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1. Introduction. Statement of Results

Let F(x) be a distribution function such that F(0) = 0 and let

0

H(x, A) = Y A*Fy(x), A>0,

k=0

where F;(x) is the k-fold convolution of F(x), k = 1,and Fy(x)is the degenerate
distribution function with jump at 0. Let

M, = f x* dF(x), w=M;.

b b+
Throughout the following f g(x) dF(x)is to be interpreted as f g(x) dF(x).

a+
Clearly, H(x, A) < oo for A < 1 and x < oo. In addition, for this case

H(oo, A) < oo0. Let g(z) = f e*™ dF(x). Clearly, when g(Re z) < 1/4,

* zZX — ¢ kok —
(1.1) f_w e dH(x, A) = k;o Akgk(z) = T Az

IfRez<0andImz =0,

o0

Y. A*gHz) <

k=0

forl = A4 < 1/g(2).
On the other hand, forRez < 0andImz = 0,

o0

H(x,A) < e™= Y A*gH2).

k=0

Thus,
H(x, A) < «©

for1 = A < 1/g(—o0) = 1/F(0+). Observe that H(co, A) = oo when 4 > 1.
547



548 S. V. Nagaev

In renewal theory one usually studies the asymptotic behavior of H(x, 1)
or H(x + I,1) — H(x, 1) as x - oo. However the case where A # 1 is also of
great interest. In particular, in branching processes with random particle
life-time there arises a need for an asymptotic representation for H(x + [, A)
— H(x, A)as x - oo with an estimate for the remainder term which is uniform
in A. It should be noted that for fixed A < 1 and finite number of moments
M the asymptotic behavior of H(x + I, A) — H(x, A) will depend on the
individual properties of F(x). Results of a collective type may be obtained
only when A4 1 1 sufficiently fast.

This paper studies the asymptotic behavior of H(x + I, A) — H(x, A)
under the assumption that F(x) is a lattice distribution or has an absolutely
continuous component. We shall say that F(x) is a A-lattice distribution if it
only increases by jumps at the points kA, where k is a non-negative integer
and the greatest common divisor of those k for which F(kA+) — F(kA) > 0
is equal to 1.

Consider a A-lattice F(x) and set

Ji=FkA+) — F(kd),  f(z) = kzoszk, Sul2) = kZOka"-

Let A(4) and 1,(A4) be real non-negative roots of the equations Af(z) = 1
and Af,(z) = 1, respectively.

Theorem 1. If F(x) is A-latticed and My < 0o, s > 1, then

A" H(A) 1
(1.2) H(nA+, A) — H(nA, A) = A ) + O(ns—l)
uniformly for A, < A < 1 such that
(1.3) n' =t exp{nA(l — A/} = O(1)
and
-n—1
(1.4) H(nA+, A) — H(nA, A) = :14]”'(1(5:14); + (nsl—l)

uniformly for 1 £ A < p, where p < 1/f is such that J(A) is the only root of the
equation Af(z) = 1 in the disc |zl < 1 when 1 < A < p.
Setting 4 = 1in (1.4), we obtain

(1.5) HmA+, 1) — H(nA, 1) = Al O(L_l) .
u n

This result is slightly weaker than A. O. Gel’fond’s in [1], which in our
notation can be stated as follows:

A A? logn
H(nA+,1) — HnA 1) = —+ — Z st Ol——),
H B kzn+1 n

where s = ) sy S if My < o0 fors = 1.
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A. A. Borovkov in [2] obtained an estimate such as (1.5) when 4 = 1,
it is true, in the more general case where F(0) > 0. The function H(x) in [2] is
defined to be E#,, where 7, is the first passage time across the level x. Observe
finally that condition (1.3) implies that 1 — 4 = O(log n/n).

Let us now consider the non-lattice case. Let F;(x) denote the absolutely
continuous component of F(x). Let

g,(2) = f_— e** dF(x).

Let A,(A4) be a real root of the equation Ag,(z) = 1 and let A(4) = A (A).

Theorem 2. If F,(c0) > 0and My < oo for s > 1, then, for any L > 0,
“AAE=D o= Ay 1
(1.6)  H(y,A)— H(y — L A) = ; + 0( - ) y >0,
AgyA(A)AL(A) y!
uniformly for 0 <1 < L and A, < A < 1 for which

vy T Sexp{y(l — Ayu} = 0(1)

and

(1.7) H(y,A) — H(y — L A) =

e*A(A)(y—l) _ e—A(A)y ( 1 )
b > 09
Ag (A(A)A(A) i Y

uniformly for 0 <1< L and 1< A=<R, where R < min{F(O0+)?,
(1 — Fy(00)/2)™ '} is such that A(A) is the only root of the equation Ag(z) = 1
in the half-plane Im z < O when1 < 4 < R.

Corollary.! If F,(00) > 0 and M, < o for s > 1, then

s—1

(1.8) M%D—H@—LU=£+0(1)
1 y

uniformly for lin any finite interval 0 < | < L.

To prove this, one merely has to set A = 1 in (1.7) and observe that
A(l) = 0.

We point out that, generally speaking, Theorem 2 ceases to be true even
for A = 1if one assumes F(x) not to be A-latticed, and at the same time omits
the requirement F;(c0) > 0.

Indeed, suppose M3 < oo and (1.8) holds. Then

Ax)=H(x+ L 1) — H(x,1) — I/u = o(x?)

and it is therefore absolutely integrable. Thus

0

lim Afx) e™ dx = f e"™A(x) dx,

z=it,Imz<0J _

! This result was also proved in [7] under the conditions s = 2 and x > 0 but without the
restriction that F(0) = 0.
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and

(1.9) <o

f e Ay(x) dx

uniformly in ¢.
On the other hand,

1 _e—itl

z—it,Imz<0 it(l - g(it))’

lim on (Hx+ L1) — H(x, 1)) ¥ dx =

and hence

_ e—itl l

4
it(1 — g(it))  uit
Now let g(z) = e**y(z), where ¥(z) is the generating function of a A-lattice

distribution with A = 1 and « is a positive irrational for which there exists a
sequence of integers k; such that lim;_, , k;{(2k; + 1)a} = 0. Clearly

lim k,{g(2n(2k; + 1)i) — 1) = 0.
J— oo

o= | eawdx =

On the other hand, 1 — exp{—2n(2k; + 1)li} = 2 when [ = }. Therefore,
1im |§01/2(271'(2kj + 1)) = oo,
J—7©

and this contradicts (1.9).

Let g(z) = f e dF{(x), i = 1,2, where F,(x) = F(x) — F;(x).

0

Theorem 3. Let F(c0) > 0, e’ dF(x) < oo for 0 £ h < hy and let

0_
A(A) be the only zero of Ag(z) — 1 in the half-plane Re z < hy < hy, where
hy > 0and g,(hy) < 1, when 1/g(hy) < A < 1. Then, forany ¢ > 0and L > 0,

e ) — H LA o AME=D _ ,—A)x O
(1.10) (x, 4) (x—1A4) A2 (AA)AA) (e™™%)
uniformly for 1/g(hy) + e < A< 1land0 <1 =< L.

A similar result is derived in [3], wherein it is assumed that F,(x) = 0 and
F'(x)is integrable to some power of p > 1.

The proof of each of the three theorems is based on the same method.
We shall therefore give a detailed proof of Theorem 1 only; in proving
Theorems 2 and 3 we shall concentrate our attention on what is new as
compared to the lattice case while referring the reader to corresponding
places in the proof of Theorem 1 at the first opportunity.

2. Proof of Theorem 1

Without loss of generality we may assume that A = 1. In the following
we shall denote by C,(f(2)) the coefficient of z" in the Taylor series of a function
f(z) which is analytic in some neighborhood of 0. Let u, = H(n+, 4)
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— H(n, A). Clearly,
u, = C(1/(1 — Af(2)).
On the other hand, when k < n
Cl1/(1 — Af(2)) = C(1/(1 = AfW(2))-
Thus
2.1) ue = Cu1/(1 — Afu(2)), k<n.

Let u,(z) = f.(z)and h, = [(s — 1)logn + c]/n, where c is a positive con-
stant to be chosen later.

Let h > 0. It is not hard to show that for any distribution function we
have

(2.2) Jw e"* dF(x) < e(l -~ F(%)) +h ’ (1 — F(x)) "™ dx, y >%

1/h 1/h
It is easy to see that
y hy poo
(2.3) (1 — F(x))e™dx < Ly— x* dF(x),
1/h h 1/h
where Ly = 1 + s(s + 1)**1 e % (see [5], p. 217). Further,
1 N N o0
(2.4) 1 - F(—) < (—) e"yf x5 dF(x).
h ey 1/h
From (2.2)—(2.4) follows
y _ ehy o 1
(2.5) f ¢ dF(x) < L— | x’dF(x), y > -,
1/h Y Jdam h
where L, is some constant.
Let us show that
(2.6) lim lim sup |p,(z) — ¢ =0,

£=0 n—> o0 zeUp(e)
where U,(e) = {z:1 =< |7] < M, |arg 2| < ¢}. Indeed,

1/hy n

[z*~Y — 1|x dF(x) + f |2*~'x dF(x)

1/hn

mm—mgf
0

2.7
+ J x dF(x).
1/hy,
But|z|* < e"~ for z € U,(¢). Therefore by (2.5),

n

eh,.n 0
(2.8) sup |z)*x dF(x) = O(ns_1 f x* dF(x)) .

ze Un(e) 1/hy, 1/h,

On the other hand,
2.9) 271 — 1] £ x|z — 1] |7*
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when |z] = 1 and x = 1. Further,
(2.10) |z — 1] <|x —exp {iargz}| + |1 — exp {iargz}|.
Using estimates (2.9) and (2.10), we obtain

M
(2.11) f |z~ — 1|x dF(x) < e((e" — 1) + e)M?, ze U,e).

0

At the same time,

1/hyn 0
f |z*~! — 1|x dF(x) = O (J xdF(x)).

M M
Setting M = (h, + &)~ /3, we have

oo}

0

1/hy,
2.12) f |51 — 1|x dF(x) = O((h, + &)'/%) + o( f xdF(x)),
(

hn+e) =173
ze U,(e).
Formulas (2.7), (2.8) and (2.12) easily imply (2.6).
Let us estimate the difference 1,(4) — A(A) for A = 1. First of all,

(2.13) In(A) Z MA),

since f(z) = f,(z) for non-negative z.
Clearly, A(4) £ 1 when 4 = 1 and

(2.149) Jm (AX(A4) — 1X(A) dF(x) = f A*(A) dF (x).
In this case, A¥(A) — A¥(A4) = x(1,(A4) — A(A))A*(A4). Therefore,
(2.15) (AA) — A(A)) ' xA¥(A)dF(x) < on A*(A) dF(x).
Hence . "

(2.16) AdA) — A(A) = 0(12:1 )

uniformly for 1 < 4 < p.

Indeed, there exists an w > 0 such that J x dF(x) > u/2. Therefore,
for sufficiently large n and 4 < p, -

W

(2.17) f XAX(A)dF(x) > 2°(p) | x dF(x) > pi®(p))2,
_ o

since A(A) is non-increasing with increasing 4. From (2.15) and (2.17) results
(2.16).

If A <1, A(A) is generally speaking not well-defined. In that case, we
estimate the difference 4,(4) — 1. It is not hard to see that

n ® 1— 4
f_(lﬁ(A)—l)dF(x)=j dF(x) + — .
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Further,

Ia(A) — 1 = (AA4) — Dx.
Therefore,
(2.18) U4 = 1) | xdF(x) < f dF(x) + —

0-— n

Condition (1.3) implies the existence of a constant ¢, such that

1—A

ul -—) — (s = 1)logn < ¢y,
u

ie.,

1—A - 1)1 +
(2.19) LG Dlogn er

u n
Then by virtue of (2.19),

(2.20) 1/A=1+ 01— 4) =1+ O0n'logn).
From (2.18)-(2.20) we conclude that

(4u(4) — 1)(# + O(nsl_l)) = pls = 1)logn Koy 0(1082 n

n n n?

Thus

(2.21) A(A) — 1 < -
n

s — + 1
(s — I)logn + ¢, N o( ),
n

)

and therefore, for sufficiently large n, 1,(4) will lie inside a circle of radius e""

if we set ¢ = 2¢;.

Let us now show that, for sufficiently large n, 1,(A4) is the only root of
the equation Af,(z) = 1 in the disc |z| < e" for all 4 < 1 satisfying condition

(1.3)and1 £ 4 < p.

First of all, because of (2.6) and the equicontinuity of f;(z) in the unit

circle we have

(2.22) Af(2) = 1 = Ap (2 A) (z — 4,(4)) T o(z — 4,(4))

uniformly in n and in the admissible values of A. Therefore, there exists an &,
such that Af, — 1 has no other zeros in the disc [z — 1,(4) < ¢, apart from
AdA)for all A e U, where U, is the set of all admissible values of 4 for given n.

Clearly,

1/h,, n
wel s [ xArare + [ st ar,
0 1

[hn
But

1/hn
f xlzZ*"VdF(x) < eu

0
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for |z £ e". Using in addition the estimate (2.8), we conclude that

(2.23) Sup, |pa(2)] < 0.
Therefore,
(2.24) lim sup |f,(re'?) — f,(e") = 0.
n—»o 1 <r<ehn
0Sv<2n

On the other hand,
(2.25) lim sup |f,(e") — f(e?) = 0.

n—>o 0S¢=2n

But, for any ¢ > 0,
(2.26) m(e) = inf inf |Af(e'?) — 1] > 0,

15Aspes|olsn
since otherwise there would exist 1 < 4, < p and ¢ < ¢y < 7 such that
Ao f(e"°) = 1 and this would contradict the hypothesis of the theorem.
From (2.24)-(2.26) it follows that, for sufficiently large n,
(2.27) 1|n|f |Af,(r €'°) — 1] > m(e)/2
eslol=n
foralll Sr<eé'and Ae,.

On the basis of all of the above, we can assert that if Af,(z) — 1 has a
zero 1,(A) in the disc |z| < e differing from A,(A4), then 1,(4) will lie outside
the region {z:1 < z < ", |arg z| = ¢} for n sufficiently large.

Observe that

Af(2) = 1 2 Ap((A) (2 — 44(A4))

for real z > 1,(A). This inequality plus the equicontinuity of f,(z) in the disc
|z| < e" (which is assured by (2.23)) imply the existence of a positive ¢; such
that |Af,(z) — 1| > ¢, AeU,, provided ze Uy(e;) and 1,(4) £ 1 — gy/2.
Setting ¢ = &, in (2.27), we arrive at the conclusion that, for n sufficiently large,
J.(A) cannot lie in the annulus 1 < |z < e if 1,(4) £ 1 — g/2.

But if 1,(4) = 1 — &y/2, there exists an ¢, such that 1,(4) does not lie in
the region 1 — ¢gy/2 < |z| £ e, |arg z| < &,, and therefore not in the annulus
1 £z £ e

Observe that |1,(4) > |A,(A). Therefore, when 4 < 1, 1,(A4) cannot lie
in the disc |z| < et

Consider now the case A = 1. Let

m= 1inf inf |1 — Af(z),

1SA45p zeV(4)

where V(A4) = {z:|z] <1, |z — MA)| = &y/2}. It is not hard to see that m is
positive since otherwise there would exist an 4,, 1 < A, < p, such that
Ao f(zg) = 1, where zy # A(A)and|z,| < 1. For sufficiently largenand |z| < 1,
| fz) — f(z) < m/2p and hence |1,(A) — A(A) < &y/2 forall 1 £ A < p. By
(2.16), 1,(A) — AM(A) < /2 for n sufficiently large. On the other hand, 1,(4)
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¢ {z:|z — A,(A) < &). Therefore, |1,(4) — A(A) > /2. Thus, 1,(A4)¢ {z:|]
< '} also when 1 £ 4 < p.

In what follows, we shall assume that the ¢ occurring in the definition of
h, has been chosen so that 1,(4) lies in the disc |z < "~ /" for n sufficiently
large.

Let y, be a circle of radius r, = e". Itis not hard to see that

Ak 1(A) 1 f z k1
w ="y -

AfW(AaA))  2miJ,,
for n sufficiently large. Clearly,

1 —k—1 d 1 n — ikt dl’
(2.29) — f z SR f ¢ :
2niJ,, 1 — Af(2) 2mr,)_,1 — Afy(r,e")

(2.28) dz, k <n,

1 — Af(2) -

By (2.6),
(2.30) Julrn) — fulAn(A)) — plry — A4(A)) = olr, — A,(A4))
uniformly for A € U,,. Set

1hn n
@ = [ TR, ) - [ zare,

1/hn
(pn(z) = A(f;ll(z) _f;ll(rn) _f;ll(rn)(z - rn))s
l//n(z) =1~ Af;ll(rn) - Af;ll(rn)(z - rn)'
The following identity holds:
L et )
1 —Af(2) Y2 (0 — ALW.(2)

Let y,(¢) = y, 0 U,(e) and let 7,(¢) be the complement of y,(¢) with respect to
7n- By (2.31),

(2.31)

z7k gz 4
(2.32) _— = I,(n’ g, k)’
TP
where
_ T (pn(Z) + Af;,z(Z)
1 =J wn I(Z)Z k le, 1 =J dz,
1 " ’ Yn(€) l/1n(Z)(1 - Af;,(Z))Zk+1
1 k-1 z k-1
Iy=—| '@ dz, I =f A
’ Tale) T ol = Af2)
For |b| < c?al,
f z "dz _0 .
|z|=c2aZ+b_ ’ n>0.

By virtue of (2.8) and (2.30), 1 — Af,(r,) < O for sufficiently large n. On the
other hand, 1 — Af,,(r,) + Af.1(r,)r, = 1 — Af,. Taking into account all of
the above, one can easily see that I, = O for sufficiently large n.
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Let us now consider I,. We first estimate the variation of ¢,(z)/
(1 — Af(2)W,(z) on y,(e), defining this to be the sum of the variations of the
real and imaginary parts. Some simple computations lead to the estimate

o0 _ 5 ( Vi(2)u(2)
. como (1 — ALDWn2) = ffm) (1 — AW
' ©n(2)

+| Af 42ou(2) )dl
(1= 4@ |0 = ah@wal

where dl is differential of arc along v,(c). Indeed, let w,(z) = @, (2)/(1 — Af(2))
¥ ,.(z). Clearly,
)2

2
) = 2’iwn(z)

dz
)dl.

d
—1
gm 0,(2)

!

e
a ea),,z)

2
+

2

< tm (2)
al w,(z

d
< 2( IERG w,(2)

On the other hand,

var w,(z) gf (
z € yn(e) n(e)

These two inequalities easily imply (2.33).
Now

[T — Afu2)? =11 — Afr)> + A2| fulra) = Sul2)?
T 2A(1 — Afu(ru) Re (fulra) — fu(2)).

By (2.6) there exist an ¢, and n, such that, forn > ny,

4 Re (2)
1l wu(z

+ . dillm w,(2)

1142 = fle) = iz = 1) < ez = ri

forze U,(g;). On the other hand, for ¢ sufficiently small, [Re(z — r,)| < |z —r,?
for z € y,(¢). Therefore, there exists an ¢, such that, for ze y,(¢;), n > ny,

A
1= Af2)? > |1 = Afra)* + A% £0r) — fl2) — -flz — 1l |1 — Afura)-

But, for ¢ sufficiently small,

2

3u
| /u2) — fulra)® > —4—l2 — % z € 74(e).
Hence, there exist an n, and ¢, such that, for z € y,(e0), n > ng,
1 Ap
(2.34) 11 — Afulz)l > 5'1 — Afy(ra) + —4—IZ — 1.

In what follows we shall assume that n, and ¢, have been chosen so that, for
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zZ € y4(80), 1 > ny, the following inequality holds:
1 Au
(2.35) [Yul2)| > Ell = Afua(ra) + le =T,

the proof of which is similar to that of inequality (2.34).
In consequence of (2.5),

(2.36) Jua(rs) = o(n™1).

For sufficiently large n,

(2.37) Fo — A(A) > 3n

and therefore by (2.30),

(2.38) Afy(r,) — 1 > Au/2n.
In addition, (2.30), (2.37) and (2.38) imply that

(2.39) Afyi(r,) — 1> Au/2n

for n sufficiently large. Now
(240)  [fu@) <eM,, sz2, [ful) <eMn®™, 1<s<2

Therefore,

(2.41) @ul(z) = Oz — 1, 2n™x©:279),
(2.42) @u(z) = O(z — r,|n™>:279),
From (2.34)-(2.36), (2.38) and (2.39) we conclude that
alrweNde (1o dr )
- Lkmmméwl—Am“w»‘4ﬁL(w*+04*0m

uniformly for 4 €. Similarly, on this occasion taking (2.41) and (2.42)
into consideration, we obtain, on setting v(s) = max(—1,1 — s),

- Val(2)pul2) _ o [° i) = O(n*®
nlﬁmmbﬁwmw@“‘oh Lmﬂ+ﬂs—mnl%m

/ dl v td
nﬂf | 42)onlz) =OPWJ__LL_)=mww%m,
Y

o) WA (@) (1 — Af,(2)) o TP
(2.44) oo di o
-1 (an v(s) _ .
n J;n(ao)l(l Af(2) )xp,,(z)| ( fo '+ 1) ) O(n”® log n).

From (2.33) and (2.44) we deduce using the familiar estimate for Fourier
coefficients that

q’n(rn eit) e—int dt
(2:43) L%U—Mmﬂmmﬁ

= 0(n"® log n) = o(1).
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In a similar way we can derive the estimates
e-—int dt 1
T o = O]
woslse 1 — Afy(ra € n

J‘ e—int dt (1)
N of-].
eoS|t|=m lrbn(rne ) n

From (2.28), (2.29), (2.32), (2.43), (2.45), (2.46) and the relation I, = 0, it
follows that (1.2) holds uniformly for A4 € Il,. To prove the second part of the
theorem, we make use of the inequality

(2.46)

| fAa(A)) — f(AUA)] < f [45(A) — A%(A)[x dF(x)
0
(2.47) + Jw xA¥(A) dF(x) < (A2~ 1(4) + 1)(A,(4) — A(A)) fn x% dF(x)
n 0

+ A"(A) fw x dF(x).

By virtue of (2.16),
(2.48) An(A4) = 0(1)
when 1 £ 4 < p. Further,

(2.49) f "2 dF(x) = ofn).

0
Using (2.16) again, we conclude from (2.47)—(2.49) that
(2.50) a2l A)) = f1(MA)) = o(2(A)/m*™ ).
On the other hand, by (2.16)
(2.51) AM(A) — A™(A) = o(1/n°7Y).
Equation (1.4) easily follows from (1.2) and the estimates (2.50) and (2.51).

The proof of Theorem 1 is now complete.

3. Proof of Theorems 2 and 3
Let F?(x) = F(x)for x £ yand FY(x) = F(y)for x > y. Let

Hy(x, A) = AFY(x),
k=0
where F{(x) stands for the k-fold convolution of F®(x). For x < y and
>0,

(3.1) H(x, A) — H(x — I, A) = H,(x, A) — H(x — |, 4).
Set Fuy(x) = f dFy(u),

Axn(—o0,y)
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where A, = {u:Fi(u) < L < 0, u < min(x, M)}, M < oo and L is chosen
in such a way that Fy,(c0) > 3F;(c0). Further, let F,,(x) = F®(x) — Fy,(x)

and g;(z) = f e dF;(x), i = 1,2. The following identity is easy to verify:
Agly(z) 1

= + :
1 — Agyz) (I — Ag(2))(1 — Agyy(z)) 1 — Agyy(2)
If yand y — lare points of continuity of H (u, A), then for ¢ = Re z < A (4),

(3.2)

a+iT '—Z(Y D — e W
, H(y, A) — Hy(y — L A) = —— i f S0~ Ano) &
(3 HOA =By =LA =5nlm ) 0= dge)

Indeed, it is not hard to see that

[e9]

(Hy(x, A) — H(x — I, A)) e dx = e”f00 (Hy(x + 1, A)

0- — o0

el — 1
H(x, A)) e* dx = A0 = Agy2) Rez < Ay(A).
To arrive at (3.3), one merely has to apply the formula for the inverse Laplace
transform (see, for example, [6], Theorem 7.6a).

Itisnot hard to see that a point of continuity of H(x, A)is at the same time
a point of continuity of H,(x, A) if x < y. Therefore, (3.3) holds if y — [ and y
are points of continuity of H(u, A4).

For y sufficiently large, A(4) < [(s — 1)log y + ¢;]/y, where ¢, is some
positive constant. This is proved in exactly the same way as the corresponding
assertion for 1,(A) in the lattice case (see the proof of Theorem 1).

In addition, for y sufficiently large, A,(A) is the only root of the equation
Ag,(z) = 1 in the half-plane Rez < [(s — 1)logy + ¢]/y for all admissible
values of 4, where c is a constant greater than c;.

To prove this statement, one has to use the fact that, forany ¢ > 0,

M
giy(o + it) = f T () - 0, y> M,

as t - oo uniformly for ¢ < &. Since g,(z) = g;,(2) + g,,(z) and

(3.4) 182,(2)] < L ¢ dF ()

forRez < 0,onecanfinda d,, Yoand K, such that

. inf( ) 11 — Agy(z) > do,  o(y) =[(s — Dlogy + cl/y,
ez=<a(y
lImz|> Ko

<7y =1~ 3F ()

forally > Yoand 4 <y~ '. In going from Re z £ 0 to Re z < a(y), one has
to make use of (2.5).
On the other hand, there exists a negative K such that
inf inf inf |1 — Ag/(z) > 0.

y A<y l1Rez<K;
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Thus the problem reduces to establishing the uniqueness of A (4) in the
rectangle K; < Rez < [(s — 1)logy + c]/y, [Im z| £ K,. This fact can be
proved in exactly the same way as the uniqueness of 1,(4) in the disc |z] < ™.
The reduction to a rectangle is necessary because in proving uniqueness
one has to make use of compactness.

In consequence of (3.4) and (2.5), |1 — Ag,,(z)) > 6o > Owhen 4 < y~!
and Rez < [(s — 1)log y + ¢]/y providing y is sufficiently large. Hence it
follows particularly that 1 — Ag,,(z) has no zeros for this range of values of
A and z.

Applying the residue theorem and (3.2), we obtain from (3.3),

M _

Ag'(A(A)A(A4)

A f (€707 — e™¥)gyy(2)
+ — z
2miJr, (1 = Agy(2))(1 — Aga\(2))z

Hy(y, A) — H(y — I, A) = e~ A

(3.5)

T e—it(y—l) _ e—lty

1
+ — lim dt
27 1o J_p (1 — Agoyin)it

where I, is the line Rez = [(s — 1)logy + c]/y.
LetT\(e) = {z:zeT,,|Imz| < ¢} and T'(e) = I, — I'(¢). Clearly,

it) |? 1 1
(3.6) f 81,0 + i) dt < *f lg1,(o + it)?dt + ~.
NEY; t HET €
Further,
(3.7) J lgi,(o + it)2dt < f F(x)e***dx < L e*M.
[tlze — o0

Using (3.6) and (3.7) as well as analogous estimates for g} ,(z), one can easily
show that

f (7 — 7 D)eyy(2) dz’
fy(e)(1 - Agy(z))(l - AgZy(Z))Z
K

Jl:y“)

< S
y

38
o9 d gi(2)(e* — 1)

dz (1 — Ag,(2))(1 — Ag,,(2)z

S

y

‘ - C(e, L)

uniformly for 0 < [ < L. Here K is an absolute constant. In proving (3.8),
one also has to use the fact that gj(0) < Q < oo foro < [(s — 1)logy + cl/y
(cf. (2.23)). On the other hand, reasoning in an analogous way as in the proof
of (2.45), one can show that for ¢ sufficiently small
)
= o|—
ys 1

[ (7070 — e~ Mgy(2)dz _
ry(s)(l — Ag,(2))(1 — Ag,(2))z

(3.9)

uniformly in [ ranging over any finite interval 0 < [ < L.
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It remains to estimate

—-tt(y n __ —-tty
1 f dt
T 2nrom J_g (1 — Ag, (in)it

Itisnot hard to see thatwheny — [ > 0,

o0

(3.10) I= ) ANFOy) — FSW(y = 1),

k=1

where F¥)(x) stands for the k-fold convolution of F,,(x). Clearly,

(3.11) M) — P - D0 -0 [ dFay).

Set FY)(x) = F,,(x)/F,,(c0). Let F$)(x) denote the k-fold convolution of
F@)(x). Using this notation, we have

[ warnw = P [ v arn
(12 B
< k*F% (o0) f X'dFP(x) < kM F5; ' (0).

From (3.10)—(3.12) we obtain the estimate
2 kM,

3.13 1  —
( ) =1 (v =0y

lIA

k5k—1

where 6 = F,,(c0).

The asymptotic representation (1.6) in the case where y and y — [ are
points of continuity of H(u, A) is now easily obtained from (3.1) and (3.5) by
using the estimates (3.8), (3.9) and (3.13). If one of the points yand y — lisa
discontinuity of H(u, A), we choose a sequence y, T yso thateach y,and y, — |
is a point of continuity of H(u, A). It is not hard to see that

lim g, (z) = g,(2), lim g, (2) = g}(2).
yn'ly yn'ty

Hence,
lim A, (A) = A(A) and lirTn 2y,(A,,(A)) = gy(A(A)).
Ynly

vty

On the other hand,
lim (H(y,, A) — H(y, — I, A)) = H(y, A) — H(y — I, A).

'ty
From all of the above, we conclude that the asymptotic representation
(1.6) holds for any pair y and y — I. The passage from (1.6) to (1.7) is accom-
plished in the same way as the passage from (1.2) to (1.4) in the proof of
Theorem 1.
We now proceed to prove Theorem 3. First of all,

ITIiTﬁ lg(o + it) < g,(0),
t|— o0
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and, to any h and ¢ > 0, there exists a positive K such that |g(c + it)] < g,(0)
+ ¢forall0 <o < hand |t < K.

Hence there exists a K, such that
(3.14) inf |Age+it)— 1 >0>0

[t} > Ko

forall0 < ¢ < h;and 4 < 1, where d depends on K.

On the other hand,
(3.15) inf |Ag(hy + it) — 1] > 6; >0

|t'<K0

for all g7 !(h;) + ¢ < 4 < 1 since otherwise there would be an A4,, g~ *(h,)
+e< A4y 51, and ty # 0 such that Ayg(h, + ity) = 1. And this would
contradict the hypothesis of the theorem.

Choose now M and L, occurring in the definition of F,,(x), so that
gom(hy) < 1. Then, when 4 < 1,
(3.16) . in<fh |Agom(z) — 1] > 0, > 0.

Hence it follows in particular that Ag,(z) — 1 has no zeroes in the half-
plane Rez < h;.

It is not hard to see that

1 a+iTe—z(x—l) _ e—zx
H(x,A)— H(x — ,A) = — lim — e — — ]z,
miT-0J,—ir  2(1 — Ag(2))

ifo < 0and x — land x are points of continuity of H(u, A).

Applying the residue theorem and (3.2), we have

—ANA)x( ,AA)] __ 1
He A)— Hix — LAy= S )

Ag'(A(A)A(A)
A (727D — e )g 1 (2) dz
(3.17) %me (1 — Agy(@)(1 — Ag;u(2)z
1 T p-itx=l) _ ,=itx
+ — lim

2% T-w -T (1 - AgZM(it))it dt'
By virtue of (3.6), (3.7) and (3.14)—(3.16),
(e7**7D) — e™™)g  \(z) dz _
. — O™
(3.18) f (1 = Agn@)(1 = Agowie)z 0 )

uniformly for Aing~'(h;) +e< A< 1.
Further (cf. (3.10))

e—-it(x—l) _ e—itx 0

1 T
b 1 t = Ak F M) _ F(M) _ l < hi(l —x)
o f_T it(1 — Agaplit)) de= 3 AFIRK) - FElx — D) s e

2n T k=1

(3.19) } )
<3 Akf Y AFPD(y) = M09 Akgk, (hy), x—1>0.
k=1 — 00 k=1
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The assertion of Theorem 3 in the case where x and x — [ are both points
of continuity of H(u, A) follows from (3.17)—(3.19). The passage to arbitrary
xand x — lisaccomplished just as in the proof of Theorem 2.

Received by the editors
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