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AN ESTIMATE FOR THE CONVERGENCE RATE
FOR THE ABSORPTION PROBABILITY

S. V. NAGAEV

(Translated by B. Seckler)

Let 1, 1, , be a sequence of identically distributed independent random variables
with distribution function F(x) such that EI m and E 222. Let c E1113.

Let , i= i and let n, be the smallest index n such that . + x (a, b), where (a, b) is a
finite interval of the real line. Set

P(x) P{n= -k x >: b},xe(a,b), and P(x) O, xq(a,b).
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It is known that

lira P(x) v(x), x (a, b),

where v(x) is the solution of the equation

t/’ + V’ 0,

satisfying the boundary conditions v(a) 0 and v(b) providing

lim m2-z 0 and ( xz dF(x) o(2z)
o Jlxl>e

for any > 0 (see, for example, [1], Chapter 3). The aim of this paper is to estimate the rate at
which P(x) converges.

Theorem. There exists an absolute constant L such that

sup IP(x)- u(x)l < + (b a)
<<b (b a)22

where u(x) is the solution of the equation

u" +u =0,

satisfying the boundary conditions u(a) 0 and u(b) 1.
This result was obtained for m 0 in [2].

PROF. As in [2], we denote by S(p(x)) the operator carrying an absolutely integrable function
p(x) into its Fourier-Lebesgue transform eip(x)dx and by SI(F(x)) the operator carrying
a function bounded variation into its Fourier-Stieltjes transfo f e’ dF(x). The symbol
S will be used to denote the operator inverse to Sx.

Without loss of generality, we may assume F(x) to be continuous, m > 0, a 0 and b 1.
Let (t) S(P)and f(t) S(F). Clearly,

( e(x ( xt + e(yt F(y x.
This equation may be written in terms of Fourier transforms as

(2) O(t)(1 -f(-t))= (1 F(1 x))e"dx + S(),

where

b(x)
P(y) dF(y x), x (0, 1),

O. x(O, 1).

Let

1- f(--t)-- imt
fz(t)

It is not hard to see that

(3)

where

g(t)
f(--t)

imt + 22t2’ F(x) S t(f(_ t)).

p(t)(1 f(-t))= (imt + 22t2)g(t)cp(t)= St

P * G(x) P(x y) dG(y), G(x) S- l(g(t)).

From (3) and (2), it follows that P * G(x) satisfies the equation

2d2y
(4) 2 -+mx=F(1-x)-
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for 0 < x < 1. Clearly,

Hence we find

and therefore

(m- 22it)g(t)= f(-t)

m
d

22d2/G(x) (-F(-x)’+ dx2] F(- x) + 1,

md 22d2/ {-F(1-x)+ 1,
+ -d-x]G(x 1)=

-F(1-x),

Thus, -G(x 1), x < 1, is the solution of equation (4). Therefore,

(6) e, G(x) + G(x 1)= w(x),

where w(x) satisfies the equation

2d2y
(7) 2 d-x2 + m-Yx 0,

Clearly, G(x 1) E * G(x), where

f 1, x _>_ 1,
E(x)

0, x<l.

Let

x>O,
x<O,

x<l,

x>l.

O<x<l,

0<x<l.

x2 + m P* * G(x) <= O.

22 d2 d)+mxx (x)=<0, x> 1.

Moreover, (1) 0 and ’(1) 0. This implies

2z’(x) + m(x) <= O, x > 1,

and therefore
(x) < e,,r_x)/x2 x > y.
(y)

Thus the function (x)e"x/2 is non-increasing and this means that (x) =< 0 for x > 1. The
lemma is proved.

Hence

Thus, for x > 1,

Clearly,

-(x) P(y) dF(y x) <= F(1 x).

P*(x) P(x) + E(x).

Then equation (6) may be rewritten in the following form:

(8) P* * G(x)= w(x), 0 < x < 1.

Let ff(x)= P* * G(x)- w(x), where w(x) satisfies equation (7) for -o < x < and
coincides with P* * G(x) on (0, 1).

Lemma 1. For x > 1, (x) <= O.

PROOf. If x > 1, then by (2), (3) and (5),

2 P* * G(x) F( x) O(x)
d2 d
x2 + mxx
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Let us now consider values of x < 0. Let wl(x) denote the solution of equation (7) satisfying
the initial conditions

w(O) e 6(o), dp * G(x)w (0)
dx

.Lemma 2. For x < O, P * G(x) >= Wl(X).

PROOF. Let (x) P* G(x) w(x). From (2) and (3) it follows that

, ’ + m P* a(xt -*(x > 0
dx

for x < 0. Hence

This implies that

2
d d)x2+ mxx ,(x) => O.

d
22x(x m(x) <= O,

since wx(0) 0 and ](0) 0. Therefore,

ff (Y) < emtx- r)/;,2 x < y.
(x)

Thus, the function ff,,(x)e’’’/’t2 is non-increasing. Thus it follows that ,(x) => 0 for x < 0 and
this is equivalent to the assertion of the lemma.

Lemma 3. For x <= 0,

C3 [22(e-mX/’2 1) + 1)w(x) w(x)l -< -/
PROOF. Let w2(x) w(x) w(x). By (6),

w2(0) G(- 1),

Further,

Clearly,

(9)

Therefore, for x __< 0,

From this we obtain

Thus,

On the other hand,

wz(0) G’(- 1).

g(t)
f(- t)

m- 22it it

G’(x) e-rex emr/Z2ff(y) dy.

C30 G’(X) - /41]’’2’X’ 2,
C30 G(X) 5 /’All’’2’X’

C30 __< w:(O) _<_ -, 0 < W(0) < 123
242’

wz(x --(1 e-mX/Z2)w’z(O) + wz(O).
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Hence,

as required.

Lemma 4.

C //],2
Iwz(x)l <= 2-l-(e-m/ 1) +

m
Iw’(x)l 2 - + e-rex

PROOF. Observe first of all that

(10) w(x) e- mx/Z2 + fl,
where a and fl are constants. Clearly,

(11) 0 <__ P*(x) <__ 1.

From (8) and (11) it follows that

(12) Iw(x)l =< Var G(x).

Let us now estimate Var_ <x< G(x). Clearly,

Further,

Therefore,

(13)

It is not hard to see that

(14)

where

Clearly,

Hence

(15)

This implies that

(16)

By (9), we have

(17)

1- f(-t)- imt m
g(t) +

imt + 22t2 m- i22t"

m
imt + 22t --22t ,2t2(m- i)2t)"

g(t) f2(t) m) m

m i22t -+-
m- i),2t

s-x(f_(t))
2- 2m -I- F1 (u) du,

((x)- ), x > o,
F(x)

x <= O.

,,],-- <__ F(u) du, x>O.

S-(f2(t)) => O.

Var Si- r(fz(t)) f2(O) 1.

Var S-
m

-o<x< m- 22it =1.

x>O,

x_<O,

x=<O,
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From (12), (13), (16) and (17) it follows that

Iw(x)l =< 2,(18)

Consequently,

la(e -"/2 1)1 Iw(1) w(0)l =< 2.

From this we obtain

Iw’(x)l < 11 e-mx/2 =< (1 e-"/z) e-,,,/z =< 2 - + e

as required.
Let F:(x) S-[ x(f:(t)).
Lemma 5.

c3mVar [G(x)- F:(x)] < 324.<x<oo

PROOF. Using the representation (13), we can easily obtain

mit
(19) g(t) f:(t) + f3(t)

m i22t,

where f3(t) [1 f2(t)]/it. It is easy to see that

_g:(x)- 1,
S- l(f3(t))

{.F2(x),

x>0,

x<O.

From this representation, using (14), we obtain

(20) Var Si- (f3(t)) [xl dF2(x) < c3
-oo<x<o 622.

On the other hand,

By virtue of (9) this implies

mit m m

m i)2t- ,2 2(m_ 2it).

O<x<l.

c3mc3m IP * G(x) e F2(x)l < 324
(22) IP* * G(x) P* * F:(x)l < 324
Let

Clearly,

w(O), x =< O,

W(x) w(x), 0 < x < 1,

w(1) x >__ 1.

W(x) w, F(x) + (W(x) W(x y)) dF(y),

(W(x)- W(x- y))dF2(Y) < max Iw’(x)l lyl dF2(y).
O_<x_<l

Using (20) and Lemma 4, we obtain

(23) W(x) W* Fz(x)l < .

(21) Var S?
mit 2m

-<x<oo m i22t]
<- ---"

From (19) and (21), we can deduce the assertion of the lemma without any difficulty.
We now proceed to the final step in the proof. Without loss of generality, we may assume

that C3/22 < and c3m/24 < 1. Let C3(1 + m/2:)/22 be denoted by
By Lemma 5,
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By (22),

mc mc
P* * G(x) >_ P* * F2(x - _> P* F2(1) 32"

(24)
> P* * G(1)

2 mc 2 mc

24 =w(1) 5 24 W(x)

for x _> 1. Applying Lemmas and 4, we have

(25) P* * G(x) <= w(x) <= w(1) + 2 - + (x 1),

From (24) and (25) it follows that

(26) IP* * G(x) W(x)l < 2
for <= x <= c3/22 + 1. Consider now values of x < 0. By (22),

mc
(27) P * F2(x) >= P * G(x)

3 24.

2 me

x>l.

On the other hand, by Lemma 3,

C3 C3 C
(28) wx(x) > w(x) - -e + > w(x) -(e + 1)

for -c3/22 <= x <= O. Using Lemma 4, we conclude that

(m(29) w(x) >- w(O) + 2e + x >__ W(x) 2e7,

From (27)-(29) and Lemma 2 it follows that, for -c3/22 <_ x <__ O,

(30) P * F3(x >= IV(x)- 87.

c32-__< x =< 0.

Using (20), we find

P* * F2(0)= P * F2(0) / F2(-1) __< P, F2(0 /

By (22) and Lemma 3,

Thus, for x _< 0,

(31)

mc

mc mc
P * F2(0 =< P * G(0) + -- wx(0 + __< w(0) + 7/2.

P* * FE(X) _-< P* * F2(0) _-< W(x) + 27/3.

From (30) and (31) it follows that, for --C3/,2 5 X 5 O,

(32) IP* * F(x) W(x)l < 8.
In turn, (8), (23), (26) and (32) lead to the estimate

25 C3 C3(33) I(P* I4/)* F2(x)l < TT, -2- =< x =< + -.
Let A supo_<,_< IP*(x)- W(x)l. There obviously exists an xo, 0 =< xo =< 1, such that

A -IP*(xo) W(xo)I. Suppose that P*(xo) W(xo) A. Clearly,

(34) (P* W)* F2 xo + (W(y)- P*(y))dF2 + x...y
By virtue of Lemma 4,

P*(x)- W(x) _>_ A + 27(Xo x)
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for x > Xo. Therefore,

(35)

(W(y) P*(y)) dF xo + - y > AF2
C3

22 (Xo Y) dF2 Xo + -- y

Further,

(36)

It is not hard to see that

(37) (xo y) dF2 C3 C3
Xo / y _-< / Ixl dFE(X) <-_

From (35)-(37) it follows that

(38) (W(y) P*(y)) dF c3Xo+--Y > 65-A-b.

Finally, by virtue of (36)

(39) (P*(y)- W(y))dF2 Xo + -- Y

From (34), (38) and (39) we conclude that

(40) (P* W) F2 c3)o+ >A-b.

Comparing (33) and (40), we obtain

(41)

From (41) it follows in particular that

Iw(0)l < 15,,

This yields

(42)

A < 15y.

o_<SUx2<P lu(x) w(x)l =< max[Iw(0)l, I1 w(1)l] < 15T.

From (41) and (42) we obtain

sup IP(x)- u(x)l < 30y.
O-<x_<

Thus the theorem is proved under the assumption that P*(xo) W(xo) A.
The case P*(xo) W(xo) -A is argued in exactly the same way.
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