
5. Branching processes

5.1. Introduction. The development of the theory of branching processes in SSSR was
pioneered the second half of 1940s. by A.N. Kolmogorov. It was S.Kh. Sirazhdinov who
advocated this line of inquire in Tashkent. In the middle of 1950s. he organized the seminar
on the theory of branching processes in Tashkent University.

It was then that my steady interest in branching processes arose which I retained up to
now.

My papers in branching processes may be grouped in the following way.
(A) Transient phenomena. While studying branching processes started in Moscow,

originally two simplest models were considered: the Galton –Watson process and Markov
branching process with continuous time (we use the abbrevation m.b.p.c.t. for the latter in
what follows).

At that time, two questions were, the focus of attention: what is an asymptotic behaviour
of the probability that a process will not extinct to the time t as t →∞, and whether there
exists the limit distribution of the number of particles as t →∞ under the condition that a
process did not extinct to the time t, and if yes what is it.

This questions were answered in the short run, in course of a few years, being dependent
on the expectation A of the number of direct offspring. In particular, if A = 1 (such
a process is called critical), then the non-extinction probability decreases as c/t, where c
is some constant depending on parameters of a process, and conditional distribution of a
number of particles at the instant t normalized in the appropriate way converges to the
exponential law as t →∞.

Since we are not able to guarantee for real processes that A = 1, the question arises how
a process behaves for A close to 1, more exactly for A → 1 as t →∞. B.A. Sevast’yanov [1]
proved that for m.b.p.c.t. the convergence to the exponential law holds, no matter with
what rate A is going to 1 as t →∞.

The same problem was an the agenda for the Galton–Watson process. This problem was
solved in Joint with my student R.Kh. Mukhamedhanova paper [2]. From this point on my
studies in branching process began.

The result turned out the same as for m.b.p.c.t., however, the special modification of the
difference method was required for this.

Phenomena described in [1,2] are called transient. Immediately after completing paper [2]
I decided to study transient phenomena for the comparatively new at that time object: the
Bellman–Harris process.

This time the problem turned out much more complicated: one needed to find a new
approach to analyzing the integral equation which the offspring generating function satisfied.
The approach that I have found did not allow to solve the problem with the maximal
generality. Therefore, I has separately considered two cases:

(a) the distribution of lifetime of particle is arithmetic,
(b) the distribution of lifetime has an absolute continuous component.
The cases of lattice, but non arithmetic, and singular distributions remained uncovered.
It is my paper [3] which is devoted to transient phenomena in case (a). In contrast with

the Galton –Watson process and m.b.p.c.t. the stability of the exponential distribution is
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assured only under some additional assumption of the closeness of A to 1 (for more detail,
see section 5.2).

Paper [3] is not lucky: though I wrote it as early as 1965,I could publish the latter only
on 1974.Fortunately, it did not get out of date per 9 years. Moreover, it remains the only
paper on transient phenomena for the Bellman–Harris process.

In the second half of 1980 I performed paper [5], joint with my post-graduate student
A.V. Karpenko, in limit theorems for the total progeny of the Galton–Watson process. In
particular, transient phenomena were studied for the total progeny therein. It turned out
that the entire family of distribution depending on the parameter r ≤ 1 may be limit ones
if n|1− A| → − ln r as n →∞ (for more detail see 5.2).

We presented our results in preprint [4]. The paper under the same was submitted to
journal ” Teor. Verojatn. i Primen.” and published in 1993 [5], in five years after submission.

(B) Large deviations in branching processes.
The problem of large deviations in branching processes did not attracted the attention

of researchers for a long time.
The first work in this direction was joint with my student N.N. Vakhrushev paper [6] in

which the probability inequality for the critical Galton–Watson process was deduced under
Cramer–type condition.

Following in footsteps of this paper G.D. Makarov [7] proved theorem on Cramer–type
large deviations of the critical Galton–Watson process in the narrow zone, where the ap-
proximation by the exponential law is valid.

The theorem on large deviations in wider zone, with non–degenerating to 1 correction
factor, was obtained in paper [8] written jointly with my post-graduate student V.I. Vakhtel.

In other joint with Vakhtel paper [9] two types of probability inequalities for maximum
of the critical Galton–Watson process on the finite time interval are deduced. These are
inequalities of type [6], but sharper, and the Nagaev–Fuk–type inequalities [10] ( for more
detail see 5.4).

Proving these inequalities, the classical martingale inequalities going back to Doob are
used, as well as the inequality for supermartingales generalizing one of Fuk’s probability
inequalities for martingales [11].

The importance of inequality obtained in [9] is comparable with the role of Nagaev–Fuk
inequalities in the theory of summing independent random variables [10].

The point is that these any qualities are very suitable for proofing limit theorems for the
critical Galton–Watson processes (see, e.g., [12, 13]).

(C) Local theorems for branching processes. The interest in local limit theorems
for branching processes arose as early as 1950. It is apparently V.M. Zolotarev [14] to whom
belongs the first local limit theorem for branching processes. In his paper the asymptotic
behaviour of the probability P(Zt = k) for given k is studied for the critical m.b.p.c.t.
Zt. Next V.D. Chist’yakov [15] found the asymptotics of P(Zt = k) for t, k → ∞ under
assumption that fourth moment of the number of direct offspring is finite.

Every limit theorem for the Galton–Watson process has its m.b.p.c.t. analog, i.e. two
theories duplicate each other.

However, different methods are used while proving: differential equation in the theory
of m.b.p.c.t., and difference methods for Galton–Watson processes. True, one can reduce
limit theorems for m.b.p.c.t. to corresponding results for Galton–Watson processes, using

2



the fact that any m.b.p.c.t. considered for t=1,2,3,... is the Galton–Watson process but I
think nobody was involved in it.

It is said in Chist’yakov’s paper [15] that N.V. Smirnov proved the local limit for the
critical Galton–Watson process.

However, neither the statement nor the proof of this result were not published.
In the beginning of 1960s I performed with Mukhamedkhanova the research in limit

theorems for the critical Galton–Watson process Zn, n = 0, 1, 2...,, the results of which were
presented in [16].

In particular, the local limit theorems was proved in this paper under condition EZ4
1 < ∞.

At the same time paper [17] by H.Kesten, P. Ney, F. Spitzer appeared in which the local
limit theorem was proved under condition

EZ2
1 ln (1 + Z1) < ∞.

Under the assumption EZ2
1 < ∞ minimal for the convergence to the exponential law the

local limit theorem was proved only after 40 years in my joint with Wakhtel paper [18].
(D) Branching processes with migration.
Several my works, mainly in co-authorship with my student M.Kh. Asadullin, are devoted

to branching processes with immigration [19–23].
The development herein was going in the direction of weakening the conditions on both

components: a process of immigration and a branching process. The most general approach
to the description of the a branching process with immigration is contained in [23], where
the latter is interpreted as the double sum

vn∑
i=1

vni∑
j=1

ξ
(n)
ij .

Here random variables ξ
(n)
ij are mutually independent for any n, and vn, vni do not depend

on the family
{

ξ
(n)
ij

}
.

In joint with my student L.V. Khan paper [24] the model of the a Galton–Watson process
with migration is suggested. In this model the process of immigration is supplemented with
process of emigration.

Historically, is was the first model of such a kind. Up to then the models either only with
immigration or only emigration were considered.

5.2. Limit theorems for Bellman–Harris processes.
Let Z(t) be the Bellman–Harris process, f(s) be the generating function of direct off-

spring, G be the life–time distribution function continuous from the right. Put

M(t) = E
{

Z(t)|Z(t) > 0
}

, F (t, s) = EsZ(t), A = f ′(1), B = f ′′(1).

The problem is to prove the convergence of distribution of Z(t)/M(t) to the exponential
law under the condition Z(t) > 0 as simultaneously t →∞, A → 1.

In what follows I explain the essence of the approach which I apply, along with the nature
of arising difficulties.
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The starting point is the equation

F (t, s) =

∫ t+

0−
f
(
F (t− τ, s)

)
dG(τ) + s(1−G(τ)). (1)

We restrict ourselves, for simplicity, to the case s = 0.
Letting Q(t) = 1 − F (t, 0) and using the Taylor expansion of f in the neighborhood of

1, we arrive at the equation

Q(t) = A

∫ t+

0−
Q(t− τ) dG(τ)− B

2

∫ t+

0−
Q2(t− τ) dG(τ) +

∫ t+

0−
R(t− τ) dG(τ) + 1−G(τ),

where R is a correction term. Hence,

Q(t) =
B

2

∫ t+

0−
Q2(t− τ) dH(τ, A) +

∫ t+

0−
R(t− τ) dH(τ, A) + H1(t, A),

where

H(t, A) =
∞∑

m=1

Am−1G ∗m(t), H1(t, A) = (1−G(t)) ∗
∞∑

m=0

AmG∗m(t).

Suppose now the G(t) is concentrated on natural numbers (it is precisely these distribu-
tions that are considered in my paper [3]). Let, for simplicity A = 1. Then by the renewal
theorem

uk := H(k, 1)−H(k − 1, 1) =
1

µ
+ rk,

where µ =
∫∞
0

u dG(µ), and the rate of decay of rk depends on the rate of decay of 1−G(t)
as t →∞.

If we neglect R, then

Q(n) =
B

2µ

n∑

k=1

Q2(n− k)uk +
n∑

k=0

(
1−G(n− k)

)
uk.

Hence,

Q(n− 1)−Q(n) =
B

2µ
Q2(n) + Ω(n), (2)

where

Ω(n) =
n∑

k=1

[Q2(n− k)−Q2(n− k − 1)]rk + G(n)− 1−
n∑

k=0

gn−krk,

gk = P(τ = k). Further, it is shown that lim
n→∞

Q(n) = 0 with

Ω(n) = o(Q2(n)).

Returning to (2), we ensure that

Q(n− 1)−Q(n) ∼ B

2µ
Q2(n).
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The same relation with µ = 1 holds for the critical Galton–Watson process (see [2]). It
means that for n →∞

Q(n) ∼ 2µ

Bn
.

The added complication in the case A 6= 1 was for lack of renewal theorems for H(t, A).
This gap is filled in my paper [25] in which local renewal theorems for H(t, A) are proved on
the case when A → 1, t →∞ simultaneously.

One may summarize the main result of [3] as follows: the convergence to the exponential
low holds if either A ↓ 1 or A ↑ 1 in such a way that ψ(t) < A < 1, the rate of the convergence
of ψ(t) to 1 being dependent on the rate of the decay of 1 − G(t) as t → ∞. In the case
A ↑ 1, A > ψ(t) the issue remains open.

The attention of specialists was called mainly simpler case of fixed A (see [26–30]). For
A = 1 the most complete result has been obtained by M. Goldstein [30]. The key point in his
paper is lemma (1.6) which links the generating functions of the Bellman–Harris process and
the embedded Galton–Watson process together, namely: for t ≥ 0, m = 1, 2, . . . , 0 ≤ s ≤ 1

1− fm(s)− (1− s)Gm(t) ≤ 1− F (t, s) ≤ 1− fm(s) + (1− s)(1−Gm(t)),

where fm(s) is the m-th iteration of the generating function f(s) of the number of direct
offspring, Gm(t) = G∗m(t) is m-th convolution of G(t).

If it is assumed that 1−G(t) = o
(
1/t2

)
, then t < m(µ− ε)

Gm(t) = o
(
1/t

)
.

Respectively, if t < m(µ + ε), then

1−Gm(t) = o(1/t).

On the other hand, it is known that

1− fm(s) =
1− s

1 + (g′′(1)/2)m(1− s)
(1 + δ(m)),

where lim
m→∞

δ(m) = 0 uniformly with respect to s, 0 ≤ s ≤ 1. Hence, it follows that for

m =
[
1/µt

]

1− F (t, s) ∼ 1− fm(s)

as t → ∞ which is the main result in Goldsteins paper [30]. The convergence to the
exponential law is deduced here from without difficulty.

Notice that the reduction to the Galton–Watson process presents implicitly in my paper
[3]. The point is that model difference equation (2) is typical for Galton–Watson processes.

5.3. Limit theorems for the total progeny of the Galton–Watson process. Let

Zk be the the Galton–Watson process initiated from one particle, An = E
{∑n

k=1 Zk| N = n
}

be the extinction time of Zk.
In 1985 we with my student A.V. Karpenko proceeded to studying the conditional dis-

tributions

P

(
1

An

n∑

k=1

Zk < x|N = n

)
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for all spectrum of values A = EZ1.
This definition of the problem was new even for fixed A. We arrived at it in connection

with constructing the seguential test for estimating the parameter A, which end in the
random time N .

Formerly the distributions of
∑n

k=1 Zk were being studied under the conditions N > n [31]
or N < n [32].

Results of our studying in this direction are presented in [5].
The main result of this paper looks as follows:
I) Let limA→1 n|1− A| = − ln r < ∞. Then

lim
A→1

P(Sn/mN < x|N = n) = G(x, r),

where ∫ ∞

0

e−txdxG(x, r) = g(t, r) :=

{
3t/ sinh2

√
3t, r = 1

(1−r)2rd(t,r)(d(t,r))2

r(1−rd(t,r))2
, r < 1,

t ≥ 0, d(t, x) =
√

1 + 2t/(1− x)2h(ln x),

h(x) =
x(1 + ex) + 2(1− ex)

(ex − 1)3
.

2) If limA→1 n|1− A| = ∞, then

lim
A→1

P(|Sn/mN − 1| > ε|N = n) = 0.

Thus the stability of the limit distribution G(x, 1) holds only if |A− 1| = o(n−1).
5.4. Large deviations in branching processes. I start with describing my joint with

Vakhrushev paper [6].
Let Zn, n = 0, 1, 2, ..., be the critical Galton–Watson process initiating from one particle.

Put f(x) =
∑∞

k=0 pkx
k, where pk is the probability that one particle generates k particles.

Let B(x) = f ′′(x), B = B(1). Denote by R the radius of convergence of the series
∑∞

k=0 pkx
k.

In these terms the following inequality holds: if B > 0 and R > 1, then for 0 < y0 < R− 1

P(Zn ≥ k) ≤ (1 + y0)

(
1 +

1

B0n/2 + 1/y0

)−k

, (3)

where B0 = B(1 + y0).
The function B(1 + y)n/2 + 1/y achieves minimum at y = y1, where y1 is the solution of

the equation B′(1 + y)y2 = 2/n.

If f(x) is fixed, then y2
1 = O

(
1/n

)
. Consequently, B′(1 + y1) = B′(1) + O

(
1/
√

n
)
, i.e.

y1 =
√

2
nB′(1)

+ O(n−3/2).

If we put now y0 = y1 and k =
[
Bun/2

]
, then according (3)

lim
n→∞

P(Zn ≥ k) ≤ e−u.
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On the other hand , by the integral limit theorem for the critical Galton–Watson process

lim
n→∞

Bn

2
P(Zn ≥ k) ≤ e−u.

One may consider this comparison as evidence that bound (3) is sharp enough for values k
large relative to n.

Under influence of our work [6] G.D. Makarov [7] proved the limit theorem on large
deviations of Cramer’s type, namely,

lim
n→∞

sup
u≤un

euPn(u) = 1, (4)

where Pn(u) = P
(
2Zn/Bn > u |Zn > 0

)
, un = o

(
n/(ln n ln(N) n)

)
. Here ln(N) is the N − th

iteration of logarithm, and N ≥ 2.
Based on the analogy to summing i.i.d., we should expect that for R > 1 there exists the

zone of values of u in which

Pn(u) = e−uΩn(u)(1 + o(1)), (5)

where Ωn(u) is an explicitly calculated correction factor.
Indeed, it was shown in joint with my student Wakhtel paper [8] that if k/n → ∞ and

k = o(n2), then

P(Zn ≥ k) =
2

Bn
exp

{
2k

Bn
− 2γ

Bn2
ln

(k

n

)}(
1 + O

(
k

n2
+

ln2 n

n

))
,

where γ = 1− 2C/(3B2).
It means that for u = o(n)

Pn(u) ∼ e−u exp
{
−γ

n
u ln u

}
,

i.e. the correction factor Ω(u) in (5) is given by the equality

Ωn(u) = exp
{
−γ

n
u ln u

}
.

It is easily seen that for γ 6= 0
lim

n→∞
Ω(vn) = 1 (6)

iff
vn = o

( n

ln n

)
.

If γ = 0, then (6) holds in wider zone vn = o(n).
Thus, the approximation with the exponential law Pn(u) = e−u holds for u = o

(
n/ ln n

)
if γ 6= 0. Otherwise, this zone extends to u = o(n). The bound u = o(n) corresponds to that
x = o(

√
n) in the classical Cramer theorem on large deviations for sums of i.i.d.
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The direct continuation of work [6] is my joint with Vakhtel paper [9] in which the
inequality of type (3) is deduced for the random variable Mn = max

k≤≤n
Zk, namely, if R > 1,

then for every 0 < y0 < R− 1

P(Mn ≥ k) ≤ y0

[(
1 +

1

1/y0 + B0/2

)k

− 1

]−1

. (7)

where B0 = f ′′(1 + y0).
It follows, in particular, from bound (7) that for any 1 < ρ < R

P(Mn ≥ k) ≤ 4

nΩρ

exp
{
− k

nΩρ + 1

}
, (8)

if simultaneously n > 2
(ρ−1)Ωρ

, k > nΩρ + 1, where Ωp = f ′′(ρ).

Obviously, the factor 1/n is essential if the ratio k/n is not very large. Inequality (8) is
an analog of Petrov’s inequality [33] (see p. 81, th. 16).

The starting point for deducing bound (7) is the inequality

P(Mn ≥ k) ≤ fn(eh)− 1

ehk − 1
(9)

which in turn follows from the well–known Doob inequality for submartingales.
Indeed ,

P(Mn ≥ k) = P
(

max
i≤n

Yi(h) ≥ ehk − 1
)
,

where Yn(h) is submartingal ehZn − 1. On the other hand, by the Doob inequality

P
(

max
i≤n

Yi(h) ≥ ehk − 1
)
≤ EYn(h)

ehk − 1
=

fn(eh)− 1

ehk − 1
.

The same value h = h(n) is chosen in (9) as in paper [6]. The difference consists in the
fact that the bound

P(Zn ≥ k) <
fn(eh)

ehk

is applied in the latter. It is due the fact that the unit is subtracted from fn(eh) in (9) the
factor y0 appears instead of 1 + y0 in (3). In turn, it allows to obtain the additional relative
to (8) factor 1/n in (8), letting y0 = 2/nΩρ.

In the paper [9] the case is also considered when the Cramer condition does not hold,
i.e. R = 1. Corresponding probability inequalities are formulated in terms both truncated
and total moments of the random variable ξ which is equal to Z1 in distribution. Denote

Br = Eξr, r > 1. For every N > 0 put B̄ = E
{

ξ(ξ− 1); ξ ≤ N
}

, B̄r = E
{

ξr−1(ξ− 1); ξ ≤
N

}
/2. If r ≥ 2, N ≥ 1 and y0 > 0, then inequality

P(Mn ≥ k) ≤
(
y0+

1

N

)[(
1+

1

1/y0 + erB̄n/2 + nβ̄rey0N/N r−2

)k

−1

]−1

+nP(ξ > N) (10)
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holds.
Deducing this inequality, truncation of the random variable ξ on the level N is used.

The summand nP(ξ > N) estimates the error arising as a result. This approach was used
previously in my joint with Fuk paper [10], by deducing probability inequalities for sums of
independent random variables. The parameters y0 and N are free. How the select them,
depends on concrete situation: at times we are interested in accuracy, above all and at other
time simplicity and clearness are of interest. The inequality

P(Mn ≥ k) ≤ exp

{
− k

l(r)Bn

}
+

G(r, B, Br)n

kr
(11)

which is valid for r > 2 and k ≥ Bn is the example of an illustrative bound. Here l(r) and
C(r,B,Br) are constants depending on parameters which are indicated in parentheses.

Inequality (11) is quite predictable taking into account that the process Wn :=
√

Zn is
supermartingale with uniformly bounded moments of the order t ≥ 2

E
{
|Wn+1 −Wn|t | Zn = k

}
< cEξt/2.

Fuk’s result [11] are applicable to such supermartingales. In particular,

P(Wn > x) < e−c1x2/nB2

+
c2nEξt/2

xt
.

Returning now to the original process Zn, we obtain the inequality of type (11) for r = t/2.
5.5. Local limit theorems for branching processes. As it have already been said

in section (C) of Introduction two works [16, 17] appeared in 1966 in which the local limit
theorem is proved for the critical Galton–Watson process.

The asymptotic formula

B2n2

4
P(Zn = k) = exp

{
− 2k

Bn

}
+ αkn + O(k−1 ln n) (12)

is deduced in [16], where αkn → 0 as n →∞ uniformly with respect k, under condition that
EZ4

1 < ∞ and the greatest common divisor d of the set {k : P(Z1 = k) > 0} equals 1. Here
B = f ′′(1), f is the generating function of the random variable of Z1.

At the same time paper [17] by Kesten H., Ney P., Spitzer F. appeared, in which the
next result was stated: if k and n tend to infinity so that the ratio k/n remains bounded,
then

lim
n→∞

n2 exp

{
2kd

Bn

}
P(Zn = kd) =

4d

B2
. (13)

Comparing (12) and (13) we see that (13) follows from (12) only under condition that k−1 ln n
tends to zero. On the other hand, it follows from (12) that relation (13) remains valid if k/n
tends to infinity sufficiently slowly.

Autors of [17] point that (13) is valid without any excessive moment restrictions, i.e. only
the condition B < ∞ is sufficient, however, they have performed proving only under more
restrictive condition

EZ2
1 ln(1 + Z1) < ∞. (14)
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They write also that this assumption is made for simplicity. However, it is said in Atreya’s
and Ney’s book [34] that the proof of the local limit theorem under condition B < ∞ has
not published anywhere to this point.

I returned to the local theorem after many years. In 2005 my joint with Wakhel paper
was published [9] in which we have managed to remove the restriction (14), namely, we have
obtained the next result: if B < ∞, k and n tent to infinity so that the ratio k/n remains
bounded, that

lim
n→∞

B2n2

4d
(1 + 2d/Bn)k+1P(Zn = kd) = 1. (15)

It is clear that replacing the factor (1+2d/Bn)k with the equivalent expression exp{2kd/Bn}
we obtain exactly (13).

Thus, we approximate the distribution of Zn by the geometric one with the parameter
2d/Bn instead of the exponential law. This approach is more natural because the distribu-
tion of the Zn is discrete. In addition, the approximation by the geometrical distribution
is generally speaking more precise. For example, for the critical process with a bilinear
generating function

P(Zn = k) =
4

B2n2
(1 + 2/Bn)−k−1

for k ≥ 1. Thus, relation (15) is fulfilled for all k, and (13) holds only for k = o(n2).
The proof of (15) is based on the next statement which is of an independent interest as

well.
Proposition. If B < ∞, then there exists the constant C = C(f) such that

sup
n,k≥1

n2P(Zn = k) ≤ C.

Our method of proving the local limit theorem differs from that of Kesten, Ney, Spitzer
though we use some of their results.
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