rewritten in the form
(2.10") h hj 74(vi- vj).
All points in the h, v-plane satisfying condition (2.10") lie on one straight line.
But for v > 0, a line intersects the curve h exp(-v2) in at most three points.
This means that the numbers z,..., z,, can be split into at most three groups
in each of which all z are equal. From (2.11) it follows that when z zj,
then so is i j"

Now let the point at which an extremum is attained not be interior
and for definiteness let z,..., z 4:0 and zj 0 for j + 1, ..., m. Having
fixed flj forj + 1,-.., m, we pass to the "/-dimensional case" and consider
the function q 1-Ij= (exp(-zi) + flj). It is clear that the stipulation about
the splitting of the values of zj, flj for j 1,..., into three groups remains
true. Thus, without loss of generality, we may assume that there exists an
integer p =< m such that zj z forj 1,..., p and pz >= D/3. We have

M (e -z’ + ill)p I-I e-z + )
j=p+l

-<(e-’ +fl)P 1-[ (1 +flj).
j=p+l

I-I
j=/+l

Further, since for fixed sum fli + flj, the maximum of (1 + fli)(1 -+- j)
is attained when fli fl,

M <__ (e -z’ + fl:)P(1 + ,)m-p,
where/31p + fl’(m p) K.

Since pz >= D/3 and pz3/e <= E, we have z _< (3E/D)2. Further,
p

(e -z’ + [3)p <= max’ I-I e-’ + ill),
j=l

where max’ is taken under the conditions P sj =/3 pz and 0 < sj < .
j---1

But max’ can be attained only if (up to a permutation of subscripts) s
for all j 1, ..., Po, where Po [/3/3, Spo+ [D/] and sj 0 for
all j >= P0 + 2. The latter follows from the fact that if s and sj satisfy
0 < s =< sj < , then

(e- + fl)< exp{-min(, s, + sj)} + fl)
x (exp{-si- sj + min(c, si + sj)} + fl).

Further, Po ->- q [D3/27E2] and

M =< (e - + fl,)(1 + flx)’-(1 + fl’)"-P =< (e -* + fl,)(1 + fl")"-,

where flq + fl"(m q) K. The lemma is proved.
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Lemma 2. Let H > B and
[u] iI 2t2/2} + VJt3/6)Z(t) 1-[ (exp{-trZ(u)t2/2} + vit3/6) (exp{--tri
j= j=[u]+

I(s) A 7.(t)t dt + l/He.

Thenfor any u satisfying 1 <_ u < n + 1,

min I(e) <_ L(A/Ba(u) + (u)/H).
0 < <- 1/(u)

PROOF. Let 0 <_ <_ 1/a(u). Then
e-tr2(tQt2/2 -J[- vit3/6 <= e-(")’g/2(1 + x/vit3/6)

<__ exp{--aZ(u)t2/2 + x/vjt3/6},
and, for j => u] + 1,

2t2/2 + x/vjt3/6}.e ,/2 + vjt3/6 < e ’/2(1 + x/-vjt3/6) <__ exp{
From this we obtain

(2.12) 7.(0 <- exp{-BZ(u)t2/2 + x/At3/6}.
CASE I. Let A >= o’(u)B2(u). Set e B2(u)/A <= 1/tr(U). Then, for 0 -< _<_ e,

X(t) __< exp { 0, 2BZ(u)t2},
This easily implies that, for e BZ(u)/A,

I(e) <= L22(A/B3(u) + A/HB2(u)) <= 2L22A/B3(u).

and

CASE II. Now let A < o’(u)B2(u). Set e 1/tr(u). Then, for 0 __< _< e,

7.(0 <= exp{-(BZ(u)/2 x/A/6tr(u))t2} <- exp{-O.ZBZ(u)t2}

I() <= L23{A/B3(u) + r(u)/H}.
The lemma is proved.

In proving Theorem 1, we shall make use of both lemmas proved above.
Only Lemma 2 will be needed in the proof of Theorem 2.

3. Proofs of Theorems 1 and 2

Let

f(t) E exp{itXj}, f(t) lI fj.(t);
j=l

g(t) exp{- t2/2}, gj(t) g(ajt) h( t) f t) g(Bt)
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We shall use the following variant of the well-known Esseen inequality
(cf. [4])"

(3.1) 6 -< (2/rt) Ih(t)/tl dt + 24/rx/Be,

as well as the elementary inequality

(3.2) Ih(t)l =< [f(t) g(t)l.lwj(t)l,
j=l

where wj(t) (g g_f+ f,)(t).
We shall also assume everywhere that >_ 0. Integrating by parts, we

obtain

If(t) g:i(t)l (eitx 1 itx + t2x2/2)d(Fj(x) (x/aj))

(3.3) (ei’ 1 itx)(Fj(x) (x/tr)) dx

1
<_ -t3

-2
x21Fj(x) O(x/ffj)ldx vjt3/6.

From (3.3) we obtain

(3.4) If.(t)l gj(t) -t- vjt3/6.

Let 1 =< u < n + 1. From (3.4) and the fact that a >= 0"2 O’n,
it easily follows that

[u]

Iwj(t)l _-< e-r’/2 + vjt3/6) <= 1-I (e-tr2(u)t2/2
j=2 j=2

+ vjt3/6) (I e-#/2 + vjt3/6) Z*(t).
j=[u]+

From (3.1)-(3.3) and (3.5), we find for any e > 0 that

(3.6) 6 --< L31 A tEz*(t) dt + l/Be}.
PROOF OF THEOREM 2. For _< 1/tr(u), it is clear that

(3.7) X*(t) =< x/g(t),
where Z(t) is the function occurring in Lemma 2.

The conclusion of Theorem 2 is an easy consequence of (3.6), (3.7) and
Lemma 2.



116 s. v. Nagaev and V. I. Rotar’

PROOF OF THEOREM 1. Let

B2(u) a2(u)([u 1) +

Cl(U o-3(u)(Iu] l)--[-

A1--
j=2

2

j=[u]+

3
O’j,

[u] +

To estimate the function Z*(t), we apply Lemma 1. Let

D B(u)t2/2, E Cl(U)t/2/2, K AltO/6 _< Ate
qA’(t) + (n q)A"(t)= A

(see Section 2),

q [B(u)/Z7CZ(u)], a 3Cl(u)/B(u).

Then using (2.7), we obtain

(3.8) Z*(t) (e -a2t2/2 "k- A’(t)t3/6)q(1 + A"(t)t3/6)"-q.

The quantities A’ and A" depend on but a and q do not.
Consider the case

(3.9) C(u) <= B3a(u)/3 3/2,
which implies the condition q _> 1.

Now let v be such that a => v > 0,

Z’(t) (e -t/2 + h’(t)t3/6)q(1 + h"(t)t3/6)"-q.

From (3.6) and (3.8) we obtain

(3.10) 6 _< L A t)*(t)dt + l/Be LI(e),

It is easy to see that the expression we still have to estimate differs
from I(e) (see Section 2) in notation only and in the fact that A’ and A" depend
on t. (The condition H _>_ B is satisfied since B2 >__ aZq.) Repeating exactly the
computations in the proof of Lemma 2 and satisfying ourselves that the
dependence of A’ and A" on requires no changes in the estimates, we easily
obtain

(3.11) min l,(e) <_ L32(m/v3q 3/2 + v/B)= L32(Ol(V) -+- Q2(v)).

If Q(a) >= Q2(a), we take v a. If Ql(a) < Q2(a), then the quantity v* chosen
from the condition Ql(V) Q2(v) (and equal to (AB)I/4q 3/8) is less than a and
we take v v*. From the above, it follows that

(3.12) min Ii(e) _< 2L32(Q1(a -+- Qz(v*)).
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Further, under condition (3.9), q >__ 1 and hence q >= B61(u)/54C2(u). From
this and (3.12) it is easy to see that

(3.13) 6 <__ L33{A/Bx(u) + (A/B3)I/4(CI(u)/B3(u))3/4}
when (3.9) holds. Now using the fact that Iwj(t)l _-< 1, we can easily obtain
from (3.1)-(3.3) the estimate

(3.14) 6 <= L3,(A/B3)/.
Since estimate (3.13) follows from (3.14) when the opposite condition to
(3.9) holds, we conclude that (3.13) is also valid in the general case.

It remains for us to show that (3.13) implies (1.2). Since Cx(u) <= C(u),
this will be true if

(3.15) B2(u) >= B2(u)/2.
For u __> 2, (3.15) is trivial. For u] 1 and a2(u) __< B2(u)/2, (3.15) follows

n 2 > B2(u)/2. The case [u] 1 andfrom the fact that B(u)= j=,+aj
r2(u) __> B2(u)/2 is considered separately. From (3.14) we find

6 <= L3(A/B3)I/4(a3(u)/B3(u))3/4 <= L3s(A/B3)X/4(C(u)/B3(u))3/.
The theorem is proved.

4. Proof of Theorem 3

If the summands are identically distributed and a
(3.3) lead to

(4.1) Ih(t)[-< vlt] 3 i ]wj(t)l/6,
j=l

1, then (3.2) and

where wj(t) (gJ-- f-J)(t).
Let e 1/v /3. For 0 =< =< 1, we have

(4.2) If(t)l =< exp{ -t2/2} (1 + x// vt3/6) <= exp{ -t2/2 + x/e vt3/6}.
For 1 < =< e,

If(t)l _-< 8 -1/2 + vt3/6 <= exp{--1/2 + x/evt3/6}.
Thus, for 0 < =< 1,

(4.3)
Iwj(t)l exp{-(j 1)t2/2 -(n j)t2/2 + (n J)x vt/6}

<_ x/exp{--nt2(1 x//-v2/3/3)/2} <= xfexp{--0.2nt2},
and, forl < t=<e,

(4.4)
Let

[w(t)l-< exp{-(j 1)t2/2 -(n j)/2 + (n j)x/vt3/6}.

Ij t2]O)j(t)l dt + I + I2j.
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Using (4.3), we obtain

(4.5) Ilj 2x/rte n- 3/2,

Further, for j _> 2, we find from (4.4) that

(4.6) I __< exp{-O.2(n j)} exp{-(j 1)t/2} dt <= 15n -a/.

We estimate Ia obtaining

(4.7) I2 =< -exp{-n/2} e exp{n/- t3v/6} dt <= 2 exp{-O.2n}/vn.

From (3.1), (4.1), (4.5)-(4.7), we conclude that the assertion of the theorem
holds.

5. Supplement

In this section, we shall state without proofsome estimates which contain
a large amount of information about the distributions of the r.v. Xj. These
estimates generalize (1.9) and in certain situations are essentially more exact
than (1.9) (and (1.2)). For simplicity, we put BZ/n 1. Let

v n- v, V(1)(U)- F/

j=l

-1
[u]

Z + (u
j=l

n
j=[u]+ 2

2(bl) "-FI-I{([U] "21-1- U)O’u]+l "]- 0"},
j=[u]+2

Introduce into consideration the functions

2(u) aZ(u)q(u)+ 2(u).

Vx(u) v()(u)/(e2(u)- x/ v/3a(u))3/2 + v(2)(u),

V2(u vX)(u)/a3(u)q3/(u) + vZ)(u),
V(u) min{V(u), V2(u)},
V3(u y(1)(u)/33(u q-

Theorem 4. Suppose

(5.1) 0 < v < a/2
and fi, is any solution of the equation V(u) a(u). Then

6 =< 5.6V--(fi,)//-.
Theorem 5. If a number u, exists such that 1 <_ue, < n + 1 and

Vz(u2, a(u,), then

__<
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Theorem 6. Suppose condition (5.1) holds and//3, is a solution of
V (u)

Ifu3, is such that there exists a number a < 1 for which

V/tT(U3,) 3ae2(u3,)/X//-,
then

4.2 V3(u3,),5<
-(1 a)3/2 -h

REMARK 5. The last condition of Theorem 6 is satisfied if, for example,
1;(2)(U3,) --- bvt)(u3,), where b < 0.1.
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