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AN ESTIMATE FOR THE CONVERGENCE RATE
FOR THE ABSORPTION PROBABILITY

S. V. NAGAEV
(Translated by B. Seckler)

Let&,,i=1,--- o0, be a sequence of identically distributed independent random variables
with distribution function F(x) such that E¢; = m and E&? = 242, Let c; = E|&,|3.

Let ¢, = Zl"= L ¢; and let n, be the smallest index n such that {, + x ¢ (a, b), where (a, b) is a
finite interval of the real line. Set

P(x) =P{{,, + x =2 b},xe(a,b), and P(x)=0,x¢(a,b).
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It is known that
Png P(x) = v(x), xe€(ab),

where v(x) is the solution of the equation
v+ o' =0,
satisfying the boundary conditions v(a) = 0 and v(b) = 1 providing
}irré mi % =oa and x? dF(x) = o(A?)
- |x|>¢

for any ¢ > 0 (see, for example, [1], Chapter 3). The aim of this paper is to estimate the rate at
which P(x) converges.

Theorem. There exists an absolute constant L such that

Lc, |m|
ailigblP(x) u(x)| < = a)lz(l + yE: b - a)),
where u(x) is the solution of the equation
u' + ;—;u' =0,

satisfying the boundary conditions u(a) = 0 and u(b) = 1.
This result was obtained for m = 0 in [2].

PRrOOF. As in [2], we denote by S(p(x)) the operator carrying an absolutely integrable function
p(x) into its Fourier-Lebesgue transform [® _ e"*p(x)dx and by S,(F(x)) the operator carrying
a function bounded variation into its Fourier-Stieltjes transform [® . e"*dF(x). The symbol
S; ! will be used to denote the operator inverse to S, .

Without loss of generality, we may assume F(x) to be continuous, m > 0,a = 0and b = 1.
Let ¢(¢) = S(P) and f(t) = S,(F). Clearly,

1
1) P(x)=1-F(1 — x) + J; P(y)dF(y — x).
This equation may be written in terms of Fourier transforms as
1
@ o1 — f(—1) = J; (1 = F(1 = x)) " dx + S(®),
where
1
o =] | PO =2 e,
0. x€(0,1).
Let
1= f(=t)—i — f(- _
iy =20 gy = TN P = s,

It is not hard to see that
® o0 = f(=0) = mt-+ Fe000) = 5, = [m + 2] P G).

where
1
P* G(x) = L P(x — y)dG(y),  G(x) = S7'(g(t)).

From (3) and (2), it follows that P * G(x) satisfies the equation

d?y dy
@ 4 dx? dx 1 =x-1



An estimate for the convergence rate for the absorption probability

149

for 0 < x < 1. Clearly,

(m — A%it)g(t) = #
Hence we find
d d? —F(—x), x>0,
— + ).2“‘_‘ G =
(mdx de) ) {—F(—x) +1,  x<0,
and therefore
d d? ~Fl-x+1, x<l,
5 — +A2—=]|Gx—-1) =
©) (mdx+ de) be=1) {—F(l — %), x> 1
Thus, —G(x — 1), x < 1, is the solution of equation (4). Therefore,
6) P*G(x) + G(x — 1) = w(x),
where w(x) satisfies the equation
d’y dy
2—— e
@) A o + mdx 0,
Clearly, G(x — 1) = E * G(x), where
E { ,  oxz1,
)= 0, x < 1.

Let

P*(x) = P(x) + E(x).
Then equation (6) may be rewritten in the following form:
(8) P*x G(x) = w(x),

0<x<l,

0<x<l1.

0<x<l1.

Let W(x) = P** G(x) — w(x), where w(x) satisfies equation (7) for —o0 < x < o0 and

coincides with P* * G(x) on (0, 1).
Lemma 1. For x > 1, w(x) < 0.
Proor. If x > 1, then by (2), (3) and (5),
(lzd—z + mi)P* *G(x) = —F(1 — x) — O(x).
dx? dx
Clearly,

—0(x) = fo PO)dF(y — x) < F(l — x).
Thus, for x > 1,

L d\,
lai'f‘map * G(x) = 0.

Hence

2
(12%4- m %)W(x) <0,

Moreover, w(1) = 0 and w'(1) = 0. This implies
22w (x) + mw(x) < 0,
and therefore

_vf(_x) < em(y-::)/l”
w(y) —

x> 1.

x> 1,

X2y

Thus the function W(x) e™/** is non-increasing and this means that W(x) < 0 for x > 1. The

lemma is proved.
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Let us now consider values of x < 0. Let w,(x) denote the solution of equation (7) satisfying
the initial conditions

wi(0) = PxG(0), wi(0) = d i G(X)
=0

Lemma 2. For x < 0, P * G(x) = w;(x).
PRrOOF. Let w,(x) = P * G(x) — w,(x). From (2) and (3) it follows that

d? d
(Azd 3+ mo )P* Gx)= —D(x) =0
for x < 0. Hence
d? d
2 wix) =
(,1 Ix —+m dx)wl(x) =0.
This implies that

d _ —
Azaw,(x) = mw,(x) = 0,
since w,;(0) = 0 and W} (0) = 0. Therefore,
wl(y) < emxmNIA
Wy(x) =

Thus, the function w,(x) e™*** is non-increasing. Thus it follows that w,(x) = 0 for x < 0 and
this is equivalent to the assertion of the lemma.

x <y

Lemma 3. For x <0,

2
W) — w0 S | = e — 1)+ 1.

PROOF. Let w,(x) = w(x) — w,(x). By (6),
wy(0) = G(—1),  wy0) = G'(—1).

Further,
1 1-f(=9
W= &
Clearly,
© 51—t Arermi x 20,
) m— A%it] |0, x < 0.

Therefore, for x < 0,

G'(x) = e™*2 )2 f e F(y) dy.

—

From this we obtain
<G G
06 = 212|x|2’ 0= Gk = 2/12| B
Thus,

0= wy(0) 35 0=wy0) =55

2/12 ’ 2/12

On the other hand,

wa(x) = E(1 = e (0) + w;00).
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Hence,
).2

C3
< 2|
[wo(x)| = 212(

(e™™ % — 1) + 1),
as required.

Lemma 4.
mn

W) < 2(12 + 1) eI,

Proor. Observe first of all that
(10) wx) = ae” ™4 4 g,
where o and f are constants. Clearly,
(11 0 PHx) = 1.
From (8) and (11) it follows that
(12) wel = Var G(x).
Let us now estimate Var_ ., .., G(x). Clearly,

1—f(—t)— imt m

g = imt + A%¢% m — iA%t’
Further,

_r _1r___m

imt + A22 A2 243 m — iA*t)’
Therefore,
(13) 8 = fz(r)(l — Azt) —.

It is not hard to see that

-2 %m + f F(wdu, x>0,

(14) STHf0) =
F;(u) du, x<0,
where
%(F(x) —1y, x>0,
Fi(x) = |
—P—F(x), x 0.
Clearly,
m
z = f_ F,(u) du, x> 0.
Hence
(15) S7Hf3(1) 2 0.
This implies that
(16) _VarSTH(G0) = £0) = 1.

By (9), we have

17 AV Rt I
( ) —oo<axr<oosl (m——izlt)
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From (12), (13), (16) and (17) it follows that
(18) lwix)| £ 2, 0sx=1.
Consequently,
le(e™™** — 1)) = Iw(1) — w(O0) < 2.
From this we obtain

2 2 2 _
|W/(X)| < %M e—-mx//l < _l_rzn(l _ e"M/i.2)—1 e—mx/l é 2(% + 1) e mx/ﬂ,

as required.
Let F,(x) = ST '(f,(2).

Lemma 5.
cym

32

Proor. Using the representation (13), we can easily obtain

Var< [G(x) — Fy(x)] <

—o0<Xx

mit
(19) 8(0) = £o(0) + fo(0) —,
where f5(t) = [1 — f,(t))/it. It is easy to see that

Fy(x) — 1, > 0,
STHf(0) ={ 2 *

F,(x), x =0.
From this representation, using (14), we obtain
® ¢
0) Var SPAO) = [ MR S g
On the other hand,
mit m m?

m— %t A2 AXm — A%t)’
By virtue of (9) this implies
(21) Var S7! (

— o0 <Xx<o00

mit 2m
_ < —
m— iAzt) =%
From (19) and (21), we can deduce the assertion of the lemma without any difficulty.

We now proceed to the final step in the proof. Without loss of generality, we may assume
that c,/A> < 1 and c;m/A* < 1. Let c5(1 + m/A%)/A2 be denoted by .

By Lemma 5,
@2) [P** G(x) = P** Py} < 55, 1P*G(x) — P Fy(9) < 2.
Let
w0), x=0,
Wx)=<wx), 0O0<x<l,
wl), x=1
Clearly,

W(x) = W Fyx) + Jm (W(x) = W(x — y)dFy(y),

=

|7 v — Wi = ) ar)| < max wea [ piar).

— 0

Using (20) and Lemma 4, we obtain

(23) W(x) = W Fyo] < 2.
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By (22),
P** G(x) = P** Fy(x) — 14 3> P Fy(l) — %
@4 2 2 2
me me me
> p* -3 Raliad I _ =273
2 P*eG() -5 = W) — T 52 = W) - S0
for x = 1. Applying Lemmas 1 and 4, we have
25) P** G(x) < w(x) < w(l) + 2(%2 + 1) x — 1), x> 1
From (24) and (25) it follows that
(26) [P** G(x) — W(x)| <2y
for 1 £ x < ¢3/A% + 1. Consider now values of x < 0. By (22),
1
@) PxFy(x) 2 P* G() — 5 75
On the other hand, by Lemma 3,
_ 5

(28) wi(x) > w(x) — 212(12 + 1) > w(x) le(e +1)
for —c;/A4% £ x £ 0. Using Lemma 4, we conclude that
(29) w(x) = w(0) + 2e(—;£2 + l)x > W(x) — 2ey, - % <x=<0.
From (27)—(29) and Lemma 2 it follows that, for —c;/A2 < x £ 0,
(30) P Fy(x) 2 W(x) — 8.
Using (20), we find

P** Fy0) = P* Fy0) + Fy(—1) < P* F,(0) + ;2.

By (22) and Lemma 3,

me,

Px F,0) < P* G(0)+ﬁ;

w1(0) + 2 S w0 + /2.

Thus, for x £ 0,
31) P*x Fy(x) < P** F(0) < W(x) + 2/3.
From (30) and (31) it follows that, for —c;/A*> < x < 0,

(32) |P* % Fy(x) — W(x)| < 8.
In turn, (8), (23), (26) and (32) lead to the estimate
(33) [(P* — W)* Fy(x) < &, _Z%< x=<1 +%'

Let A = supg<, <1 [P*¥(x) — W(x)|. There obviously exists an x4, 0 < x, < 1, such that
A = |P*(x,) — W(x,)|. Suppose that P*(x,) — W(x,) = A. Clearly,

69 @ = weh{x+ 3] = [ ov - Proyar,

c
Xo + I:‘;‘ y) .
By virtue of Lemma 4,
PH(x) — W(x) 2 A + 2y(xo — X)
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for x > x,. Therefore,

r W) - p*(y))sz(xo + i—?; - y) > AFZ(%)

(35) © .

_27f (xo — J’)sz(xo + /1% - J’)-
Further,

c

(36) Fz(ﬁ) > 2
It is not hard to see that
(37 j (xo_J’)sz(xo"‘A%_Y) §ﬁ+ J |deFz(x)§—l .
From (35)~37) it follows that

@ c
(38) [ wo) = Pronarx + 5 - y) >3-
Finally, by virtue of (36),

X0 A
(39) [ @0 -wo sz(xo +5 y) <%
From (34), (38) and (39) we conclude that
(40) (P* — W)* Fz(x0 12) >2A -y,
Comparing (33) and (40), we obtain
(41) A < 15y.
From (41) it follows in particular that
[w(0) < 15y, |1 — w(l)] < 15y.

This yields
42) o Sup [u(x) — w(x)| < max[|w(0)l, [l — w(1)]] < 157.

From (41) and (42) we obtain
02221 [P(x) — u(x)| < 30y.

Thus the theorem is proved under the assumption that P*(x,) — W(x,) = A
The case P*(x,) — W(x,) = —A is argued in exactly the same way.
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