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1. Introduction. Formulation of results

Let 1, 2,’" ", n,’’" be a sequence of identically distributed independent
random variables with distribution function F(x), E 0 and D 1, and let
F.(x) be the distribution function of ,=1 k.

Of great importance is the study of the asymptotic behavior of 1-F.(x) and
F.(-x) as n m and x/ c. A highly distinctive feature of this behavior is
its dependence on both the rate of increase of x// and rate of decrease of 1-F(x)
(F(-x)).

The laws existing here can be described qualitatively as follows.
If x// does not increase very fast, then -F,(x) is approximated by

([1], [2], [3]) or {1-(x/v/)} exp{(x3/n2)2t’l(x/n)}, where (u) is the normal
distribution and 2tSl(u) is a segment of the so-called Cram6r series consisting of its

first s terms, the integer s depending on the rate of decrease of 1 -F(x), [1 ], [3 ], [4].
If F(x) decreases so fast that eh’dF(x) < for all h > 0, then, under very

broad assumptions concerning the decrease of 1-F(x),

2rn-eXp -nL H(u)dut
where x/n and H(u) is a certain function determined by F(x), [5].

But if o ehXdF(x) for all h > 0 and 1-F(x) decreases sufficiently, then

(1.1) 1-F.(x) n(1-F(x))

for x > q(F, n), where q(F, n) is a monotone increasing function of n (depending
on F), [61.

As to an upper estimate for 1-F.(x), it can be obtained under very general as-

sumptions; namely, in this paper we proved the following

Theorem 1. ’C EIil < c, m > 2, then for x and y positive,

(1.2) 1 Fn(X) > n(1 F(y))

+exp {2n [mlg y log (nc Km) 2

+ 1
dY

where
214
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Km l W(m q- 1)m+2e-m.

An analogous assertion holds for F(-x).
We now state two corollaries to Theorem 1.

Corollary 1. If Cm < 3, rn > 2, then for x > k(cmgm)l/m/ log n, n _>_ 3 and
k>=l,

1-Fn(x)<n (1-F ())+exp {2k2m2 (-I-2Klam/m)2+l} FnCmmgml k

Setting y x/2 in (1.2) if nm/2-1/gmCm >= e and y x if nm/2-1/gmCm < e
but x > cranK (the case x < cranK is trivial), we obtain

Corollary 2. If cm < 00, m > 2, then

(1.3) 1-Fn(x) <

for
x

x > 4 n max log
Kmcm

0

where Bm is an absolute constant depending only on m.
The estimate (1.3) is a generalization of the inequality 1-F,(x) < ll/x2.
In addition, an estimate is derived in the paper for F,(x)- (x/x/) which is op-

timum in the sense of dependence on x.

Theorem 3. If c3 < , then there exisis an absolute constant L such that

,-- Lc3(1.4) If,(x/n)- (x)[ <
/(1 + Ixl 3)

It follows immediately from (1.1) that the power of Ixl in (1.4) cannot be replaced
by a higher one.

The methods applied in the proof of Theorems and 2 permit us to sharpen the,

known results of Yu. V. Linnik [2] and V. V. Petrov [4].
Let 9(x) be a continuous function with a monotonedecreasing continuous deriv-

ative which satisfies the conditions

0 < o’(x) < < >

and

(1.6) g(x) > p(x)log x,

where p(x) is a function which approaches infinity in an arbitrarily slow manner as

Let A(n) be a solution of the equation xz ng(x).

Theorem 3. The condition

(1.7)

is sufficient in order that
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(1.8)
1 -F.(x) exp -for 0 <= x <= A(n), where 2t’/(1-)l(u) is the segment of the first 1(1-) terms of the

Cram& series (for z < 1/2, 2t’/(1-’)l(u) --- 0), and necessary in order that (1.8) holdfor
0 <- x =< 2A(n).

It is not hard to see that the class of functions g(x) satisfying (1.5) with < 1/2
and (1.6) contains the classes I and II introduced by Yu. V. Linnik [2].

Theorem 4. The condition

m(1.9) EI <oo

is sufficient in order that

(1.10) F,(-x) 1-F,(x)

for 0 <= x <- x/(m]2-1)n log n, and necessary in order that (1.10) holdfor 0 <= x <__
/(m+ 1)n log n.

The methods developed in the theory of large deviations turn out to be useful
also in proving global limit theorems, [7], [11 ]- [14] (the latter may be, by the way,
regarded as special forms of theorems on large deviations).

Theorem 5. Let c3 < O0 and let there exist a subscript no such that F.o(X) has
an absolutely continuous component. Then

1 -x2/2 13 l3l x4[x2_ 31 e-x2/2 dx + 0p,(x)-
/2

e Ix dx
62n

where p,(x)= F;(x)and 3 E.
The author is grateful to B. A. Rogozin for his careful reading of the manuscript

and his valuable comments.

2. Proof of Theorem 1

There is no loss of generality in assuming that y > (ncmgm)1/m. Set

F(r)(x) { F(x), x <= y,

F(y), x > y.

Let Fff)(x) be the n-fold convolution of FCr)(x),

F,rh)(X) eh"dF,’)(u), Fh’)(x) F](x).
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Evidently,

(.)
and

(2.2)

where

Set

Fn(X)- FnY)(x) <= n(1 F(y))

FY)(oo)- Ft,,Y)(x) e-hU dFnh(U) R"(y, h) e-h" -(Y)dF,,h (U),

y

R(y, h) ehUdF(u), F)(u)
-oo Rn(y, h)

f/h ff,Rl(h) eh"dF(u), R2(y, h) eh"dF(u).
oo /h

Evidently,

ehO(U)u2 dF(u),R (h) dF(u)- h dF(u)/ --Hence,

1-- dt(u) < u2df(u) h2,

0<= O(u) <= 1,
U

fa’ udF(u) < h.
/h

(2.3) IRt(h)-ll < 2h2.

Further,

(2.4)

Clearly,

Thus

(2.5)

Clearly,

(2.6)

R2(y, h) [1-F(u)]ehu + h [1 F(u)]et’" du.
h

Y ehU h]h[1--t(u)]ehUdu < cm
[h tl

du Cm - du,

eu eU
du
tl u fi’e"u e"

+ rn du < + rnv max e
V

e--- [l+rnmax [l, e-__]] < [I m(m + 1)m+ l eZ
e ] I)

m

h [1-F(u)]ehUdu < 1+ Cm
Ih em

1-F < Cm hm < Cm ehY"

It follows from (2.4)-(2.6) that

(2.7) R2(y, h) < [1 +
k

Let hm(y) be the solution of the equation

(m+ 1)m+ 21 elYCm
e ym



218 S. V. Naoaev

(2.8) nK c ehy ym,
with Ks + (m + 1)m + 2/e’. Clearly,

(2.9) hm(Y) m log y log (ng Cm)
Y

If hm(Y) >-_ y-l, then on setting h hm(y) in (2.2) and using the estimates (2.1),
(2.3) and (2.7), we deduce the assertion of the theorem. If hm(y) < y-1, one must
consider F(1/h"(r))(u) instead of F(r)(u).

3. Proof of Theorem 2

We shall use the notations introduced in the proof of Theorem 1 without spe-
cific mention and we shall confine ourselves to the case x > 0, since the proof is com-
pletely analogous for the case x < 0.

Without loss of generality, we may assume that x > x/.
Consider first the case x/n > Ca Na exp {ea]3}, where Na 63Ka. Clearly,

Fr)(x) h(X)+ Thr)(X),(3.1)
where

eh’dF(u), x <_ 1
O,

1

1 ehUdf()(u), x >
1ehUdF(u), x>-,

h /h h

Let ,h(X) be the n-fold convolution of h(x). From (3.1), it follows that

(3.2) F,rh)(X)--Cb,h(X) < nR"-a(y, h)R2(y, h).
We observe at once that (),,h (X) ,h(X) is monotone increasing with increasing x.
Further,

(3.3) e-h"dh(u) R(h)e- e-h(hl4"d,h(u),
where

Set

l/h I [l/h ]
2

x2ehXdF(x) l_ooxehXdF(x)tr2(h)
Rl(h) - -]

,,h(U) bnh(X + utr(h)x/h)
R](h)

l/h fl/h_(h) xehXdF(x), (h) X
2 ehXdF(x), m(h)

Clearly,

fl U
3 ehO(u) dF(u),(3.4) ,l(h) udF(u)+h u2dF(u)+j_

l/h fl h2(3.5) 1- uzdF(u) < ca h, u dF(u) < ca
]h

Rl(h)
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From (3.4) and (3.5), it follows that I,t(h)-hl < 4cah2. Hence, employing (2.3),
we conclude that

(3.6) IKl(h)-hRt(h)] < 4c3hz +2h3.

Clearly, m(h)-h [Kx(h)-hR(h)]/Rx(h). From (2.3) and (3.6) it follows that

(3.7) Im(h)-hl < (8ca +2)h2, h _<_ 1/2.

Clearly,

(3.8)

From

a2(h)_ 1 (h)-R(h) 2(h)
Rt(h) R2(h)

fllhu l/h-x(h) dF(u)+ h u2 eh(")dF(u),

(h) uZdF(u)+h uaehg(")de(u), 0 <= O(u) <= 1,

we conclude that ]Rx(h)i < eh and IR(h)-II < (e+ 1)eah. The last inequality and
(2.3) imply that [_(h)-Rx(h)l < (e+ 1)c3h+2h2. Now by (3.8) and (2.3), we have

(3.9) la2(h) II < 2[(e+ 1)c3 +e2 + 1]h

for h < 1/2.
Let A be the set of values of the function m(h), h > 0. Consider the equation

u re(h), with u A. Owing to (3.7),

(3.10) h < 2m(h) for h < 1/2a,

where a 8ca + 2. Therefore, for any u < 1/4a, u e A, the equation u m(h) has a
solution h(u) such that

(3.11) Ih(u) ul < 4au2.

Consider now the values x < n/4a, x/n A, for which

(3.12) ha >--.

For such x, clearly, ha(x/6) > h(x/n). It is not hard to see that

(3.13)

By (3.10),

(3.14)

Therefore,

(3.15)

Thus,

(3.16)

h2

Rt(h)- 1-
2

< 3C3 h3.

x2 x3

< 12a--.
n3

( ) x2
< (24ca + 6a)

xa xa- < 9a -3
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Hence, using the estimate nR2(y, ha (y)) < 1, we .obtain

(3.17)

<exp l+u +9a
2n

By virtue of (3.7) and (3.11),

(3.18) R2 ( h (X-n)) N3c3<--x exp {n +-a 2a}
Because of the monotonicity of F(n,) (U) nh(U), (3.2), (3.17) and (3.18) imply

(3 19) f e-h(x/n)u (x/6) Na ca nd[F,,ht/,,)(u)-,,htx/.)(u)]< x3
X2 X

3

}exp 1- u+10a
3n -Employing Esseen’s improvement of Lyapunov’s theorem, we have

(3.20)
oo 1 e_ha(h)4_ 1/2u2e-’#Zd.h(u) - du .< Cca(h)

x/taa/2(h)
for h h(x/n), where C is an absolute constant and

Clearly,

l/h

c3(h) lul 3 en"dF(u)/el(h).

(3.21) c3(h) < ec3,

By (3.9) and (3.14),
1

1
h<.

6c3

for x < n]12a. Further, on account of (3.9), (3.11), and (3.14),

(3.23)

for h h(x/n).
Therefore,

ha(h)-
x

n
< h--X +hla(h)-ll

n
x2 x2

< {4a + 8[(e+ 1)ca + e2 + 1]} < 16a 5

(3.24)

1 oo X-fo exp {-ha(h)x/-u- } du-exp {}(1- (--))
-n 0 dv [ {} ) x2a4 ha(h)- x

sup
d (1 (v) < 16

na/2
exp

We have here made use of the estimate
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< 1/x/2z < 1,

which can be deduced by straightforward differentiation.
Now, by (2.3),

2h41 [l_R(h)]k <(3.25)
1 2h2’

2h2 < 1.

(3.26)

From (3.13) and (3.25), we conclude

h2
log R(h)- --In view of (3.10),

(3.27)

< 5caha, h < 1/2.

h2 hx x,2

2 n 2n2

X4 X
3

< 8a2

From (3.26), (3.27), and (3.14), it follows that

(3.28)
X2

n log Rx(h)-hx+
2n

< 7a
n2

h h

By (3.28)

(3.29) hx-n log Rl(h) >--, h h
4n

for x < n/28a. From (3.20)-(3.22), (3.24), (3.28) and (3.29), we conclude that

R](h)e-hx e-h"<h)4d,h(U)- 1--
X

(3.30)
<e-X’-/4n3Cec3 x2) ((-)) (X-n)4 +16a +(e7/-1) 1-

x
h=h

for x < n/28a. If we set x u, we can rewrite (3.12) in the form u2 < 9 log u

+ 3 log (/N3ca). Therefore, inequality (3.12) holds under any circumstances for

x 3n log (/Naca). Since ]Naca > e, c3 1 and c3 > a/lO, the inequality

n i0n(3.31) x < <
Nac3 Naa

holds for such values of x.

Further, 3 log (4/Na ca) < 34/N3 c3 < /7a and therefore

X
3

(3.32) 7a < 1

for x < 3n log (/Na c3).
Using the estimates (2.1), (3.31) and (3.32) and the inequality xe- < e-,

we conclude from (2.2), (3.3), (3.12) and (3.30) that

(3.33) Ll ca n x

x3 -n A,

for x < x/3n log (v//Na ca), where Lt is an absolute constant.
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Consider now the values x < x/3n log (x//Naca) for which x/n q A. For any
function f(h), set Af(h)=f(h+)-f(h-). The functions Rl(h) and Rl(h) are con-
tinuous on the right with AR(h)=-eAF(1/h) and Ax(h)=-(e/h)AF(1/h).

It is not hard to see that

Ra(h-)A.(h)-(h)AR(h)= eAF ()_(h)-R(h-)/h.Am(h)=
R(h)Rx(h-) Rx(h)Rl(h-)

The inequality ]Kl(h)- hi < 4% h2 implies that 0 < l(h) < 1/2% < 1/2 for
h < 1/4ca. On the other hand, on account of (2.3), we have R(h) < 1/2 for h < 1/2.
Therefore for h < 1/4%,

(3.34)
4e () < Am(h) <

Suppose ho < 1/2a is such that m(ho) < x]n < m(ho-). By (3.10), ho < 2m(ho)
< 2x/n. Hence, taking (3.34) into consideration, we obtain

X
2

(3.35) [Am(ho)l < 16e% 2"n

Now choose h so that x/n < m(h) < m(ho-)+ Am(ho)/2. Set Xo nm(ho) and

x nm(h). Let > 0 be such that F,,(x) F,(xo)+(1-(x)F,,(xl). Clearly,

(3.36) +(1-) F,,(x)-(b x

(5)- (1 )1 _o

(3.37)

By (3.35) and (3.36),

Similarly,

(3.38)

X
2

< 16eca- exp

X
2

< 16ec3 - e-xz/3n.

From (3.33), it follows that

(3.39)

< 24ec3 e -x2/2n.

.< 8Llc3n
X
3

since for x < x/3n log (x//Na ca) by (3.35) Xo > x/2, and

(3.40) Ll C3 n<.
x3
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Using the estimates (3.36)- (3.40), we conclude that

(3.41)
L2 c3 n

for all x < x/3n log(/t/Na ca), where Lz is an absolute constant.
We shall now find a lower bound for u > 1 for which

M
(3.42) 1- (u) _<_

where Mis a constant.
The inequality (3.42) holds in every case for u satisfying the inequality e-u/2

<= M/x/uz. Hence, uZ(1-4 log u/u) >= log (n/M2), and since 4 log u]u <
for tt > eal2, we have

(3.43) u _>_ log M---
for n > M2 exp {2ea/3).

Thus, (3.42) holds at least for u satisfying (3.43).
Letting M Na ca and using (3.41), we find that

for

and therefore,

(3.44)

I1--F,(x)l < 13(L2 +N3)can/xa

v/3n log (x/t/M) < x <_ 4n log(x//M)

(13L2+14N3)c3n
X
3

We now treat the values of x > 4x/n log (x//Na ca) and we make use of Theorem 1
after having set y x/2, m 3. As a preliminary, we estimate 1/x/ log(xa/nca Ka).
To this end, let x--u. Then the expression being estimated assumes

the form [3 logu+ log(x/[lcKa)]/u. For x > 4x/n log (//Na ca), we have

u > 4x/log (x//Na ca). It is not hard to see that 3 log u/u < 1.1 for u > 4. Therefore,

xa |/ x/ log6(3.45) 1_ x/ log < 1.1 +1/4 [log +
X Kac3n KaC3 4

Hence by Theorem 1 and some simple computations, we find that 1-F,(x)
< La c3n/xa for x > 4v/ log(v//N3 ca), where La is an absolute constant. Conse-
quently,

(3.46) Fn(x) crp() (L3+Na)c3n,
X3

Consider now the case x//Naca =< Lo exp {ea]3). If xa <= canNa, then evi-
dently

(3.47) F.(x)- (-I <_1 <_ ca Na n
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But if xa > canna, then

0 < / 3 log x-log K3c3n
X

Letting y x in Theorem 1, we find

3x/ log
X

+log--V’" +31og6
Naca

< 3 + 3 log 6 + log Lo.

(3.48) 1 -F,(x) < L4c3 n
3

X
x3 > car/N3,

where L, is an absolute constant.
Clearly,

(3.49) 1 q (-) <L4na/2xa

From (3.39) and (3.49), it follows that

4NacanLo
3

X

where L5 is an absolute constant.
The proof of Theorem 2 is complete.

Ls c3 n x/< 3
X>

x

4. Proof of Theorems 3 and 4

Without loss of generality, we may let B(g) 1 in (1.5). We first prove the suffi-
ciency of the condition of Theorem 3. As in the proof of Theorem 2, we confine our-
selves to values of x >

Let xl (h) be a solution of the equation

(4.1) g’(x) h(1 +e), h > 0.
2

For sufficiently small h, such a solution exists and by the monotonicity of g’(x) is u-
nique. On account of (1.5),

(4.2) y(x) < g(1)x.
Therefore g’(x) < g(1)x , and hence

(4.3) Xl(h) < Il+a2a gl)l 1/(-1)"
Let

fxl(h) ’R(h) ehdF(x), R2(y, h) ehdF(x).
l(h)

We retain the notations of Sections 2 and 3 for the quantities defined in terms of
Rl(h) and R2(y, h).

Clearly,

(4.4) R2(y, h) [1-F(x)]ehx :l(h)q-h ehX[1-F(x)]dx.
l(h)
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For y > xx(h) > l/h,

(4.5) eE1 F(x)] dx < c(o) " ex-a(xlh) dx,

where c() e<) dF(). Introduce the function c-- x-g(x/h). Clearly,

lff,

For x >= xx(h)h, dx <_ 2(1-a)-dv and therefore

h 2 eYh_a(y(4.6) ex-(x/h) dx <
l(h)h 1 --Since hx-g(x) is monotone increasing for x => xx(h), we have

[1-F(x(h))]ehxl(h) < c(g)evh-(y).

Now taking (4.5) and (4.6) into consideration, we conclude from (4.4) that

3-
(4.7) R2(Y, h) <

1-t

(4.8)

Consider now Rx (h). Obvioasly,

Cxl(h)X/h

| eXdF(x)Rl(h) ehXdF(x)+
,I

Let us estimate

x’(h)xkehXdF(x),

/h

on the assumption that xx (h) > 1lb. First of all, it is not hard to see that

(4.9)
h

+ x-[hx+ k]eh-() dx
/h /h

The function hx-y(x) assumes a maximum value at one of the endpoints of the
interval [1/h,x(h)]. By (1.5),

2e
hx,(h)

l+e
Therefore,

(4.10) g(x,(h))-hx,(h) > g(xx(h)) >g
l+a l+a

Further, by (1.6) and (4.3),

(4.11) x{(h) exp {-g ()}= o(hm)

for any fl and rn > 0. From (4.9)-(4.11), it follows that

xl(h)

(4.12) xkehXdF(x) o(hm).
lib
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Expanding ehx in the first integral of (4.8) and using the estimate (4.12), we find
that, for any m > 0,

hk
(4.13) Rl(h) l+k=2ak .. +O(hm+l),

m hk-
(4.14) l(h) E k +O(hm)

where a E. From (4.13) and (4.14), it follows that

hk-1
(4.15) re(h) 2k O(hm),

g(h) (k- 1)[

where k is the k-th cmant of the random variable . Analogous reasoning shows
that

(4.16) (h) 1 + O(h).

In Section 3, it was proved that the equation u re(h) has

(4.17) h(u) u+ O(u2)

as a solution for sciently small u s. If h(u) is expressed in te form

h() + +e(),
k=2

where the Ak are the coefficients of the series whic result when the series (4.15) for
re(h) is inverted, and if ts expression is substituted in the equation u re(h) having
been first represented as

m+l hk-1 +O(hm+),
= (k-1)

then the estimate (u) O(hm+ ) is obtained instantly. Therefore in view of (4.17),
u) O(um+ ). Thus,

(4.18) h(u) u+ Akuk+O(u+).
h=2

Using (1.5), we can easily show that

(4.19) fly(x) < y(flx)

for any 0 < fl < 1. Therefore,

(4.20) (x < 2t +)/2 (2-< +)/2x)

for x A(n).
Consider now the values of x A(n) for which x/n . By (4.2),

(4.21) A(n) < [(1)n] /t2-).

Therefore, for sufficiently large n, h(x/n) exists and, by (4.17),

(4.) h 5 +o
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Let ha(y) be the solution of the equation

(4.23) n exp {yh-tt(y)} 1.

Obviously, hg(y)= (O(y)-logn)/y. By condition (1.6),

Y P(/
From (4.20), (4.22), and (4.24), it follows that h(x]n)< hg(2-(t+’)/Z’x) for

sufficiently large n. Hence, by (4.13) and (4.23),

(4.25) R (y,h (X-n))= O (exp {211- }),
for y max [2-t+’)/2"x, x(h)] and any e > O. Letting y max [2-(t+a]2x,
x(h)] and h h(x/n) in (4.7), we have

for any >0.
From (3.2), using (4.25) and (4.26), we deduce the estimate

hu (y) X
e dEFnt,(u) (I)nh(U)]--O

(4.27)
h=h y=max[2

Taking (4.18) and (4.21) into consideration, we can easily show that

(X_n) x2 x3 [1/(-a)] (X_/)
k-2

(4.28) xh =--+ ’, 2k +O(1)
n - k=2

for x <= A(n).
We now let h h(x/n) in (3.3) and we use Cram6r’s reasoning (see [1 ]) taking

(4.28) into account. As a result, we obtain

f -h, I (xx/n)] exp {xs 2t’/1-’)’ (Xn) } (1 + o(1)),(4.29) e d#(u) 1-# --7=

where
[l/(t-)]

,t/-,(u) ,u-z.
k=2

From (4.20) and (4.21), it follows that

(4.30) n exp {-9 (2(1+x,/2)} o((1-# (--))exp {2t’/(t-,a (X-n)})
for x <= A(n).

With the help of the estimates (4.26), (4.27), and (4.30), we find from (2.2) and
(4.29) that
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(4.31) 1- F(,,")(x) 1- e x
exp

x
Y 3(1 +)/2a

for x <= A(n), x/n A.
By virtue of (4.30) and the inequality 1-F(y) < c(g) exp {-#(y)}, (4.31) and

(2.1) imply (1.8) for x/n A.
Passage to values of x]n /1 is effected similarly to what was done in the proof

of Theorem 2.
Let us now prove the necessity of the condition of Theorem 3. Suppose that (1.8)

holds for x =< 2A(n).
Clearly,

1 F,,(x) > (1 F(x))(1 r,, -1 (0)).
Therefore, for sufficiently large n,

(4.32) 1-
/ /4 \(2,3+ ft.(n)| > 1/4(1-F(2A(n))).

Let gl(x) -log(1-F(x)). From (4.32) and (4.19), it follows that

2(l*’)12A:(n) 2(l +=)/20(A(n)) > 2(*-=)/zg(2A(n))(4.33) g,(ZA(n)) >
n

for sufficiently large n.
Consider the function y(x) deteined by the equation y2= xg(y). It is easy to

see that

(4.34) dy= O(Y) <
g(Y)

dx 2y-x9’(y) (2-)y

Hence

Setting x n and using the estimate (4.2), we find that

g(A(n)) 9(1)A(n+ 1)-A(n) < <
(2- a)A(n) A’-(n)

(4.35) lim A(n+ 1) 1.
,,-.,o A(n)

Because of (4.19),

(4.36) 9(2A(n+ 1)) <
g(2A(n)) L A(n) l

From (4.33), (4.35), and (4.36), it follows tttat

gx(2a(n)) > 2(1-’)/3g(2A(n+ 1))
for sufficiently large n. Therefore,

(4.37) gl(x)
for sufficiently large x.

From (4.37), it follows that oeg(:,)dF(x) < . Similarly, it can be shown that

e(ll)dF(x) < . Thus, E exp g(lt[) < , q.e.d.
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As to Theorem 4, its proof is entirely analogous to that of Theorem 3. In the
proof of the sufficiency part of Theorem 4, Rl(h) and R2(h) are defined just as in
Sections 2 and 3. It is not hard to see that (1.10) holds for

x/ <= x <= x/(m/2-1)n log n

if, for these values of x,

(4.38)

and

(4.39) log x- log n,

beginning with a certain n. Relation (4.39) clearly holds if

(4.40) u2 < -1 logn+mlogu,

where u x/x/. If u _>_ 1, then (4.40) is satisfied for u < x/(m/2-1) log n. Thus,
the condition v/ _< x <= x/im/2-1)n log n implies (4.39). On the ottler hand, (4.38)
holds if

x2 3rn 3 log n
< logx

n 2 2

Therefore (4.38) follows from (4.39).
Assume now that

1-F,(x) [1-#(x)](1 +o(1))
for Ixl =< /(m/ 1)n log n. Employing similar reasoning to that used to obtain (4.33),
one can show that

(m + 1) log n < 2yl (x/(m + 1)nlog n)

for sufficiently large n.
Hence, 9(x) > (m+1/2)log x for sufficiently large x. This inequality clearly

implies that xmdF(x)< o. In a similar fashion, it can also be proved that
_oolxlm dF(x) < c.

5. Proof of Theorem 5

Suppose for simplicity tb_at no 1. Then F(x) can be represented as F(x)
aF1 (x)+ (1-a)Fz(x), 0 < a _< 1, where Fl(x) is absolutely continuous and F] (x)
< L < m. Let (the symbol stands for convolution)

ff,,(x) Fn(x)- (1 a)"e’n(x) ha(1 a)n-1F (x) F(n- 1)(x),

f(t) f eitx dF(x), gn(t) f e’ix dF,(x).

Clearly,

#n(t) f"(t)-- (1 -a)"f.(t) ha(1 --a) 7(t)f- (t)

wheref.(t) e"dF(x), j 1, 2. Hence,
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I#(t)l < (alf(t)l +(1 -a)lfa(t)l)-elfx(t)i.
Further,

(5.2) Ig(t)-f(t)l < (n+ 1)(l-a)-.
It is known that

f (n)-e-/2 (1+--(it)ac3)t(n)ltlae-/4<’-an
for Itl -<_ Ta x//24ca (see, for example, [10], 41), where 6(n) depends only on
n and lim_,oo 6(n) 0.

Therefore, for tl _<- Ta,

(-) e-’2/2 (O%/nt3 )(n)lzn "/ 1)(1 -1(5.3) 0, 1 + (it)3 < itl 3 e- +(n+ -a)"

With the help of (5.1) and (5.3), it is not hard to show that

(s.41 e + (x -3x 

where p.(x) x/ff’,(x /) and supx Rn(x) o(1/x/) (of. [10], 47).
Hereafter, we shall use the notations of Sections 2 and 3. Let

where

nh(lg) (Inh(tl) (1-- n *n --1a) F2h(tt)--na(1--a)n (u), Fah(u),

f" ehYdF(y), u < 1
-O0 h

Fih(U) [’/h 1
ehydEs(y), U > --,

"-00 h

i= 1,2.

Let x/n e .4. If h h(x/n) (h(u) is a solution of the equation u m(h)), then, as
easily seen,

Rl(h)nh(O),(5.5) " --’

where .n(u) .n(u+nm(h))/RT(h). Set

1 _fl/h eitXdh(X).fh(t)
g(h).-o

Choose a B > 0 so that F(B)-F(-B) > 0. It is not hard to show that

2e- 2nh

f fn t(u-- v) 1
sin2 Fl(u)F’x(v)dudv, -->_ h >_ O.(5.6) 1-lfh(t)i2 >

R(h) Bo-B 2 B

By (5.6), there exists, for any positive e and r/, 0 < p(e, 7) < 1, such that for tl > e,

(5.7) Ifh(t)l

uniformly with respect to 0 < h < r/.
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Now

2-- R(h)
e2hXF’2(x)dx <

R2(h)
where

flh(t) 1 fddFh(X).gl(h)

With the help of (5.1), (5.3), (5.7), and (5.8) and using reasoning standard in
the proof of local limit theorems, we can easily show that

(5.9) h(tT(h)4tl) 1 __e-U/2+0 ()
uniformly with respect to h in any finite interval.

By (3.9) and (3.14), a(h) +O(x/n), h h(x/n). Therefore, (5.5) and (5.9),
by virtue of (3.28) and (3.32), imply that

l _x2/2n_l_ (X2n_ )(5.10) e-h;’(x) /2------ e 0 e-/2n

for x < 3,x/, x/n .4, and h h(x/n), where An 3 log (x/t/Na Ca).
Consider now values of x for which x/n /t. In Section 3, it was shown that in

this case there exists an Xo > x such that

X2(5.11) Xo-X < 16eca--.

Evidently,

(5.12) ,h(X) R(h),h(X- Xo), h h(xo/n).

But by (3.32) and (5.11),

exp {-hx} exp {- -} [1+O (3)]
for x < A,,x/n.

Therefore,

(5.13) e-hXn(X) 1
e
x/2nn

Evidently,

(5.14)

-x"/Z"+O(n/z e-x/2") h h x < Anx/n.

Z Cn (kh * Z(n-k)h(U),
Ou -u ok=

where .tkhlIl(Y) is the k-fold convolution of Ty). By (5.9),

(5.15) n fi(,-1)h * ThY)(u) O(x/Rn(y, h)Rz(Y, h)).
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Now

(5.16)
n-2

k

d- k=l Ca )kh * PY)-k)h(U) O(n2Ra(y, h)R2(Y, h)).

Set h,,(x) h(x/n) if x/n e A and ha(x) h(xo/n) if x/n q A (Xo satisfies (5.11)).
From (5.15) and (5.16), it follows by (3.17), (3.18), and (3.32) that

(5.17) e_hX c3 (r) xn -x2/3" -x2/6"--cx k=Cka )kh * (a-k)h(X) 0 e + e

for x < Aax/, Y x/6 and h ha(x). For u < n/h, it is clear that ,hw(Y)(u) 0.
By (3.14),

(5.18)
n n2

>-- > Aax/n
2x

for x < A,x/ and n > 5. Finally,

(y)e_h, C)
Ckn[(l)kh lkh] * [-I(n-k)h(U)

U k=l

e-
du

lh

< 1-a)Fz(u)+ (v +naLe-h 1-a)Fh +Rz(y, h

It is not hard to see that, for h hn(x) and y x/6,

(5.20) hi(1-a)Fhl/h)+R(y, h)]

where e is an arbitrarily small positive quantity.
Let

h)

Clearly,

(5.21) xZ --c3x G*a(x’ h,(x))dx < An3/2[Z-a-F(m,,)]a,

where ma mino=<x<A.,/ 1/hn(x). Set

Q(’)(u) { V(u)-F(y),O,
Obviously,

(5.22)

Set

u<y,

d
Fa(u)

c3 F(n,)(u)< ck --Fk, _k(U).
du -u k=O

p,,,(x) -x F,,_, * Q(X/6)(x), kCnFk * n-k k"v]"P2n(X) Xk=l
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It is not kard to see that

f.f.fo’" f.i6x3pl.(x)dx <= dF(u) x3de,_(x-u) < 216 dF(u).
/6

Therefore, for any B > 0, we have

(5.23) xapa.(x/fOdx o

Now, p2,,(x) < Ln2(1-F(x/6))2/2. Therefore,

o

It is not hard to show that

for any e>0.
Clearly, Q(,,’)(x) 0 for x < ny. Hence, for n > 6,

(5.26) -x Q(nX/6)(x) O.

(5.27)

Clearly,

fo 1 _x2/2 X3p,,(x)- e dx

< x ,,(x)- e

+ Ip,,(x)-,,(x)ix3dx+

ix3l x’lx2- 3le-/2 dx

o3 (x3 3x)e-,/z
6V/2nn

dx

0 F<,r)(xx/-) 1 ’/2x/- --x - e x3dx

131 x4(x2 3)e-/2 dx + Pn(X)- 4rl -X6x/’n

-1- pn(X)X3 dx + 1 _xZ/2 X- x3e dx, Y=-d"

(5.28)

Since OF(nY)(u)/c3u e-h’OF(,,)(u)/Ou, (5.10), (5.13), (5.14), (5.17), (5.18)--(5.21)
imply that

f, c F(nr)(xx/-) 1 -x/2 x3

0
1

xze-x2/6dx +o((1--a+
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Then by (5.22)-(5.26),
a. 0 F(,,y,(x/) xa dx 0 / + +o((1- a +,)’).

Letting y x/2 in Theorem 1 and using the estimate (3.45), we find that

(5.30) 1-F,(x) O(n(1-e(x/2))+O(nS//x)
for x > 4n log (4/Na ca). Let A; denote 4 4log (/Na ca). It easily follows from
(5.30) that

o

Clearly, e-"/z O(n-3/). Hence,

(5.32) x e-/dx o
An

and

(5.33) 1-(A,) o

Using the estimates (2.1), (3.19), (3.30), and (5.33), we can easily show that 1-

F,(A,x/[) o(1/Aa, x/[) and therefore,

(5.34) xadF,(xx/-) o
An

From (5.27)-(5.29), (5.4), (5.31), (5.32)and (5.34)on setting B /x//R,,
we deduce that

1pXx - e-

Similarly,

1p,(x)- -u e

The theorem is proved.

x3 dx lai xlx- 3le-/2 dx+ o
64n

Ixl3dx Ial xix2- 31e-’/2dx+o6x/2--n

Received by the editors
January 6, 1964

REFERENCES

[1 H. CRAMIR, Sur un nouveau thdorbme-limite de la thdorie des probabilitds, Actual. Sci.
et Ind., No. 736, Paris, 1938.

[2] Yu. V. LINNI, Limit theorems for sums of independent variables taking into account
large deviations, I, II, III, Theory Prob. Applications, 6 (1961), pp. 131-148,
345-360; 7 (1962), pp. 115-129. (English translation.)

[3 V. V. PETIOV, A generalization of Cramdr’s limit theorem, Uspekhi Mat. Nauk, IX, 4
(1954), pp. 196-202. (In Russian.)

[4] V. V. PETIOV, On integral theorems for large deviations, Dokl. Akad. Nauk SSSR,
138 (1961), pp. 779-780. (In Russian.)



Some limit theorems for large deviations 235

[5] S. V. NAGAEV, Large deviationsfor a class ofdistributions, "Limit Theorems", Tashkent,
1963, pp. 56-68. (In Russian.)

[6] S. V. NAAEV, An integral limit theorem for large deviations, Dokl. Akad. Nauk SSSR,
148, 2 (1963), p. 280. (In Russian.)

[7] Yu. V. PRO:nOROV, A local limit theorem for densities, Dokl. Akad. Nauk SSSR, 83,
6 (1952), pp. 797-800. (In Russian.)

[8] C. G. ESSEEr, Fourier analysis of distribution functions. A mathematical study of the
Laplaee-Gaussian law, Acta Math., 77 (1945), pp. 1-125.

[9] L. D. MESHALKIN and B. A. ROGOZN, An estimate of the distance between distribution
functions according to the closeness of their characteristic functions and its appli-
cation to the central limit theorem, "Limit Theorems", Tashkent, 1963, pp. 49-

56. (In Russian.)
[10] B. V. GNEDENKO and A. N. KOLMOGOROV, Limit Distributions for Sums ofIndependent

Random Variables, Addison-Wesley, Mass., 1954.
[11 R. P. AGNEW, A global version of the central limit theorem, Proc. Nat. Acad. Sci. USA,

40 (1954), pp. 800-804.
[12] S. Kr. SIRAZnDIrOV and M. MAAWOV, On a local theorem for densities, Dokl.

Akad. Nauk SSSR, 142, 5 (1962), pp. 1036-1037. (In Russian.)
[13] S. KH. SmAZnDINOV and M. MAMAOV, On tTlobal limit theorems for densities and

distribution functions, "Limit Theorems", Tashkent, 1963, pp. 91-106. (In Rus-
sian.)

[14] V. M. ZOLOAREV, On a new point of view of limit theorems taking large deviations into
consideration, Trans. VI All-Union Conference in Probability and Math. Statist,.
Vilna, 1962, pp. 43-48. (In Russian.)

[15] Ytr. V. LyrqiI, On the probability of large deviations for the sums of independent varia-
bles, Proc. 4-th Berkeley Sympos. Math. Statist. and Prob., II, 1961, pp. 289-306.

[16] M. L. KAZ, The probability in the tail of a distribution, Ann. Math. Statist., 34 (1963),
pp. 312-318.


