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1. Introduction and statement of the main results. Let Zn be the criti-
cal Galton–Watson process, and let Mn be its maximum up to time n, i.e., Mn =
maxk�n Zk. In what follows, unless otherwise noted, it is assumed that Z0 = 1. By ξ
we denote the random variable with the distribution coinciding with that of offspring.
Put P{ξ = k} = pk. We assume that the process Zn is critical, i.e., f ′(1) = 1, where
f(s) =

∑∞
k=0 pks

k. To exclude the deterministic case f(s) = s we assume also that
p0 > 0. Denote B = f ′′(1) = Eξ(ξ − 1), C = f ′′′(1), Br = Eξr, r > 1. For every
N > 0 put B = E{ξ(ξ − 1); ξ � N}, βr = E{ξr−1(ξ − 1); ξ � N}/2.

The main purpose of this work is to obtain the upper bounds for P{Mn � k} and
P{Zn � k} under various conditions on the distribution of ξ.

It should be noted that there are only a few papers devoted to the probability
inequalities for branching processes. In all these papers it is assumed that Cramèr’s
condition holds (the convergence radius R of f(s) is strictly bigger than one). To all
appearances, for the first time the upper bounds for P{Zn � k} were the subject of
investigation in [1], where the following inequality was obtained:

P{Zn � k} � (1 + y0)

(
1 +

1

1/y0 + f ′′(1 + y0)n/2

)−k

(1)

for every 0 < y0 < R− 1. It is also shown in this paper that the following inequality
follows from (1):

lim sup
n→∞

P{Zn � k} � e−u,

if setting k = [Bnu/2]. On the other hand, according to the limit theorem for the
critical Galton–Watson process (see, for example, [2]),

lim sup
n→∞

Bn

2
P{Zn � k} = e−u.(2)
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Subsequently Makarov [3] proved that there exists n0 such that for all n � n0 the
upper bound

P{Zn � k} � c0
n

(
1 − 2

2 + B(n + log n log(N) n)

)k

(3)

is valid, where c0 is some constant and log(N) n is the Nth iteration of logn.
From the asymptotical point of view, the last inequality is more preferable than (1)

because for k = [Bnu/2] it implies that

lim sup
n→∞

Bn

2
P{Zn � k} � c0 B

2
e−u.

But without the prior estimation of the parameters n0 and c0 inequality (3) does not
allow us to find the numerical bounds of the tail probabilities of Zn.

Concerning the maximum of the critical Galton–Watson process, the main efforts
were directed at studying the tail behavior of M∞ = supk Zk (see [4], [5]) and deriving
the asymptotic formulas for the expectation EMn (see [6] and references therein). The
probability inequalities for Mn were studied in the dissertation of Karpenko [7] who,
in particular, proved the inequality

P{Mn � k} � P{Zn � νk}
mini<n P{Zi � νk | Z0 = k} , ν � 1,(4)

which connects tail probabilities of the random variables Mn and Zn. It is easily seen
that

D{Zi | Z0 = k} = kD{Zi | Z0 = 1} = kiB.

Hence, by the Chebyshev inequality,

P

{
Zi <

k

2

∣∣∣Z0 = k

}
= P

{
Zi − EZi < −k

2

∣∣∣Z0 = k

}
� 4

Bi

k
,

and consequently,

min
i<n

P

{
Zi � k

2

∣∣∣Z0 = k

}
� 1 − 4B(n− 1)

k
.

From this bound, letting ν = 1
2 in (4), we conclude that for every k � 8Bn,

P{Mn � k} < 2P

{
Zn � k

2

}
.

Therefore, we can derive probability inequalities for the maximum from the inequali-
ties for the random variable Zn.

In the present paper we will use another approach which consists of the application
in classical bounds for maxima of sub- and supermartingales.

This approach allows us to get probability inequalities directly for Mn, avoid-
ing (4). Of course, the same bounds will hold also for Zn.

Theorem 1. If R > 1, 0 < y0 < R− 1, B0 = f ′′(1 + y0), then the inequality

P{Mn � k} � y0

[(
1 +

1

1/y0 + B0n/2

)k

− 1

]−1

(5)

holds.
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Letting y0 → 0 in the bound (5), we arrive at the inequality

P{Mn � k} � 1

k
(6)

which can also be derived from the well-known Doob inequality for the maximum of
submartingale (see [8])

P
{

max
0�k�n

Xk > x
}

� EXn

x
.(7)

Naturally we question the relation between the right-hand sides in (1) and (5)
which we denote, for brevity, by g1(y0) and g2(y0), respectively. It is easy to check
that if (

1 +
1

1/y0 + B0n/2

)k

> 2,

then

y0

1 + y0
g1(y0) < g2(y0) < 2y0

(
1 +

1

1/y0 + B0n/2

)−k

= 2
y0

1 + y0
g1(y0).

If (
1 +

1

1/y0 + B0n/2

)k

� 2,

then

g2(y0) � 2
y0

1 + y0
g1(y0).

Let y∗ be the value of y which minimizes g2(y), i.e., g2(y∗) = min g2(y). It does
not seem possible to find a simple expression for y∗. However, we can localize y∗ more
or less precisely. To demonstrate this we consider the binary critical Galton–Watson
process. The approximation for y∗ which we derive below will be used in Corollary 2.
It is easy to verify that for the binary process,

g2(y) = y

[(
1 +

y

1 + ay

)k

− 1

]−1

≡ yψ(y),

where a = n/2. Obviously, log g2(y) = log y+logψ(y). Simple calculations show that

−(logψ(y))′ >
k

(1 + ay)(1 + (a + 1) y)
>

k

(1 + (a + 1) y)2
.

Therefore, (
log g2(y)

)′
<

1

y
− k

(1 + (a + 1) y)2
=

P (y)

y(1 + (a + 1) y)2
,

where P (y) = (1 + (a+ 1) y)2 − ky. The quadratic polynomial P (y) has different real
roots y− < y+ if and only if k > 4(a + 1). Under this condition, (log g2(y))

′ < 0 for
y− � y � y+. Consequently,

min
y−�y�y+

g2(y) = g2(y+).(8)
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Note that

y± =
k − 2(a + 1) ±

√
k2 − 4k(a + 1)

2(a + 1)2
.

Hence, y+ > (a + 1)−1. If k/n → ∞, then

y+ =
k

(a + 1)2
− 2

a + 1
+ O(k−1).(9)

It is easily seen that P (2/k) < 0 if k > 2(a + 1)/(
√

2 − 1). Therefore, for k >
2(a + 1)/(

√
2 − 1),

y− <
2

k
.(10)

Assume that y < 2/k. Then(
1 +

y

1 + ay

)k

− 1 < ky

(
1 +

y

1 + ay

)k−1

< ky

(
1 +

2

k

)k

< kye2.

Hence,

min
0<y�2/k

g2(y) >
1

ke2
.(11)

It follows from (9)–(11) that

min
0<y�y+

g2(y) = min
(

min
0<y�2/k

g2(y), g2(y+)
)
.(12)

Obviously,

y

1 + ay
=

1

a

1

1 + (ay)−1
=

1

a
− 1

a2y
+

(
1

a3y2

)
as ny → ∞. According to (9),

y+ =
k

(a + 1)2

(
1 − 2

a + 1

k
+ O

(
n2

k2

))
as k/n → ∞. Hence, as k/n → ∞, we have

1

a2y+
= k−1(a−1 + 1)2

(
1 + O

(
n

k

))
= k−1

(
1 + O

(
1

nk
+

n

k2

))
.

As a result we get

y+

1 + ay+
=

1

a
− 1

k
+ O

(
1

nk
+

n

k2

)
.(13)

Consequently,

log

(
1 +

y+

1 + ay+

)
>

log 2

n
(14)
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if the ratio k/n is large enough. By (9) and (14) there exists the constant L > 0 such
that

g2(y+) <
8k

n2
exp

{
−k log 2

n

}
<

1

ke2

if k/n > L. Comparing the latter inequality with (11) and (12), we see that

g2(y+) = min
0<y�y+

g2(y)

for k/n > L, i.e., y∗ � y+. Hence, using (9), we conclude that y∗ → ∞ if k/n2 → ∞.
Putting y0 = y+ in (5) and applying (9) and (13), we get

P{Mn � k} � 2

n
exp

{
−2k

n
+ log

(
2ek

n

)}(
1 + O

(
n

k
+

k

n2

))
(15)

if k/n → ∞ but k/n2 → 0.
Now we return to the general situation and state two corollaries from Theorem 1.
Corollary 1. Assume that 1 < ρ < R and that n satisfies the condition

n � 2

(ρ− 1) Ωρ
,(16)

where Ωρ = f ′′(ρ). Then for k > nΩρ + 1,

P{Mn � k} � 4

nΩρ
exp

{
− k

nΩρ + 1

}
.(17)

One may consider inequality (17) as an analogue of the Petrov inequality (see [9,
Theorem 16, p. 81]).

Denote Cρ = f ′′′(ρ). If C = 0, then the process is binary and Cρ = 0 for all
ρ � 0.

Corollary 2. If C > 0, 1 < ρ < R, and

2(Bn + 1) < k �
(

B

Cρ

∧
(ρ− 1)

)(
1 +

Bn

2

)2

,(18)

then

P{Mn � k} <
6.5k

(Bn + 2)2
exp

{
− 2k

Bn + 2
+

8Cρk
2n

(Bn + 2)4
+ 1

}
.(19)

If C = 0 and k > 2(Bn + 1), then

P{Mn � k} <
6.5k

(Bn + 2)2
exp

{
− 2k

Bn + 2
+ 1

}
.(20)

If condition (18) is fulfilled, then the second summand in the exponent in (19) is
negligible for k = o(n3/2). Thus, for k = o(n3/2) we can rewrite the bound (19) as
follows:

P{Mn � k} � (6.5e) k

B2n2
exp

{
− 2k

Bn

}(
1 + o(1)

)
.(21)
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It is proved in [10] under condition R > 1 that for k = o(n2/ log n),

P{Zn � k} =
2

Bn
exp

{
− 2k

Bn

}(
1 + o(1)

)
.(22)

Bound (21) differs from the right-hand side of (22) by the factor (3.25e) k/Bn. The
same relation takes place between (20) and (22), but in the larger domain k =
o(n2/ log n), i.e., if (22) holds.

The conditional distribution P{Zn < x |Zn > 0} is approximated by the ex-
ponential distribution Fn(x) with parameter Bn/2. The generating function of this
distribution is

F̂n(h) :=

∫ ∞

0

ehx dFn(x) =
1

1 − hBn/2
.

Let us estimate Fn(x) with the aid of the inequality

1 − Fn(x) < e−hxF̂n(h).

It is easily seen that

min
h

e−hxF̂n(h) = exp

{
− 2k

Bn
+ log

2ex

Bn

}
;

i.e., the bound

e−2x/Bn = 1 − Fn(x) <
2ex

Bn
e−2x/Bn

holds. The additional factor 2ex/Bn here is almost the same as in (21). Note that
for the binary process it coincides with the excessive factor in (15). Therefore, the
bound (5) is optimal in some sense.

We now proceed to the case when Cramèr’s condition fails.
Theorem 2. Assume that Br < ∞ for some r ∈ (1, 2]. Then for every N such

that

Nr−1 > eBrn,(23)

the inequality

P{Mn � k} � 3

2N
log

(
eNr−1

Brn

)[(
Nr−1

eBrn

)k/N

− 1

]−1

+ nP{ξ > N}(24)

holds.
Note that the following theorem does not assume the existence of moments of the

random variable ξ of orders higher than one.
Theorem 3. Let r � 2. Then for all N � 1 and y0 > 0 the following inequality

is valid:

P{Mn � k} �
(
y0 +

1

N

)[(
1 +

1

1/y0 + erBn/2 + nβre
y0N/Nr−2

)k

− 1

]−1

+nP{ξ > N}.(25)
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To prove Theorems 2 and 3 we use the truncation method with the subsequent
estimation of generating functions of truncated random variables. This approach
was used earlier to deduce probability inequalities for sums of independent random
variables. The most general results in this direction can be found in the paper of
Fuk and Nagaev [11]. In this work the finiteness of any moments is not assumed
and all bounds are expressed in terms of truncated moments and tail probabilities of
summands.

The first summand in (25) corresponds to the limit theorem for the critical
Galton–Watson process, and the second corresponds to the probability of attaining a
high level as a result of one big jump, i.e., at the expense of the appearance of the
particle with a large number of offspring. Inequality (25) is, in some sense, interme-
diate. Its right-hand side contains free parameters. Finding their optimal values is a
sufficiently complicated problem. The next theorem illustrates how the parameter y0

can be chosen.
Theorem 4. Suppose that Br is finite for some r > 2. Then for all n � 1,

N � 1, and k � Bn,

P{Mn � k} � 2(r + 1) er+1 (r − 2) log(2N) + 1

N

(
1 +

1

(r + 1) er(Bn ∨ 1)

)−k

+ 2
r + 1

rBn
e1−γk/N

(
Br

BNr−2

)γk/N

+ nP{ξ > N},(26)

where γ = r(2r + 1)/(2(r + 1)2).
Corollary 3. For arbitrary n � 1 and k � Bn,

P{Mn � k} � 4(r + 1)2er+1 log(2k) + (r − 2)−1

k

(
1 +

1

(r + 1) er(Bn ∨ 1)

)−k

+

(
nBr + 2e

r + 1

rBn

(
Br

eB

)r/(r−2))
C(r)

kr
,(27)

where

C(r) =

(
r + 1

r − 2

)r (
2r + 2

2r + 1

)r

.

Obviously, C(r) decreases if r > 2 and limr↓2 C(r) = ∞.
Bounds (26) and (27) are valid for k � Bn. In the case when k < Bn, the

sufficiently precise bound can be derived from the Doob inequality (7). Indeed, from
the simple inequality P{Mn � k} � P{Z[k/B] � k} and the limit theorem for the
critical Galton–Watson process we conclude that

lim inf
k→∞

kP{Mn � k} � 2e−2

as k → ∞ and k < Bn. On the other hand, by (6),

kP{Mn � k} � 1.

It turns out that there exists another approach which is based on the Fuk prob-
ability inequalities for martingales [12]. Note that the results of Fuk cannot be
applied to the process Zn (which is a martingale) since the conditional moments
E{|Zn+1 −Zn|t |Zn = k} are not bounded in k. But this condition is fulfilled for the
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process Wn =
√
Zn which is a supermartingale. It is easy to verify, repeating word

for word all Fuk’s arguments, that his inequalities are valid for supermartingales. As
a result we have the following theorem.

Theorem 5. If Br < ∞ for some r > 2, then for all k � Bn,

P{Mn � k} � exp

(
− k

l(r)Bn

)
+

G(r,B,Br)n

kr
,(28)

where l(r) = 2r2e2r−2, and

G(r,B,Br) =

(
r

r − 2

)2r (
3(r + 1)r(Br + er+1Br)

+B−1/(r−2)

(
3

2
rr−1((2r − 2)Br + erBr−1)

)(r−1)/(r−2))
.

Further, we compare the bounds deduced by different methods. Letting r = 3
in (27) and (28), we get, respectively,

P{Mn � k} � 64e4 log(2k) + 1

k

(
1 +

1

4e3Bn

)−k

+

(
nB3 +

8B3
3

3e2B4n

)
323

73k3

and

P{Mn � k} � exp

(
− k

18e4Bn

)
+

36

k3

(
192(B3 + e4B3) +

272

16B
(4B3 + e3B2)2

)
n.

Note that the first term in the right-hand side of the second inequality does not contain
the factor converging to zero. The second terms are of the same order of decreasing
in k, but they depend on moments in different ways.

2. Proofs of the main results.
Proof of Theorem 1. For every h � 0 we define the random variable Yn(h),

n � 1, by the equality Yn(h) = ehZn − 1. It is easy to check that this sequence is a
submartingale. Applying the Doob inequality, we have

P{Mn � k} = P
{

max
i�n

Yi(h) � ehk − 1
}

� EYn(h)

ehk − 1
=

fn(eh) − 1

ehk − 1
.(29)

Consider now the sequence of real numbers which are defined by the equalities

yn−1 = yn +
B0

2
y2
n, y0 > 0, n � 1,(30)

on every step yn being taken as the positive solution of the equation yn−1 = y +
(B0/2) y2. For this sequence the following inequalities are obtained in [1]:

1

yn
<

1

y0
+

B0n

2
,(31)

fn(1 + yn) < 1 + y0.(32)

Letting h = log(1 + yn) in (29) and taking into account (31), (32), we arrive at the
desired result.
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Proof of Corollary 1. Put y0 = 2/(nΩρ) in the inequality of Theorem 1. For this
value 1 + y0 � ρ, according to (16), and consequently, B0 � Ωρ. This means, in its
turn, that (1 + 1/y0 + B0n/2)−1 � nΩρ + 1. Letting a0 = B0n/2, we have(

1 +
1

1/y0 + B0n/2

)−1

=
1 + a0y0

1 + (a0 + 1) y0
= 1 − y0

1 + (a0 + 1) y0

= 1 − 1

1 + 1/y0 + B0n/2
< 1 − 1

nΩρ + 1
.(33)

Hence, (
1 +

1

1/y0 + a0

)−k

� exp

{
− k

nΩρ + 1

}
< e−1.

From these bounds and equality (x− 1)−1 = x−1/(1 − x−1) we conclude that[(
1 +

1

1/y0 + a0

)k

− 1

]−1

<
1

1 − e−1
exp

{
− k

nΩρ + 1

}
.

Substituting this bound in the right-hand side of (5), we obtain the desired result.
Proof of Corollary 2. First assume that Cρ > 0. Let y0 = k/(a + 1)2, where

a = Bn/2. By the Taylor formula for y0 � ρ− 1,

B0 = f ′′(1 + y0) = B + y0f
′′′(1 + θy0), θ ∈ (0, 1).(34)

It is easily seen that under condition (18),

B0 < 2B.(35)

Using (33), we have(
1 +

1

1/y0 + B0n/2

)−1

= 1 − y0

1 + (1 + a0) y0

= 1 − 1

1 + a0
+

1

(1 + a0)(1 + (1 + a0) y0)
(36)

(a0 is defined in the proof of Corollary 1). If (18) is fulfilled, then, in view of (35),

a0 + 1 =
B0n

2
+ 1 < Bn + 1.(37)

On the other hand, according to the choice of y0,

1

(1 + a0)(1 + (1 + a0) y0)
<

1

k
.(38)

It follows from (36)–(38) that(
1 +

1

1/y0 + B0n/2

)−k

< e−1

if k > 2(Bn + 1).
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Therefore,(
1 +

1

1/y0 + B0n/2

)k

− 1 > (1 − e−1)

(
1 +

1

1/y0 + B0n/2

)k

.

Hence, because of (36) and (38),[(
1 +

1

1/y0 + B0n/2

)k

− 1

]−1

<
1

1 − e−1

(
1 +

1

1/y0 + B0n/2

)−k

< 1.6 exp

{
− k

1 + a0
+ 1

}
.(39)

In view of (34),

a0 + 1 < a + 1 +
Cρkn

2(a + 1)2
.

Consequently,

1

1 + a0
>

1

1 + a
− Cρkn

2(a + 1)4
.(40)

From (5), (39), and (40) we get (19).
If C = 0, i.e., in the case of the binary process, then B0 = B, a0 = a. Thus,

instead of (37) we have the equality a0 + 1 = Bn/2 + 1. As a result, inequality (39)
holds for k > 2(Bn + 1). Now (20) follows from (5), (39).

Proofs of Theorems 2 and 3. Fix N � 1. Let f̃(s) be the truncation of the
function f(s) on the level N , i.e.,

f̃(s) =
∑

0�k�N

pks
k.

Let x0 be the minimal positive root of the equation x = f̃(x).
For every n � 1 denote by An the event that every particle in the first n gener-

ations (including the zeroth) contains no more than N offspring. The probability of
the event {Mn � k} can be bounded in the following way:

P{Mn � k} � P{Mn � k; An} + P(An),(41)

where An is complementary to An.
It is easily seen that

P(An) = f̃n(1),(42)

where f̃n(s) is the nth iteration of the function f̃(s).
Since f̃ ′(s) � 1 for all s ∈ [0, 1], we get

f̃j(1) − f̃j+1(1) = f̃
(
f̃j−1(1)

)
− f̃

(
f̃j(1)

)
� sup

s∈[0,1]

f̃ ′(s)
(
f̃j−1(1) − f̃j(1)

)
� f̃j−1(1) − f̃j(1) � · · · � 1 − f̃(1) = P{ξ > N}.
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Consequently,

P(An) = 1 − f̃n(1) =

n−1∑
j=0

(
f̃j(1) − f̃j+1(1)

)
� nP{ξ > N}.(43)

Remark. Inequality (43) can also be obtained, using the following arguments
which were proposed by a referee:

P(An) = P

(
n−1⋃
k=0

Zk⋃
i=1

{ξi,k > N}
)

�
n−1∑
k=0

E

Zk∑
i=1

P{ξi,k > N} = nP{ξ > N},

where {ξi,k} are independent copies of ξ.

Since f̃n(1) is nonincreasing and bounded, there exists limn→∞ f̃n(1) = x∗ � 1
and x∗ = f̃(x∗). Since the equation x = f̃(x) has a unique solution on the inter-
val [0, 1], x∗ = x0. Therefore, f̃n(1) ↓ x0 as n → ∞. Hence, by virtue of (42),

P(An) ↑ 1 − x0.(44)

Noting that the function f̃ ′(s) is nondecreasing, we arrive at the inequality

1 − x0 = 1 − f̃(x0) = 1 − f̃(1) + f̃(1) − f̃(x0) � 1 − f̃(1) + f̃ ′(1)(1 − x0).

Hence, using the equalities
∑∞

i=0 pi =
∑∞

i=1 ipi = 1, we get the bound

1 − x0 � 1 − f̃(1)

1 − f̃ ′(1)
=

∑
i>N pi∑
i>N ipi

<
1

N
(45)

if P{ξ > N} =
∑

i>N pi > 0. If P{ξ > N} = 0, then x0 = 1, and relation (45)
remains valid.

To estimate the first summand in (41) we need the following lemma.
Lemma 1. For every h > 0,

P{Mn � k; An} � max(f̃n(eh), eh) − x0

ehk − 1
.(46)

Proof. For every i � 1, define

Xi = ehZiI(Ai), Y0 = eh.

It follows from the definition of Ai that Ai+1 ⊂ Ai for all i. This means that zero is
the absorbing state of the process Xi. Therefore,

E{Xi+1 | X1 = x1, . . . , Xi−1 = xi−1, Xi = 0} = E{Xi+1 | Xi = 0} = 0.(47)

If the event {Xi = ehj} occurs, then the events {I(Ai) = 1} and {Zi = j} also
occur. In this case,

I(Ai+1) = I(ξl � N, l = 1, . . . , j),

where {ξi} is the sequence of independent random variables with the common distri-
bution {pk}.
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Hence, for every j � 0 we have the equality

E
{
Xi+1 | X1 = x1, . . . , Xi−1 = xi−1, Xi = ehj

}
= E{Xi+1 | Xi = ehj}

= E
{
eh(ξ1+···+ξj)I(ξl � N, l = 1, . . . , j) | Zi = j

}
= (f̃(eh))j .(48)

From (47) and (48) we conclude that the sequence Xi is a supermartingale if h satisfies
the condition f̃(eh) � eh, and it is a submartingale if f̃(eh) � eh.

In the first case we will use the following well-known inequality (see, for exam-
ple, [13]):

λP
{

sup
0�i�n

Yi � λ
}

� EY0 − E
{
Yn; sup

0�i�n

Yi < λ
}
.

Here Yi is a supermartingale and λ is an arbitrary positive number.
Let λ = ehk, Yi = Xi, EY0 = eh. Therefore,

ehkP
{

sup
0�i�n

Xi � ehk
}

� eh − E{Xn; sup
0�i�n

Xi < ehk}.

Expectation in the right-hand side of this inequality can be bounded in the following
manner:

E
{
Xn; sup

0�i�n

Xi < ehk
}

� P
{
An; sup

0�i�n

Xi < ehk
}

= P(An) − P
{
An; sup

0�i�n

Xi � ehk
}

� P(An) − P
{

sup
0�i�n

Xi � ehk
}
.

As a result, we have

(ehk − 1)P
{

sup
0�i�n

Xi � ehk
}

� eh − P(An).

Hence, taking into account (44), we obtain the bound

P
{

sup
0�i�n

Xi � ehk
}

� eh − x0

ehk − 1
.(49)

Further,

P{Mn � k; An} = P
{
I(An) sup

0�i�n

ehZi � ehk
}

� P
{

sup
0�i�n

Xi � ehk
}
.

Hence, in view of (49),

P{Mn � k; An} � eh − x0

ehk − 1
(50)

if h satisfies the condition f̃(eh) � eh.
In the case f̃(eh) � eh, we apply the inequality (see [8])

λP
{

sup
0�i�n

Yi � λ
}

� E
{
Yn; sup

0�i�n

Yi � λ
}
.

Here Yi is a submartingale and λ is a positive number.
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Subtracting P{sup0�i�n Yi � λ} from both sides we have

(λ− 1)P
{

sup
0�i�n

Yi � λ
}

� E
{
Yn − 1; sup

0�i�n

Yi � λ
}

= E(Yn − 1) − E
{
Yn − 1; sup

0�i�n

Yi < λ
}
.

Assume that Yi is nonnegative. Then

−E
{
Yn − 1; sup

0�i�n

Yi < λ
}

� −E{Yn − 1; Yn < 1} � P{Yn < 1}.

Thus,

(λ− 1)P
{

sup
0�i�n

Yi � λ
}

� E(Yn − 1) + P{Yn < 1}.

Letting here Yi = Xi, λ = ehk, we arrive at the bound

(ehk − 1)P
{

sup
0�i�n

Xi � ehk
}

� f̃n(eh) − 1 + P{Xn = 0}.

Noting that P{Xn = 0} = P(An) and using (44), we get

P{Mn � k; An} � P
{

sup
0�i�n

Xi � ehk
}

� f̃n(eh) − x0

ehk − 1
,(51)

where h satisfies f̃(eh) � eh.
It should be noted that bounds (50) and (51) coincide when h is such that

eh = f̃(eh) because in this case f̃n(eh) = eh for every n. Let us denote by h0 the
positive root of eh = f̃(eh), i.e., h0 is the fixed point of the mapping f̃(eh). The
statement of the lemma can be interpreted as follows: If h � h0, then to bound
P{Mn � k; An} we use inequality (50); otherwise we use inequality (51).

Let us now prove Theorem 2. Put

y0 =
1

N
log

Nr−1

nBr

and consider the recurrent sequence

yn−1 = yn + Br
eynN

Nr
.

Obviously, yn decreases. Therefore,

yn > yn−1 −Br
ey0N

Nr
.

Summing up these inequalities, we have

yn > y0 − nBr
ey0N

Nr
.(52)

It follows from (23) that y0 > 1/N . On the other hand, by the definition of y0,

nBr
ey0N

Nr
=

1

N
.(53)
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Going back to (52), we see that yn > 0.
In [11] the following inequality is obtained:

E{eyξ; ξ � N} � 1 + y

∫ N

0

u dP{ξ < u} +
eyN − 1 − yN

Nr

∫ N

0

ur dP{ξ < u}.

Since ∫ N

0

u dP{ξ < u} � 1,

∫ N

0

ur dP{ξ < u} � Br < ∞,

we have

f̃(ey) = E{eyξ; ξ � N} � 1 + y + Br
eyN

Nr
.

Letting y = yn, we get

f̃(eyn) � 1 + yn + Br
eynN

Nr
= 1 + yn−1 � eyn−1 .

Therefore,

f̃n(eyn) � 1 + y0 � ey0 .(54)

Hence, putting h = yn in Lemma 1, we get the bound

P{Mn � k; An} � ey0 − x0

eynk − 1
.(55)

The assumption p0 > 0 and the criticality of the considered process mean that ξ has
a nondegenerate distribution. By the Jensen inequality, Br > (Eξ)r = 1 for r > 1.
From this bound and (23), we conclude that

y0 <
logNr−1

N
<

logN

N
� e−1.

By the formula of finite differences, ey0 < 1 + e1/ey0 < 1 + 3y0/2. This inequality
and (45) imply

ey0 − x0 <
3

2
y0 + 1 − x0 <

3

2
y0 +

1

N
<

3

2

(
y0 +

1

N

)
.(56)

It follows from the definition of y0 and relations (52), (53) that

yn >
1

N
log

Nr−1

Brn
− 1

N
=

1

N
log

Nr−1

eBrn
.(57)

Substituting bounds (57) and (56) in (55), we obtain

P{Mn � k; An} � 3

2N
log

(
eNr−1

Brn

)[(
Nr−1

eBrn

)k/N

− 1

]−1

.

The statement of Theorem 2 follows from the last inequality and relations (41)
and (43).
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Let us turn now to the proof of Theorem 3. By the definition of f̃(s),

f̃(1 + y) =
∑

0�k�N

pk(1 + y)k.

It follows from the Taylor formula that

(1 + y)k � 1 + ky +
k(k − 1)

2
y2(1 + y)k−2 � 1 + ky +

k(k − 1)

2
y2eyk.

Therefore, we have the bound

f̃(1 + y) �
∑

0�k�N

pk + y
∑

0�k�N

kpk + y2
∑

0�k�N

pk
k(k − 1)

2
eyk

� 1 + y + y2S(y),(58)

where

S(y) =
∑

0�k�N

pk
k(k − 1)

2
eyk

=
∑

0�k�r/y

pk
k(k − 1)

2
eyk +

∑
r/y<k�N

pk
k(k − 1)

2
eyk ≡ S1(y) + S2(y).

Note that if y < r/N , then the second term in the right-hand side of this representation
equals zero.

Since eyk � er for k � r/y,

S1(y) � er
∑

0�k�r/y

pk
k(k − 1)

2
� erB

2
.(59)

Note that x−r+2ex increases if x � r− 2. Hence, for z � r− 2 we have the inequality

ex � ez
(
x

z

)r−2

, x ∈ [r − 2, z],

and consequently,

(60)

S2(y) =
∑

r/y<k�N

pk
k(k − 1)

2
eyk �

∑
r/y<k�N

pk e
yN k(k − 1)

2

(
k

N

)r−2

� eyN

Nr−2
βr.

Collecting bounds (58)–(60), we conclude that

f̃(1 + y) � 1 + y + y2er
B

2
+ y2βr

eyN

Nr−2
.(61)

Let the sequence yn be defined by the equality

yn−1 = yn + y2
ne

r B

2
+ y2

nβr

eynN

Nr−2
.(62)
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It is easy to check that x+x2erB/2+x2βre
xN/Nr−2 has an inverse function on x � 0,

with the latter being positive. Hence, we conclude that yn > 0 for every n. Note also
that the sequence yn is nonincreasing.

Dividing both parts of (62) by ynyn−1, we arrive at the bound

1

yn
� 1

yn−1
+ er

B

2
+ βr

ey0N

Nr−2
� · · · � 1

y0
+ er

B

2
n + βr

ey0N

Nr−2
n.

Consequently,

yn �
(

1

y0
+ er

B

2
n + βr

ey0N

Nr−2
n

)−1

.(63)

Comparing (62) and (61), we verify that f̃(1 + yn) � 1 + yn−1. Hence,

f̃n(1 + yn) = f̃n−1(f̃(1 + yn)) � f̃n−1(1 + yn−1) � · · · � 1 + y0.(64)

Letting h = log(1 + yn) in Lemma 1 and taking into account (64), we have

P{Mn � k; An} � y0 + 1 − x0

(1 + yn)k − 1
.

Using (45) and (63), we obtain the bound

P{Mn � k; An} �
(
y0 +

1

N

)[(
1 +

1

1/y0 + erBn/2 + nβre
y0N/Nr−2

)k

− 1

]−1

.

(65)

Combining (41), (43), and (65), we get the desired result.
Proof of Theorem 4. It is easily seen that the truncated moments B, βr are

simultaneously positive or equal to zero. First we assume that B > 0 and βr > 0. Let

y0 =
1

N
log

BNr−2

βr

+
1

N
.

It is easily seen that

1

N
< y0 <

(r − 2) log(2N) + 1

N
,(66)

βr

ey0N

Nr−2
= eB < er

B

2
.(67)

Replacing B with B in the inequality of Theorem 3 and taking into account (66), (67),
we have

P{Mn � k} � 2y0

[(
1 +

1

1/y0 + erBn

)k

− 1

]−1

+ nP{ξ > N}.(68)

Obviously, (1 + x)k � (1 + 1/k)k � 2 for all k and x � 1/k. Hence, for x � 1/k we
have the inequality

1

(1 + x)k − 1
=

(1 + x)−k

1 − (1 + x)−k
� 2(1 + x)−k.
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On the other hand, if x < 1/k, then

1

(1 + x)k − 1
� 1

kx
�

(
1 +

1

k

)k
(1 + x)−k

kx
� e

(1 + x)−k

kx
.

Summarizing, we get

1

(1 + x)k − 1
� 2 max

(
1,

e

2kx

)
1

(1 + x)k
.

Applying this bound to the first term in the right-hand side of (68), we arrive at the
inequality

2y0

[(
1 +

1

1/y0 + erBn

)k

− 1

]−1

� 4y0 max

{
1,

e(1/y0 + erBn)

2k

}(
1 +

1

1/y0 + erBn

)−k

.(69)

If 1/y0 � rer(Bn ∨ 1), then

max

{
1,

e(1/y0 + erBn)

k

}
� max

{
1,

(r + 1) er+1(Bn ∨ 1)

2k

}
� (r + 1) er+1

2
max

{
1,

Bn

k

}
.

Therefore, for k � Bn and 1/y0 � rer(Bn ∨ 1) the following bound is valid:

max

{
1,

e(1/y0 + erBn)

2k

}
� (r + 1) er+1

2
.

Consequently,

2y0

[(
1 +

1

1/y0 + erBn

)k

− 1

]−1

� 2(r + 1) er+1 y0

(
1 +

1

(r + 1) er(Bn ∨ 1)

)−k

if k � Bn and 1/y0 � rer(Bn ∨ 1).
Invoking (66), we obtain for k � Bn and 1/y0 � rer(Bn ∨ 1) the inequality

2y0

[(
1 +

1

1/y0 + erBn

)k

− 1

]−1

� 2(r + 1) er+1 (r − 2) log(2N) + 1

N

(
1 +

1

(r + 1) er(Bn ∨ 1)

)−k

.(70)

If 1/y0 > rer(Bn ∨ 1), then

y0 max

{
1,

e(1/y0 + erBn)

2k

}
� y0 max

{
1,

e(r + 1)

2ry0k

}
� e(r + 1)

2r
max

{
y0,

1

k

}
� e(r + 1)

2r
max

{
1

rerBn
,

1

k

}
� e(r + 1)

2rBn
max

{
1,

Bn

k

}
.(71)

It follows from the condition 1/y0 > rer(Bn ∨ 1) that erBn < 1/(ry0). Thus,(
1 +

1

1/y0 + erBn

)−k

<

(
1 +

ry0

r + 1

)−k

.(72)
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Applying (71) and (72) to bound the right-hand side of (69), we get

2y0

[(
1 +

1

1/y0 + erBn

)k

− 1

]−1

� 2e
r + 1

rBn

(
1 +

ry0

r + 1

)−k

(73)

for k � Bn, 1/y0 > rer(Bn ∨ 1).
Obviously, log(1 + x) � x− x2/2 if x > 0. Consequently,

(1 + x)−k � exp

(
− kx

(
1 − x

2

))
for all x > 0. Hence, letting x = ry0/(r+ 1) and taking into account that y0 < 1/r in
the considered case, we derive(

1 +
ry0

r + 1

)−k

� exp

(
− kry0

r + 1

(
1 − 1

2(r + 1)

))
.(74)

It follows from (73) and (74) that

2y0

[(
1 +

1

1/y0 + erBn

)k

− 1

]−1

� 2e
r + 1

rBn
exp(−γky0),(75)

where γ = r(2r+1)/(2(r+1)2). This bound is valid for k � Bn, 1/y0 > rer(Bn∨ 1).
Substituting the chosen value instead of y0, we have

exp(−γky0) = e−γk/N

(
βr

BNr−2

)γk/N

.

Note that

βr

B
� Br −Br−1

B
<

Br

B
.

Therefore,

exp(−γky0) < e−γk/N

(
Br

BNr−2

)γk/N

.(76)

It follows from (70), (75), and (76) that for k � Bn,

2y0

[(
1 +

1

1/y0 + erBn

)k

− 1

]−1

� 2(r + 1) er+1 (r − 2) log(2N) + 1

N

×
(

1 +
1

(r + 1) er(Bn ∨ 1)

)−k

+ 2
r + 1

rBn
e1−γk/N

(
Br

BNr−2

)γk/N

.(77)

Combining (68) and (77), we get the desired result.
Assume now that B = βr = 0. Then the inequality of Theorem 3 takes the

following form:

P{Mn � k} �
(
y0 +

1

N

)
1

(1 + y0)k − 1
+ nP{ξ > N}.

Turning y0 to infinity, we obtain for k > 1 the bound

P{Mn � k} � nP{ξ > N}.
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If k = 1, then independently of the values of the truncated moments, the right-hand
side of (25), and consequently, the right-hand side of (26), is bigger than one, whereas
P{Mn � 1} = 1. Thus, the proof of the theorem is completed.

Proof of Corollary 3. Let N = k(r − 2)(2r + 1)/(2(r + 1)2). If N < 1, then
nBr/N

r > 1, and consequently, bound (27) is trivial. In the case of N � 1, we use
bound (26). Estimating P{ξ > N} by the Chebyshev inequality, we get the desired
result.

Proof of Theorem 5. Let Sk =
∑k

i=1 ηi, where {ηi} are independent copies of
the random variable η ≡ ξ − 1.

Lemma 2. For every t � 2, the following bounds are valid:

E
{

(
√
k + Sk −

√
k)t; Sk > 0

}
� 3

2

(
t

2
+ 1

)t/2 (
tEξt/2+1 + et/2+1Bt/2

)
,(78)

E{(
√
k + Sk −

√
k)t; Sk > 0} � 3

(
t

2
+ 1

)t/2(
kEξt/2 + et/2+1Bt/2

)
.(79)

Proof. Using the inequalities

√
x + y −

√
x � y√

x
,

√
x + y −

√
x � √

y, x > 0, y > 0,

we get

E
{

(
√
k + Sk −

√
k)t; Sk > 0

}
= E

{
(
√
k + Sk −

√
k)t; 0 < Sk < k

}
+ E

{
(
√
k + Sk −

√
k)t; Sk � k

}
� k−t/2E{St

k; 0 < Sk < k} + E{St/2
k ; Sk � k}.(80)

Integrating by parts, we arrive at the equalities

E{St
k; 0 < Sk < k} = −ktP{Sk � k} + t

∫ k

0

xt−1P{Sk � x} dx,

E{St/2
k ; Sk � k} = kt/2P{Sk � k} +

t

2

∫ ∞

k

xt/2−1P{Sk � x} dx.

Substituting these expressions into (80), we have

E
{

(
√
k + Sk −

√
k)t; Sk > 0

}
� k−t/2t

∫ k

0

xt−1P{Sk � x} dx

+
t

2

∫ ∞

k

xt/2−1P{Sk � x} dx.(81)

Consider the first term in (81). Theorem 4 in [11] implies

P{Sk � x} � kP{η � y} + exp

(
x

y
− x

y
log

(
xy

Bk
+ 1

))
.(82)

If x/y = ρ, where ρ is an arbitrary positive number, then because of (82),

t

∫ k

0

xt−1P{Sk � x} dx � kt

∫ k

0

xt−1P

{
η � x

ρ

}
dx + teρ

∫ k

0

xt−1

(
1 +

x2

ρBk

)−ρ

dx

� ktρt
∫ k/ρ

0

xt−1P{η � x} dx + teρ(ρBk)t/2
∫ ∞

0

xt−1(1 + x2)−ρ dx.
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Now setting ρ = t/2 + 1 and taking into account that∫ ∞

0

xt−1(1 + x2)−t/2−1 dx =
1

t

(see, for example, [14]), we obtain the inequality

t

∫ k

0

xt−1P{Sk � x} dx � t

(
t

2
+ 1

)t ∫ 2k/(t+2)

0

xt−1P{η � x} dx

+

(
t

2
+ 1

)t/2

et/2+1Bt/2kt/2.(83)

Obviously, ∫ z

0

xt−1P{η � x} dx � zs
∫ z

0

xt−s−1P{η � x} dx

for all 0 � s < t. Furthermore, by the definition of η,∫ z

0

xt−s−1P{η � x} dx �
∫ z

0

xt−s−1P{ξ � x} dx � 1

t− s
Eξt−s.

As a result, we get the inequality∫ z

0

xt−1P{η � x} dx � zs

t− s
Eξt−s.

Letting z = 2k/(t + 2) here, we have, for s = t/2 − 1 and s = t/2, respectively,∫ 2k/(t+2)

0

xt−1P{η � x} dx � 1

t/2 + 1

(
t

2
+ 1

)−t/2+1

kt/2−1 Eξt/2+1,∫ 2k/(t+2)

0

xt−1P{η � x} dx � 2

t

(
t

2
+ 1

)−t/2

kt/2Eξt/2.

Going back to (83), we obtain the inequalities

t

∫ k

0

xt−1P{Sk � x} dx �
(
t

2
+ 1

)t/2

kt/2
(
tEξt/2+1 + et/2+1Bt/2

)
,(84)

t

∫ k

0

xt−1P{Sk � x} dx �
(
t

2
+ 1

)t/2

kt/2
(
2Eξt/2k + et/2+1Bt/2

)
.(85)

Now we bound the second term in the right-hand side of (81). Letting y = 2x/t
in (82), we get

t

2

∫ ∞

k

xt/2−1P{Sk � x} dx � t

2
k

∫ ∞

k

xt/2−1P

{
η � 2x

t

}
dx

+
t

2
et/2

∫ ∞

k

xt/2−1

(
2x2

tBk
+ 1

)−t/2

dx.

The second summand in this inequality can be bounded in the following way:

t

2
et/2

∫ ∞

k

xt/2−1

(
2x2

tBk
+ 1

)−t/2

dx � t

2
et/2

∫ ∞

k

xt/2−1

(
2x2

tBk

)−t/2

dx

=

(
t

2

)t/2+1

et/2Bt/2kt/2
∫ ∞

k

x−t/2−1 dx =

(
t

2

)t/2

et/2Bt/2.
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We bound the first summand using two different approaches. First,

t

2

∫ ∞

k

xt/2−1P

{
η � 2x

t

}
dx � t

2k

∫ ∞

k

xt/2P

{
η � 2x

t

}
dx

� 1

k

(
t

2

)t/2+1

E{ηt/2+1; η > 0} � t

2k

(
t

2
+ 1

)t/2

Eξt/2+1.

On the other hand,

t

2

∫ ∞

k

xt/2−1P

{
η � 2x

t

}
dx �

(
t

2

)t/2+1 ∫ ∞

2k/t

xt/2−1P{η � x} dx

�
(
t

2

)t/2

E{ηt/2; η > 0} �
(
t

2
+ 1

)t/2

Eξt/2.

As a result, we have

k
t

2

∫ ∞

k

xt/2−1P{Sk � x} dx �
(
t

2
+ 1

)t/2(
t

2
Eξt/2+1 + et/2Bt/2

)
,(86)

k
t

2

∫ ∞

k

xt/2−1P{Sk � x} dx �
(
t

2
+ 1

)t/2 (
kEξt/2 + et/2Bt/2

)
.(87)

Combining (81), (84), and (86), we arrive at inequality (78). Respectively, inequal-
ity (79) follows from (81), (85), and (87). The lemma is proved.

Now we continue the proof of Theorem 5. We introduce the following random
variables:

Wn =
√
Zn, Xn = Wn −Wn−1.

It follows from the Jensen inequality that the sequence Wn is a supermartingale. It
is easily seen that

E{X2
n | Zn−1 = k} = E(

√
k + Sk −

√
k )2 � ES2

k

k
= B.

Furthermore, by the first inequality in Lemma 2 with t = 2(r − 1),

E
{
Xt

nI(Xn > 0) | Zn−1 = k
}

= E
{
(
√
k + Sk −

√
k )t; Sk > 0

}
� 3

2
rr−1

(
(2r − 2)Br + erBr−1

)
≡ H1.

Thus, we have shown that all conditions of Theorem 2 in [12] are fulfilled with
t = 2(r − 1). By the corollary from this theorem,

P
{

max
k�n

Wk � x
}

� exp

(
− x2

l(r)Bn

)
+

(
nH1

xy2r−3

)βx/y

+

n∑
i=1

P{Xi � y},

where β = 1 − 1/r, l(r) = 2r2e2r−2.
Applying (79), we conclude that for every i,

E{X2r
i ; Xi > 0} = EE

{
X2r

i I(Xi > 0) | Zi−1

}
� 3(r + 1)r(Br + er+1Br) ≡ H2.
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Hence,

n∑
i=1

P{Xi � y} � nH2

y2r
.

Therefore,

P
{

max
k�n

Wk � x
}

� exp

(
− x2

l(r)Bn

)
+

(
nH1

xy2r−3

)βx/y

+
nH2

y2r
.

Setting y = (r − 2)x/r, we arrive at the bound

P
{

max
k�n

Wk � x
}

� exp

(
− x2

l(r)Bn

)
+

(
r

r − 2

)2r(
H2 + H

(r−1)/(r−2)
1

(
n

x2

)1/r−2)
n

x2r
.

Noting that

P
{

max
i�n

Wi �
√
k
}

= P{max
i�n

Zi � k},

we get for k � Bn the desired inequality.
Note that similar transformations of random processes were used earlier, but

only to find recurrence conditions for random walks. In the fundamental work of
Lamperti [15] the functions log x and x2 were used, and in [16], [17] xα are applied,
with α < 2 and 1 � α � 2, respectively.
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