
4. Boundary problems

4.1. Introduction. One of the problems going back to A.N. Kolmogorov is estimating
the rate of convergence in so called boundary problems for sums of independent random
variables. More precisely let Sn =

∑n
i=1 Xi, where Xi are i.i.d. with the distribution function

F (x), EX1 = 0, EX2
1 = 1, β3 = E|X1|3, g2(x) < g1(x) are functions defined on [0, 1].

As early as 1930s Kolmogorov and Petrovsky proved that the probability

Pn = P
(
g2(k/n) < Sk/n

1/2 < g1(k/n), k = 1, ..., n
)

n →∞ converges to v0(0, 0) as n →∞, where v0(t, x) is the solution of the equation

∂v

∂t
+

1

2

∂2v

∂x2
= 0

in the domain
Ω =

{
t, x : 0 ≤ t ≤ 1, g2(t) < x < g1(t)

}
,

satisfying the boundary conditions

v0(1, x) = 1, v0(t, gi(t)) = 0, 0 ≤ t ≤ 1, i = 1, 2.

(In reality Kolmogorov and Petrovsky considered more general case of non–identically dis-
tributed random variables).

On the other hand,

v0(0, 0) := Q0 = P
(
g2(t) < W (t) < g1(t), 0 ≤ t ≤ 1

)
,

where W (t) is the standard Winer process with W (0) = 0.
Naturally, this raises the question of the estimating the rate of convergence Pn to Q0.
Beginning from the second half of 1940s this problem attracted the attention of many

mathematicians. Without question it stimulated the development of the general theory
of random processes and promoted the appearance of new methods both analytical and
probabilistic (one may mention, for example, the method of one probability space.)

The conjecture, from the very beginning, was that the error

|Pn −Q0| = O(n−1/2). (1)

under the condition β3 < ∞.
In the end this conjecture turned out valid, however, proving required large efforts.
The best bounds to the beginning of 1960s were obtained by Yu. V. Prochorov [1] and

Skorochod [2]. Prochorov’s bound was obtained in the more general case of non–identically
distributed summands. It follows, in particular, from the latter that

Pn −Q0 = O(ln2 n/n1/8),

if β3 < ∞.
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A.V. Skorochod brought the bound for Pn − Q0 to O(ln n/n1/2) under the additional
assumption that Xi are bounded.

Prochorov, as well as Skorochod, used the direct probabilistic methods especially elabo-
rated by them, which fall in the category of methods of one probability space.

The particular case of the boundary problem formulated above is estimating the of
convergence for the distribution F̄n(x) = P(S̄n < x) of the maxima of cumulative sums
S̄n = max

1≤k≤n
Sk. 1962 . .. Borovkov [3] obtained the asymptotic expansion for the distribu-

tion F̄n(xn1/2) in powers of n−1/2 including large deviations. In so doing he supposed that
the Cramer condition ∫ ∞

−∞
ehx dF (x) < ∞, 0 < h < h0,

is fulfilled, and F (x) has an absolutely continuous component. Borovkov’s approach is pure
analytical. It is based on the modified Wiener–Hopf method with a subsequent application
of the saddle – point method.

The deciding step in proving conjecture (1) was done in my papers performed in the end
of 1960 s.

In papers [4, 5] the bound O(1/
√

n) for the rate of convergence of the distribution F̄ (x)
is deduced for the first time under the minimal condition β3 < ∞.

The classical Kolmogorov–Petrovsky problem is considered in paper [6]. In the latter the
bound

|Pn −Q0| = O(n−1/2)

is deduced under condition β3 < ∞, and the boundary functions g1 and g2 satisfy the
Lipschitz condition with some constant K, dependence on β3 and g1, g2 being written in
explicit form. Thereby the initial conjecture (1) was proved, and even with some excess. It
should be noticed also that the methods which were elaborated in [4,6] differ radically from
those used in [1]– [3].

After the publication of my paper [6] attempts were being making to obtain the bound
O(Ln) for non–identically distributed random variables, where Ln is the Lyapunov ratio.
However, shortly the counterexamples were constructed which show that one can not obtain
the bound sharper than O(L

1/3
n ). One example of this type which belongs to me was pub-

lished in Borovkov’s paper [7], another one is contained in paper [8] by T.V. Arak and V.B.
Nevsorov.

4.2. The distribution of the maximum of cumulative sums. I started my
research on boundary problem in 1965 once. I have moved from Tashkent to Novosibirsk
by the invitation of Borovkov. As many young people, I was undertaking readily and with
gusto to solve difficult problem.

First, I have looked to the distribution of the maximum of cumulative sums. In my
paper [4] the absolutely new approach to studying this distribution. It is based on the
representation

φn(t) = fn(t) +
n−1∑

k=0

fk(t)φ̄n−k(t). (2)

Here f(t) =
∫∞
−∞ eitx dF (x), φn(t) is the characteristic function of max{0, S̄n}, φ̄n(t) =

P(S̄n < 0)− ∫ 0

−∞ eitxdF̄n(x).
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My first purpose was to obtain the Berry–Esseen bound with the help of representation
(2). It was done in [4, 5]. The bound looks as follows:

∣∣∣F̄n(xn1/2)− (2/π)1/2

∫ x

0

e−u2/2du
∣∣∣ < c

β2
3

n1/2
, (3)

where c is an absolute constant. The only thing which somewhat spoils the impression from
this bound is that it contains β2

3 instead of β3 in the classical Berry–Esseen bound.
However, it should be noticed that historically bound (3) was the first in which the

dependence on moments was taken into consideration in the explicit form. I recollect the
first incentive to clarify this question was to apply the asymptotic expansion for F̄n(xn1/2)
by Borovkov in [3]. But it turned out impossible or, at least, very difficult since coefficients,
even in the first term, are not calculated explicitly, so that their association with moment is
absolutely unclear.

However, .. Aleskeviciene [9] succeeded to replace β2
3 with β3, by sharpening lemma 3 in

my paper [4].
4.3. The problem of Kolmogorov–Petrovsky. Once I have obtained bound (3), I

turned to the boundary problem with curvilinear bounds. In this case I had also to invent a
new approach. Now I proceed to describing this approach (it was suggested in my paper [6]).

Let

Pn(t, x) = P
(
g2(t) < Sk/n

1/2 < g1(t), t +
k

n
≤ 1

)
.

Obviously, Pn(0; 0) = Pn.
Let qn(t, x) is defined by the two–dimensional Fouier transform

∫ ∫
ei(θ1t+θ2x)qn(t, x) dtdx =

1− e−iθ1/nf̄(θ2/n
1/2)

iθ1 + θ2
2/2

,

where f̄ is the complex–conjugate with f function. It is easily seen that the function
P̄ (t, x) := Pn ∗ qn(t, x) satisfies the equation

(
∂

∂t
+

1

2

∂2

∂x2

)
P̄n(t, x) = 0

in the domain Ωn =
{

t, x : 0 < t < 1− 1/n, g2(t) < x < g1(t)
}

.

It still remains, for a first glance, a little: to estimate the deviation P̄ (t, x) from P (t, x)
in the point (0, 0).

However, in reality this problem turned out very complicated technically. The approach
suggested in [4] found out very useful here (it was already mentioned above.)

I describe the starting premises on which my paper [6] is based so carefully because they
are obscured in reader’s perception by the complicated analytical apparatus which is used
in this paper. The main result obtained in [6] is the Berry–Esseen bound

∣∣∣Pn −Qn

∣∣∣ <
cβ2

3(K + 1)

n1/2
, (4)
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where K is the constant in the Lipshitz condition to which the bounds g1(x) and g2(x)
satisfy.

The reason of appearing β2
3 instead β3 here the same as in bound (3): the insufficiently

sharp estimate in Lemma 2 which is a generalization of Lemma 3 from [4].
A few years later A.V. Sakhanenko [10] replaced β2

3 with β3 in much the same way as
Aleskeviciene in bound (3).

4.4.The asymptotic expansion. I used representation (2) also for deducing expan-
sion the asymptotic expansion for F̄n(xn1/2) (see [11, 12]). In contrast to Borovkov [3] the
existence of the finite number of moments is required only. What is more, the condition
that there exists an absolutely continuous component of F (x) which Borovkov does impose
is replaced by the Cramer condition lim sup

|t|→∞
|f(t)| < 1.

In addition, the relation between moments of the initial distribution and coefficients
of an expansion is clarified (I have already mentioned this problem above.) Basing on
representation (2), Aleskeviciene proved the theorem on large deviations of Cramer’s type
for S̄n [13], nd different versions of a local limit theorem (see [14,15]).

4.5. Ruin problem. In addition to those boundary problems which were discussed
above I have been engaged in the classical ruin (or absorption) problem. Recall how this
problem is stated. As above, the random walk is considered, which is generated by a sequence
of i.i.d random variables Xj, j = 1, 2, ..., n, ... .

Let nx be the first hitting time of the complement of the interval (a, b) for a random walk
starting from the point x, i..

nx = min
{

n : Sn + x /∈ (a, b)
}

.

Assume that the distribution function Fλ(x) of the random variable X1 depends on some

parameter λ, and EX2
1 = λ2. Further, let Pλ(x) = P

(
Snx + x ≥ b

)
.

(A) The case of zero expectation. As early as 1930s (see, e.g. the well–known A.Ya.
Khinchin book [16]) it was proved that in the case EX1 = 0

lim
λ→0

Pλ(x) =
x− a

b− a
, x ∈ (a, b), (5)

if for every ε > 0

lim
λ→0

1

λ2

∫

|x|>ε

x2dFλ(x) = 0 (6)

(Lindberg condition). Obviously, for a < 0 < b

lim
λ→0

Pλ(0) =
a

a− b
. (7)

Conversely, if (7) holds for every a < 0 < b, then (5) is valid. One can interpret Pλ(0) as
the probability that the prize of a gambler will exceed the sum b before his loss achieves the
admissible for him sum −a.

Notice that
x− a

b− a
= P

(
Wx(τ) ≥ b

)
,
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where τ is the first exit time from the interval (a, b) for the Winer process Wx(t) starting
from the point x.

Thus, the invariance principle takes place in ruin problem.
Naturally, the question about the rate of convergence in (5) under minimal conditions

on moments of F (x) arises similar to those in CLT.
This problem was solved in my paper [17] in which the Berry–Esseen bound was obtained

sup
a<x<b

∣∣∣Pλ(x)− x− a

b− a

∣∣∣ < L
β(λ)

b− a
,

where β(λ) = E|X1|3.
(B) The case of nonzero expectation. Abandon now the condition EX1 = 0. Denote

m = m(λ) = EX1. Suppose that lim
λ→0

mλ−2 = α and
∫
|x|>ε

x2 dF (x) = o(λ2) for any ε > 0.

In this case (see [16])
lim
λ→0

Pλ(x) = v(x), x ∈ (a, b), (8)

where v(x) is the solution of the equation

v′′ + αv′ = 0 (9)

satisfying the boundary conditions v(a) = 0, v(b) = 1.
As to an estimate of the rate of convergence in (8), the latter is given in my paper [18]

and appears as

sup
a<x<b

|Pλ(x)− v(x)| < Lc3

(b− a)λ2

(
1 +

|m|
λ2

(b− a)

)
, (10)

where v(x) is the solution of equation (9) for α = m/λ2 satisfying the boundary conditions
v(a) = 0 v(b) = 1. It was shown in the course of deducing bound (10) that L ≤ 30.
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