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0. Introduction

In [1], S. V. Nagaev obtained the following estimate for large deviation
probabilities for the case of identically distributed independent random
variables X, ..., X, with EX O, DX 1"

where x > 0, y > O,A EIXI < ,t > 2andK 1 + e-t(t + 1)t+2.
This paper is devoted to improving this result and to extending it to

the case of non-identically distributed independent random variables for
which the existence of finite moments ofsome particular order is not assumed.
In Section 1, certain inequalities are derived whose right-hand sides consist
of two components the sum of the probabilities of the tails and a component
containing truncated moments. In Section 2, the proofs of these inequalities
are given. A bilateral inequality is stated in Section 3. Special cases are
considered in Section 4. Section 5 deals with examples involving the compu-
tation of the probabilities and Section 6 contains applications to the strong
law of large numbers.

Let X, ..., X, be non-identically distributed independent random
variables (i.r.v.) with respective distribution functions F(u),..., F,(u). Set

S=X +... +X.

Throughout the following x is an arbitrary prescribed positive number,
Y {y, ..., y.} is a set of n positive numbers and y >__ max{y, -.-, y.}.

A(t;.,. ), B2(., and #(., .) are to denote, respectively, the sum of the
absolute moments of order t (specified within the parentheses), the variances
and the means truncated at the levels specified within the parentheses.
The letter Ydesignates summation over from 1 to n ofthe moments truncated

643



644 D. Kh. Fuk and S. V. Nagaev

at levels Y l, "’", Y,. For example,

(t; Y, o) lul

B2(- K u2 dFi(u), ,(- , u dFi(u).

Theorem 3 stated in Section 1 and the results of Section 6 are joint
efforts while the remaining results are due to D. Kh. Fuk.

I. Unilateral Inequalities

Theorem 1. Let 0 < t < 1. Then

(1) P{S. x} P{X >= Yi} + P1,
i=1

where

(2) P1 exp log + 1
y y A(t; O, Y)

(3) xyt- > A(t;0, Y),

then

(4) P{S,>=x} <= Z P{X, >= y,} + P2,
i=1

where

(5) P2 expx A(t, O, Y) x
log

y yt y

and P2 <= P1.

Theorem 2. Let <_ < 2. Then

(6) P{S. _> x} =< Z P{Xi > Yi} + P3,
i=1

where

(7) P3 exp + ytY

xyt-
log

A(t Y, Y)
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(8)

(9)

(10)

We now go over to the case >= 2 and we let

P4 exp
Y

x u(- Y, Y)) log

Ps =exp fl----- --Y A(t O, Y)

P(-Y’y Y))log( A(t O, Y)

x(x/2 #(-Y, Y))}P6 exp
etB2(_ Y, Y)

(11)

then

Theorem 3. Let t >= 2, 0 < cz < 1 and fl 1 a. If

max t. log
A(t;0.

+ 1
etB2(_ Y, lO

(12)

(13)

P{S. __> x} =< P{X, >= y,} + P.
i=1

P{S. >= x} =< Z P{Xi >= Y,} +
i=1

(14) max It. log

then

A(t; O, Y)
+ 1 >

etB2(_ Y, lO

(15) P{S. _>_ x} _< P{X, Yi} + P6"
i=1

Theorem 3’. For t 2, 0 < < 1 and fl 1- , the assertions of
Theorem 3 hold with the quantities B2( Y, Y) and (-Y, Y) replaced by
B2( , Y)and #(-, Y), respectively.

Theorem 4. The following inequality holds"

(16) P{S. >= x} =< P{X, >__ y} + P7,
i=1

where

(17) P7=exp bt(-’Y)+ log +1
y y B2(- z, Y)

REMARK 1. There are inequalities for P{S. __< -x} which are left-sided
analogues of the inequalities obtained in Theorems 1-4. The quantities
.=, P{X >= y}, A(t;-0, Y), S2( c, Y), p(-Y, Y)and #(-c, Y) on the
right-hand sides of the latter have to be replaced by

__
P{X <= -y},
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A(t; Y, 0), B2( Y, oo), -#(- Y, Y) and -#(- Y, oe), respectively; the
quantities A(t; Y, Y) and B2( Y, Y) remain unchanged.

REMARK 2. In the above inequalities, one can always put
(a) p(- Y, Y) 0 if the i.r.v, are symmetrically distributed;
(b) #(-oo, Y)=0(or-(-Y, oo)=0)ifEX=0, i= 1,.-.,n.

RMARK 3. The first extension of S. V. Nagaev’s inequality to the case
of non-identically distributed variables mentioned in the introduction was
apparently due to A. Bikyalis [6].

2. Proofs of Theorems 1-4

Let

f X for X Yi,
Xi

_0 forX > yi,
1,..., n,

The event {S _> x} implies the occurrence of at least one of the following
two events" { - S} or { __> x}. Therefore,

(18) P{S >: X} < e{n Sn} + P{ x}.
The random variables , 1, ..., n, are independent and bounded

from above and so, for any positive h,

P n >x < e-hXEehs"

From this and (18), it follows that

(19) P{S,, >= x} =< P{X, _>_ y} + e-hx E ehs".
i=1

Our goal in proving the theorem is essentially to minimize the right-
hand side of inequality (19) with respect to h.

PROOF OF THEOREM 1. Suppose 0 < t _< 1. The functions (ehu- 1)/u
and (eh"- 1)/u are increasing for u > 0o Therefore,

E ehe’ <= dFi(u + dFi(u + ehu dFi(u

1 + f-’’ehu- 1

o U

ehyi 1
udFi(u =< 1 + Jo u dt;(u)

Yi

ehy 1 fi"<__ 1 + yt
U dF(u).
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Since the , 1, ..., n, are independent, this implies

(I { ehr--lfi" }u dFi(uE eh" E ehx’ < 1 + yti=1 i=1

i=Q exp
yt

U dFi(u exp
yt

Hence

A(t O, Y)}
(20) e-hXE ehs" exp yt A(t, O, Y) hx

We now set

h log + 1
y A(t; O, Y)

in the right-hand side of (20). Then

e- hXE ehS. <= P
where P is given by (2). This together with (19) leads to inequality (1).

The right-hand side of (20) attains a minimum value for

1
h log

Y

where h is positive by virtue of condition (3). Inserting this value of h into
the right-hand side of (20), we obtain

e- hXE eh" <= P2,

where P2 is given by (5). This together with (19) implies inequality (4). Clearly,
P2 =< P. Theorem 1 is proved.

PROOF OF THEOREM 2. Suppose 1 __< t __< 2. By virtue of the monotonicity
of tl-2(ehu 1 hu) for u =< y and u-t(eh" 1 hu) for u > 0, we have

E ehX’<= 1 + h_
1 + h_,l__<y

=< 1 + h

Hence,

(21)

ehu 1 hUu2 dFi(u)u dFi(u) +
u2

ul<-yi

ehyi 1 hyi u2 dFi(u)u aF,(u) +

ehr 1 hy fl lul’ dF(u).u dFi(u + yt ,I <-r,

e-h’E e" <= exp{(ehr 1 hy)y-’A(t; Y, Y) hx + h#(-Y, Y)}.
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Setting

1 xyt-
(22) h lo + 1

y A(t; Y, Y)

in the right-hand side of(21), we obtain

(23) e-E ehrS" <= P3,

where P3 is given by (7). Inequalities (23) and (19) imply inequality (6).
Theorem 2 is proved.

PROOF OF THEOREM 3. We now proceed to the case >= 2. Consider
first the case where hy <= t, i.e., hy <__ for 1,..., n. We have

E eX’ <= fl,>_, dFi(u) + fI,,,<_,,
e" dF(u)

u ehO. dFi(u1 + h
.1-,,

udF(u) + -(24) <_ 1 + h udF(u) + -ul_-<y ul_-<y

Hence it follows that, for hy <= t,

(2:5) e-nE en =< exp(1/2 riB2( Y, Y)h2 hx + h#(-K Y)).
Suppose now that hy > t. Let us make use of the monotonicity of

u-t(en 1 hu) for u >= t/h. Let be an index such that hy > t. For this
case, we estimate E en’ as follows (0 =< 0 =< 1)"

e u clFu)E eh’ <
-oo

dFi(u) + h
-y,

u dFi(u + -/ ft
y’

ft;"en"-l-hUutdFi(u)+ dF(u) + h u dFi(u) +

fl fl eh:V’--l--hYift:v’eth2 dFi(u) +1 + h u dFi(u + u u’ dFi(u
ul-<y ul_-<y Yi /h

(26)

u’ dF(u)eth2 u2 dFi(u) + yt
< 1 + h ,l<-,,udF(u)+-
The right-hand side of (24) is clearly no greater than the right-hand side

of (26) for any positive value of h. Therefore, inequality (26) also holds for the
case where hy N t. Hence, for h > 0, relation (26) and the inequality

(27)

e-hxE es" <= exP{1/2 e’B2( Y, Y)h2 +
Chy 1 hy

yt

+ h#(- Y, Y)}

A(t; O, Y) hx
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which follows from it, are both valid.

fl(h) 1/2 e’B2( Y,, Y)h2 ahx,

e 1 hy
f2(h) A(t;0, Y) flhx,yt

From this and (19) and (27) it follows that

0<<1,

(28) P{S, >= x} _<_ P{X >= y} + exp{f(h) + fz(h) + h/(-Y, Y)}.
i=1

Let

(29) h,
etB2 Y,, y),

(30) h2 max log
Y A(t O, Y)

+ 1

(31)

Suppose condition (11) is satisfied, i.e.,

h2 _<h.

Set h h2 and apply inequality (28). Then

f(h2) + f2(h2) + hz/(-Y, Y)- ha
e’
 -B2( Y, Y)h2 x

ehzy- 1 hzy
yt

A(t; O, Y) + h2/t(- Y, Y)

(32)
e
B2( Y, Y)h x
z

x

x A(t, O, Y)
h2 + h2u(- Y, Y)

(33) <_ fl__

(1-)x-lt(-,Y,Y)+ A(t O-’iT))
1-)x-#(-Y,Y) x ox

h2 fl-----h2y 2

(fix It(-Y, Y))h2

(fix (- Y, Y))h2.

Replacing h 2 in (32) and (33) by the expression (30), we arrive at the respective
expressions for P4 and P in (8) and (9). Inequalities (12) and (13) then follow
from (28).

Suppose now that h2 h >= t/y. Clearly, f(h) and fz(h) are convex
functions, f(0)- f2(0)= 0, f(h) attains a minimum value for h---h and
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fz(h) for h h2 Set h h on the right-hand side of (28). Thus,

Z2X 2

f(hl) -2 etB2( Y, Y)’ f2(hx) < 0,
xu(- Y, Y)

(-Y, Y)h
e,(_ Y, Y)

By virtue of (28), this implies inequality (15).
When h < t/y, it is necessary to make use ofthe estimate (25). Theorem 3

is proved.

PROOF OF THEOREM 3’. As in proof of Theorem 3, it is easy to observe
that, for any positive h,

Y 1 fE ehx <= 1 + h u dFi(u + - eth2

e- 1 hyfo’+ yt
ut dFi(u)"

u dF(u)

From this it is apparent that B2(- Y, Y) and p(- Y, Y) may be replaced on the
right-hand side of (27) by B2(- oo, Y) and p(- oo, Y), respectively. Repeating
the proof of Theorem 3, we arrive at the conclusions of Theorem 3’.

PROOF OF THEOREM 4. Starting with (19), we can estimate E ehs". We
have

E eh2 1 + h f’ f eh" 1- hUu2 dFi(u)u dFg(u) + u2

<= 1 + h u dF(u) +

This implies

ehy 1 hy
(34) e-hE eh" <__ exp

y2

Setting

1
h -log

Y

u2 dFi(u

B2( o, Y) hx + hlu(-o, Y)}.
xy

B2(- , Y)
+ 1

in the right-hand side of this last inequality, we obtain the expression for
Pv given in (17). This together with (19) leads to inequality (16). Theorem 4
is proved.

3. Bilateral Inequality

Theorem 5. For 0 < t <_ 1.

(35) P{IS.I x} Z P{IXkl Yk} + P8,
k=l
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where

(36) {x x
P8 =exp ---log

Y Y

xyt-
A(t;-r, Y)

+1

(37)

then

xyt- > A(t Y, Y),

(38)

where

P{[S,I x} k P{IXI yu} + P9,
k=l

(39) P9 exp{xy y’ y A(ii 7_ , y)

and P9 <= Ps.
PROOF. Let

{X if [Xi[ y,
Xi=

0 if [Xi[ > Yi,
i-- 1,...,n,

Clearly,

P{[S,I-> x} __< P{,, g= S,,} + P{I,] => x}.

Hence, it follows that

(40) P{}S,[ >_ x) <
i=1

P{IXil- Yi} -+- e-hXE

We estimate Eehl"l as follows. Let 0 < =< 1. Observe that [u[-l(ehlul- 1)
attains its maximum value in the region lul _-< z for lul z. Therefore,

Hence,

(41) e fehr 1hx EehlS,l <= exp
yt

-A(t; Y, Y)- hx}.
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Minimizing the right-hand side of (41) with respect to hand taking condition
(37) into consideration, we obtain (39). From this and (40) follows in-
equality (38). If we replace h in (41) by its value given by (22), then inequality
(35) will follow from (36) and (40). Clearly, /99 /98. Theorem 5 is proved.

4. Special Cases

In this section, is to denote either the order of the truncated moments
or the order of finite moments. We introduce the following notation for finite
absolute moments and variances:

At," E[Xi[ t, Be, DXi.
i=1 i=l

Observe that the proofs of Theorems 1-5 remain valid if in inequalities
(20), (21), (27), (34) and (41) the truncated absolute moments and variances
are replaced by the full absolute moments and variances, respectively. Hence,
under the assumption that the absolute moments of any order exist, one
can replace the truncated absolute moments in the various inequalities
obtained in Theorems 1-5 by the full absolute moments.

We shall now state some consequences of Theorems 3 and 4.
Suppose first that the i.r.v. X, ..., X, satisfy the following conditions:

(42) X I.,i, EX O, 1,’.., n.

Let Yi Li, i= 1,-..,n, and let y L max{L,.-.,L,}. Then
Theorem 4 implies

Corollary 1. Suppose the i.r.v. X, X, satisfy conditions (42). Then

(43) P{S >_ x} __< exp -+LIlog + 1

We point out that inequality (43) was obtained independently by
Bennett [10], [11] and Hoeffding [12],

Let t/(t ./ 2) and e 1- ft. Then inequalities (13) and (15) of
Theorem 3 imply

Corollary 2. Suppose t >= 2, fl t/(t + 2) and 1 ft. Then

(44) P{S, >_ x} __<
i:

P{XiYi}+ exp{maxl- x /2(- Y, Y)

Y Y

flxy’-
x log .Ai[ )) + 1 ,- x(x/2-1(-Y,Y))]}etB2(_ Y, Y)

(45) <--
i:1

P{Xi>=Yi} + exp {-- flx-y P(-Y’Y)Y
log

A(t O, Y)
+ 1 + exp

etB2(_ Y, Y)
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From Theorem 3’ follows

Corollary 3. Suppose t >= 2, fl t/(t + 2) and 1 ft. Supposefurther
that EX O, 1,..., n. Then

(46) P{S,_>x}_< P{X,y,} +exp max _fiX_log + 1
i= y A(t; 0, Y)

(47)
i=1

P{X, > y,} +
A(t’O, ) + 1

x/y

+ exp {-
Set y

obtain
y //x in (46) and (47). Then from Corollary 3 we

Corollary 4. Let EX 0 and EI Xi[ < , 1,..., n, for t : 2. Then

(48) P{S, x} cll)At,nx-t + exp{-c)xZ/B2,},
where cl)= (1 + 2/0’ and c12)= 2(t + 2) -1 e -t.

5. Examples

In this section, we shall give some examples involving the calculation
of probabilities on the basis of the resultant inequalities. The set of n positive
numbers y will be chosen in arbitrary fashion. When x is large, this permits
us to select y so that both components on the right-hand sides of these
inequalities have small values simultaneously. Some specific examples are
cited and they are compared with the inequalities obtained earlier by other
authors ([5], [9]-[12).

We shall consider the case where the moments of order 0 < _< 2 exist.
To make things convenient while computing the probabilities, we shall assign
values to x and y of the form x aA,,, and y bA,,,, where a and b are
positive numbers. To simplify notation, we shall omit writing the subscripts
on At,n

1. Case 0 < t < 1. It follows from inequality (35) that

(49) P{IS.I >_- x} =< P{IXi[ >_- y,} + eo,
i=1

where

logPo exp
yt y

We wish to show that for 7 => 1 and X > 7e2A, it is possible to choose
y so that the relation

(50) PlO < Ax-t/7
is satisfied.
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For, suppose 0 < 2y =< x. Let z A/xy- and x/y c. Observe that
0 < ze-z =< 1 for all z > 0. Therefore, under the given conditions we have

Po (ze-Z) <= (ez) (eAc’-Xx-t)z < Ax-’. eZAx -’ <=
The familiar Chebyshev inequality yields the bilateral estimate

(51) P{IS.I >_- x} __< Ax-’.

In the next example we compare the estimates (49) and (51). Suppose
X,..., X, are i.r.v, with common Cauchy distribution function on the
positive real line, namely,

F(u) u > 0
n 1 +z2’

For definiteness, take t 2/3 and n 2 and 8. The first table furnishes
values of the right-hand sides of inequalities (49) and (51).

2. Case 1 _< t =< 2. For identically distributed i.r.v., Bengt and Esseen
[9] obtained the following bilateral estimate"

(52) P{IS.] >= x} =< M(t, n)Ax-’,

where

M(t, n) I min{2 n

(53) 2 n-
- [1 -D(t)] } forD(t)

13 52F(t) sintTt
zt(2, 6)’ 2

otherwise.

x y (49) (49)
A3/2 A3/2 (51)

n 2 n 8

2 1 .6300 5523 .3338
6 a .3299 .1383 .0852
10 2 .2154 .0819 .0422

.1721 .0504 .027814
18 1456 .0381 .0205
24 6 .1201 .0278 .0145

(54)

For symmetrically distributed summands, Theorem 2 gives

P{S, => x} __< P{X >= y,} + Pll,
i=1

where

(55)

P =exp + log
xyt-
A

+1

When x > 97e2A, 7 _>- 1 and 1 =< t =< 2, the following relation holds"

Pll < A(xt + A)-1/7 < Ax-t/y.
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Indeed, suppose 2 .<_ x/y c <= 3 and z A/xyt- . We have

P [e(1 + 1/z)--]c< ]2 < + A)-9AeZx-tA(x
l+z

<= A(x’ + A)-1/3) < Ax-t/y.

Taking (55) into account, one can hope to obtain, for large x, better
estimates than those given by inequality (52) and Cantelli’s inequality

(56) P{S, >__ x} _<
xz +

by choosing the values of y in inequality (54) suitably.
Let X, ..., X, be i.r.v, with common distribution function F(u)

1/2(1 + u(1 + u)-a/2). It is not too hard to see that X1, ..., X, are sym-
metrically distributed, DX oe and EIX[ < oe for 0 < t < 2. Choose
t 9/5 and n 2 or 10 (for t 9/5, M(t, n) 1.285 in (53)). We obtain the
following table of values for the right-hand sides of (52) and (54):

x (54) (54)
A/-- A5/9 (52)

n 2 n 10

.36903 .29552 .289992 3
4 .10598 .04548 .05006
8 3 .03043 .00763 .00689
14 6 .01111 .00177 .00161
22 9 .00493 .00048 .00047

We now give one further example demonstrating the accuracy of the
estimates (54) and (56). Let X, ..., X, be i.r.v, with common distribution
function

2 f" dz
V(u)

rt (1 + z2)2

It is not hard to see that EX1 0 and DX1 1. We have the following
table"

(54) (54)x y
(56)

B. B. n 4 n 16

2 .20000 .35474 .33058
4 .05882 .06533 .04949
8 3 .01538 .00424 .00372
12 5 .00689 .00129 .00091
16 6 .00389 .00052 .00038
24 12 .00173 .00009 .00004
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As Hoeffding pointed out in [12], inequality (43) refines the following
inequality due to Yu. V. Prokhorov 5]:

P{S >- x} __< exp
2L

arcsin

As Yu. V. Prokhorov pointed out, this estimate improves the inequality of
S. N. Bernstein and A. N. Kolmogorov. Inequality (43) also refines the
familiar Cantelli inequality (56).

6. Applications to the Strong Law of Large Numbers

Let

(57) x, 2, ,,
be a sequence of symmetrically distributed independent random variables.
It is known that it does not restrict the generality if one requires symmetry
when studying conditions for the applicability of the strong law of large
numbers (see 2], [3]). Suppose that the variables in the sequence (57) are
centered about their means, i.e., E 0 for all k >__ 1.

We partition the sequence into classes by including in the r-th class the
random variables with k I {2",2 + 1,-.., 2+ 1}, r >= 0.

Let {6} be a sequence of positive numbers. Introduce the following
notation (the summation is everywhere with respect to k e I)"

Z, 2-’, K(t, 6, r) 2-’" u’ dF(u),
"0

(58)

H((r, r) E 2-2r J_ U2 dFk(U), Hr E 2-2Dk.
2"6,.

The following condition (due to Yu. V. Prokhorov 2])"

(59) Z P{Z, >- e} < oo, V e > 0

is necessary and sufficient for the sequence (57) to obey the strong law of
large numbers, i.e., for

n-({ +...+ {,)--+0 a.e.

For t >= 2, inequality (45) leads to

(60)

where e et(t + 2)-1 and 32 2g2e-t(t + 2) -2.
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It is not hard to see that if the series

r---1

and exp{-e/H(,r)}
r=l

are convergent for all positive e, then the series obtained by replacing e and
;2 by e are also convergent for all positive e, and conversely. Therefore,
when using condition (59), we can substitute e for e and 2 on the right-
hand side of (60). Thus, we have

Theorem 6. Let {6} be a sequence of positive numbers such that the fol-
lowing conditions hold for any positive e"

(61)
kIr

(62) (e6 /K(r, 6, r) + 1) -/r < oe, t >__ 2,
r--1

(63) exp{-e/H(6, r)} < oe.
r=l

Then the sequence (57) obeys the strong law of large numbers.

RhlI 1. Denote H(6,, r) by q,. Then for t 2, condition (62) can be
rewritten in the following form"

From this we see that if q),--, 0 as r , then (62) implies (63). But if
lim inf,_oo q), > 0, then (62) and (63) are equivalent.

If the absolute moments of order t => 2 exist, then the following theorem
is valid.

Theorem 6’. Suppose the sequence (57)is such that Elkl < oc for >= 2
and for all k >= 1. Then the fulfillment of condition (61) and the following con-
ditions"

(64) (6’- /Kt, + 1)- /" < oe,
r=l

(65) e-m" < oe, V e > 0,

where K,,, and H are given by (58), is sufficient for the strong law of large
numbers.

We state now some corollaries to Theorem 6’. Setting 6, e/- / > 1
we obtain
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Corollary 1. If t >= 2 and there exists a constant fl >= 1 such that for any
positive conditions (65) and

(66)
k=l

(67)
r=l

hold, then the sequence (57) obeys the strong law of large numbers.
It is well-known that condition (66) is necessary for the strong law of

large numbers.

Corollary 2. If condition (66) holds and there exists a fl >_ 1 such that

(68)
r--1

then the strong law of large numbers holds.

REMARK 2. Let {b,} be a non-decreasing sequence of positive numbers
with b, .

V. A. Egorov 7] showed recently that if

m 2grn 2 2 < oo k > 2,(69) P([,[ > b,) < and -a...a_,
= n U

where aj2---D{j and the inner summation extends over all j, j_
satisfying 1 < j < < j_ < n 1, then (b,)-1 , j 0 a.e.

It is interesting to compare conditions (68) and (69) when b, n.
We first give an example to show that generally speaking (68) does not

follow from (69).
2 2 if n n and vanishes forFor, let n j2J= j)/2 and assume a,

other values of n. It is not hard to see that

j--
2 )2(j-a, <(j-l_

n=l

Hence, the sum of the series occurring in condition (69) does not exceed
2=j a for k 2. At the same time, 2 2a,Jn as j m from which
it follows that condition (68) cannot be satisfied no matter what fl >_ 1.

variesIn this example, the sequence {a,2} contains large gaps. But if a,
regularly as n m, then the case when lim,_BZz+,/B. < c with

n
--n /--n

2B,2 i= /2 and, in addition, lim inf,_ ltk)/l2k > 0, where Bt,k) Z
a2 (the summation being over thosej, "’’,Jk which satisfy 1 <= j <

< Jk < n) is typical. In that event.

ZHk Z2-a"Z a,H2 k--1

nlr

2 2k- 2o’B< L1 Y=I r/2k

oo 2 (k-l)6nBn< L2 Y=I /2k
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where L and L2 are constants, or in other words, from condition (69) follows
condition (68).

Setting fl 1 in (67) and using Chebyshev’s inequality, we arrive at

Corollary 3. Condition (65) and the condition

(70)
kt

< , t > 2,
k=l

are sufficient for the strong law of large numbers.

RhgK 3. When t => 2, Yu. V. Prokhorov 2] (and Brunk [8] for even t)
showed that the condition

(71) k,/ + - < c
k=l

is sufficient for the strong law of large numbers. Since

nl. nlr

condition (71) implies conditions (.65) and (70) under which Corollary 3 is
valid.

as k . Then theCorollary 4. Let O(k/qg(k)), where qg(k) T
condition

(72) (e/qg(2r)Kt,r + 1) -2") < o, V e > 0, t >_ 2,
r=l

is sufficient for the strong law of large numbers.

REMARK 4. Yu. V. Prokhorov proved in [4] that the condition

(73) e-/m < , V e > 0

is necessary and sufficient for the strong law oflarge numbers if (k) loglogk.
We can show that in this case condition (72) is necessary and sufficient for
all t 2. To this end, we merely have to prove that (72) follows from (73)
for t 2, since

Kt, K(t, 1, r) H(1, r)= H,
if,<n, VnI.

Without loss of generality, we may assume that (2) log r. Set
g 1/log r. If eg/H e2/ 1, then

(e6,/H, + 1) -/" r-2.

But if 86r/Hr < e2/a- 1, then the inequality log(x + 1) x/(x + 1)
leads to

(el6,) log(e6,/H, + 1) > e,Ze-Z/e/Hr.
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Thus

Z (e6,./H, + 1)-/a" < Z r-2 + Z exp{-e2e-2//H,}
r=l r=l r=l

REMARK 5. Under conditions (67) and (68), Kt,, and H, may be replaced,
respectively, by K(t, 1, r) and H(1, r) since there is no loss of generality in
assuming that [,l < n.
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