
THEORY OF PROBABILITY
Volume XIII AND IT S AP PL I CAT I 0NS Number 4

1968

SOME RENEWAL THEOREMS

S. V. NAGAEV

(Translated by B. Seckler)

1. Introduction. Statement of Results

Let F(x) be a distribution function such that F(0) 0 and let

H(x, A) A*F(x), A > O,
k=O

where F,(x) is the k-fold convolution of F(x), k _>_ 1, and Fo(x) is the degenerate
distribution function with jump at 0. Let

M x dF(x), p M..

Throughout the following g(x) dF(x) is to be interpreted as g(x) dF(x).
+

Clearly, H(x, ,4) < for A < 1 and x < . In addition, for this case

H(oe, A) < oe. Let g(z) e dF(x). Clearly, when g(Re z) < 1/A,

e=  H(x, 2
oo k: 0 1 Ag(z)

If Rez < 0 and Imz 0,

forl __< A < 1/g(z).

Akgk(z) <
k=0

Thus,

On the other hand, for Re z < 0 and Im z 0,

H(x, A)<_ e -z" _, Ag(z).

H(x,A) <

for 1 _< A < 1/g(- oe) l/F(0+). Observe that H(oe, A) when A > 1.
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548 s. v. Nagaev

In renewal theory one usually studies the asymptotic behavior of H(x, 1)
or H(x + 1, 1) H(x, 1) as x oo. However the case where A 4:1 is also of
great interest. In particular, in branching processes with random particle
life-time there arises a need for an asymptotic representation for H(x + l, A)

H(x, A) as x --, oo with an estimate for the remainder term which is uniform
in A. It should be noted that for fixed A < 1 and finite number of moments
M the asymptotic behavior of H(x + l, A)- H(x, A) will depend on the
individual properties of F(x). Results of a collective type may be obtained
only when A Y 1 sufficiently fast.

This paper studies the asymptotic behavior of H(x + l, A)- H(x, A)
under the assumption that F(x) is a lattice distribution or has an absolutely
continuous component. We shall say that F(x) is a A-lattice distribution if it
only increases by jumps at the points kA, where k is a non-negative integer
and the greatest common divisor of those k for which F(kA+ F(kA) > 0
is equal to 1.

Consider a A-lattice F(x) and set

f F(kA +)- F(kA), S z) 2 S. z) E
k=O k=O

Let 2(A) and 2,(A) be real non-negative roots of the equations Af(z) 1
and Af,(z) 1, respectively.

Theorem 1. IfF(x) is A-latticed and M < , s > 1, then
n (1)(12) H(nA+ A) H(nA, A)

2; ’(A) + o
Af’,(2,(A)) n

uniformlyfor A, <= A <= 1 such that

(1.3) n’- exp{nA(1 A,)/p} O(1)

and

) (A) + o(1.4) U(nA +, A) U(nA, A)
Af’(2(A)) n-1

uniformlyfor 1 <= A <= p, where p < lifo is such that 2(A) is the only root ofthe
equation Af(z) 1 in the disc Iz[ <= 1 when 1 <= A <= p.

Setting A 1 in (1.4), we obtain

(1.5) H(nA+ 1) H(nA, 1) + o
]2 tl

s-

This result is slightly weaker than A. O. Gel’fond’s in [1, which in our
notation can be stated as follows"

A A2 (log n)H(nA +, 1) H(nA, 1) --]A
Af._ - k >_n+Z Sk + 0

n

where s j>__,+ fj’ if M < c for s => 1.
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A. A. Borovkov in [2] obtained an estimate such as (1.5) when A 1,
it is true, in the more general case where F(0) > 0. The function H(x) in 2] is
defined to be Er/,,, where r/,, is the first passage time across the level x. Observe
finally that condition (1.3) implies that 1 A O(log n/n).

Let us now consider the non-lattice case. Let Fl(X) denote the absolutely
continuous component of F(x). Let

gy(z) e dF(x).

Let Ay(A) be a real root of the equation Agy(z) 1 and let A(A) Ao(A).

Theorem 2. IfFl(V) > 0 and M < for s > 1, then,for any L > O,

(1.6) H(y, A) H(y l, A)
c-Ay(A)(Y-/)--c-Ay(A)Y

Ag’y(Ay(A))Ay(A) i y>0,

uniformly for 0 <= <= L and Ay <= A <= 1 for which

yl-s exp{y(1 Ay)/} O(1)

and

e-A(A)(y-l) c-A(A)y 1
(1.7) H(y, A) H(y l, A) +o y-i y>0,

Ag’(A(A))A(A)

uniformly for 0 <= <= L and 1 <= A <= R, where R <min{F(0+)-l,
(1 (ov)/2)-1) is such that A(A) is the only root of the equation Ag(z) 1
in the half-plane Im z <= 0 when 1 <= A <_ R.

Corollary. Ifff (o) > 0 and M < oo for s > 1, then

(1.8) U(y, l)- H(y l, l)= ll -+" 0
yS-1

uniformlyfor in anyfinite interval 0 <= <= L.
To prove this, one merely has to set A 1 in (1.7)and observe that

A(1) 0.
We point out that, generally speaking, Theorem 2 ceases to be true even

for A 1 if one assumes F(x) not to be A-latticed, and at the same time omits
the requirement FI() > 0.

Indeed, suppose M < and (1.8) holds. Then

At(x) =- H(x + l, 1) H(x, 1/ o(x- )
and it is therefore absolutely integrable. Thus

; f_,o eitxAllim A/(x) e dx (x) dx,
it,lm < 0

This result was also proved in [7] under the conditions s >= 2 and # > 0 but without the
restriction that F(0) 0.
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and

(1.9) eA(x)dx < oe

uniformly in t.
On the other hand,

f 1 e -itl

lim (H(x 4- l, 1) H(x, 1)) e dx
-,i,Im < 0 it(1 g(it))

and hence
1 --itl

q)t(t) =- eitAt(x) dx
it(1 g(it)) lu, it

Now let g(z) eO(z), where O(z) is the generating function of a A-lattice
distribution with A 1 and is a positive irrational for which there exists a
sequence of integers kj such that limj_. kj{(2kj + 1)} 0. Clearly

lim kj(g(2rt(2kj + 1)i) 1) 0.
j-

On the other hand, 1- exp{-2rt(2kj + 1)/i} 2 when l= 1/2. Therefore,

lim Iqg/z(2rc(2kj + 1))1 ,
j--* c

and this contradicts (1.9).

Let gi(z) e dFi(x), 1, 2, where Fz(x) F(x) Fa(x).

Theorem 3. Let F(oe) > O, eh dF(x) < for 0 <_ h < ho and let

A(A) be the only zero of Ag(z)- 1 in the half-plane Re z <_ h < ho, where
hi > 0 and g2(hl) < 1, when 1/g(hl) < A __< 1. Then,for any e > 0 and L > O,

c-A(A)(x-l) ?-A(A)x
(1.10) n(x, A) H(x l, A)

Ag’(A(A))A(A)
+ O(e-h’x)

uniformlyfor 1/g(hl) + e _-< A __< 1 and 0 < <= L.
A similar result is derived in [3, wherein it is assumed that F2(x 0 and

F’(x) is integrable to some power of p > 1.
The proof of each of the three theorems is based on the same method.

We shall therefore give a detailed proof of Theorem 1 only; in proving
Theorems 2 and 3 we shall concentrate our attention on what is new as
compared to the lattice case while referring the reader to corresponding
places in the proof ofTheorem 1 at the first opportunity.

2. Proof of Theorem 1

Without loss of generality we may assume that A 1. In the following
we shall denote by C,(f(z)) the coefficient ofz" in the Taylor series ofa function
f(z) which is analytic in some neighborhood of 0. Let u, H(n+, A)
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H(n, A). Clearly,
u, C,(1/(1 Af(z))).

On the other hand, when k __< n

C,(1/(1 Af(z)))= C,(1/(1 Af,(z))).

Thus

(2.1) u, C,(1/(1 Af,(z))), k <= n.

Let/,(z) f’,(z) and h, [(s 1) log n + c]/n, where c is a positive con-
stant to be chosen later.

Let h > 0. It is not hard to show that for any distribution function we
have

(2.2) dF(x) < e
/h

It is easy to see that

1
+ h (1 F(x))eh dx, y >-.

/h h

f ehY f(2.3) (1 F(x)) e dx L x dF(x),
/h hY /h

where L 1 / s(s / 1)/ e (see 5], p. 217). Further,

(2.4) 1 F < ehy x dF(x).
/h

From (2.2)-(2.4) follows

(2.5) f/h

eh’ dF(x) < - /h

where L is some constant.
Let us show that

1
x dF(x), Y > h’

(2.6) lim lim sup Ikt.(z) -/l O,
e"-’O n-, zeU,,(e)

where U,(e) {z" 1 __< Iz[ _-< eh", larg zl _-< e}. Indeed,

[Zx- llx dF(x) +
(2.7)

Ira(z) _-< fo
+ x dF(x).

/,

But Iz[ < e" for z e U,(e). Therefore by (2.5),

]zl"x dF(x) O(
[z 11 xlz- 11 Izl x

(2.8) sup f"Un (e) 1/hn

On the other hand,

(2.9)

zlX-ax dF(x)

x* dF(x)
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when Iz[ => 1 and x __> 1. Further,

(2.10) Iz iI < Ix exp {iargz}[ + l1 exp {iargz}l.

Using estimates (2.9) and (2.10), we obtain

(2.11) Iz-- llx dE(x)< e((eh- 1)+ e)M,
At the same time,

Iz llx dF(x) 0 x dF(x)

Setting M-- (h, + e)- /, we have

l[x dF(x)= O((h,, + /)1/3)q_ O

z e U.(e).

x dF(x)

z e U.(e).
Formulas (2.7), (2.8) and (2.12) easily imply (2.6).

Let us estimate the difference 2,(A) 2(A) for A >= 1. First of all,

(2.13) 2,(A) __> 2(A),

since f(z) >= f,(z) for non-negative z.
Clearly, 2(A) .’__< when A > and

(2.14) (2,(A) 2(A))dF(x) 2(A) dF(x).

In this case, 2,(A) 2(A) >_ x(2,(A)- 2(A))2(A). Therefore,

(2.15) (2.(A) 2(A)) x2(A) dF(x) 2X(A) dF(x).

Hence

(2.16) 2,(A) 2(A) o n
uniformly for 1 N A N p.

Indeed, there exists an m > 0 such that x dF(x) > /2. Therefore,
for suciently large n and A N P,

(.71 xX() f(xl > x(p) x f(x > x(p)/,

since 2(A) is non-increasing with increasing A. From (2.15) and (2.17) results

If A < 1, 2(A) is generally speaking not well-defined. In that case, we
estimate the difference 2,(A) 1. It is not hard to see that

(x( (xt f(xl +
A
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Further,

Therefore,

,.(A) _>_ (2.(A) )x.

(2.18) (2n(A) 1) x dF(x) < dF(x) + m
Condition (1.3) implies the existence of a constant Cl such that

n( A)
(s- l) logn <ca,

1 A (s 1)logn + c(2.19) <
/ n

Then by virtue of (2.19),

(2.20) 1/A 1 + O(1 A)= 1 + O(n-alogn).

From (2.18)-(2.20) we conclude that

(2,(A)- 1) kt + o
n

log n + n + O
n2

Thus

(2.21.) 2,(A)- 1 < + o
n

and therefore, for sufficiently large n, 2,(A) will lie inside a circle of radius e"
if we set c 2c.

Let us now show that, for sufficiently large n, 2,(A) is the only root of
the equation Af,(z) 1 in the disc Izl _-< eh" for all A < 1 satisfying condition
(1.3)and 1 <= A <= p.

First of all, because of (2.6) and the equicontinuity of f’,(z) in the unit
circle we have

(2.22) Af.(z) Am(,.())(z ,.(A)) + o(z 2.(A))

uniformly in n and in the admissible values of A. Therefore, there exists an eo
such that Af, 1 has no other zeros in the disc [z 2,(A)[ < eo apart from
2,(A) for all A 11,, where 11, is the set of all admissible values of A for given n.

Clearly,

Ilt,(z)[ <= xlz]- dF(x) + xlz] x- dF(x).
/h.

But

x[zlx-l dF(x) <
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for [zl _-< eh". Using in addition the estimate (2.8), we conclude that

(2.23) sup Im(z)l < oc.
n, lzl <ehn

Therefore,

(2.24) lim sup
nc <_r<_ehn

O__<q_< 2r

On the other hand,

(2.25) lim sup
n 0 =< q_< 2rt

But, for any e > 0,

(2.26) m(e) inf

f,(rei) f,(ei)l O.

[f,(ei) f(eiq’)[ O.

inf [Af(e) i > O,
<_a<_p

since otherwise there would exist 1 __< Ao _-< p and e __< qo _-< such that
Aof(e) 1 and this would contradict the hypothesis of the theorem.

From (2.24)-(2.26) it follows that, for sufficiently large n,

(2.27) inf Af,(r e’) i > m(e)/2
_-<101__<

for all 1 <= r <= eh" and A
On the basis of all of the above, we can assert that if Aft(z) 1 has a

zero ,n(A) in the disc Izl _-< e" differing from 2,(A), then/,(A) will lie outside
the region {z" 1 <= z <= eh", larg z[ _> e} for n sufficiently large.

Observe that

Af.(z) 1 >= A
for real z > 2,(A). This inequality plus the equicontinuity off,(z) in the disc

Izl =< e" (which is assured by (2.23)) imply the existence of a positive e such
that IAf,(z)- 11 > e, A 11,,, provided z U,(e) and 2,(A) =< 1 Co/2.
Setting e e in (2.27), we arrive at the conclusion that, for n sufficiently large,
,(A) cannot lie in the annulus 1 =< Iz] _-< e" if 2,(A) __< 1 Co/2.

But if 2,(A) 1 Co/2, there exists an e2 such that/,(A) does not lie in
the region 1 Co/2 _-< ]zl =< e", larg zl < e,2, and therefore not in the annulus
1 __< Izl _-< ch".

Observe that I2,(A)] > 12,(A)I. Therefore, when A =< 1, 2,(A) cannot lie
in the disc Izl <_- eh".

Consider now the case A > 1. Let

m= inf inf l1 Af(z)[,
<_A<_p zV(A)

where V(A) {z’lzl <= 1, Iz R(A)I Co/2}. It is not hard to see that m is
positive since otherwise there would exist an Ao, 1 =< Ao < p, such that
Aof(Zo) 1, where Zo 4: 2(A) and IZo] =< 1. For sufficiently large n and ]zl =< 1,
If,(z)- f(z)l < m/2p and hence I2,(A)- 2(A)] < Co/2 for all 1 N A __< p. By
(2.16), 2,(A) 2(A) < Co/2 for n sufficiently large. On the other hand,/,(A)
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6 {z’lz- 2,(A)I < eo}. Therefore, ],,(A)- 2(A)I > e0/2. Thus, i,(A)q {z’lzl
<__ehn}alsowhen 1 <=A <__p.

In what follows, we shall assume that the c occurring in the definition of
h, has been chosen so that 2,(A) lies in the disc ]zl < eh"- 1/, for n sufficiently
large.

Let 7, be a circle of radius r, eh". It is not hard to see that

2-/-I(A) + 1 f z--I
(2.28) u

Af’,(2.(A)) 2zti 1 Af,(z)
dz, k < n

for n sufficiently large. Clearly,

I f z--dz 1 f e-dt
(2.29)

2zti . 1 Af,(z) 2ztr, 1 Af,(r,

By (2.6),

(2.30) f.(r.) f.(2.(A)) (r. 2.(A)) o(r. 2.(A))

uniformly for A e 11,. Set
l/hn

fnL(z) z dF(x), L(z) z dV(x),
0 1/hn

q).(z) A(f.(z) f.(r.) f;,l(r.)(z r.)),

,(z) 1 Af (r,) Af’, (r,) (z r,)

The following identity holds:

1 1 qg,(z) + Af,2(z)
(2.31)

1 Af,(z) ,(z) (1 Af,(z)),(z)"
Let 7,(e) 7, U,(e) and let ,(e) be the complement of 7,(e) with respect to

7,. By (2.31),

z --(2.32)

where

13

For

@- X(z)z-k- dz, 12 f qn(Z) + Afn2(Z)
dz

.(e) i//n(Z)( 1 AUn(Z))Zk+l

Z-k-1
(z)z-- dz, I

Z dz

l=caz-b =O, n>0.

By virtue of (2.8) and (2.30), 1 Af,(r,) < 0 for sufficiently large n. On the
other hand, 1 Af,(r,) + Af’,(r,)r, >__ 1 Afo. Taking into account all of
the above, one can easily see that I 0 for sufficiently large n.
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Let us now consider 12. We first estimate the variation of q),(z)/
(1 Af,(z)),.(z) on 7,(e), defining this to be the sum of the variations of the
real and imaginary parts. Some simple computations lead to the estimate

(2.33)
,o ( Af.(z))O.(z) . O’.(z)q).(z)

( Af.(z))O.(z.)

Af’.(z)q.(z)
( Af,(z))/.(z)

dl,

where dl is differential of arc along 7,(e,). Indeed, let co,(z) qo,(z)/(1 Af,(z))
,,(z). Clearly,

d d )2Re co.(z) + Im co.(z)

d- 2 d- 2) d 2

az
__< 2 Re co.(z) + Im o).(z) 2 -cco.(z)

On the other hand,

d
var co.(z) =< Re co.(z)

,.(e) .(e) -These two inequalities easily imply (2.33).
Now

d
Im dl.

11 Af,(z)[ 2 l1 Af,(r,)l 2 + A 21 f(r,) L(z)[ 2

+ 2A(1 Af,(r,)) Re (f(r,) f(z)).

By (2.6) there exist an e and n such that, for n > n,

f,(z)- f,(r,)- p(z- r,)l < z-

for z e U,(ea). On the other hand, for e sufficiently small, IRe(z r,)[ < Iz rnl 2
for z 7,(e). Therefore, there exists an 2 such that, for z e 7.(e2), n > n a,

A/
[1 Af.(z)l 2 > l1 Af,(r,)[ 2 + AZIf,(r,)- f,(z)[- -Iz r,I I1

But, for e sufficiently small,

IL(z) f,(r,)l >
3/2
-Iz r.I , z e 7.(e).

Hence, there exist an no and eo such that, for z 7,@o), n > no,

1 A/
(2.34) [1 Af.(z)l > z-: l Af,(r,)l + --4-[z
In what follows we shall assume that no and eo have been chosen so that, for
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z 7,(eo), n > no, the following inequality holds"

1 Ap
(2.35) [0,(z)[ > z[1 Af,,(r,)l + -:-[z r,I,

z

the proof of which is similar to that of inequality (2.34).
In consequence of (2.5),

(2.36) f,z(r,) o(n-1).

For sufficiently large n,

(2.37) r, 2.(A) > 1/4n
and therefore by (2.30),

(2.38) Af,(r,)- 1 > Alu/Zn.
In addition, (2.30), (2.37) and (2.38) imply that

(2.39) Af,l(r,)- 1 > Ap/Zn

for n sufficiently large. Now

[f;l(Z)[ < em2, s > 2 [f, a(Z)[ < eMn2-,(2.40)

Therefore,

(2.41)

(2.42)

q)n(Z) O([Z- rn[Znmax(O’2-s)),
q)’n(Z) O(IZ rn[nmax(O’2-s)).

From (2.34)-(2.36), (2.38) and (2.39) we conclude that

(2.43)

1<s<2.

tl < co /,(r, eit)(1 Af,(r, eit))
o -n (n- _+_ t)2 o(1)

uniformly for A e 11,. Similarly, on this occasion taking (2.41) and (2.42)
into consideration, we obtain, on setting v(s) max(-1, 1 s),

(2.44)

’,(z)q),(z)
dl 0 n()

(1 Af,(z))/2,(z) (n_: i + t)3
O(n() log n),

(fo tZdt
=O(n()logn)0 nVt)

(n- -k- t)3

t dt
O(n() log n)O nv(s)

(n_i+ t)2

From (2.33) and (2.44) we deduce using the familiar estimate for Fourier
coefficients that

(2.45) f q),(r, ei’) e-i,t dt

tl < o (1 Af, (r, eitl)O,(r eit)
O(n() log n) o(1).
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In a similar way we can derive the estimates

(2.46)
f e -int dt

o =< Itl-< 1 Af,(r, eit)
e -int dt

o <-I’1 <- On(rn

From (2.28), (2.29), (2.32), (2.43), (2.45), (2.46) and the relation I, 0, it
follows that (1.2) holds uniformly for A e 11,. To prove the second part of the
theorem, we make use of the inequality

If,(2,(A)) f’(2(A))[ < 12.(A) 2"(A)[x dF(x)

(2.47) + x2(A) dF(x) < (2; (A) + 1)(2"(A) 2(A)) x dF(x)

+ 2"(A) xdf(x).

By virtue of (2.16),

(2.48)

when 1 __< A _< p. Further,

2".(A)

(2.49) x2 dF(x) o(n).

Using (2.16) again, we conclude from (2.47)-(2.49) that

(2.50) /’.(2,(A)) f’(2(A)) o(2"(A)/n-’).
On the other hand, by (2.16)

(2.51) 2-"(A)- 2-"(A) o(1/n-a).

Equation (1.4) easily follows from (1.2) and the estimates (2.50) and (2.51).
The proof of Theorem 1 is now complete.

3. Proof of Theorems 2 and 3

Let F(Y)(x)= F(x)for x __< y and F(Y)(x) F(y)for x > y. Let

Hy(x, A) AkFY)(x),
k-O

where FY)(x) stands for the k-fold convolution of F(Y)(x). For x =< y and
I>0,

(3.1)

Set

H(x, A)- H(x l, A)= Hr(x, A)- Hr(x l, A).

Fly(X dFl(U),
c(- ,y)
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where A, {u’F’(u) < E < oe, u <_ min(x, M)}, M < oe and E is chosen
in such a way that Fat(oe) > 1/2Fa(oe). Further, let F(x) F()(x) F(x)

and g(z) e* dF(x), i= 1, 2. The following identity is easy to verify"

1 Agr(z 1
(3.2) +

1 Agr(z (1 Agr(z))(1 Agzr(z)) 1 Agzr(z)

If y and y are points of continuity of Hr(u, A), then for a Re z < Ar(A),
+ iT e- z(y- l) e- zy

(3.3) Hr(y, A) Hr(y l, A)
1

lim dz.
2zcir-,o ,,a-it z(1 Agr(z))

Indeed, it is not hard to see that

(H,(x, A) H,(x l, A)) ez dx el (H,(x + l, A)

ezt

nr(x A)) e dx
z(1 Agr(z))’ Re z < At(A).

To arrive at (3.3), one merely has to apply the formula for the inverse Laplace
transform (see, for example, [6], Theorem 7.6a).

It is not hard to see thata point ofcontinuity of H(x, A) is at the same time
a point of continuity of Hr(x, A) if x _< y. Therefore, (3.3) holds if y and y
are points of continuity of H(u, A).

For y sufficiently large, Ar(A < [(s 1) log y + c]/y, where c is some
positive constant. This is proved in exactly the same way as the corresponding
assertion for 2,(A) in the lattice case (see the proof of Theorem 1).

In addition, for y sufficiently large, Ar(A) is the only root of the equation
Agr(z)-- 1 in the half-plane Re z =< (s- 1)log y + c]/y for all admissible
values of A, where c is a constant greater than Cl.

To prove this statement, one has to use the fact that, for any e > 0,

g(a + it) e(+") dFxt(x) O, y > M,

as t uniformly for a =< e. Since g(z) g(z) + g2(z) and

;o(3.4)

for Re z =< 0, one can find a 6o, Yo and Ko such that

inf l1 Agy(z)l > ,5o, o(y) [(s 1)log y + c]/y,
Re <= a(y)
[Im > Ko

for all y > Yo and A =< 7-. In going from Re z =< 0 to Re z =< o(y), one has
to make use of (2.5).

On the other hand, there exists a negative K: such that

inf inf inf [1-Ag(z)[ >0.
y A<), - Rez<K
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Thus the problem reduces to establishing the uniqueness of At(A) in the
rectangle K __< Re z =< [(s 1)log y + c]/y, IIm zl -< Ko. This fact can be
proved in exactly the same way as the uniqueness of 2,(A) in the disc Izl -< eh".
The reduction to a rectangle is necessary because in proving uniqueness
one has to make use of compactness.

In consequence of (3.4)and (2.5), I1 Agz(z)l > 6o > 0 when A _-< 7-
and Re z =< [(s 1)log y + c]/y providing y is sufficiently large. Hence it
follows particularly that 1 Agzr(Z has no zeros for this range of values of
A and z.

Applying the residue theorem and (3.2), we obtain from (3.3),

Hy(y, A) Hy(y 1, A) c
eAy(A)/ I

Ag’(Ay(A))Ar(A)
A (e z(y-l) e- V)g v(z)

dz+
2ri 3v (1 Ag(z))(1 Ag2v(z))z

l [," -it(y--l) -ity
+ lim

2rt r-.oo r (1 Ag2,(it))it
dt,

where F is the line Re z [(s 1)log y + c]/y.
Let F(e) {z’z e F, Jim zl < e} and r,(e) F F,(e). Clearly,

dt < Ig,(a + it)l 2 dt +

Further,

(3.7) Ig y(O" -l" it)l 2 dt <- F’y(X) e2ax dx <= E e2M.
tl>-e

Using (3.6) and (3.7) as well as analogous estimates for g’(z), one can easily
show that

(3.8)

dz

K
<

yS
d g, y(Z)(ezt

dz (1 Ag,(z))(1 Agzr(Z))Z
dz

C(e, L)

uniformly for 0 _<_ =< L. Here K is an absolute constant. In proving (3.8),
one also has to use the fact that g’(a) < Q < oc for __< [(s 1)log y + c/y
(cf. (2.23)). On the other hand, reasoning in an analogous way as in the proof
of (2.45), one can show that for e sufficiently small

,(,) (1 Ag(z))(1 Agz(Z))Z :

uniformly in ranging over any finite interval 0 _<_ =< L.
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It remains to estimate

f c-it(y-l) - ity1
lim dt.I

2z r-.oo r (1 Agzy(it))it

It is not hard to see that when y > 0,

(3.10) I Ak(F(f,)(y)- F,)(y- 1)),
k=l

where F!(x) stands for the k-fold convolution of F(x). Clearly,

Set F(x)= F(x)/F(oe). Let F(f!(x)denote the k-fold convolution of
F(x). Using this notation, we have

x dF(f?k(X) F,(oc) x

< kSFz,( xSdF(f)(x) < kSMF,

From (3.10)-(3.12) we obtain the estimate

(3.13) I < kM c5-k--1 (Y l)---- A

where 3 F2 oo().
The asymptotic representation (1.6) in the case where y and y are

points of continuity of H(u, A) is now easily obtained from (3.1) and (3.5) by
using the estimates (3.8), (3.9) and (3.13). If one of the points y and y is a
discontinuity of H(u, A), we choose a sequence y, T y so that each y, and y,
is a point of continuity of H(u, A). It is not hard to see that

lim gy.(z) gy(z), lira gy.(z) gy(z).
Yn "Y YnY

Hence,
lim Ayn(A) A,(A)
Yn "Y

On the other hand,

and lim gn(An(A)) gy(Ay(A)).
YnY

lim (H(y,, A) H(y, l, A)) H(y, A) H(y l, A).
YnY

From all of the above, we conclude that the asymptotic representation
(1.6) holds for any pair y and y 1. The passage from (1.6) to (1.7) is accom-
plished in the same way as the passage from (1.2) to (1.4) in the proof of
Theorem 1.

We now proceed to prove Theorem 3. First of all,

lim Ig(o + it)l g2(o),
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and, to any h and e > 0, there exists a positive K such that Ig(a + it)l < g2(o)
+ eforall0_<a=<hand]tl <K.

Hence there exists a Ko such that

(3.14) inf lAg(a+ it)- 11 > 6 >0
Itl>go

for all 0 =< a =< h and A =< 1, where 6 depends on Ko.
On the other hand,

(3.15) inf IAg(h + it)- II >6 >0
Itl < Ko

for all g-(h)+ e =< A =< 1 since otherwise there would be an Ao, g-(h)
+ <- Ao 1, and to 4:0 such that Aog(h + ito) 1. And this would
contradict the hypothesis of the theorem.

Choose now M and E, occurring in the definition of Fr(x), so that
geM(h) < 1. Then, when A _< 1,

(3.16) inf [Ag2M(Z)- II > 62 > 0.
Rez<_h

Hence it follows in particular that Ag2M(Z 1 has no zeroes in the half-
plane Re z =< ha.

It is not hard to see that
-z(x-l) -zx1

lim dz A < 1H(x, A) H(x l, A)
2rci T- ZT Z(1 Ag(z))

if < 0 and x and x are points of continuity of H(u, A).
Applying the residue theorem and (3.2), we have

e-A(A)x(eA(A)I- 1)
H(x, A) n(x l, A)

Ag’(A(A))A(A)

(3.17)
A f (e -zx-l) e-Z)gxt(z) dz

+ JRz=h (1 Ag(z))(1 Agzm(Z))Z

1 t’T e- it(x l) e- itx

+ lim J dr.
2rt r--, r (1 Ag2t(it))it

By virtue of (3.6), (3.7)and (3.14)-(3.16),

(3.18) fR (c-z(x-l) e-ZX)gM(Z)dz
O(e-h’)

ez=hx (1 AgM(Z))(1 Agzt(z))z

uniformly for A in g-(ha) + e __< A __< 1.
Further (cf. (3.10))

f
T e-it(x-l) e-itx1

lim dt ) 1)) <A (Fz,k(X)- --2M), e"
2

_
it(1 Agzm(it)) k=

(3.19)
x Z A eh’r dF)(y)= eh’(l-x) AgM(hl), x > O.

k=l k=l
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The assertion of Theorem 3 in the case where x and x are both points
of continuity of H(u, A) follows from (3.17)-(3.19). The passage to arbitrary
x and x is accomplished just as in the proof ofTheorem 2.
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