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LARGE DEVIATIONS FOR SUMS
OF INDEPENDENT RANDOM VARIABLES

S. V. NAGAEV

NOVOSIBIRSK

I. INTRODUCTION

Let ¢4, &5, ..., &, ... be a sequence of independent identically distributed random
variables with distribution function F(x) and M¢, =0, D¢, = 1.

Assume that for x — o
1 — F(x) = (1 + o(1)),

where x(x) is a nonincreasing function satisfying the following conditions

) xlilg (¥)x/lnx = -0,
(1) ax(x)x £y(x), 0<a<l.
tuy) 1Y(x) £ —x(®)/x = Ly'(x),
(1v) 0s —x"(x) < L, y'(x)/%,

where [, L, L, are some positive constants.
Assume that
M|& ™ < w0,
where
N = [(3 - 22)[(1 - )]

Let

N(a)

K(u) = Zz:xku" ,

where y, are cumulants of the distribution F(x).
Denote by 4,(z) the part of Cramer’s series containing N(«) — 3 first terms.
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Let A(n) is the solution of the equation
2
x(x) +==0.
n

THEOREM. Let
Py(x) = n(1 = (1 = B)x)m)™"* (1 = F((1 ~ ) x)) x
« expd— BV (B, (Bx
=G S Cb

2n n

where B is the least positive root of the equation

(19) K(-r(t - ) =2,
¥ =(1-a())ex x_3 X x -1 ) e "% du
i) = (1 =0 (G)) o L G- 200 = G
If
lim xn™ 1279 = ©,

then
(1.1) PG) = P(Y.6 > x) = PA(3) (1 + o(D)-

If

imxn="?™ <00 and Tmny((1 - p)x) <1,
then :
(1.2) P(x) = (Py(x) + Po(x)) (1 + o(1)) .
If
’gm;on (1 —B)x)21 and x =z A(n),

then
(1.3) P(x) = Py(x) (1 + o(1)).

Note that if n(y’)? (1 — B) x) - 0, then
(1.4) P(x) = n(l — F(x))(1 + o(1)).

This result has been obtained in [1] under more stror-ng than (I)—(IV) coi
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Word for word repeating the arguments of § 4 of the work [2] one can show that
representation (1.3) remains valid also for x < A(n).

In the paper [3] asymptotic representations of such kind as (1.1)—(1.3) have been
obtained in the case when x(x) = —x% 0 < « < 1. The method of the proof in [3]
is probabilistic.

In the present paper the modification of the analytic method suggested in [1]
is utilized. The approach developed in [2] is also essentially used in the proof.

Come now to agreement about some notation. We shall denote by ¢ and »
constants which can be chosen arbitrarily small. M will denote arbitrarily large
constant. Symbols ¢ and C will be used for notation accordingly sufficiently small
and sufficiently large constants. Note that the same symbol will be used for notation
of different constants. After all symbol f~!(x) will denote the function inverse

to f(x).
2. SOME AUXILIARY RESULTS

LEMMA 2.1. Let monotonic in segment [0, a] function y(u) satisfies the conditions

(2-1) !‘I_I:I; V() uflnu= -0,
(2.2) —y"(u) = cy'(u)fu,
(2.3) 0 y"(u) < =Cy"(u)fu.

Then there exists a function w(u) tending to zero for u — 0 such that for x - ©

f "exp {—xu + Y() + 3 In (¢ (W) du = J(2m) =T (1 1 of1))

yr

uniformly with respect to 0 < y' < ug(l — o(uo)), a = y" S uo(l + w(u,)). Here
u, is a solution of the equation x = y/'(u).

Proof. Obviously '
—xu + Y(u) = —xug + ¥'(uy) + 3" (uo) (u — uo)® +
+ O(W"(@) (u ~ uo)’), |7 ~ uo| < [u = uo|.

It follows from (2.1) and (2.2) that y"(u) < 0.
If y"(i) < ¥"(u,), then & < uy and according to (2.3)

) = =¥ (@) @) o~ 1) = @) (1 + 0 F)),

[T — uo| < | = uo| .
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Thus, in this case for u — u, = o(ug)

(24)  —xu +y(u) = —xuo + P'(ug) + 1" (uo) (u — uo)® (1 o (“o - u))

since y"(@) = O(y"(u)fu) .
If y"(7) > y"(u,), then

(2.5)  —xu + Y(u) = —xup + W(uo) + 3" (ug) (u — uo)’ (1 +0 (l—_—ﬂ»

Up

By virtue of (2.1) and (2.2)

(2.6) limy (u)u?flnu = .

u—=0

It follows from condition (2.3) that

2.7) In(—¢"(x)) < Cln L.

According to (2.2)
(2.8) dd_ ) u' =y u’ +cyp'Wu! <0,
u

In that way the function y'(u) u° is nonincreasing. Denote Y(u) + 4 In (—y"(u))
by ¥,(u). Let uy be the most remote from u, solution of the equation x = y;(u).
It is clear that

(29) Vi) = () + W)Y (u).
It follows hence by (2.3) that

(2.10) lim W’L’ﬁ) =1
X0 X
and
(2.11) Yi(u) < ¥'(w)
i.e.
g S ug.

Using now the monotony of '(u) u® we obtain

(2.12) ¥ (uo)W'(uo) < (uofug) .
It follows from (2.10) and (2.12) that

(2.13) uofuy — 1.
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Further
@14)  In (=9 (W) — In (—¥"(uo)) = o(ﬁ—g - w) = 0“5 ),
17— | < |u — uo)| .

It follows from (2.4), (2.5) and (2.14) that

(2.15) —xu + ¥,(u) = —xuy + Y(uo) (u — uo)* (1 + o(1)) +
+ 11n (=y"(uo)) + ofL),
if
up — u = ofu,) .
Choose w(u) such that

limow(u) =0, limy (u)u® 0’*(u) = o,
u—0

u—0

ug € (uo(l — wlug)), ue(l + (uo)))

wo( 1+ w(uo)) (o) . .
(2.16) e—xuﬂh(u) du = e~ *vatdiluo) c'll (uo)1?’2 dl(l + 0(])) —

ug(1 — w(uo)) —upt(to)
= /(2m) e TV + o(1)).
If furthermore

—y"(u) u? ?(u) + $1n(—y"(u)) >

for u — 0 (it can be achieved according to (2.6) and (2.7)), then for x — oo

ta(1 — w(uo))
(217) e Xt g, _l_J. e—xu+lll1(“) du = o(e-xuo+.p(uo))
0

uo( 1 + w(ug))

because the derivative

% (xu — yy(u)) 0

for

u e [0, ug(l — w(ug))] v [uo(l + w(uy)), a]

and consequently xu — ,(u) is monotonic in these segments.
From (2.16) and (2.17) we obtain the statement of the lemma.

Henceforth we shall suppose that

’(0)(—)(’)_1 (u)du + x(0), 0=u < —x(0),

GUNORS)

u

Y(u) = x(0), u> —x(0).



LemmaA 2.2. For x — o0

g
g = L f e dy(1 + of1))
Ny

uniformly with respect to

0y (1 —o(u))ug, 12yp" 21+ ofug))u,
where

Vi) = ¢(v) + 1 In (=9 ().
w(u) and u, have the same sense as in lemima 2.1

Proof. Verify that y(u) defined by (2.18) satisfies the conditions (2.1)—(
Obviously,

(2.19) ¥'u) = (=)' W),

(2.20) W) = — 1y (¥'(w).
Consequently for x = ()

(2.21) () uly'(u) = ¥’ (x)/x"(x) x .
Thus (I1T) = (2.2).
Further

22) VO = G
So for x = ()

(223) W) () = —x"(x) X () (x)
Obviously,

(2249) (V) = x"(x) X () (x) < =Ly () x(x) -

According to the condition (III)

(2.25) X(x)zo0.

It follows from (2.22), (2.25) and (1V) that
Yy"(u) 2 0.
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On the other hand we deduce from (2.22)—(2.24) and (III) that
v'(u) < —Cy"(u)fu.

Thus, the condition (2.3) also holds.
As for the condition (2.1) it follows from (I) and (2.19).
Apply now Lemma 2.1. According to (2.19)

(2.26) —xty + Y(up) = x y'(x) + ¢(—x(x)) .

Further in view of (2.18)

—x'(x)
W—x'(x)) = j_x,(0)¢’(ll) du + x(0).

Put
u=—3(.
Obviously,
du = —x"(y)dy.
Therefore

) W= = = [ 7Oty +40) = =765 + [ ) ey 4

+ 7(0) = x(x) = x'(x) x .
1t follows from (2.26) and (2.27) that
(2.28) —xug + Y(uo) = x(x).
The lemma is proved.
Put

1
o) =~ .
\'/(2“)
LemMma 2.3.
o(u) = cu ¢'(u).
Proof. Clearly

(2.29) @'(u) = ¥i(u) o(u) .
From (2.1), (2.2) and (2.10) we conclude that
(2.30) Yi(u) > cfu.

Combining (2.29) and (2.30) we obtain the statement of the lemma.



LeEMMA 2.4,
(2.31) —x(x) < —x(1) x*.
This estimate follows easily from the condition (II).

3. PROOF OF THE MAIN THEOREM

We shall prove only (1.1).

Put
Qu, x) = —xu + Y(u) + n K(u).
Let
p(x) = J’wu p(u)e ™ du .
Put |

_ F(x),xéy, 0,x§y9
Fy(x) - F(y)’ x>y, Qy(x) - J.xp(u) du, x>y

F y(x) =F y(x) + Qy(x) .

If Q(x) is a function of bounded variation then Q®™(x) denotes its n*"* convolutic
We shall denote

f do(u) by AQ(u).
It is not hard to see that
FP(x) = F®x) + nEY™0 % 0y(x) + 0(n* Q5(e0))
and
F™(x) = F{(x) + nFy™ D« (F ~ F,) (x) + 0O(n’*(1 — F(y))*).
Since
lim (1 — F(x))/pr(u) du =1

we have for y —» oo

A|(F = F, = Q) Fy"""(x)]

A

IA(F - Fy - Qy)l * F;"—l)(x) =
= o(F"™V % AQ,(x))

uniformly with respect to x.
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Thus, for y =
F®(x) = FP(x) + nFy™ % 0,(x) (1 + o(1)) + O(n*(1 — F(y))’).

The following inversion formula holds

h

62)  ARTe000 = E [T (6 ~ @) +

0

1 . h+iT _
+ — lim j e Ff) }(z)——

2M oo Juoit

where

1= [ erart). )= [ e Zop
gE(u) = lim g(2),

zu
zeD?*

D* are accordingly upper and lower half-planes.
Since u ¢(u) satisfies the Holder condition

(3.3) g, (u) = 9, (u) = u o(u)

(see, for example, [4], p. 37).
Lemma 3.1.
Rezy In y
l9,(z)] < C &% min| p(y)/|im z|, (0(2/y)
Proof. Integrating by parts we obtain the inequality

x L(z=1)y @
J. e_._m_t d[’ < J~ In l[ — zi di [(p(t) t e(z—r).V]‘dt‘ +
0 t

0 t—z

dt=11+12.

Lo "]

J. L
+mn —
o |d
I <e"“°‘j [(e'(1) t + o(t) — o(t) ty) In [t — z[[ dr +

.r d
+Iny —
2y 1dt

Clearly

dt =111 eykez +IIZ'

(o(r)1e=™")




10

Using Lemma 2.3 we obtain the estimate

Ly <C (z/y)‘“ Y

Since for t > 2y

(e 20,
[

‘Rez ln 4 ., ez ln
Iz < 9(2]y) ™ '_‘,i < Co'(2fy)e" yiy

It follows from two last estimates that

I%&N<C€“’(ﬂ)my

On the other hand

yRez

lg,(2)] < lgc—;lf:e"’t o(1) dt = [lerh_z| p(y)-

The lemma is proved.

LEMMA 3.2, For y > 1/h

y — ,
UA e7* dF(X) <C {eyRcz+K(Y) + hl/(l— 1 exp [l_ __E‘ X(l//l)]} .
L7k 14+«

To prove the lemma it is sufficient to use the estimates (4.3), (4.7), (4.9) an
(4.10) of the paper [2].

Let u; be the least root of the equation
(3.4) x =y'(u) + nK'(u),
u, be the root of the equation

(3.5) Y"(u) + nK"(u) = 0.

It is not hard to see that u, < u, <

LEMMA 3.3. If nuy[x — O then ugfu, — 1.

Proof. Clearly
nuy/x — 0= nuyfx - 0.
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Further y'(u,) = xa, where

n K’(u_,)
—

a=1-
It is easy to see that K'(u,)/u, — 1, but it means that a — L.
Obviously
ug =¥ " x) = —x'(x), u; =9 " (xa) = —x(xa).

Using now the condition (IIT) we obtain

In -:—0 =In(-y'(x)) = In(~x(xa)) = O (Lr(i) (a — l)) = o(1).

1 7 (x)

The lemma is proved.

LemMma 3.4,
xfn —uy > cuy .

Proof. Clearly

(3.6) x> ;b’(ul) + nuy .
On the other hand

—y"(uy) > n.
Hence according to (2.21) and to condition (IIT)
(3.6") Y'(uz)fu; > cn.
Since ¥'(u,) > ¥'(u,) and u; < u,
(3.7) ¥'(uy) > cnu, .

The estimates (3.6) and (3.7) yicld the statement of the lemma.

Let u} be that of roots of the equation x = yi(«) + n K'(u) lying on the left
of u, which is the most remote from u,.

LEMMA 3.5. If n "(Y'(uy)) < 6 < 1 and n is sufficiently large, then
0<uy—uy <CJ(1—6/2)y(uy).
Proof. Obviously,
Y(u)) =x —nK(u), yi(uy)=x—nK(u).
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Hence according to (2.9)

(3.8) (i — w) ¥"(@) + W) (ur) = n(K'(u;) — K'(u3)

luy — @] < |ui — uyf.
Notice that by virtue of (2.11)
(3.9) uy < ug.
Therefore Ye > 0
(3.10) K'(u,) — K'(u) > (u, —u)) (1 + ),

if n is sufficiently large and

G.1) (@) < V().
It follows from (3.8), (3.10) and (3.11) that
(3.12) uy — uy > Y"(w)2(0"(uy) + n(1 + &) Y"(u1) .

Observe that either y'(u;) > x/2 or n K'(u,) > x/2. If sccond of these inequalities
holds, then according to (3.7)

Y'(uy) > ex.

Thus in e.ach case
(3.12) ¥'(u,) > ex.
On the other hand for sufficiently large An
Y'(uy) < Yq(u) (1 + €).

Hence according to (2.8)

(3.13) (uifuy ) < y'(uy)fy'(ui) < C.
We obtain from (3.12) and (3.13) that
(3.14) uy —u; < —CJ(1 — 8/2)y"(uy) uy .

The statement of the lemma follows readily from (3.14), (2.2) and (3.9).
LeMMA 3.6. For n - «©
s ) = (1 = 9)9) = B+ L () 1 o,
where B is the least positive root of the equation (1.0).
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Proof. Let § be a solution of the equation
(3.15) u, = —x((1 - B)x).

The derivative of the function (8 — 1) xu + y(u) at the point u, is equal to zero.
Therefore fx — n K'(u,) = 0 because the derivative of the function —xu + Y(u) +
+ n K(u) also is equal to zero at the point u,.

Hence

(3.16) u, = (K)™! (@>

n

Thus, f satisfies the equation (1.0).

It is easy to sce that f is the least of two positive roots of the equation (1.0). In fact
otherwise 3" < B such that x = y'(i,) + n K'(,), where i, = —x'((1 — p)x) <
< uy but it is impossible.

By the condition (IT) and Lemma 2.4

(3.17) —x(x) < —a y(1)x*"".
On the other hand by virtue of (3.12').
u, < —x'(ex).
Therefore if x > cn!/?~, then
(3.18) uy < Cp D@

Since unffx » 1 for n— o, Px[n < Ca®~D/C=a If x < Cn'~%, then
Bx[n < x[n < Cp*~D/2=D),
It follows from two last estimates that
lim n(Bx/n)"® = 0.
n—o0

Consequently for n - o
(3.19) —B x(K')™" (Bx/n) + n K((K')™* (Bx[n)) =
= —B2x?2n + B3x* A,(Bx[n){n* + o(1).
Finally by (2.28)
B =D xx(L = B)x) + v(—x(t — B)x)) = x(1 — B) x).

The lemma is proved.

Return now to the formula (3.2). Put h = h(b) = —x(bx){b' ~"x, where b =
= 2"Ya=1 'y = bx. Here 5 is a sufficicntly small positive number which will be chosen

later.
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Evidently
y
(3:20) fy(z) = f”h(b)(z) + f e dF(x) .
1/h(b)
Further
N(a) ,
(3:21) Jinz) =1 + B2 + Y MER + o(h*®).
k=3
Hence it follows in particular that
(3.22) [fim(z)] < et +oms2
if n is sufficiently large.
Suppose now that
(3.23) x > cn'/Cm®,
Then by Lemma 2.4
(3.24) h(b) < Ca*~ D=2

It follows from (3.21) and (3.24) that if the (3.23) holds then
(3.25) f;‘/h(“) = e"K(u)(l + o(1))

uniformly with respect to 0 < u £ h(b).
It follows from Lemma 3.2 according to (3.24) that

¥y
(3.26) jl/h(b)eh(b)x dF(x) = 0(e" ™" ™™9) + o(n™").

Taking into account (3.24) we obtain
(3.21) £ = flae() (1 + o(t)) = (L + o(1)), 0= u = h(b).
By (3.3) and (3.27)

(328) J‘:(b)e_xuf;(u) (g+(u) _ g-(u))% _ J‘h(b)e—xu+nl((u) ¢(U) dU(l 4- 0(1))

0

According to the condition (IT)

(3-29) up = —x'(x) < —a x(x)/x .
Hence
(3.30) —1(x)jx — up > (@ = 1) x(x)jx > — ¢ U .
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Let y is defined by the equation h(b) = yx/n. Then
(331) —xh(b) + n K*(b) (1 + &)f2 = —x h(b) (1 — n h(b) (1 + &)[2x) =
= (1 = y(1 + &)/2) x(bx)/b* 7.
Observe that if x > vn'/@~ then by (2.31)
(3.32) y < x(1) ¥+ 12,

It is not hard to obtain from the condition (II)

15

(3.33) 2(bx) < b y(x) .

It follows from (3.32) and (3.33) that for Ve > 0, n > 0 Ju(e, ) such that for
x > t{e, ) n*@="
(3.34) (1 — (1 + 2)f2) (bx)fb' 7 < b2 y(x)

if n is sufficiently large.
By (2.20)
(W) = tn.

According to the conditions (IT) and (III) and Lemma 2.4
(3-35) x(x) < Cx*2,

Therefore

(')~ *(u,) < Cn,
ie.

Y'(uy) < Cnt/G=0

Using (3.6") we obtain
(3.36) nu, < Cpt/-9
From (3.30) and (3.36) applying Lemma 3.3 we deduce that ¥n > 0

I —a
_ .ul

(3.37) h(b) — u, >
if x > CnY®~9 and C is sufficiently large.
By virtue of (3.35) and (3.12")
LW () = oYy *(ur)) = O(x*~%).
Therefore 3C such that for x > Cn'/2~®

(3.38) —y"(u) > 2n.
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Repeating the reasoning leading to Lemma 2.1 and taking into account (3.38) we
come to the asymplotic representation

e XuTnK@) o0 N 4 - — o(1)
0 o(u)d N e (1 + o1))

which holds for x > Cr'/?~% y - co. In addition

u1(1 +w(u)) e—qunK(uleln(ux)
(3.39) j

(3.40) e_Xll:;+nK(u3)+z[q(u3) =0 <c; —/r
V(=¥ () - n)

—xu1+nK(ul)+llu(u‘))
’

where u; = u,(1 + o(u,)).
It is easy to see that
h(b)
(3.41) e KW o(y) du = O(h(b) max [exp { —xu; + n K(u;) +

ut(1+w(un))
+ ¥a(us)}, exp {—x h(b) + n K(h(b)) + ¥ (A(b))}]) -

Put now = (1 — «)/4. It follows from (3.31) and (3.34) that for x > Cn'/G~®

(3.42) e T IO HIKGO) (e 7()
Note that
(343) llj”(ul) — —I/X”(llll(ul)) — _l/xu((l _ ﬂ) X)
(see (3.15)).
Further
() h(b)
(3.44) f e W o) du > f e p(u) du > c e,
Y 0

It follows from (3.39)—(3.44) and Lemma 3.6 that there exists C such that for
x > Cn'3®

(3.45) j :(b)c“*"“'““’ o(u) du = P,(x) (1 + o(1)).

Estimate now

W(b)+io
J= J e 7 f(2) g(z) dz .

h(b)—ico

It is not hard to see that

i ¥
(3‘46) g,,(z) = g.,,,(,,,(Z) + J; lh(b)e" P(x) dx .
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It follows from (3.46), (3.26) and Lemma 3.1 that..

(3.47) . g,(z) = o(1) .
uniformly with respect to z with 0 £ Re z < h(b).

Note that by virtue of the condition (I)

(3.48) o lim —y(x)/lnx = oo

X =00

It follows from (3.22), (3.47), (3.48), (3.31) and (3.34) that

(3.49) J O i £1(2) gy(z)dz_z =0 (-m h(b) exp { —x h(b) + 1_.'2'7_'? " hz(b)}> _

nb)—i

= ofexp [Clnx + b7 y(x)]) = o(e*™),

x> Cnlio)
Further by Lemma 3.1
—xz ¢n dz 1t 4+.¢ 5
(3.50) e ™ f(z) g(z2) — = O(p(y) exp [(y —x)h(b) + n- — hz(b)] =
s : -

= ofexp {1(¥) + (v — %) h(b) + n(l + &) K*(0)[2}).
It is not hard to see that
(3.51) 1) + (v — 2) h(b) + n(L + &) B3(b)J2 =
| =(1+ (1= b)) (1 — (1 + &)2) x(bx) ,
y =9/(1 + b7 = b).
From (3.50) and (3.51) we obtain using (3.34) that for x > Cn'/¢~®

(3.52) J ) gy(z)d—zz = o).
Rez=h(b)

[Tmz|>1

It follows from (3.49) and (3.52) that
(3.53) J = o(e*), x> Cal7Y,

From (3.2), (3.28), (3.45) and the estimate (3.53) we obtain the asymptotic represent-
ation

(3.54) AF= 4 0.(x) = Py(x) (1 + o(1))

valid for x > Cn'/®™9,
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By virtue of (3.27), (3.31), (3.34) and (3.22)
(355)  AFP() = Ofexp {~x h(b) + n(1 + &) R(B)2)) = ofe")

x < Cnt/2=®

After all
(3.56) n*(1 — F(»))* = Ofexp {21nn + 2x(y)}) = o(e*™), x > Cn".
From (3.1) and (3.54)—(3.56) we obtain (1.1) for x > Cn'/G~9,
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