7. Martingales and supermartingales

7.1. Introduction. A variety of inequalities have a significant place in the theory of martingales and supermartingales with the discrete time. The first inequalities were deduced by the founder of the theory of martingales J.L. Doob (see [1]).

In what follows, we denote by $S_{k}, k \geq 1$, a supermartingale defined on a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{k}\right)_{k \geq 0}, \mathbf{P}\right)$ with $S_{0}=0, \mathcal{F}_{0}=\{\varnothing, \Omega\}$, i.e.

$$
\mathbf{E}\left\{S_{k} \mid \mathcal{F}_{k-1}\right\} \leq S_{k-1}
$$

Put $X_{k}=S_{k}-S_{k-1}, k \geq 0$. Define the random variables σ_{k}^{2} by the equalities

$$
\sigma_{k}^{2}=\mathbf{E}\left\{X_{k}^{2} \mid \mathcal{F}_{k-1}\right\} .
$$

Denote

$$
B_{k}^{2}=\sum_{1}^{k} \sigma_{j}^{2}, \quad \bar{S}_{n}=\max _{1 \leq k \leq n} S_{k}, \quad \bar{X}_{n}=\max _{1 \leq k \leq n} X_{k}, \quad A_{t}=\sum_{1}^{n} \mathbf{E}\left|X_{j}\right|^{t} .
$$

Define

$$
Q(x)=\mathbf{P}\left(\bar{X}_{n}>x\right)+\mathbf{P}\left(B_{n}>x\right) .
$$

As in the case of independent summands one can distinguish two types of inequalities: a) moment inequalities, i.e. inequalities for $\mathbf{E} f\left(S_{n}\right)$, where f is a function satisfying some restrictions, b) probability inequalities, i.e. bounds for $\mathbf{P}\left(f\left(S_{n}\right)>x\right)$. The simplest case is that of $f(y)=|y|^{t}, t>0$.
(A) Moment inequalities. We start with so called comparison inequalities for martingales obtained in 1966 . by D.L. Burkholder [2],

$$
\begin{equation*}
c_{t}\left(\sum_{1}^{n} \mathbf{E} X_{k}^{2}\right)^{t / 2}<\mathbf{E}\left|S_{n}\right|^{t}<C_{t}\left(\sum_{1}^{n} \mathbf{E} X_{k}^{2}\right)^{t / 2}, \tag{1}
\end{equation*}
$$

where c_{t} and C_{t} are some constants. Of course, one can write these inequalities in the form

$$
\begin{equation*}
C_{t}^{-1} \mathbf{E}\left|S_{n}\right|^{t}<\mathbf{E}\left(\sum_{1}^{n} X_{k}^{2}\right)^{t / 2}<c_{t}^{-1} \mathbf{E}\left|S_{n}\right|^{t} \tag{2}
\end{equation*}
$$

Inequality (1) extends to martingales the well-known inequalities due to Marcinkiewicz Zygmund [3] for independent random variables. In 1973 Burkholder [4] obtained for martingales the next extension of the Rosenthal inequality [5],

$$
\begin{equation*}
k_{t}\left(D_{t}^{1 / t}+\mathbf{E}^{1 / t} B_{n}^{t}\right)<\mathbf{E}^{1 / t}\left|\widehat{S}_{n}\right|^{t}<K_{t}\left(D_{t}^{1 / t}+\mathbf{E}^{1 / t} B_{n}^{t}\right) \tag{3}
\end{equation*}
$$

where $\widehat{S}_{n}=\max _{1 \leq k \leq n} S_{k}$. The variable B_{n} in (3) is random in contrast to the Rosenthal inequality. Thus, the special problem of estimating the expectation $\mathbf{E} B_{n}^{t}$ arises. If the conditional variances σ_{k}^{2} admit the uniform bound

$$
\begin{equation*}
\sigma_{k}^{2}<b_{k}^{2} \tag{4}
\end{equation*}
$$

where b_{k}^{2} is some sequence of constants then

$$
\mathbf{E} B_{n}^{t}<\left(\sum_{1}^{n} b_{j}^{2}\right)^{t / 2}
$$

In Burkholder's paper the constants k_{t} and K_{t} are not estimated. A step forward in this direction was made by P. Hitchenko [6] who proved that

$$
\begin{equation*}
K_{t}<K \frac{t}{\ln t} \tag{5}
\end{equation*}
$$

where K is an absolute constant. In my paper [7] the upper bound of the Burkholder type is deduced for the moments $\mathbf{E}\left\{S_{n}^{t} ; S_{n} \geq 0\right\}$ of supermartingales S_{n} with the constant K_{t} satisfying inequality (5). This bound is discussed comprehensively in Section 7.3. Moreover, the numerical bound for the constant K is obtained in my next paper [8]. A short time later, the latter was sharpened by E.L. Presman [9].

The detailed survey of moment inequalities is contained in [10].
(B) Probability inequalities. As to probability inequalities for martingales the case of bounded martingale differences $X_{k}<L$ or $\left|X_{k}\right|<L$ satisfying in addition condition (4) is studied for the most part. The point is that in this case the generating function of moments $\mathbf{E} e^{h S_{n}}$ admits, in essence, the same bounds as in the case of independent summands X_{k}. This allows to get for $\mathbf{P}\left(S_{n}>x\right)$ the bounds of the Hoeffding and Bernstein type. The papers [11,12] were the firsts in this direction. The papers [13-16] are devoted to generalizing the Hoeffding and Bernstein inequalities. The probabilities of large deviations of S_{n} are studied in [17] under condition $\max _{1 \leq k \leq n} \mathbf{E}\left|X_{k}\right|^{t}<\infty$.

In Bentkus's paper [18] the probabilities $\mathbf{E}\left(S_{n}>x\right)$ are estimated in terms $\mathbf{E}\left(Z_{n}>x\right)$, where Z_{n} is a sum of independent identically distributed Bernoulli random variables chosen in a proper way. The bounds obtained are compared with the Hoeffding inequalities.

In my paper [7] the bound of the new type

$$
\mathbf{P}\left(\bar{S}_{n}>x\right)<c(t) x^{-t} \int_{0}^{x} Q\left(\varepsilon_{t} u\right) u^{t-1} d u
$$

was obtained, where $c(t), \varepsilon_{t}$ are constants which are defined below in Section 7.2. In the next sections I comprehensively describe the probability and moment inequalities obtained in my papers $[7,8,19]$.
7.2. Probability inequalities. After appearance in 1971 the Nagaev - Fuk inequalities (see [20]) the problem arose to generalize these inequalities to martingales. The first step to this direct was made by D.Kh. Fuk [21] in 1973 under assumption that for some sequence $\left\{y_{k}\right\}_{k \geq 1}, y_{k}>0$,

$$
\begin{equation*}
\mathbf{E}\left\{X_{k}^{2}\left(y_{k}\right) \mid \mathcal{F}_{k-1}\right\}<d_{k}^{2}, \quad \mathbf{E}\left\{\left(X_{k}^{+}\right)^{t}\left(y_{k}\right) \mid \mathcal{F}_{k-1}\right\}<a_{k} \tag{6}
\end{equation*}
$$

where d_{k}^{2} and a_{k} are constants, $t>2$,

$$
X_{k}(y)=\left\{\begin{array}{ll}
X_{k}, & X_{k} \leq y, \\
0, & X_{k}>y,
\end{array}, \quad X_{k}^{+}(y)=\max \left\{0, X_{k}(y)\right\}\right.
$$

These restrictions can seem too strong. It turned out, however, that they are fulfilled, in particular, for the martingale

$$
\mathbf{E}\left\{\left\|\sum_{j=1}^{n} X_{j}\right\| \mid \mathcal{F}_{k}\right\}
$$

where X_{j} are independent random variables, taking values in a separable Banach space, \mathcal{F}_{k} being σ-algebra generated by random variables $X_{1}, X_{2}, \ldots, X_{k}$, provided

$$
\mathbf{E}\left\|X_{j}\right\|^{t}<\infty, \quad j \in \overline{1, n}
$$

(see, in this connection, [22-24]).
If the martingale S_{n} does not satisfy Fuk's conditions, one can attain this under some restrictions by means of appropriate transformation $f\left(S_{n}\right)$. As applied to Galton - Watson process, this is made in [25]

In the work [26] one of Fuk's inequalities, which contains normal component, is generalized to Banach space under assumption that

$$
\mathbf{E}\left\|X_{j}\right\|^{3}<\infty, \quad j \in \overline{1, n}
$$

In addition a restriction of the same type as Fuk's one is imposed upon the conditional second moments.

Haesler [27] generalized one of Fuk's inequalities as follows: for any $x, u, v>0$

$$
\begin{equation*}
\mathbf{P}\left(\bar{S}_{n}>x\right)<\sum_{i=1}^{n} \mathbf{P}\left(X_{i}>u\right)+\mathbf{P}\left(B_{n}>v\right)+P_{0}(x, u, v) \tag{7}
\end{equation*}
$$

where

$$
P_{0}(x, u, v)=\exp \left\{\frac{x}{u}\left(1-\ln \left(\frac{x u}{v^{2}}\right)\right)\right\} .
$$

In [28] this result is extended to continuous-time martingales. In [29] P_{0} is replaced by for

$$
\begin{equation*}
P_{1}(x, u, v)=\exp \left\{\frac{x}{u}-\left(\frac{v^{2}}{u^{2}}+\frac{x}{u}\right) \ln \left(\frac{x u}{v^{2}}+1\right)\right\} . \tag{8}
\end{equation*}
$$

The bound (7) is applied in [27] for estimating the rate of convergence in the functional CLT for discrete-time martingales. The probability inequalities in [28] and [29] are used in similar way.

The following inequalities were obtained in my work [7].
Theorem 1. Let $0<\gamma \leq 1$ and t satisfy the condition $t \geq \max \left(e^{6}, e^{4} / \gamma^{2}\right)$. Then for every $y>0$

$$
\begin{equation*}
\mathbf{P}\left(\bar{S}_{n}>y\right)<c(t, \gamma) y^{-t} \int_{0}^{y} Q\left(\varepsilon_{t} u\right) u^{t-1} d u \tag{9}
\end{equation*}
$$

where

$$
\varepsilon_{t}=\frac{\ln t-2 \ln \ln t}{2 t}, c(t, \gamma)=\frac{2 e^{6 \gamma t}}{\gamma}
$$

If $\varepsilon_{t}=\eta / t, \eta>0$, then the inequality

$$
\begin{equation*}
\mathbf{P}\left(\bar{S}_{n}>x\right)<c_{1}(t, \eta) x^{-t} \int_{0}^{x} Q\left(\varepsilon_{t} u\right) u^{t-1} d u \tag{10}
\end{equation*}
$$

holds for every $t>0$, where $c_{1}(t, \eta)=t e^{3 \eta \alpha(\eta)} / \eta \alpha(\eta), \alpha(\eta)=e^{\eta+1}$.
Note that

$$
\frac{1}{x^{t}} \int_{0}^{x} Q\left(\varepsilon_{t} u\right) u^{t-1} d u=\int_{0}^{1} Q\left(\varepsilon_{t} s x\right) s^{t-1} d s
$$

which means that right-hand side of (9) decreases in x.
The bound (9) extends the inequality from Theorem 4 of the paper [20] (see also [30, Theorem 1.10]). The inequality (9) is closed in form to the main inequality of the paper [31]. The method of the proof is similar to that which used in the papers [31-33].

Naturally the question arises, how Theorem 1 associates with Haesler's inequality (7). Since the inequalities (7) and (9) strongly differ in form it is not so simply to compare them. It is shown in $[7]$ that (9) is not a corollary of (7). Analogues considerations show that it is impossible to derive Burkholder's inequality (15) (which is a generalization of Rosenthal's one) via that of Haesler. The proof of probability inequalities obtained in [7], was later modified in my paper [8], namely, two statements were selected from the former proof, which makes the presentation more transparent. However they are of interest independently.

Proposition 1. For every $x>0, y>0, \alpha>1$ the following inequality holds,

$$
\begin{equation*}
f(x+\alpha y)<f(x) e^{\alpha(1-\ln \alpha)}+Q(y) \tag{11}
\end{equation*}
$$

where $f(x)=\mathbf{P}\left(\bar{S}_{n} \geq x\right)$.
Proposition 2. If the function $f(x)$ does not increase and for every $x>0, y>0, \alpha>1$ satisfies inequality (11), then for every $\alpha>1 \quad \varepsilon>0$

$$
f(x)<\frac{\omega(\alpha, \varepsilon)}{x^{s(\alpha, \varepsilon)}} \int_{0}^{x} Q(\varepsilon u) u^{s(\alpha, \varepsilon)-1} d u
$$

where $s(\alpha, \varepsilon)=\alpha(\ln \alpha-1) / \ln (1+\alpha \varepsilon), \omega(\alpha, \varepsilon)=(\alpha \varepsilon)^{-1} e^{3 \alpha(\ln \alpha-1)}$.
7.3. Moment inequalities. Moment inequalities are deduced easily from inequality (9) in the same way as for independent random variables (see [25,30-32,34] in this connection).

Indeed, by multiplying both sides of (9) for $t+1$ by $t x^{t-1}$, and integrating with respect to x from 0 to ∞, we obtain the following inequalities.

For every t and γ such that $t>\max \left(e^{6}, e^{2} / \gamma^{2}\right)-1, \quad 0<\gamma \leq 1$,

$$
\begin{equation*}
\mathbf{E}\left\{\bar{S}_{n}^{t} ; \bar{S}_{n} \geq 0\right\}<c(t+1, \gamma) \varepsilon_{t+1}^{-t}\left(\bar{D}_{t}+\mathbf{E} B_{n}^{t}\right) \tag{12}
\end{equation*}
$$

where

$$
\bar{D}_{t}=\mathbf{E}\left\{\bar{X}_{n}^{t} \bar{X}_{n} \geq 0\right\}
$$

Similarly, if $\varepsilon_{t}=\eta / t$, then for every $t>0$

$$
\begin{equation*}
\mathbf{E}\left\{\bar{S}_{n}^{t} ; \bar{S}_{n} \geq 0\right\}<c_{1}(t+1, \eta) \varepsilon_{t+1}^{-t}\left(\bar{D}_{t}+\mathbf{E} B_{n}^{t}\right) \tag{13}
\end{equation*}
$$

If $\left\{S_{k}\right\}_{k \geq 1}$ being a martingale, the inequalities (12) and (13) remain valid for

$$
\mathbf{E}\left\{\left|\widetilde{S}_{n}\right|^{t} ; \widetilde{S}_{n} \leq 0\right\}
$$

where $\widetilde{S}_{n}=\min _{1 \leq k \leq n} S_{k}$, with replacement of \bar{D}_{t} by

$$
\widetilde{D}_{t}=\mathbf{E}\left\{\left|X_{n}\right|^{t} ; \min _{1 \leq k \leq n} X_{k}<0\right\}
$$

By summing the inequalities for $\mathbf{E}\left\{\bar{S}_{n}^{t} ; \bar{S}_{n} \geq 0\right\}$ and $\mathbf{E}\left\{\left|\widetilde{S}_{n}\right|^{t} ; \widetilde{S}_{n}<0\right\}$, we conclude the following: if S_{n} being a martingale, then for every $t>0$ and $\eta>0$,

$$
\begin{equation*}
\mathbf{E} \widehat{S}_{n}^{t}<c_{t}(\eta)\left(D_{t}+2 \mathbf{E} B_{n}^{t}\right) \tag{14}
\end{equation*}
$$

where $\widehat{S}_{n}=\max _{1 \leq k \leq n}\left|S_{k}\right|, \quad D_{t}=\mathbf{E}\left(\max _{1 \leq k \leq n}\left|X_{k}\right|^{t}\right), \quad c_{t}(\eta)=c_{1}(t+1, \eta)((t+1) / \eta)^{t}$.
If $t>\max \left(e^{6}, e^{4} / \gamma^{2}\right)-1, \quad 0<\gamma \leq 1$, then inequality (14) holds with the constant $c_{t}^{\prime}(\gamma)=c(t+1, \gamma) \varepsilon_{t+1}^{-t}$.

By raising both sides of inequality (14) to the power $1 / t$, we have for $t \geq 1$,

$$
\begin{equation*}
\mathbf{E}^{1 / t} \widehat{S}_{n}^{t}<\widehat{c}_{t}\left(D_{t}^{1 / t}+2^{1 / t} \mathbf{E}^{1 / t} B_{n}^{t}\right) \tag{15}
\end{equation*}
$$

where $\widehat{c}_{t}=c_{t}^{1 / t}(\eta)$. If $t>e^{6} \vee e^{4} / \gamma^{2}$, then one can take $\left(c_{t}^{\prime}(\gamma)\right)^{1 / t}$ as \widehat{c}_{t}. As it was said above, the latter inequality was obtained by Burkholder [4] without any explicit expression for the constant \widehat{c}_{t}.

Since

$$
\begin{equation*}
\mathbf{P}\left(\bar{X}_{n}>x\right) \leq \sum_{1}^{n} \mathbf{P}\left(X_{j}>x\right) \tag{16}
\end{equation*}
$$

one may replace \bar{D}_{t} in the inequality (12) by

$$
A_{t}^{+}=\sum_{1}^{n} \mathbf{E}\left\{X_{j}^{t} ; X_{j} \geq 0\right\}
$$

Respectively in the inequality (14) one may replace D_{t} by A_{t}, making it more close in form to the Rosenthal inequality [5]. Sharp bounds in the Rosenthal inequality for $\mathbf{E} S_{n}^{2 k}$, where S_{n} is the sum independent random variables with zero mean, are given in [35].

The inequalities (9) and (10) allow to estimate $\mathbf{E}\left\{g\left(\bar{S}_{n}\right) ; \bar{S}_{n} \geq 0\right\}$ for more extensive class of functions than power ones. We formulate one of such type possible results: if a differentiable function $g(x)$ with $g(0)=0$ satisfies the condition

$$
\frac{g^{\prime}(x)}{x^{t-2}}<\alpha \frac{g^{\prime}(y)}{y^{t-2}}, t>0, \alpha>0
$$

then for every $\eta>0$

$$
\begin{equation*}
\mathbf{E}\left\{g\left(\bar{S}_{n}\right) ; \bar{S}_{n} \geq 0\right\}<\alpha c_{1}(t, \eta)\left(\mathbf{E}\left\{g\left(\varepsilon_{t}^{-1} \bar{X}_{n}\right) ; \bar{X}_{n} \geq 0\right\}+\mathbf{E} g\left(\varepsilon_{t}^{-1} B_{n}\right)\right) \tag{17}
\end{equation*}
$$

where $\varepsilon_{t}=\frac{\eta}{t}$. Indeed, in view of the second assertion of Theorem 1,

$$
\mathbf{E}\left\{g\left(\bar{S}_{n}\right) ; \bar{S}_{n} \geq 0\right\}<c_{2}(t, \eta) \int_{0}^{\infty}\left(x^{-t} \int_{0}^{x} Q\left(\varepsilon_{t} u\right) u^{t-1} d u\right) g_{1}^{\prime}(u) d x \equiv c_{2}(t, \eta) I_{t}
$$

Changing the order of integration, we find

$$
\begin{aligned}
& I_{t}=\int_{0}^{\infty} u^{t-1} Q\left(\varepsilon_{t} u\right)\left(\int_{u}^{\infty} x^{-t} g^{\prime}(x) d x\right) d u<\alpha \int_{0}^{\infty} Q\left(\varepsilon_{t} u\right) g^{\prime}(u) d u \\
& =-\alpha \int_{0}^{\infty} g(u) d Q\left(\varepsilon_{t} u\right)=\alpha\left(\mathbf{E}\left\{g\left(\varepsilon_{t}^{-1} \bar{X}_{n}\right) ; \bar{X}_{n} \geq 0\right\}+\mathbf{E} g\left(\varepsilon_{t}^{-1} B_{n}\right)\right) .
\end{aligned}
$$

The desired result follows immediately from two last relations. The inequality of type (17) is deduced in [4] under slightly weaker restrictions on the function g.

Denote $\beta_{t}(n)=\mathbf{E}\left|X_{n}\right|^{t}$. The following bound is obtained in [19].
Let $\left\{S_{k}\right\}_{0}^{\infty}$ be a martingale. Then for every $t \geq 2$

$$
\begin{equation*}
\mathbf{E}\left|S_{n}\right|^{t} \leq c_{t}\left(\sum_{j=1} n \beta_{t}^{2 / t}(j)\right)^{t / 2}, \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{t}=\left(\frac{t(t-1)}{2}\right)^{t / 2} . \tag{19}
\end{equation*}
$$

Note that the bound in (18) is achieved under $t=2$. For independent random variables the inequality (18) was obtained by Whittle [36] with the constant

$$
c_{t}^{\prime}=\frac{2^{3 t / 2}}{\sqrt{\pi}} \Gamma\left(\frac{t+1}{2}\right) .
$$

Note that

$$
c_{4}^{\prime} \approx 36.11 \Gamma\left(\frac{5}{2}\right)>c_{4}=36
$$

but

$$
c_{5}^{\prime} \approx 204.31<c_{5}=10^{2.5} \approx 316.22
$$

The following bound extends to martingales the inequality of Dharmadhikari and Jogdeo [37] (see, also, [38, P. 98]).

Let $\beta_{t}(j)=\beta_{t}, 1 \leq j \leq n$. Then for $t>2$

$$
\mathbf{E}\left|S_{n}\right|^{t}<c_{t} n^{t / 2} \beta_{t}
$$

c_{t} being from (19).
Using the well-known inequality

$$
\mathbf{E} \widehat{S}_{n}^{t}<\left(\frac{t}{t-1}\right)^{t} \mathbf{E}\left|S_{n}\right|^{t}
$$

(see, for example, [39, P. 526, Theorem 2]), we get the following statement: for every $t \geq 2$

$$
\begin{equation*}
\mathbf{E} \widehat{S}_{n}^{t}<c_{t}\left(\sum_{j=1}^{n} \beta_{t}(j)\right)^{t / 2} \tag{20}
\end{equation*}
$$

where $c_{t}=\left(\frac{t^{3}}{t-1}\right)^{t / 2}$.
If $1 \leq t<2$, then the following bound for martingale S_{n} holds,

$$
\mathbf{E}\left|S_{n}\right|^{t}<c_{t} \sum_{j=1}^{n} \beta_{t}(j)
$$

(see [40]).
Note that it is not difficult to get inequalities of type (20) for $\mathbf{E}\left|\widehat{S}_{n}\right|^{2 k}$ from (15). Indeed, using the inequality

$$
\mathbf{E} \prod_{l=1}^{m} \sigma_{l}^{2 i_{l}} \leq \prod_{l=1}^{m} \beta_{2 k}^{i_{l} / 2 k}(l)
$$

we have

$$
\mathbf{E} B_{n}^{2 k}<\left(\sum_{j=1}^{n} \beta_{2 k}^{1 / k}(j)\right)^{k}
$$

Hence,

$$
\mathbf{E}\left|\widehat{S}_{n}\right|^{2 k}<c_{2 k}\left(A_{2 k}+2\left(\sum_{j=1}^{n} \beta_{2 k}^{1 / k}(j)\right)^{k}\right)
$$

where $c_{2 k}=\min _{\eta} c_{2 k}(\eta)$. Making this estimate crude, we can write

$$
\mathbf{E} \widehat{S}_{n}^{2 k}<3 c_{2 k}\left(\sum_{j=1}^{n} \beta_{2 k}^{1 / k}(j)\right)^{k}
$$

7.4. Numerical estimates. P. Hitchenko [6] had shown that

$$
\begin{equation*}
\mathbf{E} \widehat{S}_{n}^{t}<K \frac{t}{\ln t}\left(D_{t}^{1 / t}+\mathbf{E}^{1 / t} B_{n}^{t}\right) \tag{21}
\end{equation*}
$$

where K is an absolute constant (see also [41]).
In connection with the inequality (21) the bound of the quantity

$$
K_{t}=\frac{\mathbf{E}^{1 / t}\left\{\bar{S}_{n}^{t} ; S_{n} \geq 0\right\}}{\bar{D}_{t}^{1 / t}+\mathbf{E}^{1 / t} B_{n}^{t}} \frac{\ln t}{t}
$$

is of interest.
Putting $\widehat{c}_{t}=\left(c_{t}^{\prime}(\gamma)\right)^{1 / t}$ in (15), we arrive to the bound

$$
\limsup _{t \rightarrow \infty} K_{t} \leq 2 e^{6 \gamma}
$$

Since γ can be made arbitrarily small, we have the right to state that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} K_{t} \leq 2 \tag{22}
\end{equation*}
$$

It was shown in [42] that

$$
\lim _{t \rightarrow \infty} \widehat{c}_{t} \frac{\ln t}{t}=\frac{1}{e}
$$

if X_{k} are independent symmetrically distributed random variables.
Estimates for K_{t} under $t>2$ are given in my work [8].
Let us introduce the definitions,

$$
\begin{aligned}
g_{0}(t) & =\left(1+\frac{1}{t}\right) \ln (t+1)-\ln t+\ln \ln t \\
g_{1}(t) & =g_{0}(t)+\frac{2.76}{t}+1.39 \\
g_{2}(t) & =g_{0}(t)+\frac{3.694}{t}+1.064, \\
g_{3}(t) & =g_{0}(t)+\frac{1.74}{\ln t-1.1}-\left(1+\frac{1}{t}\right) \ln (\ln t-2.86)+0.57\left(1+\frac{1}{t}\right)+ \\
& +\frac{0.57}{t}(2.86-\ln t) \quad \text { if } \quad \ln t>2.86
\end{aligned}
$$

$$
g_{3}(t)=\infty \quad \text { if } \quad \ln t \leq 2.86
$$

The following result was obtained in [8]: for every $t>2$

$$
\begin{equation*}
K_{t}<g(t):=\min _{1 \leq j \leq 3} e^{g_{j}(t)} \tag{23}
\end{equation*}
$$

Analysis of behavior of the functions $g_{i}(t), i=\overline{1,3}$, leads to the following deduction (see also Fig. 1 and 2). First of all, $g_{1}(t)<g_{2}(t)$ for $2<t<t_{0}=2.865 \ldots, g_{1}(t)>g_{2}(t)$ for $t>t_{0}$.

Fig. 1. $g_{1}(t)<g_{2}(t), 2<t<t_{0}$;

$$
g_{1}(t)>g_{2}(t), t>t_{0}
$$

Fig. 2. $g_{3}(t)<g_{2}(t), t>t_{2}$

As to the function g_{3}, it decreases, where $g_{3}(t)>g_{2}(t)$ for $e^{2.86} \equiv 17.46 \ldots<t<t_{2}=$ $49.936 \ldots, g_{3}(t)<g_{2}(t)$ for $t>t_{2}, t_{2}$ being the root of the equation $g_{2}(t)=g_{3}(t)$. Thus,

$$
K_{t}<\left\{\begin{array}{lc}
e^{g_{1}(t)}, & 2<t<3, \\
e^{g_{2}(t)}, & 3 \leq t<t_{2}, \\
e^{g_{3}(t)}, & t>t_{2}
\end{array}\right.
$$

In particular, the next result follows from the aforesaid,

$$
\begin{equation*}
\sup _{2<t<3} K_{t} \leq e^{g_{1}(2)} \approx 29, \sup _{3 \leq t<4} K_{t} \leq e^{g_{2}(3)} \approx 23.1, \sup _{t \geq 4} K_{t} \leq e^{g_{2}(4)} \approx 18.9 \tag{24}
\end{equation*}
$$

It is easily seen that $g_{3}(t) \rightarrow 0.57$ for $t \rightarrow \infty$. Consequently,

$$
\limsup _{t \rightarrow \infty} K_{t} \leq e^{0.57}<1.77
$$

Similar bounds for independent X_{i} were obtained in [43] as well as in [44].
Recently Presman [9] proved that

$$
\limsup _{t \rightarrow \infty} K_{t} \leq 1, \quad K_{t} \leq 9.46
$$

References

1. Doob J.L. Stochastic processes, Wiley, New Yok, 1953.
2. Burkholder D.I. Martingale transforms. Ann. Math. Stat., 37 (1966), 1494-1504.
3. Marcinkiewicz J. and Zygmund A. Quelques theorems sur les fonctions independantes. Studia Math., 7 (1938), 104-120.
4. Burkholder D.I. Distribution function inequalities for martingales. Ann. Probab., 1 (1973), 19-42.
5. Rosenthal H.P. On the subspaces of $L^{p}(p>2)$ spanned by sequences of independent random variables. Israel J. Math., 8 (1970), 273-303.
6. Hitchenko P Best constants in martingale version of Rosenthal's inequality. Ann. Probab., 18 (1990), No 4, 1656-1668.
7. Nagaev S. V. On probability and moment inequalities for supermartingales and martingales. Acta Appl. Math., 79 (2003), No 1-2, 35-46. PDF
8. Nagaev S. V. On probability and moment inequalities for supermartingales and martingales., Acta Appl. Math., 97 (2007), 151-162. PDF
9. Presman E.L. Estimate of the constanr in Burkholder's inequality for supermartingales and martingales. Teor. Veroyatn. i Primen., 2008, 53, N 1, 172177. (In Russian)
10. Peshkir G., Shiryaev A.N. Khinchin's inequalities and martingale extension of its action area. Uspekhi mathem. nauk, 1995, 50, N 5, 3-62. (In Russian)
11. Steiger W. A best possible Kolmogoroff type inequality for martingales and characteristic property. Ann. Math. Statist., 40 (1969), No 3, 764-769.
12. Azuma K. Weighted sums of certain dependent random variables. Tôhoku Math. J., 19 (1967), 357-367.
13. Pinelis I.F. Optimum bounds for the distributions of martingales in Banach spaces. Ann. Probab., 22 (1994), No 4, 1679-1706.
14. Van de Geer S. Exponential inequalities for martingales with applications to maximum likelihood estimation for counting process. Ann. Statist., 23 (1995), No 5, 1779-1801.
15. De la Peña V.H. A general class of exponential inequalities for martingales and ratios. Ann. Probab., 27 (1999), No 1, 537-564.
16. Dzhaparidze K., Van Zanten J. H. On Bernstein-type inequalities for martingales. Stochastic Process. Appl., 93 (2001), No 1, 109-117.
17. Lesigne E., VolnÝ D. Large deviations for martingales. Stochastic Process. Appl., 96 (2001), No 1.
18. Bentkus V. On Hoeffding's inequalities. Ann. Probab., 32 (2004), No 2, 1650-1673.
19. Nagaev S. V. On probability and moment inequalities for supermartingales and martingales. Theory Probab. Appl., 2007, 51, No 2, 367-377. PDF Original Russian Text@Teor. Veroyatn. i Primen., 2006, 51, No 2, 391-399.
20. Fuk D.Kh., Nagaev S.V. Probability inequalities for sums of independent random variables. Theory Probab. Appl., 1971, 16, No 4, 643-660 PDF Original Russian Text@Teor. Verojatn. i Primen., 1971, 16, No 4, 660-675
21. Fuk D.Kh. Some probability inequalities for martingales. Sibirskii matem. journal, 1973, 14, 185-193. (In Russian)
22. Yurinsky V.V. Exponential estimates for large deviations. Teor. Verojatn. i Primen., 1974, 19, N 1, 152-154. (In Russian)
23. Nagaev S. V., Pinelis I.F. On large deviations for sums of independent Banach-valued random variables. Abst. Comm. II Vilnius Conf. Probab. Theory and Math. Statist. Vilnius, 1977, 2, 66-67. (In Russian) PDF
24. Volodin N.A., Morozova L.N. Some estimates of probabilities of large deviations for martingales and sums of random vectors. Probabilistic processes and mathematical statistics. Tashkent: Fan, 1978, 35-43. (In Russian)
25. Nagaev S.V., Vakhtel' V. I. Probability inequalities for a critical Galton-Watson process. Theory Probab. Appl., 2006, 50, No 2, 225-247. PDF
Original Russian Text@Teor. Verojatn. i Primen., 2005, 50, No 2, 266-291.
26. Dehling H., Utev S.A. An exponential inequality for martingales. Siberian Adv. Math., 3 (1993), No 3, pp. 197-203.
27. Haeusler E. An exact rate of convergence in the functional central limit theorem for special martingale difference arrays. Z. Wahrsch. Verw. Gebiete, 65 (1984), No 4, 523-534.
28. Kubilius K., Mémin J. Inégalité exponentielle pour les martingales locales. C. R. Acad. Sci. Paris, 319 (1994), No 7, 733-738.
29. Courbot B. Rates of convergence in the functional CLT for martingales. C. R. Acad. Sci. Paris, 328 (1999), No 6, 509-513.
30. Nagaev S. V. Large deviations of sums of independent random variables. Ann. Probab., 7 (1979), No 5, 745-789. PDF
31. Nagaev S.V. Probability inequalities for the sums of independent random variables in a Banach space. Sib. Math. J., 1988, 652-664. PDF Original Russian Text @ Sib. Mat. Zh., 1987, 28, No 4, 171-184.
32. NAGAEV S.V. Probability inequalities for sums of independent random variables taking values in a Banach space. In: Limit Theorems of Probability Theory and Related Topics. Proc. Inst. Math. Sib. Branch USSR Acad. Sci., 1982, 1, 159-167. PDF (In Russian)
33. NAGAEV S.V. On probability and moment inequalities for dependent random variables. Theory Probab. Appl., 2000, 45, No 1, 152-160. PDF Original Russian Text@Teor. Verojatn. i Primen., 2000, 45, No 1, 194-202.
34. Nagaev S.V., Pinelis I.F. Some inequalities for the distributions of sums of independent random variables. Probab. Appl., 1977, 248-256, 22, No 2, 248-256. PDF Original Russian Text@ Teor. Verojatn. i Primen., 1977, 22, No 2, 254-263.
35. Ibragimov R., Sharakhmetov Sh. Sharp constant in the Rosenthal inequality for random variables with mean zero. Teor. Verojatn. i Primen., 2001, 46, N 1, 134-138. (In Russian)
36. Whittle P. Bounds for the moments of linear and quadratic forms in independent variables. Teor. Verojatn. i Primen., 1960, 5, N3, 331-334.
37. Dharmadhikari S. W., Jogdeo K. Bounds on moments of certain random variables. Ann. Math. Statist., 1969, 40, N4, 1506-1508.
38. Petrov V.V. Limit theorems for sums of independent random variables. Moscow, Nauka, 1987. (In Russian)
39. Shiryaev A.N. Probability. Moscow, Nauka, 1989. (In Russian)
40. Vatutin V.A., Topchii V.A. Maximum of critical processes of Galton - Watson and continuous from the left random walk. Teor. Verojatn. i Primen., 1997, 42, N1, 21-34. (In Russian)
41. Hitchenko P. Upper bounds for the L_{p}-norms of martingales. Probab. Theory Related Fields, 86 (1990), No 2, 225-238.
42. Ibragimov R., Sharakhmetov Sh. On sharp constant in the Rosenthal inequality. Teor. Verojatn. i Primen., 1977, 42, N 2, 341-350.
43. Johnson W.B., Schechtman G., and Zinn J. Best constants in moment inequalities for linear combinations of independent and exchangeable random variables. Ann. Probab., 13 (1985), No1, 234-253.
44. NagaEv S.V. Some refinements of probabilistic and moment inequalities. Theory Probab. Appl., 1997, 42, No 4, 707-713. PDF
Original Russian Text@ Teor. Verojatn. i Primen., 1997, 42, No 4, 832-838.

2008

