
6. Infinite-dimensional distributions

6.1. Introduction. Today the theory of distributions in infinite-dimensional spaces is the
developed field of probability theory. It appeared as a natural generalization of the theory
of distributions in Euclidean space of finite dimension. One of its branches is the theory
of summation of random vectors with values in infinite-dimensional spaces, mainly, Banach
ones. In the latter, in turn, one can distinguish the following two directions:

(a) Limit theorems,
(b) Probability inequalities.
In their development both of these directions passed the same stages as the theory of

summation of finite-dimensional random vectors.
The first stage in the area of limit theorems was the studying conditions under which

the distribution of the sum
∑n

k=1 Xk of independent random vectors comes close to the
Gaussian one when the number of summands increases infinitely. The statements on such
approximation are versions of the Central Limit Theorem (CLT) in an appropriate space.

There exists an extensive bibliography to this subject, but we are interesting in a some
other question, namely, the rate of convergence in CLT.

(A) Estimates of convergence in Central Limit Theorem in Hilbert space. I
became interested in this problem in the middle of 1970 s’. That time the following problem
attracted the specialists’ greatest attention: what is the rate of convergence in CLT for
identically distributed random variables (r.v.) in Hilbert space on the balls with the center
in zero. The bound O(n−1/2) was supposed to be the best one, the same in the order as the
classic Berry – Esseen bound, where n was the number of summands. But it wasn’t clear
whether this bound was possible in the given case.

The first publication on this subject [1] appeared in 1965. For next ten years the bound
was reduced to O(n−1/6) [2].

While studying this problem, I decided to constrict the setting of the problem at the first
stage, restricting myself by r.v.s’ (random variables) with independent coordinates (keeping
in mind l2, being the realization of Hilbert space). This plan was realized in the paper [3]
(see also [4]), jointly with my pupil V.I. Chebotarev. We showed that in the particular case
indicated above the bound O(n−1/2) held under the condition that E|X1|3 < ∞. Here and
below the symbol |X| denotes the norm of X.

Historically this was the first estimate of the form O(n−1/2) in infinite-dimensional case.
Then the model which we suggested was used repeatedly by other authors to construct
distinct examples and counterexamples. First of all, the work of V.V. Senatov [5] should be
mentioned in this connection.

Our result announced in 1977 [4] was published in 1978 [3], but the next year (1979),
the paper of F. Götze [6] appeared, in which the bound O(n−1/2) was obtained in a general
case already, however, under the condition E|X1|6 < ∞. But the most principal in the
work of F. Götze was the ingenious and unexpected method, permitting to estimate the
characteristic function of the squared norm of the sum

∑n
k=1 Xk. Following this way, in 1982

V.V. Yurinsky [7] reduced the moment restriction to the minimal one: E|X1|3 < ∞. The
method found by F. Götze plays the essential role in all next works devoted to accuracy of
normal approximation in Hilbert space (see, for instance, [8]– [20]). Both Götze and Yurinsky
are interested, first of all, in dependence of the bound on the number n and moments of the
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distribution of the summands. In order to attain a perfect analogy with the classic Berry –
Esseen bound, it was necessary to investigate the dependence of the bound on the covariance
operator. The focus of further investigations shifted just to this direction.

The first work in this direction was my paper [8]. About this and next works it will be
said in more details below in the Section 6.2.

Along with bounds of the Berry – Esseen type we together with Chebotarev studied
asymptotic expansions in the central limit theorem in Hilbert space. The results of our
investigations in this direction were stated in the papers [16] and [18]. Our predecessors in
this area (asymptotic expansions are kept in mind) were F. Götze [6], V.Yu. Bentkus [10,11],
V.Yu. Bentkus and B.A. Zalessky [12]. Parallel with us B.A. Zalessky, V.V. Sazonov and
V.V. Ul’yanov [15] studied asymptotic expansions.

(B) Probability inequalities for sums of independent random vectors with
values in Banach spaces. We start with large deviations for Gaussian measures in Banach
space. Intensive studying the latter began in 1950 s’ in connection with general progress
in theory of stochastic processes. A great merit in stimulating interest to distributions
in Banach spaces belongs to A.N. Kolmogorov and Yu.V. Prokhorov. By the words, the
definition of a distribution in Banach space was given by A.N. Kolmogorov as early as 1935.

It was not known rather for a long time with which rate the probability P(|X| > r)
decreases as r → ∞, where X is a Gaussian r.v. with values in Banach space, until at last
in 1970 three works [21]– [23] appeared at once in which three distinct approaches to the
solution of this problem were proposed.

It was shown in the work of H. Landau, L. Shepp [21] and X. Fernique [22] that for every
Gaussian r.v. X there exists a constant c(X) > 0 such that

P(|X| > r) < exp{−c(X)r2}. (1)

Not so sharp result was obtained by A.V. Skorokhod [23], namely,

P(|X| > r) < exp{−c(X)r}. (2)

.
It was discovered later that with the help of simple arguments, basing on the infinite

divisibility of the normal law, one can derive the bound of the form (1) from (2) (see, for
instance, [30], p. 80).

The new approach, differ from those, used in the above-mentioned works, was suggested
in my paper [31] (see also [32]). This approach brings to the bound of the form (1). It is
said on the work [31] in more detail in Section 6.4.

Now we pass to the probability inequalities for sums of independent random vectors in
a separable Banach space. I published works [35–37] on this subject. Upper bounds for
the probability of hitting the exterior of a sphere of an arbitrary radius are deduced in two
first ones, and lower bounds for the same probability are deduced in the third. The form
of the bound found in [36] is new in one-dimensional case as well. One can say the same
with respect to the work [37]. The upper bounds obtained in [36] are extended to dependent
random vectors in Banach space in my paper [45]. In turn, the latter gives a possibility to
get moment inequalities very simply (see subsection 6.6 in detail).

An alternative approach to deducing probability inequalities in Banach spaces was earlier
suggested by Yurinsky [39]. This approach is based on the representation of the norm
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of a random vector in the form of martingale difference. Becoming acquainted with this
work, I called the attention to the fact that the corresponding martingale satisfies the Fuk
conditions [40]. This gives the possibility to get various probability and moment inequalities
without additional efforts (see [42].)

6.2. Bounds for the convergence rate in the central limit theorem. First of all,
I formulate the bound, which was obtained in my joined with Chebotarev paper [3].

Let X1, X2, ..., Xn be a sequence of independent identically distributed random variables
taking values in l2, where EX1 = 0. We denote by Xkj the j-th coordinate of Xk. Put
σ2

j = EX2
1j, βj = E|X1j|3, β = E|X1|3. In assumption that Xkj are mutually independent,

we got in [3] the bound

sup
x

∣∣∣∣P
(∣∣n−1/2Sn

∣∣ < x
)
−P

(
|Z| < x

)∣∣∣∣ < c

[
n−1/2

( 4∏
1

σj

)−3/4
∞∑
5

βj + ∆(4)
n

]
. (3)

Here Sn =
∑n

k=1 Xk, Z = (Z1, Z2, ...) is the normal r.v. taking values in l2, EZ = 0,
EZ2

j = σ2
j ,

∆(m)
n = sup

x

∣∣∣∣P
( m∑

j=1

(
n−1/2Snj

)2
< x

)
−P

( m∑
j=1

Z2
j < x

)∣∣∣∣,

where Snj =
∑n

k=1 Xkj, c is an absolute constant.
On the other hand, according to the multivariate central limit theorem,

∆(m)
n < c(m) n−1/2

m∑
j=1

βj/σ
3
j .

Thus, only four of the infinite set of variances σ2
j involve in the bound (3). Without loss of

generality one can consider that σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
k ≥ . . . . Note that variances σ2

j are the
eigenvalues of the corresponding covariance operator.

Now we pass to the general case. We shall save the notations introduced above, but shall
consider, that Xj takes values in separable Hilbert space H, not necessarily l2.

Here I formulate the corollary from the main result of this paper. This corollary is given
in my notice [24]:

∆n(a) ≤ cβ

(( 7∏
1

σj

)−6/7

+
1

σ2σ1σ2σ7

)(
σ3 + |a|3

)
n−1/2. (4)

Here
∆n(a) := sup

r

∣∣∣P
(∣∣n−1/2Sn − a

∣∣ < r
)−P(|Z − a| < r)

∣∣∣,

σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
j ≥ . . . are the eigenvalues of the covariance operator of r.v. X1,

σ2 := E|X1|2 =
∑∞

j=1 σ2
j , Z is the Gaussian r.v. with the same moment characteristic of

the first and second orders as X1. The bound (4) is very similar in form to previous one
(3) with the difference that (4) contains seven eigenvalues of covariance operator instead of
four. One can explain a priori taking into account that the bound (4) is designed for the
balls with shifted centers in contrast to the previous one.
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It was also proved in the above-mentioned work [3] that for a = 0 the constant in the
bound of the form ∆n(0) = O(n−1/2) must depend at least on three eigenvalues. A short time
after appearing the paper [8] V.V. Senatov [5] had constructed the example showing that for
a 6= 0 the constant in the bound ∆n(a) = O(n−1/2) involves not less than 6 eigenvalues. More
exactly, for all beforehand given σ2

1 ≥ σ2
2 ≥ ... ≥ σ2

6 ≥ σ2
7 there exists a distribution in R7,

for which they are the eigenvalues of the covariance operator, such that for σ2
6 ≤ |a| ≤ ρσ2

6,
ρ > 1,

lim sup
n→∞

√
n∆n(a) ≥ c(σ2

7, ρ)|a|3/Λ1/2
6 , (5)

where c(σ7, ρ) depends on σ7 and ρ only. Here and in what follows, Λl =
l∏

j=1

σ2
j .

Three years after the publication of my paper [8] B.A. Zalessky, V.V. Sazonov, and
V.V. Ul’yanov [14,17] obtained the bound

∆n(a) <
cβ(σ3 + |a|3)
√

nΛ
1/2
6

(6)

which depended on the first six eigenvalues.
Putting a = 0 in this bound, we have

∆n(0) <
cβσ3

√
nΛ

1/2
6

. (7)

The above-mentioned example of Senatov is not extended to the case a = 0. This suggests
that actually the bound (6) is not final. Indeed, some time later I succeed to obtain the
sharper bound,

∆n(a) ¿ β√
n

(
σ

Λ
1/2
4

(
1 +

4∑
1

∣∣∣aj

σj

∣∣∣
3/2

)
+
|a(5)|3
Λ

1/2
6

)
. (8)

Here aj is the j-th coordinate of the vector a = (a1, a2, . . . ) ∈ l2, a(k+1) = (0, 0, . . . , 0︸ ︷︷ ︸
k

, ak+1,

ak+2, . . . ). (We write A ¿ B, if there exists an absolute constant c such that A ≤ cB). This
result was announced in [25]. Unfortunately, the proof is not published up to now.

The next bound follows from (8),

∆n(0) <
cβσ

√
n Λ

1/2
4

,

which is sharper with respect to (7), since it depends only on four eigenvalues of the covari-
ance operator. It is easily seen also that (8) implies (6). Indeed,

σ|aj|3/2

Λ
1/2
4 σ

3/2
j

≤ σ3/2|a|3/2

Λ
1/2
6

, j ≤ 4.

In turn,
σ3/2|a|3/2 ≤ (σ3 + |a|3)/2.
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Consequently,

∆n(a) ¿ β√
n

(
σ

Λ
1/2
4

+
|a|3 + σ3

Λ
1/2
6

)
¿ β(|a|3 + σ3)

√
nΛ

1/2
6

. (9)

As early as in 1945 C.-G. Esseen [26] obtained the following bound for the special case
H = Rl,

∆(0) ≤ c(l)
(
E|X1|4

)3/2
n−l/(l+1) (10)

under condition that the covariance matrix is unit. Knowing this result, it was natural to
assume that something had place in the general case as well. Intensive investigations in this
direction were in progress in 1980 – 1990 s’. In 1982 B.A. Zalessky [9] proved that for every
ε > 0,

∆n(0) = O(n−1+ε), (11)

if σ2
N 6= 0 for sufficiently large N = N(ε). In 1983 V.Yu. Bentkus [27] obtained a more

general result from which the bound (11) followed for

∆n,1(a) = sup
r

∣∣∣P(|n−1/2Sn − a| < r)−P(|Z − a| < r)−Q1,n(a, r)
∣∣∣, (12)

where Q1,n(a, r) was the first term of the asymptotic expansion, in addition Q1,n(0, r) ≡ 0.
In 1986 we together with V.I. Chebotarev [13] got a more precise bound in the case a = 0:

∆n(0) ≤ c(l, δ)(Γ4, l/n)l/(l+4+δ) + c(l)

{
(Γ3, l/

√
n)2l/13, 7 ≤ l ≤ 12,

Γ2
3, l/n, l ≥ 13

(13)

for every δ > 0 and integer l ≥ 7, where Γ4, l = β4σ
4Λ

−4/l
l , β4 = E|X1|4, Γ3, l = βσ3Λ

−3/l
l .

This result is much closer to Esseen’s bound (10) than that of Zalessky.
From above said one could assume that ∆n(0) = O(1/n) holds in the essentially infinite-

dimensional case, i.e. when all σj 6= 0. However, it became clear in further researches that
this phenomenon had place for finite dimensions d as well, at least for d ≥ 9. This result
was obtained by V.Yu. Bentkus and F. Götze [28]. Their bound has the following form:

∆n(0) ≤ C(T )

n

β4

σ4
, (14)

where
C(T ) = ecσ2/σ2

13 if 13 ≤ d ≤ ∞ and σ13 6= 0;

C(T ) = σ4

σ4
d
ecσ2/σ2

9 if 9 ≤ d ≤ ∞ and σd 6= 0;

C(T ) = ecσ2/σ2
9 if the distribution of the element X1 is symmetric and 9 ≤ d ≤ ∞.

Comparing the bound (14) with (13), we see that the dependence on the covariance
operator in (14) appears not very natural. The more precise bound for ∆n(0) was found in
our joint with V.I. Chebotarev work [19], namely,

∆n(0) <
c

n

[
Γ4,13 + Γ3,13 + L2

9

(
σ2/Λ

1/9
9

)2]
,
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where Ll ≡ max
1≤j≤l

E|(X,ej)|3
σ3

j
. Note that Γµ,l/n

(µ−2)/2 is a generalization of the Liapounoff ratio

βµ/n
(µ−2)σµ. We obtained a similar bound for the quantity ∆n,1(a) which was defined by the

equality (12) (see [20]).
6.3. Asymptotic expansions. Everyone who deals with the asymptotic expansions,

comes up against two problems: first, one need to construct and describe an algorithm
according to which coefficients of the asymptotic expansion are calculated; secondly, one
need to estimate the error which appears, when employing the asymptotic expansion.

Now we describe the algorithm which is constructed in our work [18]. It is based on the
formula

E exp{(2s)1/2(x, α)} = exp{s|x|2}, x ∈ HC, s ∈ C. (15)

Here HC is the complex extension of the space H, α = (α1, α2, ...) is the sequence of indepen-
dent real standard normal values. The bilinear form (x, α) is defined as

∑∞
j=1 xjαj, where

xj are the coordinates of the vector x in some orthonormal basis.

Let, as before, Sn =
n∑

j=1

Xj, where X1, X2, . . . , Xn is a sequence of independent identically

distributed random variables with values in H and EX1 = 0. Let {Xj}n
j=1 and α are

independent. By (15),

E exp{it|Sn|2} = ESnEα exp{(2it)1/2(Sn, α)}.
Without loss of generality one can consider the random variables Xj are bounded. This
allows to interchange ESn and Eα on the right-hand side of the last inequality:

E exp{it|Sn|2} = EαESn exp{(2it)1/2(Sn, α)}.
As a result, we have

(Sn, α) =
n∑

j=1

(Xj, α),

where the linear forms (Xj, α) are one-dimensional independent identically distributed ran-
dom variables if α is fixed. Therefore, applying the classic Edgeworth expansion in R, we
can write the following formal expansion

ESnes(Sn,α) = es2σ2/2

∞∑
j=0

n−j/2pj(s; (X1, α)),

where pj(s; (X1, α)) is the polynomial with respect to s, the coefficients of which depend on
semi-moments of r.v. (X1, α), σ2 =

∑∞
1 σ2

j α
2
j . Putting s = (2it)1/2 and then averaging in α,

we arrive at the formal Edgeworth expansion

E exp{it|Sn|2} = g(t)
∞∑

j=0

n−j/2Epj((2it)
1/2; (AtX, α)).

Here g(t) =
∞∏

j=1

(1− 2itσ2
j )
−1/2, and operator At is defined by the equality

Atx =
∞∑
1

(1− 2it)−1/2(x, ej)ej,
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where {ej} is the orthonormal basis in H which is generated by the eigenvectors of the
covariance operator of r.v. X1.

The advantage of the approach described above is that it establishes direct link with the
classical Edgeworth expansion. An approach different from ours is used in cited works of
other authors: it goes back to the works by Götze [6] and Bentkus [11]. As to estimating
the remainder term, the previous investigations were directed in main to obtaining a bound
of the remainder under minimal assumptions with respect to moments of the initial distri-
bution. However, in infinite-dimensional case the form of dependence of the remainder on
the covariance operator of summands plays the important role.

Our aim was to find an explicit form of this dependence reducing, in addition, the number
of eigenvalues of the covariance operator involved in the bound to the minimum.

As in one-dimensional case, except for moment restrictions, one need to impose additional
ones to the characteristic functional for obtaining an acceptable bound for the remainder.
Our condition is a generalization of the well-known Cramer condition. It is close to the
condition (1.1) in [11].

6.4. Large deviations for the Gaussian random values in a Banach space. We
start with the description of the works [21]– [23], which we mentioned said in Introduction.

It was established in the work by H. Landau and L. Shepp [21] that

P(|X| ≥ t) ≤ 1− Φ(at/b) (16)

for every a and b satisfying the condition

P(|X| < b) = Φ(a) >
1

2
,

where Φ is the standard Gaussian law. The proof of the inequality (16) is based on the
isoperimetrical inequality on the sphere in Rn from which the extreme property of the half-
space with respect to the Gaussian measure follows in the class of convex sets in Rn.

In the work by Fernique [22] we find the bound

P(|X| > t) < P(|X| ≤ t0) exp{−t2γ/(24t0)}, (17)

where γ = P(|X| ≤ t0)P(|X| > t0), t0 is an arbitrary positive number. An elegant mode
via which Fernique deduces (17) is based on the invariant property of the standard Gaussian
distribution in R2 with respect to a rotation.

At last, the third method was suggested by A.V. Skorokhod [23] who obtained a bound
which was less sharp, in the sense of dependence on t, than (16) and (17), namely

P(|X| > t) < exp{−ηt}, (18)

where η > 0 was a constant.
The starting point in the work of Skorokhod is the inequality

P(|X| > r) < P( sup
0≤t≤1

|X(t)| > r), (19)

where X(t) is the Wiener process satisfying the condition X(1) = X. On the other hand,
denoting X̄ = sup0≤t≤1 |X(t)| for brevity, we have

P(X̄ > nr) < Pn(X̄ > r). (20)
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The inequality (18) follows from two latter bounds.
As to complication of the proof, the paper by Landau and Shepp exceeds much more the

works of Fernique and Skorokhod, but the more precise result is obtained in it.
Later on, V.N. Sudakov and B.S. Tsirel’son, using a method, similar to one of Landau

and Shepp, had shown [29] that

P(|X| < t) = Φ((t− d + o(1))/c), t →∞,

where c > 0 and d ≥ 0 are some constants.
Starting point in my paper [31] is the inequality (19), as in that of Skorokhod, but

further I use a more precise bound for the probability P(X̄ > r) than (20). The proof of
this bound is given below.

Let τn = inf{t : |X(t)| = nλ0}, n ≥ 1. In other words, τn is the time when the process
X(t) reaches the sphere |x| = nλ0 first. Put τ0 = 0. Let further

τ ′n = inf{t− τn−1 : t > τn−1, |X(t)−X(τn−1| = λ0}.

Since X(t) have the strong Markov property, random variables τ ′n are mutually independent
and coincide with τ1 in distribution.

Obviously,
|X(τn)−X(τn−1)| ≥ |X(τ ′n)−X(τn−1| = λ.

Consequently, τ ′n ≤ τn − τn−1. Hence,

τn =
n∑
1

(τk − τk−1) ≥
n∑
1

τ ′k. (21)

Put Xα(t) = X(αt)/
√

α, α > 0. It is not difficult to see that processes X(t) and Xα(t)
generate the same measure in the space of continuous functions defined on [0, 1] and taking
values in B. Further,

P(τn < t) = P( sup
0≤s≤t

|X(s)| ≥ nλ0) = P( sup
0≤s≤t

|X1/n2(s)| ≥ nλ0) =

= P( sup
0≤s≤t

|X(s/n2)| ≥ λ0) = P( sup
0≤s≤t/n2

|X(s)| ≥ nλ0) = P(τ1 < t/n2).

Thus,
P(τn < t) = P(τ1 < t/n2). (22)

In view of (21) and (22)

P

(
1

n2

n∑
1

τ ′k > t

)
< P(τ1 > t). (23)

It is not difficult to obtain herefrom that

lim
n→∞

P

(
1

n2

n∑
1

τ ′k < t

)
= G(t), (24)
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where G(t) is the stable law with the parameter α = 1/2, logarithm of the characteristic
function of which admits the representation

ln f(t) = −c|t|α
(
1 + i

t

|t|
)
.

As it is well-known (see, for instance, [33, P. 185] or [34, P. 79]), for c = 1

G′(t) =
1√

2π t3/2
e−1/(2t) = −2

∂

∂t
Φ(1/

√
t).

Hence, for arbitrary c > 0

G′(t) =
x0√

2π t3/2
e−x2

0/2t = −2
∂

∂t
Φ(x0/

√
t), (25)

where x0 = c. It follows from (22) – (25) that

P(τn < 1) < G
( 1

n2

)
= 2

(
1− Φ(nx0)

)
.

Recollecting the definition τn, we can state that

P(|X| > nλ0) < P( sup
0≤t≤1

|X(t)| > nλ0) < 2
(
1− Φ(nx0)

)
, (26)

where x0 is defined by the equality

2
(
1− Φ(x0)

)
= P(τ1 < 1).

The inequality (26) is true for the discrete series of the points un = nλ0. It is obvious that
for un < u < un+1

P(|X| > u) < 2(1− Φ(nx0)) < 2

(
1− Φ

(( u

λ0

− 1
)
x0

))

or

P(|X| > u) < 2

(
1− Φ

(x0

λ0

u− x0

))
.

6.5. Probability inequalities for sums of independent random variables in
Banach spaces. The upper bounds for the probabilities of large deviations of the sum
Sn =

∑n
i=1 Xi of independent random variables with values in a separable Banach space are

deduced in my papers [35] and [36]. Here I formulate the key result of the paper [36].
Thus, let Sk =

∑k
1 Xi, Mn = max

1≤k≤n
|Sk|, and α is a number such that P(2Mn ≥ α) < 1.

Then for every y ≥ α, 1 > δ1 ≥ δ

P(Mn ≥ y) ≤
kα−1∑

1

kP

(
(kα − k)α

k

)
δk−1 + δkα ≤
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≤ δ−2
1

∫ y/α−1

0

uδu
1P

(
y − (u + 1)α

u

)
du + δ

y/α−2
1 y/α, (27)

where kα = [y/α], P (y) = min
{

δ,
∑n

1 (P(|Xi| ≥ y)
}

,
∑0

1 = 0.

I would like to call reader’s attention to the fact that bound (27) is new in one-dimensional
case as well. It is distinguished by absence of any moment characteristic. If

lim
n→∞

n∑
i=1

P(|Xi| > α) = 0, (28)

then by (27) the sequence of the distribution functions P(Mn/α < y) is compact. Using this
fact, it is not difficult to show that under condition (28) the sequence P(Mn/α < y) has
limit which is a proper distribution function.

The following bound is used as a prototype of the inequality (28),

P(Mn > lBn + (l − 1)c) ≤ [P(Mn > B/2)]l,

where B2
n =

∑n
j=1 E|Xj|2, Xi (|Xi| < c) are bounded r.v.’s with values in a Banach space.

One can find it in the monograph of I.I. Gikhman and A.B. Skorokhod [38] (see Ch. 6, § 3,
Lemma 2).

It is necessary to say that the case of unbounded summands is incomparably more dif-
ficult from point of view of proving probability inequalities. The works [35] and [36] are
distinguished just with the ways of overcoming difficulties which arise here.

There are deduced many corollaries from the inequality (28) in the paper [36], in partic-
ular, the inequality of the Rosenthal type for Mn, namely, for every t ≥ 1

EM t
n ≤ c1(t, δ)(At + tαt),

where c1(t, δ) = 2t−1γ(t + 2)δ−3(− ln δ)−t−2.
An alternative approach to deriving probability inequalities in Banach space originates

from the work by V.V. Yurinsky [39]. It is based on the expansion

|Sn| − E|Sn| =
n∑
1

Yk, (29)

where
Yk = E{|Sn|

∣∣Fk} − E{|Sn|
∣∣Fk−1}, 1 ≤ k ≤ n,

E{|Sn|
∣∣F0} = E|Sn|,

moreover, for every t > 0
(E{|Yk|t

∣∣Fk−1} ≤ 2tE|Xk|t). (30)

Here Fk is the σ-algebra generated by the r.v.’s X1, X2, ..., Xk.
Note that r.v.’s Yk form the martingale difference. Therefore expansion (29) combined

with the bound (30) allows to apply probability inequalities for martingales (as to the latters,
see, for instance, [40] and [41]). For the first time, the attention to this fact was called in [42]
and, almost simultaneously, in [43].
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Just the same arguments were used later in [44] later. Under approach described just
now it is more natural and convenient to deduce inequalities for P

(∣∣Sn − E|Sn|
∣∣ > y

)
and

E
∣∣Sn −E|Sn|

∣∣t than for P(|Sn| > y) and E|Sn|t. Just this is done in the works [42] and [44]
mentioned already.

My work [37] is devoted to lower bounds for the probability P(|Sn| > u). The following
inequality is obtained in it: for every α > 0

P(|Sn| > u) ≥
n∑

k=1

[
inf
f

P
(
f(Sk) ≥ (1− α)u

)
−

n∑
1

P(|Xj| ≥ αu)
]
P(|Xk| ≥ αu), (31)

where Sk = Sn −Xk, and the greatest lower bound is taken in all functionals f belonging to
space B∗ with |f | = 1.

To estimate P
(
f(Sk) ≥ (1−α)u

)
from below one can use different probability inequalities

for one-dimensional r.v.’s.
Let, for example, EXj = 0, j = 1, n. Then, estimating P(f(Sk) < 1− α) for α > 1 with

the help of the Cantelli inequality, we obtain that

P(|Sn| ≥ u) ≥
(

1−B2u−2
( 1

α2
+

1

B2u−2 + (α− 1)2

)) n∑
1

P(|Xj| ≥ αu).

If r.v.’s are symmetrically distributed, then, putting α = 1 in (31), we have

P(|Sn| ≥ u) ≥
(

1

2
−

n∑
1

P(|Xk| > u)

) n∑
1

P(|Xk| > u).

Evidently, this inequality is not trivial if
∑n

1 P(|Xk| > u) < 1/2.
6.6. Probability inequalities for sums of dependent r.v.’s in Banach spaces.

The next step was extending results of my work [36] to the case of weakly dependent sum-
mands Xj. It was done in my paper [45]. Let

φ(m) = sup

{∣∣∣∣∣
P(AB)

P(A)
−P(B)

∣∣∣∣∣ : 1 ≤ k ≤ n−m, A ∈ Fk
1 , B ∈ Fn

k+m, P(AB) 6= 0

}

be a uniform mixing coefficient. Here Fk
j denotes a σ-algebra generated by r.v.’s Xl, l = j, k.

Let φ(1) < 1, and δ > 0 satisfy the condition δ + φ(1) < 1. Put ρ = δ + φ(1). Let α be a
number such that P{2Mn > α} < δ. Define Q(r) =

∑n
1 P{|Xj| > r}, At =

∑n
1 E|Xj|t.

Let us formulate the upper bound for P{Mn > r} obtained in the work [45]: For every
r > α and 0 < ε < 1/6

P(Mn > r) <
2

αρ

∫ r

0

Q
(rαε2

2u

) du

(1 + εu/α)s(ε)+1
+ ρ−1

(
1 +

εr

α

)−s(ε)

, (32)

where s(ε) = − ln ρ/ ln(1 + ε).
Note that the integral on the right-hand side of (32) is a convolution of two functions

defined on multiplicative group of positive real numbers.
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If φ(1) = 1 but φ(2) < 1, then one can consider two sequences X1, X3, ..., X2k+1, .. and
X2, X4, ..., X2k, ... . For each of them φ(1) < 1. If M ′

n and M ′′
n are defined for the first and

second subsequences, respectively, then

P(Mn > r) < P
(
M ′

n >
r

2

)
+ P

(
M ′′

n >
r

2

)
.

Obviously, this approach can be applied in the case φ(k) = 1, 1 ≤ k < m, φ(m) < 1 as well.
The following moment inequality is extracted from (32): for every t > 0 and 0 < ε < 1/6,
such that s(ε) > t,

EMn < c1(t) + c2(t)α
t, (33)

where

c1(t) ≥ 2t+1

ε3t+1ρ
B(t + 1, s(ε)− t + 1), c2(t) ≥ ρ−1ε−ttB(t, s(ε)− t),

B(·, ·) is Euler function.
Inequality (32) principally differs from the previous probability inequalities for sums

dependent r.v.’s both by form and method of proving. First of all, only one from the
countable number of mixing coefficients involves in it. It does not contain any moments due
to introducing the quantile α. The constants in the right-hand side of the inequality are
calculated explicitly. The aforesaid also concerns moment inequality (33). Inequality (33)
is universal in that sense, it allows to cover the case 0 < t < 2, EXj 6= 0 as well.

A special case of Hilbert space is studied in [45] separately. If B = H, where H is
separable Hilbert space and EXj = 0, then for t > 2 the following inequality holds:

EM t
n < c1(t, φ)At + c2(t, φ)E|Y |tβ−1

t , (34)

where Y is a Gaussian r.v. in H with zero mean and the same covariance operator as Sn,
βt is the absolute moment of order t of one-dimensional standard Gaussian law.

It is further proved in [45] that

E|Y |t < (E|Y |2)t/2βt. (35)

The last inequality can be considered as isoperimetrical. It shows that a maximum of
absolute moment of order t > 2 of the norm of the Gaussian vector with fixed second
moment is achieved on a one-dimensional distribution.

Using (35), we can rewrite inequality (34) in the form

EM t
n < c1(t, φ)At + c2(t, φ)(E|Y |2)t/2, t > 2.

The standard approach to deriving probability inequalities is based on an application of
inequalities of the Rosenthal type. In order to derive these inequalities, the approach is
used which is based on a representation of the even moment of the sum or the norm of the

sum of r.v.’s as the sum of mixing moments. In addition, as a rule,
n∑
1

(E|Xj|t+ε)t/(t+ε) is

used instead of At. An exception is work by S.A. Utev [46]. He applies the above mentioned

direct approach in the case of Hilbert space, but At is not replaced by
n∑
1

(E|Xj|t+ε)t/(t+ε). The

12



combinatorial arguments of Utev are very complicated in contrast to the proof of inequality
(34) in [45].

The inequalities obtained in [45] permit us, in particular, to modify many results con-
cerning an estimate of the rate of convergence in the law of large numbers for sequences of
r.v.’s with uniform mixing.

The survey of probability and moment inequalities for random processes and fields with
mixing and its applications is contained, for instance, in [47]. We also mention in this
connection the paper by Rio [48], where the Bennet – Hoeffding and Nagaev – Fuk inequalities
are extended to a sum of random variables satisfying the strong mixing condition.
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