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1. Introduction. Formulation of results

Let &,,&,,---, &, - be a sequence of identically distributed independent
random variables with distribution function F(x), E{; = 0 and D¢; = 1, and let
F,(x) be the distribution function of Y r_,&.

Of great importance is the study of the asymptotic behavior of 1—F,(x) and
F,(—x) as n > o and x/\/f_z — oo0. A highly distinctive feature of this behavior is
its dependence on both the rate of increase of x/\/ﬁ and rate of decrease of 1— F(x)
(F(—x)).

The laws existing here can be described qualitatively as follows.

If x/\/ﬁ does not increase very fast, then 1 — F,(x) is approximated by 1 — (D(x/\/i_z)
([11, 21, [3]) or {1—®(x/\/m)} x exp{(x*/n*)A*)(x/n)}, where ®(u) is the normal
distribution and A")(x) is a segment of the so-called Cramér series consisting of its
first s terms, the integer s depending on the rate of decrease of 1—F(x), [1], [3], [4].

If 1 — F(x) decreases so fast that (¢’ "™ dF(x) < oo for all & > 0, then, under very
broad assumptions concerning the decrease of 1— F(x),

1—-F,(x) ~ —1;1(—55‘/111 (i) exp {—nf:/nH(u)du} ,

where x/n — o0 and H(u) is a certain function determined by F(x), [5].
But if {§ ¢"*dF(x) = oo for all & > 0 and 1—F(x) decreases sufficiently, then

(1.1) 1—F,(x) ~ n(1—F(x))

for x > @(F, n), where @(F, n) is a monotone increasing function of » (depending
on F), [6].

As to an upper estimate for 1—F,(x), it can be obtained under very general as-
sumptions; namely, in this paper we proved the following

Theorem 1. If'c,, = E|&,|" < o0, m > 2, then for x and y positive,
(12)  1-F&) > n(l—F())

_ s\ 2 x/y
+€xp {2n [m log y lOg (ncm Km)] + 1} ['_’gm Km:] ,
y Ym

where
214
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K, = 1+(m+1)"*2e™".
An analogous assertion holds for F(—x).

We now state two corollaries to Theorem 1.

Corollary 1. If ¢, < 00, m > 2, then for x > k(c,K,)""\/nlogn, n = 3 and
k=1,

1-F,(x)<n (1—F (%)) +exp {2k2m2 (1 + -;1——)2+1}[Mj|k.

e 2KMm x™

Setting y = x/2 in (1.2) if #"?" YK, c,, = e and y = x if ”™* K, c, < e
but x* > ¢,nK,, (the case x™ < ¢,,nk, is trivial), we obtain

Corollary 2. If ¢, < oo, m > 2, then

(1.3) 1-F,(x) < ﬁﬁmﬂ
X
for
nm/2—1
x >4 nmax[log ,0],
chm

where B,, is an absolute constant depending only on m.

The estimate (1.3) is a generalization of the inequality 1—F,(x) < n/x%.

In addition, an estimate is derived in the paper for F,(x) —<D(x/\/ n) which is op-
timum in the sense of dependence on x.

Theorem 3. If ¢; < o0, then there exisis an absolute constant L such that

(1.4) I, (i) = 93] < —2 .
Jn(1+[x)

It follows immediately from (1.1) that the power of |x| in (1.4) cannot be replaced
by a higher one.

The methods applied in the proof of Theorems 1 and 2 permit us to sharpen the
known results of Yu. V. Linnik [2] and V. V. Petrov [4].

Let g(x) be a continuous function with a monotone decreasing continuous deriv-
ative which satisfies the conditions

(1.5 0<g'(x) < &(x), a<1, x> B(g),
X

and

(1.6) g(x) > p(x)log x,

where p(x) is a function which approaches infinity in an arbitrarily slow manner as
X > 0.
Let A(n) be a solution of the equation x> = ng(x).

Theorem 3. The condition

(1.7) Eexp {9(&])} <

is sufficient in order that
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_ 3
F(—x) = exp {_ x_zl[a/(l—a)] (_ f)} (1+0(1),
x n n
o ( - _T_)
Jn
1—Fn(x)
x
1-d | —
(\/ n
Sor 0 £ x £ A(n), where 1 1~D(y) is the segment of the first a/(1 —a) terms of the
Cramér series (for o < 3, A ~®(y) = 0), and necessary in order that (1.8) hold for
0 < x < 24(n).

It is not hard to see that the class of functions g(x) satisfying (1.5) with « < %
and (1.6) contains the classes I and II introduced by Yu. V. Linnik [2].

(1.8) 3
= exp {3-2— Alal=a] (g)} (1+0(1)),

Theorem 4. The condition
(1.9) EI¢,|" < o

is sufficient in order that

(1.10) _F(=%) -1, A-F(x) -1
x x
o(- X ) (_:)

( N n) Jn
for0=x = N (m|2—1)n log n, and necessary in order that (1.10) hold for 0 < x <
v (m+1n log n.

The methods developed in the theory of large deviations turn out to be useful

also in proving global limit theorems, [7], [11]— [14] (the latter may be, by the way,
regarded as special forms of theorems on large deviations).

H

Theorem 5. Let c; < oo and let there exist a subscript n, such that F, (x) has

an absolutely continuous component. Then
© 1
Ix|3dx = _Ifif x*x2—3le”*?dx+o0 (:/—;)
— n

f_w 6y/2nn

where p,(x) = /nFy(x\/n) and a3 = E&}.
The author is grateful to B. A. Rogozin for his careful reading of the manuscript
and his valuable comments.

—-x2/2

1
P,,(x)_‘ \/_2—‘; e

2. Proof of Theorem 1
There is no loss of generality in assuming that y > (nc,,K,,)*'™. Set

y _ F(X)’ x =y,
F) = { F(y), x> y.

Let F®(x) be the n-fold convolution of F®(x),

FR00 = [ marp, F9G) = )
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Evidently,

1) F,(x)~F¥(x) < n(1—F(y)

and

0D FP(0)-FP() = [ e aRa) = RO B [ e dFR),
where

R(y, h) = f dF(u),  FS(u) = Fdw)

R'(y, h)’
Set
1/h y
Ry(h) =J e"dF(u), Ry(y, h) =f " dF(u).
o 1/h
Evidently,
1/h 1/h o(u)
Ry (k) = f dF(u)— hf udF(u)+ f "y dF (u), 0 ~7<1,
u
1/h ©
1- dF(u) < hzf u*dF(u) = h?, f udF(u) < h.
© 1/h
Hence,
2.3) |Ry(h)—1| < 2K
Further,
y
(24) Ry(y, h) = [1—F(u)]e" ;”’—l-hj [1—F(u)]e™ du.
1/h
Clearly,
ehu yh eu
f [1—-F(u)]e™du < ¢ f —du = ¢, h"~ lf — du,
1/h up " 1 U
e ¢! e’
—du = — +mJ |:———-,e:|
fl um um vm+1
m+ 1 m+ 1 v
= % [1+m max l:l 09-1]:] < [1+ m_______(m+m1) ] im.
v e e v
Thus
y m+1 hy
25) h f [1—F(u)]e™du < [1+ ’"—(’"—erﬂ——] .
1/ e
Clearly,
(2.6) 1-F (l) < cuh" < ¢y (Ln—) ev.
h ey
1t follows from (2.4) — (2.6) that
m+ 2 hy
e Ry, ) < [14 (] e,
e y

Let A,,(¥) be the solution of the equation
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(2.8) nkK,c,e” = y",
with K, = 1+ (@m+1)"*2/e™. Clearly,

29) holy) = mlog y—log (nK,,c,,) .

If h,(y) = y~1, then on setting & = h,(y) in (2.2) and using the estimates (2.1),
(2.3) and (2.7), we deduce the assertion of the theorem. If A,(y) < y~!, one must
consider F*M*O) () instead of FO(u).

3. Proof of Theorem 2

We shall use the notations introduced in the proof of Theorem 1 without spe-
cific mention and we shall confine ourselves to the case x > 0, since the proof is com-
pletely analogous for the case x < 0.

Without loss of generality, we may assume that x > \/1—1

Consider first the case \/n > c3 N3 exp {e*/3}, where N; = 6°K;. Clearly,

(3.1) F(x) = @y(x)+ ¥(x),
where
| emarw, xs2 0 xso,
G = {52 (O ER )
f "dF(u), x> =, f MAFO(u), x > =.
Let @,,(x) be the n-fold convolution of @,(x). From (3.1), it follows that
(3.2) F)(x)~®u(x) < nR"™'(y, B)Ry(y, h)-

We observe at once that F3’(x)—®,,(x) is monotone increasing with increasing x.
Further,

(3.3) fwe_hudd’nh(u) = R'I(h)e_hxvaewha(h)ﬁud(ﬁnh(“)a
where

f / x*e"™dF(x) |: f : xe""dF(x):|

Gz(h) —vY-w _ —® s
Ry(h) Ry(h)

D, (u) = Puy(xc+o(h)y/n) ;:l(:()h)‘/n).

Set 1 B
R,(h) = f-/wxe'”‘dF(x), R,(h) = f _/oox2 e*dF(x),  m(h) = Ili—lg% .

Clearly,

_ © 1/h hZ 1/h 0(“)
(3.4) Ry(h) = — f wdF(u)+h f wiar@+ 2 f W ap@), 0= <,
. . u

1/h

1/h )
(3.5) 1- f u*dF(u) < cyh, J udF(u) < c3h>.
0 1/h
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From (3.4) and (3.5), it follows that |R,(k)—#| < 4c;h*. Hence, employing (2.3),
we conclude that

3.6) |[R{(B)—hR,(h)| < 4cyh*+2h3.
Clearly, m(h)—h = [R,(h)—hR,(h)]/R;(h). From (2.3) and (3.6) it follows that

S im(h)=h| < (8cs+2)h?, <y
Clearly, -
(3.8) o2(h)—1 = RiW=Ry() _ Ri(h)

R,(h) Ri(h)
From

o 1/h
R(h) = — f udF(u)+ hJ u®e" dF(u),
-

1/h
- 1/h 1/h 0(14)
R,(h) = f u?>dF(u)+h f u® "™ dF (u), 0 —-—<1,
—w —» u
we conclude that |R(h)| < eh and |R(h)—1] < (e+1)c; . The last inequality and
(2.3) imply that |R,(h)— R, (h)| < (e+1)csh+2h% Now by (3.8) and (2.3), we have
(3.9) l62(h)—1| < 2[(e+ ez +e*+1]h

for h < 1.
Let A4 be the set of values of the function m(h), & > 0. Consider the equation
u = m(h), with u e 4. Owing to (3.7),

(3.10) h < 2m(h) for h < 1/2a,

where a = 8¢5 +2. Therefore, for any u < 1/4a, u € A, the equation u = m(h) has a
solution A(u) such that

(3.11) |h(w)—u| < dau?.

Consider now the values x < n/4a, x/n € A, for which

(3.12) hy (f) >
6 n
For such x, clearly, h;(x/6) > h(x/n). It is not hard to see that
h2
(3.13) R,(h)—1— £y < 3c3h®.
By (3.10),
(3.14) h (f) <2%.
n n
Therefore,
x|\  x? x?
(3.15) h? (—) - | <12a=.
n n n
Thus,
x x? x? x3
(3.16) Ri|h (—) —1— | < (24c3+6a) = < 9a—.
n 2n® n n
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Hence, using the estimate nR,(, h;(y)) < 1, we obtain

o )< o ) o o )]

2 3
< exp {1+ 2% +9a%} .

By virtue of (3.7) and (3.11),

(3.18) R, (ch , h (’—C)) < N3 exp{ +3%a ﬁ}

n x3 6n n

Because of the monotonicity of F$(u) — ®,,(x), (3.2), (3.17) and (3.18) imply
N

ah x2 x3
exp {1— — +10a —} .
p{ 3n 2

(319) [ &M UALEGS, 0~ P ()] < :

Employing Esseen’s improvement of Lyapunov’s theorem, we have

® g 1 (% hetyVan-su2 Cces(h)

3.20 e hoWVm P () — ——= f o™ hothmi—u du) <=

( ) J‘o h( ) \/ET—E o \/no_3/2(h)

for h = h(x/n), where C is an absolute constant and

1/h
ex(h) = [ ul? M ar ()R ().

Clearly,

(3.21) ca(h) < ec,, h < —1-
663

By (3.9) and (3.14),

()

for x < n/12a. Further, on account of (3.9), (3.11), and (3.14),

ha(h)— ’—°| < ’h— 51 +hla(h)—1]|

(3.23) " " o o

< {4a+8[(e+1)cs+e* +11} = < 16a =
n n

for h = h(x/n).
Therefore,

I N exp — ho(h)\/nu— —} du— exp{ ’( ( n))l
< n supdi[exp{ }(1 @(v))iH<16 =57 h=h(ic—).

v20 4V n
We have here made use of the estimate

(3.24)

ho(h)— -
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<1/y2n < 1,

£ [t 0-e0]

which can be deduced by straightforward differentiation.
Now, by (2.3),

h4

(3.25) Z [1 -R,(W| < 5 2h% < 1.
k= 1-2h
From (3.13) and (3.25), we conclude
2
(3.26) log Ry(H)— ’% < SesH, h<i
In view of (3.10),
h*  hx  x? . x4 x3 X
(3.27) "2———;;4‘5;5 < 8a ;Z<2a;1—§, h=h(;).
From (3.26), (3.27), and (3.14), it follows that
2 3
(3.29) n log R (h)~hx+ ;‘—1 <7aX, h=h (E) :
n n n
By (3.28)
2
(3.29) hx—nlog Ry(h) > x, h=h (3—‘),
4n n

for x < n[28a. From (3.20) — (3.22), (3.24), (3.28) and (3.29), we conclude that

e e (-0 ()
S (33:3“6 )+ (1“’5(‘}))’ = (%),

for x < n/28a. If we set x = u/n, we can rewrite (3.12) in the form u> < 9 log u
+3 log (/n/Nsc;). Therefore, inequality (3.12) holds under any circumstances for

x/3nlog (/n/Nsc;). Since /n/Nyc; > e, ¢; 2 1 and c; > a/10, the inequality
n 10n

< [R—
Nic; Nja

(3.30)

(3.31) x <

holds for such values of x.
Further, /3 log (\/n/N3 ¢3) < J 3Jn[Nsey < J \/n/7a and therefore
3

(3.32) 7aZ <1
n

for x < /3n log ({/n|Ns c3).
Using the estimates (2.1), (3.31) and (3.32) and the inequality x*e™* < e™"o",
we conclude from (2.2), (3.3), (3.12) and (3.30) that

X Licsyn X
an-qs(_:)|<_li, e,
() Jn x3 n

(3.33)

for x < v/3nlog (/n/Nscs), where L, is an absolute constant.



222 S. V. Nagaev

Consider now the values x < +/3n log (\/;1/N3 ¢;) for which x/n¢ A. For any
function f(h), set Af(h) = f(h+)—f(h—). The functions R,(h) and R,(%) are con-
tinuous on the right with AR,(h) = —eAF(1/h) and AR, (k) = —(e/h)AF(1/h).

It is not hard to see that

R RO ROMRG) _ g (1) RO=Rlh

Ry()R,(h—) b Ry(m)R,(h—)

The inequality |R,(h)—h| < 4c;h? implies that 0 < R;(h) < 1/2¢; < % for
h < 1/4c;. On the other hand, on account of (2.3), we have R (h) < % for h < 1.
Therefore for h < 1/4c;,

Am(h) =

(3.34) - ‘L—eAF (%) < dm(h) < 0.

Suppose ho < 1/2a is such that m(hy) < x/n < m(hy—). By (3.10), ho < 2m(h,)
< 2x[n. Hence, taking (3.34) into consideration, we obtain

2
X
(3.35) [Am(ho)| < 16ec, S

Now choose ki, so that x/n < m(h;) < m(ho—)+ Am(hy)/2. Set xo = nm(hy) and
x, = nm(hy). Let « > 0 be such that F,(x) = aF,(x,)+ (1—a)F,(x,). Clearly,

F(x)—® (\—;%) ‘
(3.36) < a|Fy(x)—® (:"/-0;) +(1—d) | Fy(x,)—® (%)
+o|d (\/%) — o (%) +(1-a)| @ (\”/%) — (%) .

By (3.35) and (3.36),

2\ 2
) (x— 16ec; iC—)

‘ 10 (_x:) - (—J—C%) < 16ec3i3/5exp - n
Jn Jn n 2n
(3.37) )
X —x2
< 16ecy —— e~ */3"
3 032
Similarly,
(3.38) @ (%) o (3—1) < 2decy e~ X2,
n n

From (3.33), it follows that

Xo\| _8Ljcsm
(3.39) Fy(xo)— & (\7;-!) <

since for x < /3n log (/n|Nyc3) by (3.35) xo > x/2, and
Fy(x,)— @ (x-l_) Licsn
Jn

x3

(3.40) <
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Using the estimates (3.36) —(3.40), we conclude that

F,(x)—® (%_)

n

Lycyn

)
x3

(3.41)

for all x < +/3n log(\/r—t/N3 ¢3), where L, is an absolute constant.
We shall now find a lower bound for u > 1 for which

(3.42) 1—o) < M

Jnu® ’
where M is a constant.
The inequality (3.42) holds in every case for u satisfying the inequality e w2
< M|/ni®. Hence, u*(1—4 log u/u®) 2 log (n/M?), and since 4 logu/u® <}
for u > €*2, we have

n
(3.43) u= V% log e

for n > M? exp {2¢%3}.
Thus, (3.42) holds at least for u satisfying (3.43).
Letting M = N, ¢, and using (3.41), we find that

|1=F,(x)| < 13(Ly+N;)esn/x®
for
V3nlog (Jn/M) < x < 4/nlog(/n|M)

and therefore,

(3.44)

x3

F (x)—& ( % ) l - (1BL,+14N3)esn

We now treat the values of x > 4v/n log (\/;_1/N3 ¢;) and we make use of Theorem 1
after having set y = x/2, m = 3. As a preliminary, we estimate 1/x\/1_1 log(x*/nc; K3).
To this end, let x=u \/n. Then the expression being estimated assumes
the form [3 logu+ log (\/r_z/c_,, K;)]/u. For x> NG log (\/ﬁ/Ns ¢3), we have
u > 4/ log (\/n/Nyc3). It is not hard to see that 3 log u/u < 1.1 for u > 4. Therefore,

<1.1+% log—‘/—n + lo_g_6_.
Kic3n Kjcs 4

x3

(3.45) L Jnlog
x

Hence by Theorem 1 and some simple computations, we find that 1—F,(x)

< Lyeyn/x® for x > 4/ rTlog(\/ﬁ/Ns ¢3), where Ly is an absolute constant. Conse-
quently,

(3.46)

F(x)—® (:/%) ] < (_L_3_'i-_N3)c_§£

x3

Consider now the case \/n/Nyc; < Lo = exp {€*/3}. If x> < ¢3nN;, then evi-
dently
(3.47) ¢sNsm

x3

s1ls

F(x)—® (\—7;)
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But if x* > ¢;nN;, then

X
3\/ﬁlog—: -
0<\/ﬁ3logx—-log Ksesn < \/” +log \/n +3log6
x x Njc;

< 3+3logb6+log L.
Letting y = x in Theorem 1, we find

(3.48) 1-F,(x) < LL:” , x* > ¢;nN;,
x
where L, is an absolute constant.
Clearly,
x 4n®*?  4NjcynL
(3.49) 1-0 (-;) <7< 3x: °.

From (3.39) and (3.49), it follows that

F(x)—& (\_771)

Lscan

5 x > \/n,

where L is an absolute constant.
The proof of Theorem 2 is complete.

4. Proof of Theorems 3 and 4

Without loss of generality, we may let B(g) = 1 in (1.5). We first prove the suffi-
ciency of the condition of Theorem 3. As in the proof of Theorem 2, we confine our-
selves to values of x > \/n.

Let x, (%) be a solution of the equation

(4.1) g'(x) = h—(IZL“) h>0.

For sufficiently small 4, such a solution exists and by the monotonicity of g’(x) is u-
nique. On account of (1.5),

4.2) g(x) < g()x~
Therefore g'(x) < ag(1)x*~1, and hence
1/(@=1)
(4.3) x,(h) < [lif L] .
20 g(1)
Let

x1(h) y
R,(h) =‘f e™dF(x),  R,(y,h) = ™ dF(x).

x1(h)

We retain the notations of Sections 2 and 3 for the quantities defined in terms of
R, (h) and R,(y, h).
Clearly,

(4.4) Ry(y, ) = [1—F(x)]e"™

y
S04k f &™[1—F(x)]dx.
x1(h)
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For y > x;(h) > 1/h,

y vh
(4.5) f e"[1-F(x)]dx < «(9) &I gy
x1(k) x1(h)h

where ¢(g) = [ e’ dF(x). Introduce the function v = x—g(x/h). Clearly,

e i-bo ] o

For x = x,(h)h, dx < 2(1—a)”'dv and therefore

yh 2
(4.6) j €M ax < = "I,
x1(h)h 1—a

Since hx — g(x) is monotone increasing for x = x,(h), we have
[1—F(x,(h))]e™® < c(g)e™ .

Now taking (4.5) and (4.6) into consideration, we conclude from (4.4) that
3-a h—g(y)
(4.7) Ry(y, h) < —a c(g)e” .
Consider now Ry (h). Obviously,

1/h x1(h)
(4.8) R, (h) =f ™ dF(x)+ f ™ dF(x).
— 00 1/n
Let us estimate
x1(h)
f x*e"* dF(x),
1

/h

on the assumption that x, (k) > 1/h. First of all, it is not hard to see that

*1(h) Glmom  pxah)
(4.9) f x*e™dF(x) < c(g) [ . +J x""[hx+k]e""_-"(x)dx] )
1/h

k
1/h

The function hx— g(x) assumes a maximum value at one of the endpoints of the
interval [1/h, x,(h)]. By (1.5),

hxy(h) = 21"7(2) g/ (x(h)) < 1—% o(x,(h).

Therefore,

(4.10) g(xi(h) —hx,(h) > L;Ze(xl(h)) > %Zg (711) '

Further, by (1.6) and (4.3),
(4.11) x4(h) exp {—g (%)} = o(h™)

for any f and m > 0. From (4.9)— (4.11), it follows that

%1(h)
(4.12) f x*e"*dF(x) = o(h™).
1/h
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Expanding €" in the first integral of (4.8) and using the estimate (4.12), we find
that, for any m > 0,

(4.13) Ry(h) =1+ Z ozk +0(h"'“)

_ k—l
(4.14) R,(h) = Z Ot (e=1)! +0(h™),
where o, = E&. From (4.13) and (4.14), it follows that
(.15 m(h) = Ral) _ z w2 o),

Ry(h) ¥=2" (k—1)!
where y, is the k-th cumulant of the random variable £;. Analogous reasoning shows
that

(4.16) a(h) = 1+0(h).
In Section 3, it was proved that the equation u = m(h) has
4.17) h(u) = u+0(@u?)

as a solution for sufficiently small u € 4. If h(u) is expressed in the form
h(u) = u+ Y, hu*+o(u),
k=2

where the A, are the coefficients of the series which result when the series (4.15) for
m(h) is inverted, and if this expression is substituted in the equation ¥ = m(h) having

been first represented as
m+1 k-1

h
Z Yk (k—1)!

then the estimate @(u) = O(K™*1!) is obtained instantly. Therefore in view of (4.17),
o) = O@w™*"). Thus,

(4.18) h(u) = u+ Y, hu*+0@W™™ ™).
h=2

O(hm + 1),

Using (1.5), we can easily show that

(4.19) B*g(x) < g(Bx)
for any 0 < 8 < 1. Therefore,

@20 ¥ L 0) _ anon 97
n-o X X
for x £ A(n).
Consider now the values of x < A(n) for which x/n € 4. By (4.2),
(4.21) A(n) < [g(1)n]HC=,

Therefore, for sufficiently large n, h(x/n) exists and, by (4.17),

(4.22) h (5) =*0 ("—:) .

n 1 n
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Let h,(y) be the solution of the equation

(4.23) nexp {yh—g(»)} = 1.
Obviously, 4,(y) = (¢9(»)—logn)/y. By condition (1.6),
4.24 90) (1 _2 ).
(4.24) ho(y) > ) ( P/ "))

From (4.20), (4.22), and (4.24), it follows that A(x/n) < h, (2~ *®/?%x) for
sufficiently large n. Hence, by (4.13) and (4.23),

w29 Rk () o (e =)

for y = max [21+9/22y » (k)] and any & > 0. Letting y = max [27*¥®/2x,
xy(h)] and A = h(x/n) in (4.7), we have

X x2 X
@20 R (7)) =0 (o0 {0 ()

for any & > 0.
From (3.2), using (4.25) and (4.26), we deduce the estimate

[Cem g -ou = o (new (g (-:5)])

h=h@% y=mupmﬂm%mﬂm,¢dw=f & AFE(p),
h -

Taking (4.18) and (4.21) into consideration, we can easily show that
2 [1/(1-a)] k-2
(4.28) x4§=i+% Y (i) o
n n  n° k=2 n
for x £ A(n).

We now let & = h(x/n) in (3.3) and we use Cramér’s reasoning (see [1]) taking
(4.28) into account. As a result, we obtain

(4.29) J:oe"‘"ddi,,,,(u) = [1 - (\/n)] exp {n ,1[“/“‘“)1( )} (L+0(1)),

where
[1/(1-a)]
l[“/(l —a)](u) Z 'lk u

From (4.20) and (4.21), it follows that

60 e s (i) =of 1= () oo L ()

for x £ A(n).
With the help of the estimates (4.26), (4.27), and (4.30), we find from (2.2) and
(4.29) that



228 S. V. Nagaev

@3 1= = 1m0 (Z)] e (£ = (3)) 1o,

X
y= W ,

for x < A(n), x/ne A.

By virtue of (4.30) and the inequality 1—F(y) < c(g) exp {—g(»)}, (4.31) and
(2.1) imply (1.8) for x/n € A.

Passage to values of x/n ¢ A is effected similarly to what was done in the proof
of Theorem 2.

Let us now prove the necessity of the condition of Theorem 3. Suppose that (1.8)
holds for x £ 2A(n).

Clearly,

1=F,(x) > (1=F(x))(1—F,-,(0)).

Therefore, for sufficiently large n,

.32) 1—d (%(f'i_"f—"(i)) > J(1=F(2A(n)).
Jn
Let g,(x) = —log(1—F(x)). From (4.32) and (4.19), it follows that
(4.33) 9:(24(n)) > 28R Am) _ 201+9/2g(A(n)) > 2 ~9"2g(2A(n))
n

for sufficiently large n.
Consider the function y(x) determined by the equation y* = xg(y). It is easy to
see that
dx  2y—xg'(y) (2-a)y

Setting x = n and using the estimate (4.2), we find that

Al g9(A(n)) g(1)
A(n+1)—A(n) < 2—a)A(n) < 1)

Hence
(4.35) fim A0+ _
n—oo A(n)
Because of (4.19),
9(2A(n+1)) _ [A(n+1)]"
(439 sadon < i )

From (4.33), (4.35), and (4.36), it follows that
g:(24(n)) > 297 91%(24(n+1))
for sufficiently large n. Therefore,

(4.37) g:1(x) > 27" (x)

for sufficiently large x.
From (4.37), it follows that {§e?®dF(x) < oo. Similarly, it can be shown that
[2 e?*PdF(x) < oo. Thus, E exp g(|&,]) < o, q.e.d.
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As to Theorem 4, its proof is entirely analogous to that of Theorem 3. In the
proof of the sufficiency part of Theorem 4, R (k) and R,(h) are defined just as in
Sections 2 and 3. It is not hard to see that (1.10) holds for

\/;_1 <x=< \/(m/2——1)n log n
if, for these values of x,

() ()

and
2

(4.39) Y <m log x—log n,
n

beginning with a certain #. Relation (4.39) clearly holds if
2 m
(4.40) u’ < (E - 1) log n+mlog u,

where u = x/\/r—z. If u = 1, then (4.40) is satisfied for u < \/ (m/2—1) log n. Thus,

the condition \/r_t < x £ vV (m/2—1)n log n implies (4.39). On the other hand, (4.38)
holds if

2
X < 3—mlogx— 3logn.

n 2 2

Therefore (4.38) follows from (4.39).
Assume now that

1-F(x) = [1-®x)|(1+0(1))

for |x| = \/ (m+ 1)n log n. Employing similar reasoning to that used to obtain (4.33),
one can show that

(m+1)log n < 291(\/(m+1)nlogn)

for sufficiently large n.

Hence, g,(x) > (m+1%)log x for sufficiently large x. This inequality clearly
implies that jg’ x"dF(x) < 0. In a similar fashion, it can also be proved that
2 olxI™ dF(x) < o0.

5. Proof of Theorem 5

Suppose for simplicity that n, = 1. Then F(x) can be represented as F(x) =
aFy(x)+ (1 —a)F,(x), 0 < a £ 1, where F,(x) is absolutely continuous and F(x)
< L < o0. Let (the symbol * stands for convolution)

F(x) = F(x)—(1—a)'F5"(x)—na(1—a)""*F(x) * F3"~ (),
16 = [are), o) = [éar, o)
Clearly,
gu(t) = "= =a)f3()—na(l—a)y = f,(0f37'(t)
wherefi(t) = | €"*dF;(x), j = 1, 2. Hence,
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n?a®
(5'1) |9n(t)| < _2—‘ (alfl(t)l +(1- a)lfz(t)l)"— 2|f1(t)i2-
Further,
(5.2) [9,(8)="(®)] < (m+1)(A—a)"" .

It is known that

nf t —12/2 ( o3 /. 3)
—=]) —e 1+ —= (1t
4 (\/n) \/n( )
for |t| £ T, = \/n|24c; (see, for example, [10], § 41), where () depends only on

n and lim,_, , 6(n) = O.
Therefore, for |¢t| < Ty,

In (:/t_;z) —e 12 (1+ gf—;—; (it)s)

With the help of (5.1) and (5.3), it is not hard to show that

< 30) s gmre
T3n

(5.3)

< %’Q [P e 4 +(n+1)(1—a) L.
3n

(5.4) B(x) = — e (1+ “—3_(x3—3x)) +R(x),

1
2 6\/n
where f,(x) = /nF(x \/n) and sup, R,(x) = o(1/\/n) (cf. [10], §47).
Hereafter, we shall use the notations of Sections 2 and 3. Let
Bou() = Bpu(u)— (1~ a)'F3p(u) —na(l—a)y =" F3~ () = Fy,(u),
where

J e”dF(y), uz=

H

Fy(u) = i=1,2.

S = S =

1/h
f dF(y), u>
-0

2

Let x/n e A. If h = h(x/n) (h(u) is a solution of the equation u = m(h)), then, as
easily seen,

(5.9 B;4(x) = Ri(B)B,4(0),
where &,,(u) = 5,,,,(u+nm(h))/R’{(h). Set

fit) = e da, (x)-
' 1<h) o
Choose a B > 0 so that F,(B)— F;(—B) > 0. It is not hard to show that
—2Bh
56)  1-lf0P > f f sin2 (=0 ‘(“ =) ) (w)F} (o) du do, 1_1; >h20

R’(h)
By (5.6), there exists, for any positive e and #, 0 < p(e, ) < 1, such that for [¢| > &,
(CN)] [/ < p(e,n)

uniformly with respect to 0 < & < 7.
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Now
1 [ )
(59) [ nora -

where

1/h
J‘ g '2()dx< e’L

Ri(h) Ri(h)’

Sult) = f "*dF y,(x).

1
Ry(h)

With the help of (5.1), (5.3), (5.7), and (5.8) and using reasoning standard in
the proof of local limit theorems, we can easily show that

2y o
(5.9) B(o(h)y/nu) = o \/ = / +0(;)

uniformly with respect to 4 in any finite interval.
By (3.9) and (3.14), o(h) = 1+ O(x/n), h = h(x/n). Therefore, (5.5) and (5.9),
by virtue of (3.28) and (3.32), imply that

2
—x2/2n —x2/2n
o (3 ).
2nn 72
for x < A,\/n, x/ne€ A, and h = h(x/n), where 4, = V3 log (/n/N;c3).

Consider now values of x for which x/n ¢ A. In Section 3, it was shown that in
this case there exists an x, > x such that

(5.10) el (x) =

2

(5.11) Xo—X < 16ec3£—
n
Evidently,
(5.12) By(x) = Ri(B)Bpu(x—%o), h = h(xo/n).

But by (3.32) and (5.11),

o5 ool

ovicm=en-Ffisof3)]. o)

0)

for x < A4,/n.
Therefore,

(5.13)  e™P(x) =

2 —
S S I
27m n

Evidently,
(5.14) (y)( ) = Z Ck ¢kh & T(n k)h(u),

where ¥ is the k-fold convolution of ¥{. By (5.9),

0

(5.15) n o Dy V(1) = OWNR'(y, IRy, h)).
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Now
a n—2 - "
(5.16) ;3—1,; kZ'1 Ch Dy ?’Eﬁ)-m(u) = 0("2R O, h)R%(y, h))

Set h,(x) = h(x/n) if x/n € 4 and h,(x) = h(xo/n) if x/n ¢ 4 (x, satisfies (5.11)).
From (5.15) and (5.16), it follows by (3.17), (3.18), and (3.32) that

/- 2
(5.17) e""‘ g" Z Ch Dy s PEL (%) = O (‘_/;' e Py "—6 e-*2/6")
X X

for x < A,\/n, y = x/6 and h = h,(x). For u < nfh, it is clear that ¥$)(u) = 0.

By (3.14),

n n2

5.18 — > A,./n
(5.18) h(x/n) 2x wr
for x < 4,/n and n > 5. Finally,

o @

e ou kz Ck[¢kh Qkh] * lll'(n k)h(u)

—hu a LZ Ck(l a)kF*k % q]()’) k)h(u)
(5.19)
+a Z Chk(1—a) ™ 'Fp % Fa~ D 4 l—I’(y—k)h(“):l
k=1

< % [(1—-a)F2(u)+ ' dF(v):l =(m+naLe’“"“ I:(l—-a)Fz,, (;1;) +R,(y, h)]n

1/h

It is not hard to see that, for 4 = h,(x) and y = x/6,

(5.20) n[(1=a)Fy,(1/h)+ Ry (y, M = o((1 —a+e)"),
where ¢ is an arbitrarily small positive quantity.
Let

G(u, h) = (1—a)F,(u)+ f :/hdF (v).
Clearly,

ApJn
(5.21) f X aﬁ G*(x, h(x))dx < 43n*[2—a—F(m)T",
X

0o

where m, = ming <, < 4,5 1/, (x). Set

0(u) = {F w)—Fy), uzy, 0P(u) = Q¥ (u).

0, u<y,
Obviously,
(5.22) 2 )~ F(”)(u) < z al g  Fy e Q20)
Set

n—2
Pl = L Fy 5 079(),  po(x) = LY CHF % QD).
0x 0X k=1
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It is not hard to see that

f x3p1a(x)dx <f dF(u)qux dF,_(x—u) < 216‘[ u®dF(u).

Therefore, for any B > 0, we have
(5.23) f X*pr(xy/n)dx = o (Lz) .
B n
Now, py,(x) < Ln?(1—F(x/6))?/2. Therefore,
(5:24) f X*paxy/n)dx = O (—13) .
B nB

It is not hard to show that

An/n a n—2 ~
f x> — ¥ CHF,—Fy) = Q%I)(x)dx
(5.25) i OXE=t

<J " 8 S - Fy) # QPP (x)dx = o (1—a+o))

Byn 0x =1

for any ¢ > 0.
Clearly, Q9’(x) = 0 for x < ny. Hence, for n > 6,

(5.26) a <x/6>(x)—0
Clearly,
Jw pu(x)— R x}dx— 23— ol f x*|x? 3le"‘2/2dxi
0 Von 67/2nn ;
B
< f Pa(%)— e 23 (x®=3x)e”™* | dx
0 \/ 2n 6\/2nn
B An N
(527)  + j 1) = B(x) I dx + f Loz gy
o B T

+ -la—d;f x4(x2—3)e_"2/2dx+f (p,,(x) \/n P‘y)(x\/n)) x*dx
6v/2nn 5 B
f p(x)x*dx+ —— 1 xae"‘mdx, y=
an \/ 2n

[= NI

Since OFPw)/0u = e ™dFY (w)/ou, (5.10), (5.13), (5.14), (5.17), (5.18)—(5.21)
imply that

I,

B

x3dx

Jn 6% Ff,y)(x\/;)— \/Lw e X2

2r

(5.28)
(\/nf x*e _"2’6dx) +o((1—a+e)").



234 S. V. Nagaev

Then by (5.22)—(5.26),
(5.29) f: (p,,(x)—\/ﬁ%Ff,”)(x\/ﬁ)) W dx = ( \/JB ) +o( \/1 ) +o((L—a-+e)).

Letting y = x/2 in Theorem 1 and using the estimate (3.45), we find that
(5.30) 1= F,(x) = O(n(1—F(x/2))+O0(n*?|x%)

for x > 4v/n log (\/n| N3 c3). Let 4, denote 4 +/log (/n/Nsc3). It easily follows from
(5.30) that

(5.31) Lw x*dF,(x\/n) = o(\/iﬁ) .

,
n

Clearly, e~/ = O(n~%*). Hence,

(5.32) Ooxe‘e"‘zlzd =0 i_
iy f n * (\/ n)
(5.33) 1—(4,) = o( N )

Using the estimates (2.1), (3.19), (3.30), and (5.33), we can easily show that 1—
F,(4,4/n) = 0(1/4}/n) and therefore,

(5.34) f:'"f dE,(x/m) = 0 (?1;_) .

n

From (5.27)—(5.29), (5.4), (5.31), (5.32) and (5.34) on setting B = \5/\/;—1/R,,,
we deduce that

° oo
L |y o3| 22
p(X)— ——=e ¥ | x}dx = "——;J x*x?—3le” dx+0(
fo Von 6v/27n \/n
Similarly,

0 0
f Pu(X)— —1-—— e™ ™2 | |xPdx = ——Ia—ilzf x*x%=3le ¥ ?dx+o0 (L—) .

o Van 6+/2nnd o Jn

The theorem is proved.

Received by the editors
January 6, 1964

REFERENCES

[11 H. CRAMER, Sur un nouveau théoréme-limite de la théorie des probabilités, Actual. Sci.
et Ind., No. 736, Paris, 1938.

[2] Yu. V. LINNIK, Limit theorems for sums of independent variables taking into account
large deviations, 1, 11, III, Theory Prob. Applications, 6 (1961), pp. 131-148,
345-360; 7 (1962), pp. 115-129. (English translation.)

[3]1 V. V. PeTROV, A4 generalization of Cramér’s limit theorem, Uspekhi Mat. Nauk, IX, 4
(1954), pp. 196-202. (In Russian.)

[4] V. V. PeTROV, On integral theorems for large deviations, Dokl. Akad. Nauk SSSR,
138 (1961), pp. 779-780. (In Russian.)



Some limit theorems for large deviations 235

[5]1 S. V. NAGAEV, Large deviations for a class of distributions, ‘Limit Theorems”, Tashkent,
1963, pp. 56-68. (In Russian.)

[6] S. V. NAGAEV, An integral limit theorem for large deviations, Dokl. Akad. Nauk SSSR,
148, 2 (1963), p. 280. (In Russian.)

[7] Yu. V. PROKHOROV, A4 local limit theorem for densities, Dokl. Akad. Nauk SSSR, 83,
6 (1952), pp. 797-800. (In Russian.)

[8] C. G. EsseEN, Fourier analysis of distribution functions. A mathematical study of the
Laplace-Gaussian law, Acta Math., 77 (1945), pp. 1-125.

[9]1 L. D. Mes”HALKIN and B. A. RoGOZIN, An estimate of the distance between distribution
Sfunctions according to the closeness of their characteristic functions and its appli-
cation to the central limit theorem, ‘“Limit Theorems”, Tashkent, 1963, pp. 49-

56. (In Russian.)

[10] B. V. GNepENKO and A. N. KoLMOGORoOV, Limit Distributions for Sums of Independent
Random Variables, Addison-Wesley, Mass., 1954.

[11] R. P. AGNEW, 4 global version of the central limit theorem, Proc. Nat. Acad. Sci. USA,
40 (1954), pp. 800-804.

[12] S. KH. SrazHDINOV and M. MamaTtov, On a local theorem for densities, Dokl.
Akad. Nauk SSSR, 142, 5 (1962), pp. 1036-1037. (In Russian.)

[13] S. KH. SrAzHDINOV and M. MamATov, On global limit theorems for densities and
distribution functions, “‘Limit Theorems”, Tashkent, 1963, pp. 91-106. (In Rus-
sian.)

[14] V. M. ZOLOTAREV, Or a new point of view of limit theorems taking large deviations into
consideration, Trans. VI All-Union Conference in Probability and Math. Statist,.
Vilna, 1962, pp. 43-48. (In Russian.)

[15] Yu. V. LINNIK, On the probability of large deviations for the sums of independent varia-
bles, Proc. 4-th Berkeley Sympos. Math. Statist. and Prob., II, 1961, pp. 289-306.

[16] M. L. KAtz, The probability in the tail of a distribution, Ann. Math. Statist., 34 (1963),
pp. 312-318.



