TRANSACTIONS

of the

SIXTH PRAGUE CONFERENCE

on

INFORMATION THEORY, STATISTICAL DECISION FUNCTIONS, RANDOM PROCESSES

held at

Prague, from September 19 to 25, 1971

S. V. Nagaev

LARGE DEVIATIONS FOR SUMS OF INDEPENDENT RANDOM VARIABLES

ACADEMIA

PUBLISHING HOUSE

OF THE

CZECHOSLOVAK ACADEMY OF SCIENCES

PRAGUE 1973

LARGE DEVIATIONS FOR SUMS OF INDEPENDENT RANDOM VARIABLES

S. V. NAGAEV

Novosibirsk

1. INTRODUCTION

Let $\xi_1, \xi_2, ..., \xi_n, ...$ be a sequence of independent identically distributed random variables with distribution function F(x) and $M\xi_1 = 0$, $D\xi_1 = 1$.

Assume that for $x \to \infty$

$$1 - F(x) = e^{x(x)}(1 + o(1)),$$

where $\chi(x)$ is a nonincreasing function satisfying the following conditions

(1)
$$\lim_{x\to\infty} \chi'(x) x/\ln x = -\infty,$$

(II)
$$\alpha \chi(x)/x \leq \chi'(x), \quad 0 < \alpha < 1.$$

(III)
$$l\chi''(x) \le -\chi'(x)/x \le L\chi''(x),$$

(IV)
$$0 \leq -\chi'''(x) < L_1 \chi''(x)/x,$$

where l, L, L_1 are some positive constants.

Assume that

$$\mathsf{M}|\xi_1|^{N(x)}<\infty\;,$$

where

$$N(\alpha) = \left[(3-2\alpha)/(1-\alpha) \right].$$

Let

$$K(u) = \sum_{k=1}^{N(\alpha)} \chi_k u^k,$$

where χ_k are cumulants of the distribution F(x).

Denote by $\lambda_{\alpha}(z)$ the part of Cramer's series containing $N(\alpha) - 3$ first terms.

Let $\Lambda(n)$ is the solution of the equation

$$\chi(x) + \frac{x^2}{n} = 0.$$

THEOREM. Let

$$P_{1}(x) = n(1 - \chi''((1 - \beta) x) n)^{-1/2} (1 - F((1 - \beta) x)) \times \exp \left\{ -\frac{(\beta x)^{2}}{2n} + \frac{(\beta x)^{3}}{n^{2}} \lambda_{x} \left(\frac{\beta x}{n} \right) \right\},$$

where β is the least positive root of the equation

(1.0)
$$K'(-\chi'((1-\beta)x)) = \frac{\beta x}{n},$$

$$P_2(x) = \left(1 - \Phi\left(\frac{x}{\sqrt{n}}\right)\right) \exp\left\{\frac{x^3}{n^2} \lambda_x\left(\frac{x}{n}\right)\right\}, \quad \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-u^2/2} du$$
If
$$\lim_{n \to \infty} x n^{-1/(2-x)} = \infty,$$

then

(1.1)
$$P(x) \equiv P(\sum_{i=1}^{n} \xi_i > x) = P_1(x) (1 + o(1)).$$
If

$$\overline{\lim}_{n\to\infty} x n^{-1/(2-\alpha)} < \infty \quad and \quad \overline{\lim}_{n\to\infty} n \, \chi''((1-\beta) \, x) < 1 \,,$$

then

(1.2)
$$P(x) = (P_1(x) + P_2(x))(1 + o(1)).$$

If

$$\underline{\lim} \ n \ \chi''((1-\beta) \ x) \ge 1 \quad and \quad x \ge \Lambda(n) \ ,$$

then

(1.3)
$$P(x) = P_2(x) (1 + o(1)).$$

Note that if $n(\chi')^2((1-\beta)x) \to 0$, then

(1.4)
$$P(x) = n(1 - F(x))(1 + o(1)).$$

This result has been obtained in [1] under more strong than (I)-(IV) con

Word for word repeating the arguments of § 4 of the work [2] one can show that representation (1.3) remains valid also for $x < \Lambda(n)$.

In the paper [3] asymptotic representations of such kind as (1.1)-(1.3) have been obtained in the case when $\chi(x) = -x^{\alpha}$, $0 < \alpha < 1$. The method of the proof in [3] is probabilistic.

In the present paper the modification of the analytic method suggested in [1] is utilized. The approach developed in [2] is also essentially used in the proof.

Come now to agreement about some notation. We shall denote by ε and η constants which can be chosen arbitrarily small. M will denote arbitrarily large constant. Symbols c and C will be used for notation accordingly sufficiently small and sufficiently large constants. Note that the same symbol will be used for notation of different constants. After all symbol $f^{-1}(x)$ will denote the function inverse to f(x).

2. SOME AUXILIARY RESULTS

LEMMA 2.1. Let monotonic in segment [0, a] function $\psi(u)$ satisfies the conditions

(2.1)
$$\lim_{u\to 0} \psi'(u) u/\ln u = -\infty,$$

$$(2.2) -\psi''(u) \ge c \, \psi'(u)/u ,$$

(2.3)
$$0 \le \psi'''(u) < -C \psi''(u)/u.$$

Then there exists a function $\omega(u)$ tending to zero for $u \to 0$ such that for $x \to \infty$

$$\int_{y'}^{y''} \exp\left\{-xu + \psi(u) + \frac{1}{2} \ln\left(-\psi''(u)\right) du = \sqrt{(2\pi)} e^{-xu_0 + \psi(u_0)} \left(1 + o(1)\right)\right\}$$

uniformly with respect to $0 \le y' \le u_0(1 - \omega(u_0))$, $a \ge y'' \le u_0(1 + \omega(u_0))$. Here u_0 is a solution of the equation $x = \psi'(u)$.

Proof. Obviously

$$-xu + \psi(u) = -xu_0 + \psi'(u_0) + \frac{1}{2}\psi''(u_0)(u - u_0)^2 + O(\psi'''(\bar{u})(u - u_0)^3), \quad |\bar{u} - u_0| < |u - u_0|.$$

It follows from (2.1) and (2.2) that $\psi''(u) < 0$.

If $\psi''(\bar{u}) < \psi''(u_0)$, then $\bar{u} < u_0$ and according to (2.3)

$$-\psi''(u_0) = -\psi''(\bar{u}) - \psi'''(\bar{u}) (u_0 - \bar{u}) = -\psi''(\bar{u}) \left(1 + O\left(\frac{u_0 - \bar{u}}{\bar{u}}\right)\right),$$
$$|\bar{u} - u_0| < |\bar{u} - u_0|.$$

Thus, in this case for $u - u_0 = o(u_0)$

$$(2.4) -xu + \psi(u) = -xu_0 + \psi'(u_0) + \frac{1}{2}\psi''(u_0)(u - u_0)^2 \left(1 + O\left(\frac{u_0 - u}{\overline{u}}\right)\right)$$

since $\psi'''(\bar{u}) = O(\psi''(\bar{u})/\bar{u})$.

If $\psi''(\bar{u}) > \psi''(u_0)$, then

$$(2.5) -xu + \psi(u) = -xu_0 + \psi(u_0) + \frac{1}{2}\psi''(u_0)(u - u_0)^2 \left(1 + O\left(\frac{u - u_0}{u_0}\right)\right).$$

By virtue of (2.1) and (2.2)

(2.6)
$$\lim_{u\to 0} \psi(u) u^2/\ln u = \infty.$$

It follows from condition (2.3) that

(2.7)
$$\ln (-\psi''(u)) < C \ln \frac{1}{u}.$$

According to (2.2)

(2.8)
$$\frac{d}{du} \psi'(u) u^{c} = \psi''(u) u^{c} + c \psi'(u) u^{c-1} \leq 0.$$

In that way the function $\psi'(u)$ u^c is nonincreasing. Denote $\psi(u) + \frac{1}{2} \ln \left(-\psi''(u) \right)$ by $\psi_1(u)$. Let u'_0 be the most remote from u_0 solution of the equation $x = \psi'_1(u)$.

It is clear that

(2.9)
$$\psi'_1(u) = \psi'(u) + \frac{1}{2}\psi'''(u)/\psi''(u).$$

It follows hence by (2.3) that

$$\lim_{x \to \infty} \frac{\psi'(u_0')}{x} = 1$$

and

$$\psi_1'(u) < \psi'(u)$$

i.e.

$$u_0 \leq u'_0$$
.

Using now the monotony of $\psi'(u) u^c$ we obtain

$$(2.12) \psi'(u_0)/\psi'(u_0) < (u_0/u_0)^c.$$

It follows from (2.10) and (2.12) that

$$(2.13) u_0/u_0' \to 1.$$

660

Further

(2.14)
$$\ln \left(-\psi''(u)\right) - \ln \left(-\psi''(u_0)\right) = O\left(\frac{\psi'''(\bar{u})}{\psi''(\bar{u})}(u - u_0)\right) = O\left(\frac{u - u_0}{\bar{u}}\right),$$
$$|\bar{u} - u_0| < |u - u_0|.$$

It follows from (2.4), (2.5) and (2.14) that

$$(2.15) -xu + \psi_1(u) = -xu_0 + \psi(u_0)(u - u_0)^2 (1 + o(1)) + + \frac{1}{2} \ln(-\psi''(u_0)) + o(1),$$

if

$$u_0-u=o(u_0).$$

Choose $\omega(u)$ such that

$$\lim_{u\to 0} \omega(u) = 0 , \quad \lim_{u\to 0} \psi(u)'' u^2 \omega^2(u) = \infty ,$$

$$u'_0 \in (u_0(1 - \omega(u_0)), u_0(1 + \omega(u_0))) ,$$

(2.16)
$$\int_{u_0(1-\omega(u_0))}^{u_0(1+\omega(u_0))} e^{-xu+\psi_1(u)} du = e^{-xu_0+\psi_1(u_0)} \int_{-u_0\omega(u_0)}^{u_0\omega(u_0)} e^{\psi''(u_0)t^{2/2}} dt(1+o(1)) =$$

$$= \sqrt{(2\pi)} e^{-xu_0+\psi(u_0)} (1+o(1)).$$

If furthermore

$$-\psi''(u) u^2 \omega^2(u) + \frac{1}{2} \ln (-\psi''(u)) \to \infty$$

for $u \to 0$ (it can be achieved according to (2.6) and (2.7)), then for $x \to \infty$

$$(2.17) \qquad \int_{0}^{u_{0}(1-\omega(u_{0}))} e^{-xu+\psi_{1}(u)} du + \int_{u_{0}(1+\omega(u_{0}))} e^{-xu+\psi_{1}(u)} du = o(e^{-xu_{0}+\psi(u_{0})})$$

because the derivative

$$\frac{\mathrm{d}}{\mathrm{d}u}\left(xu-\psi_1(u)\right)\neq 0$$

for

$$u \in [0, u_0(1 - \omega(u_0))] \cup [u_0(1 + \omega(u_0)), a]$$

and consequently $xu - \psi_1(u)$ is monotonic in these segments.

From (2.16) and (2.17) we obtain the statement of the lemma.

Henceforth we shall suppose that

(2.18)
$$\psi(u) = -\int_{u}^{-\chi'(0)} (-\chi')^{-1} (u) du + \chi(0), \quad 0 \le u \le -\chi'(0),$$
$$\psi(u) = \chi(0), \quad u > -\chi'(0).$$

LEMMA 2.2. For $x \to \infty$

$$e^{x(x)} = \frac{1}{\sqrt{2\pi}} \int_{y'}^{y'} e^{-xu + \psi_1(u)} du(1 + o(1))$$

uniformly with respect to

$$0 \le y' \le (1 - \omega(u_0)) u_0$$
, $1 \ge y'' \ge (1 + \omega(u_0)) u_0$,

where

$$\psi_1(u) = \psi(u) + \frac{1}{2} \ln \left(-\psi''(u) \right),$$

 $\omega(u)$ and u_0 have the same sense as in lemma 2.1:

Proof. Verify that $\psi(u)$ defined by (2.18) satisfies the conditions (2.1)—(. Obviously,

$$\psi'(u) = (-\chi')^{-1}(u),$$

(2.20)
$$\psi''(u) = -1/\chi''(\psi'(u)).$$

Consequently for $x = \psi'(u)$

(2.21)
$$\psi''(u) \ u/\psi'(u) = \chi'(x)/\chi''(x) \ x \ .$$

Thus (III) \Rightarrow (2.2).

Further

(2.22)
$$\psi'''(u) = -\frac{\chi'''(\psi'(u))}{(\chi'')^3(\psi'(u))}.$$

So for $x = \psi'(u)$

(2.23)
$$\psi'''(u) \ u/\psi''(u) = -\chi'''(x) \ \chi'(x)/(\chi'')^2 \ (x) \ .$$

Obviously,

(2.24)
$$(IV) \Rightarrow \chi'''(x) \chi'(x) / (\chi'')^2 (x) < -L_1 \chi'(x) / \chi''(x) .$$

According to the condition (III)

$$\chi''(x) \ge 0.$$

It follows from (2.22), (2.25) and (IV) that

$$\psi'''(u) \ge 0.$$

On the other hand we deduce from (2.22)-(2.24) and (III) that

$$\psi'''(u) < -C \psi''(u)/u.$$

Thus, the condition (2.3) also holds.

As for the condition (2.1) it follows from (I) and (2.19).

Apply now Lemma 2.1. According to (2.19)

(2.26)
$$-xu_0 + \psi(u_0) = x \chi'(x) + \psi(-\chi(x)).$$

Further in view of (2.18)

$$\psi(-\chi'(x)) = \int_{-\chi'(0)}^{-\chi'(x)} \psi'(u) \, \mathrm{d}u + \chi(0) \, .$$

Put

$$u = -\chi'(y).$$

Obviously,

$$du = -\chi''(y) dy.$$

Therefore

(2.27)
$$\psi(-\chi'(x)) = -\int_0^x y \, \chi''(y) \, \mathrm{d}y + \chi(0) = -\chi'(x) \, x + \int_0^x \chi(y) \, \mathrm{d}y + \chi(0) = \chi(x) - \chi'(x) \, x.$$

It follows from (2.26) and (2.27) that

$$-xu_0 + \psi(u_0) = \chi(x).$$

The lemma is proved.

Put

$$\varphi(u) = \frac{1}{\sqrt{(2\pi)}} e^{\psi_1(u)}.$$

LEMMA 2.3.

$$\varphi(u) = cu \varphi'(u).$$

Proof. Clearly

$$\varphi'(u) = \psi'_1(u) \varphi(u).$$

From (2.1), (2.2) and (2.10) we conclude that

(2.30)
$$\psi_1'(u) > c/u .$$

Combining (2.29) and (2.30) we obtain the statement of the lemma.

LEMMA 2.4.

$$(2.31) -\chi(x) < -\chi(1) x^{x}.$$

This estimate follows easily from the condition (II).

3. PROOF OF THE MAIN THEOREM

We shall prove only (1.1).

Put

$$\Omega(u, x) = -xu + \psi(u) + n K(u).$$

Let

$$p(x) = \int_0^\infty u \ \varphi(u) e^{-xa} \ du.$$

Put

$$\bar{F}_{y}(x) = \begin{cases}
F(x), & x \leq y, \\
F(y), & x > y,
\end{cases} Q_{y}(x) = \begin{cases}
0, & x \leq y, \\
\int_{y}^{x} p(u) \, du, & x > y
\end{cases}$$

$$F_{y}(x) = \bar{F}_{y}(x) + Q_{y}(x).$$

If Q(x) is a function of bounded variation then $Q^{(n)}(x)$ denotes its n^{th} convolution We shall denote

$$\int_{x}^{\infty} dQ(u) \quad \text{by} \quad \Delta Q(u) \ .$$

It is not hard to see that

$$F_{\nu}^{(n)}(x) = \overline{F}^{(n)}(x) + n\overline{F}_{\nu}^{(n-1)} * Q_{\nu}(x) + O(n^2 Q_{\nu}^2(\infty))$$

and

$$F^{(n)}(x) = \overline{F}_{v}^{(n)}(x) + n\overline{F}_{v}^{(n-1)} * (F - \overline{F}_{v})(x) + O(n^{2}(1 - F(y))^{2}).$$

Since

$$\lim_{x\to\infty} (1 - F(x)) / \int_x^{\infty} p(u) \, \mathrm{d}u = 1$$

we have for $y \to \infty$

$$\Delta |(F - \overline{F}_{y} - Q_{y}) * \overline{F}_{y}^{(n-1)}(x)| \leq |\Delta(F - \overline{F}_{y} - Q_{y})| * \overline{F}_{y}^{(n-1)}(x) =$$

$$= o(\overline{F}^{(n-1)} * \Delta Q_{y}(x))$$

uniformly with respect to x.

Thus, for $y \to \infty$

$$F^{(n)}(x) = \overline{F}_y^{(n)}(x) + n\overline{F}_y^{(n-1)} * Q_y(x) (1 + o(1)) + O(n^2(1 - F(y))^2).$$

The following inversion formula holds

(3.2)
$$\Delta \overline{F}_{y}^{(n-1)} * Q_{y}(x) = \frac{1}{2\pi i} \int_{0}^{h} e^{-xu} f_{y}^{n-1}(u) \left(g_{y}^{+}(u) - g_{y}^{-}(u)\right) \frac{du}{u} + \frac{1}{2\pi i} \lim_{T \to \infty} \int_{h-iT}^{h+iT} e^{-xz} f_{y}^{n-1} g_{y}(z) \frac{dz}{z},$$

where

$$f_{y}(z) = \int_{-\infty}^{y} e^{zx} dF(x), \quad g_{y}(z) = e^{zy} \int_{0}^{\infty} \frac{e^{-ty}t \varphi(t)}{t - z} dt,$$
$$g_{y}^{\pm}(u) = \lim_{\substack{z \to u \\ z \in D^{\pm}}} g(z),$$

 D^{\pm} are accordingly upper and lower half-planes.

Since $u \varphi(u)$ satisfies the Holder condition

(3.3)
$$g_{y}^{+}(u) - g_{y}^{-}(u) = u \varphi(u)$$

(see, for example, [4], p. 37).

LEMMA 3.1.

$$|g_y(z)| < C e^{\operatorname{Re}zy} \min \left[p(y) / |\operatorname{Im} z|, \varphi'(2/y) \frac{\ln y}{v^2} \right].$$

Proof. Integrating by parts we obtain the inequality

$$\left| \int_0^\infty \frac{e^{(z-t)y} \varphi(t) t}{t-z} dt \right| \le \left| \int_0^\infty \ln|t-z| \frac{d}{dt} \left[\varphi(t) t e^{(z-t)y} \right] dt \right| + \pi \int_0^\infty \left| \frac{d}{dt} \left[\varphi(t) t e^{(z-t)y} \right] \right| dt = I_1 + I_2.$$

Clearly

$$I_{1} < e^{yRez} \int_{0}^{2/y} |(\varphi'(t) t + \varphi(t) - \varphi(t) ty) \ln |t - z|| dt +$$

$$+ \ln y \int_{2/y}^{\infty} \left| \frac{d}{dt} (\varphi(t) t e^{(z-t)y}) \right| dt = I_{11} e^{yRez} + I_{12}.$$

Using Lemma 2.3 we obtain the estimate

$$I_{11} < C \varphi'(2/y) \frac{\ln y}{v^2}$$
.

Since for t > 2/y

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\varphi(t) \, t \, \mathrm{e}^{-yt} \right] \leq 0 \,,$$

$$I_{12} < \varphi(2/y) e^{yRez} \frac{\ln y}{y} < C\varphi'(2/y) e^{yRez} \frac{\ln y}{y^2}$$
.

It follows from two last estimates that

$$\left|g_{y}(z)\right| < C e^{y \operatorname{Re} z} \varphi'(2/y) \frac{\ln y}{v^{2}}.$$

On the other hand

$$|g_{y}(z)| < \frac{e^{yRez}}{|\operatorname{Im} z|} \int_{0}^{\infty} e^{-ty} t \, \varphi(t) \, dt = \frac{e^{yRez}}{|\operatorname{Im} z|} \, p(y) \, .$$

The lemma is proved.

LEMMA 3.2. For y > 1/h

$$\left| \int_{1/h}^{y} e^{zx} dF(x) \right| < C \left\{ e^{y \operatorname{Re}z + \chi(y)} + h^{1/(\alpha - 1)} \exp \left[\frac{1 - \alpha}{1 + \alpha} \chi(1/h) \right] \right\}.$$

To prove the lemma it is sufficient to use the estimates (4.3), (4.7), (4.9) and (4.10) of the paper [2].

Let u_1 be the least root of the equation

(3.4)
$$x = \psi'(u) + n K'(u),$$

 u_2 be the root of the equation

(3.5)
$$\psi''(u) + n K''(u) = 0.$$

It is not hard to see that $u_0 < u_1 \le u_2$.

LEMMA 3.3. If $nu_2/x \rightarrow 0$ then $u_0/u_1 \rightarrow 1$.

Proof. Clearly

$$nu_2/x \to 0 \Rightarrow nu_1/x \to 0$$
.

Further $\psi'(u_1) = xa$, where

$$a=1-\frac{n\,K'(u_1)}{r}.$$

It is easy to see that $K'(u_1)/u_1 \to 1$, but it means that $a \to 1$.

Obviously

$$u_0 = \psi'^{-1}(x) = -\chi'(x), \quad u_1 = \psi'^{-1}(xa) = -\chi'(xa).$$

Using now the condition (III) we obtain

$$\ln \frac{u_0}{u_1} = \ln \left(-\chi'(x) \right) - \ln \left(-\chi'(xa) \right) = O\left(\frac{\chi''(x)}{\chi'(x)} (a-1) \right) = o(1).$$

The lemma is proved.

LEMMA 3.4.

$$x/n - u_1 > cu_1.$$

Proof. Clearly

(3.6)
$$x > \psi'(u_1) + nu_1 .$$

On the other hand

$$-\psi''(u_2)>n.$$

Hence according to (2.21) and to condition (III)

$$(3.6') \psi'(u_2)/u_2 > cn.$$

Since $\psi'(u_1) > \psi'(u_2)$ and $u_1 \leq u_2$

$$\psi'(u_1) > cnu_1.$$

The estimates (3.6) and (3.7) yield the statement of the lemma.

Let u_1' be that of roots of the equation $x = \psi_1'(u) + n K'(u)$ lying on the left of u_2 which is the most remote from u_2 .

LEMMA 3.5. If $n \chi''(\psi'(u_1)) < \delta < 1$ and n is sufficiently large, then

$$0 < u_1' - u_1 < C/(1 - \delta/2) \psi'(u_1).$$

Proof. Obviously,

$$\psi'(u_1) = x - n K'(u_1), \quad \psi'_1(u'_1) = x - n K'(u'_1).$$

Hence according to (2.9)

(3.8)
$$(u'_1 - u_1) \psi''(\bar{u}) + \frac{1}{2} \psi'''(u'_1) / \psi''(u'_1) = n(K'(u_1) - K'(u'_1)),$$

$$|u_1 - \bar{u}| < |u'_1 - u_1|.$$

Notice that by virtue of (2.11)

$$(3.9) u_1 < u_1'.$$

Therefore $\forall \varepsilon > 0$

(3.10)
$$K'(u_1) - K'(u_1') > (u_1 - u_1')(1 + \varepsilon),$$

if n is sufficiently large and

$$-\psi''(\bar{u}) < -\psi''(u_1).$$

It follows from (3.8), (3.10) and (3.11) that

(3.12)
$$u_1 - u_1' > \psi'''(u_1')/2(\psi''(u_1) + n(1+\varepsilon))\psi''(u_1').$$

Observe that either $\psi'(u_1) > x/2$ or $n K'(u_1) > x/2$. If second of these inequalities holds, then according to (3.7)

$$\psi'(u_1) > cx.$$

Thus in each case

$$(3.12') \qquad \qquad \psi'(u_1) > cx \ .$$

On the other hand for sufficiently large n

$$\psi'(u_1) < \psi_1(u_1) (1 + \varepsilon).$$

Hence according to (2.8)

$$(3.13) (u_1'/u_1)^c < \psi'(u_1)/\psi'(u_1') < C.$$

We obtain from (3.12) and (3.13) that

(3.14)
$$u'_1 - u_1 < -C/(1 - \delta/2) \psi''(u_1) u_1.$$

The statement of the lemma follows readily from (3.14), (2.2) and (3.9).

LEMMA 3.6. For $n \to \infty$

$$\Omega(u_1, x) = \chi((1-\beta)x) - \frac{(\beta x)^2}{2n} + \frac{(\beta x)^3}{n^2} \lambda_{\alpha}\left(\frac{\beta x}{n}\right) + o(1),$$

where β is the least positive root of the equation (1.0).

Proof. Let β be a solution of the equation

(3.15)
$$u_1 = -\chi'((1-\beta)x).$$

The derivative of the function $(\beta - 1) xu + \psi(u)$ at the point u_1 is equal to zero. Therefore $\beta x - n K'(u_1) = 0$ because the derivative of the function $-xu + \psi(u) + n K(u)$ also is equal to zero at the point u_1 .

Hence

(3.16)
$$u_1 = (K')^{-1} \left(\frac{\beta x}{n} \right).$$

Thus, β satisfies the equation (1.0).

It is easy to see that β is the least of two positive roots of the equation (1.0). In fact otherwise $\exists \beta' < \beta$ such that $x = \psi'(\bar{u}_1) + n K'(\bar{u}_1)$, where $\bar{u}_1 = -\chi'((1 - \beta') x) < u_1$ but it is impossible.

By the condition (II) and Lemma 2.4

$$(3.17) -\chi'(x) < -\alpha \chi(1) x^{\alpha-1}.$$

On the other hand by virtue of (3.12').

$$u_1 < -\chi'(cx).$$

Therefore if $x > cn^{1/(2-x)}$, then

$$(3.18) u_1 < C n^{(z-1)/(2-z)}$$

Since $u_1 n / \beta x \to 1$ for $n \to \infty$, $\beta x / n < C n^{(\alpha - 1)/(2 - \alpha)}$. If $x < C n^{1/(2 - \alpha)}$, then $\beta x / n < x / n < C n^{(\alpha - 1)/(2 - \alpha)}$.

It follows from two last estimates that

$$\lim_{n\to\infty} n(\beta x/n)^{N(\alpha)} = 0.$$

Consequently for $n \to \infty$

(3.19)
$$-\beta x(K')^{-1} (\beta x/n) + n K((K')^{-1} (\beta x/n)) =$$
$$= -\beta^2 x^2 / 2n + \beta^3 x^3 \lambda_n (\beta x/n) / n^2 + o(1) .$$

Finally by (2.28)

$$(\beta - 1) x \chi'((1 - \beta) x) + \psi(-\chi'((1 - \beta) x)) = \chi((1 - \beta) x).$$

The lemma is proved.

Return now to the formula (3.2). Put $h = h(b) \equiv -\chi(bx)/b^{1-\eta}x$, where $b = 2^{-1/\alpha-1}$, y = bx. Here η is a sufficiently small positive number which will be chosen later.

Evidently

(3.20)
$$f_{y}(z) = f_{1/h(b)}(z) + \int_{1/h(b)}^{y} e^{zx} dF(x).$$

Further

(3.21)
$$f_{1/h}(z) = 1 + h^2/2 + \sum_{k=3}^{N(\alpha)} M \xi_k h^k + o(h^{N(\alpha)}).$$

Hence it follows in particular that

$$|f_{1/h}^n(z)| < e^{n(1+\varepsilon)h^2/2}$$

if n is sufficiently large.

Suppose now that

$$(3.23) x > c n^{1/(2-\alpha)}.$$

Then by Lemma 2.4

(3.24)
$$h(b) < C n^{(\alpha-1)/(\alpha-2)}.$$

It follows from (3.21) and (3.24) that if the (3.23) holds then

(3.25)
$$f_{1/h}^{n}(u) = e^{nK(u)}(1 + o(1))$$

uniformly with respect to $0 \le u \le h(b)$.

It follows from Lemma 3.2 according to (3.24) that

(3.26)
$$\int_{1/h(b)}^{y} e^{h(b)x} dF(x) = O(e^{(1-b^{-\eta})\chi(y)}) + o(n^{-M}).$$

Taking into account (3.24) we obtain

(3.27)
$$f_y^n(u) = f_{1/h(b)}^n(u) (1 + o(1)) = e^{nK(u)} (1 + o(1)), \quad 0 \le u \le h(b).$$

By (3.3) and (3.27)

(3.28)
$$\int_0^{h(b)} e^{-xu} f_y^n(u) \left(g^+(u) - g^-(u)\right) \frac{du}{u} = \int_0^{h(b)} e^{-xu + nK(u)} \varphi(u) du (1 + o(1))$$

According to the condition (II)

(3.29)
$$u_0 = -\chi'(x) < -\alpha \chi(x)/x.$$

Hence

(3.30)
$$-\chi(x)/x - u_0 > (\alpha - 1)\chi(x)/x > \frac{1 - \alpha}{\alpha} u_0.$$

Let γ is defined by the equation $h(b) = \gamma x/n$. Then

(3.31)
$$-x h(b) + n h^{2}(b) (1 + \varepsilon)/2 = -x h(b) (1 - n h(b) (1 + \varepsilon)/2x) =$$
$$= (1 - \gamma(1 + \varepsilon)/2) \chi(bx)/b^{1-\eta}.$$

Observe that if $x > vn^{1/(2-\alpha)}$ then by (2.31)

(3.32)
$$\gamma < \chi(1) b^{x+\eta-1} v^{x-2} .$$

It is not hard to obtain from the condition (II)

$$\chi(bx) < b^{\alpha} \chi(x).$$

It follows from (3.32) and (3.33) that for $\forall \varepsilon > 0$, $\eta > 0$ $\exists v(\varepsilon, \eta)$ such that for $x > v(\varepsilon, \eta) n^{1/(2-x)}$

$$(3.34) (1 - \gamma(1 + \varepsilon)/2) \chi(bx)/b^{1-\eta} < b^{(\alpha-1)/2+\eta} \chi(x)$$

if n is sufficiently large.

By (2.20)

$$\chi''(\psi'(u_2)) = 1/n.$$

According to the conditions (II) and (III) and Lemma 2.4

$$\chi''(x) < Cx^{x-2}.$$

Therefore

$$(\psi')^{2-\alpha}(u_2) < Cn,$$

i.e.

$$\psi'(u_2) < Cn^{1/(2-\alpha)}.$$

Using (3.6') we obtain

$$(3.36) nu_2 < Cn^{1/(2-\alpha)}.$$

From (3.30) and (3.36) applying Lemma 3.3 we deduce that $\forall n > 0$

(3.37)
$$h(b) - u_1 > \frac{1 - \alpha}{2\alpha} u_1$$

if $x > Cn^{1/(2-\alpha)}$ and C is sufficiently large.

By virtue of (3.35) and (3.12')

$$\chi''(\psi'(u_1)) = O((\psi')^{\alpha-2}(u_1)) = O(x^{\alpha-2}).$$

Therefore $\exists C$ such that for $x > Cn^{1/(2-\alpha)}$

$$(3.38) -\psi''(u_1) > 2n.$$

Repeating the reasoning leading to Lemma 2.1 and taking into account (3.38) we come to the asymptotic representation

(3.39)
$$\int_{0}^{u_{1}(1+\omega(u_{1}))} e^{-xu+nK(u)} \varphi(u) du = \frac{e^{-xu_{1}+nK(u_{1})+\psi_{1}(u_{1})}}{\sqrt{(-\psi''(u_{1})-n)}} (1+o(1))$$

which holds for $x > Cn^{1/(2-\alpha)}$, $n \to \infty$. In addition

(3.40)
$$e^{-xu_3+nK(u_3)+\psi_1(u_3)}=o\left(\frac{e^{-xu_1+nK(u_1)+\psi_1(u_1)}}{\sqrt{(-\psi''(u_1)-n)}}\right),$$

where $u_3 = u_1(1 + \omega(u_1))$.

It is easy to see that

(3.41)
$$\int_{u_1(1+\omega(u_1))}^{h(b)} e^{-xu+nK(u)} \varphi(u) du = O(h(b) \max \left[\exp \left\{ -xu_3 + n K(u_3) + \psi_1(u_3) \right\}, \exp \left\{ -x h(b) + n K(h(b)) + \psi_1(h(b)) \right\} \right].$$

Put now $\eta = (1 - \alpha)/4$. It follows from (3.31) and (3.34) that for $x > Cn^{1/(2-\alpha)}$

(3.42)
$$e^{-xh(b) + nK(h(b))} = o(e^{\chi(x)}).$$

Note that

(3.43)
$$\psi''(u_1) = -1/\chi''(\psi'(u_1)) = -1/\chi''((1-\beta)\chi)$$

(see (3.15)).

Further

(3.44)
$$\int_0^{h(b)} e^{-xu + nK(u)} \varphi(u) du > \int_0^{h(b)} e^{-xu} \varphi(u) du > c e^{\chi(x)}.$$

It follows from (3.39)-(3.44) and Lemma 3.6 that there exists C such that for $x > Cn^{1/(2-\alpha)}$

(3.45)
$$\int_0^{h(b)} e^{-xu+nK(u)} \varphi(u) du = P_1(x) (1 + o(1)).$$

Estimate now

$$J \equiv \int_{h(b)-i\infty}^{h(b)+i\infty} e^{-xz} f_y^n(z) g_y(z) dz.$$

It is not hard to see that

(3.46)
$$g_{y}(z) = g_{1/h(b)}(z) + \int_{1/h(b)}^{y} e^{zx} p(x) dx.$$

It follows from (3.46), (3.26) and Lemma 3.1 that

(3.47)
$$g_{y}(z) = o(1)$$
.

uniformly with respect to z with $0 \le \text{Re } z \le h(b)$.

Note that by virtue of the condition (I)

$$\lim_{x \to \infty} -\chi(x)/\ln x = \infty$$

It follows from (3.22), (3.47), (3.48), (3.31) and (3.34) that

(3.49)
$$\int_{h(b)-1}^{h(b)+1} e^{-zx} f_y^n(z) g_y(z) \frac{dz}{z} = o\left(-\ln h(b) \exp\left\{-x h(b) + \frac{1+\varepsilon}{2} n h^2(b)\right\}\right) =$$
$$= o\left(\exp\left[C \ln x + b^{(\alpha-1)/4} \chi(x)\right]\right) = o(e^{\chi(x)}),$$
$$x > Cn^{1/(2-\alpha)}.$$

Further by Lemma 3.1

(3.50)
$$\int_{\substack{\text{Re}z = h(b) \\ |\ln z| > 1}} e^{-xz} f_y^n(z) g_y(z) \frac{dz}{z} = O(p(y) \exp\left[(y - x) h(b) + n \frac{1 + \varepsilon}{2} h^2(b) \right] = 0 \exp\left\{ \chi(y) + (y - x) h(b) + n (1 + \varepsilon) h^2(b) / 2 \right\}.$$

It is not hard to see that

(3.51)
$$\chi(y) + (y - z) h(b) + n(1 + \varepsilon) h^{2}(b)/2 =$$

$$= (1 + (1 - b) b^{\eta - 1}) (1 - \gamma'(1 + \varepsilon)/2) \chi(bx),$$

$$\gamma' = \gamma/(1 + b^{1 - \eta} - b).$$

From (3.50) and (3.51) we obtain using (3.34) that for $x > Cn^{1/(2-x)}$

(3.52)
$$\int_{\substack{\text{Re}z = h(b) \\ \text{Hers} > 1}} e^{-xzi} f_y^n(z) g_y(z) \frac{dz}{z} = o(e^{\chi(x)}).$$

It follows from (3.49) and (3.52) that

(3.53)
$$J = o(e^{\chi(x)}), \quad x > Cn^{1/(2-x)}.$$

From (3.2), (3.28), (3.45) and the estimate (3.53) we obtain the asymptotic representation

(3.54)
$$\Delta \overline{F}_{y}^{(n-1)} * Q_{y}(x) = P_{1}(x) (1 + o(1))$$

valid for $x > Cn^{1/(2-\alpha)}$.

By virtue of (3.27), (3.31), (3.34) and (3.22)

(3.55)
$$\Delta \overline{F}_{\nu}^{(n)}(x) = O(\exp\{-x h(b) + n(1+\varepsilon) h^{2}(b)/2\}) = o(e^{x(x)}),$$
$$x < C n^{1/(2-\alpha)}.$$

After all

(3.56)
$$n^2(1 - F(y))^2 = O(\exp\{2 \ln n + 2\chi(y)\}) = o(e^{\chi(x)}), \quad x > Cn^{\epsilon}.$$

From (3.1) and (3.54)-(3.56) we obtain (1.1) for $x > Cn^{1/(2-\alpha)}$.

BIBLIOGRAPHY

- [1] S. V. NAGAEV: The integral limit theorem for large deviations. Izvest. Acad. Nauk Uzb. SSR (1962), 6, 37-43.
- [2] S. V. NAGAEV: Some limit theorems for large deviations. Teor. Veroyatnost. i Primenen. X (1965), 2, 231-254.
- [3] A. V. NAGAEV: Integral limit theorems taking into account large deviation when Cramer's condition does not hold. I, II, Teor. Veroyatnost. i Primenen. XIV (1969), 1, 2, 51-63, 203-215.
- [4] F. D. GAKHOV: Boundary problems. Moscow 1958.

SIBERIAN BRANCH OF ACADEMY OF SCIENCES OF USSR
INSTITUTE OF MATHEMATICS