
7. Martingales and supermartingales

7.1. Introduction. A variety of inequalities have a significant place in the theory of
martingales and supermartingales with the discrete time. The first inequalities were deduced
by the founder of the theory of martingales J.L. Doob (see [1]).

In what follows, we denote by Sk, k ≥ 1, a supermartingale defined on a filtered proba-
bility space (Ω,F , (Fk)k≥0,P) with S0 = 0, F0 = {∅, Ω}, i.e.

E{Sk | Fk−1} ≤ Sk−1.

Put Xk = Sk − Sk−1, k ≥ 0. Define the random variables σ2
k by the equalities

σ2
k = E{X2

k | Fk−1}.

Denote

B2
k =

k∑

1

σ2
j , Sn = max

1≤k≤n
Sk, Xn = max

1≤k≤n
Xk, At =

n∑

1

E|Xj|t.

Define
Q(x) = P(Xn > x) + P(Bn > x).

As in the case of independent summands one can distinguish two types of inequalities:
a) moment inequalities, i.e. inequalities for Ef(Sn), where f is a function satisfying some
restrictions, b) probability inequalities, i.e. bounds for P

(
f(Sn) > x

)
. The simplest case is

that of f(y) = |y|t, t > 0.
(A) Moment inequalities. We start with so called comparison inequalities for mar-

tingales obtained in 1966 . by D.L. Burkholder [2],

ct

( n∑

1

EX2
k

)t/2

< E|Sn|t < Ct

( n∑

1

EX2
k

)t/2

, (1)

where ct and Ct are some constants. Of course, one can write these inequalities in the form

C−1
t E|Sn|t < E

( n∑

1

X2
k

)t/2

< c−1
t E|Sn|t. (2)

Inequality (1) extends to martingales the well-known inequalities due to Marcinkiewicz –
Zygmund [3] for independent random variables. In 1973 Burkholder [4] obtained for martin-
gales the next extension of the Rosenthal inequality [5],

kt

(
D

1/t
t + E1/tBt

n

)
< E1/t

∣∣Ŝn

∣∣t < Kt

(
D

1/t
t + E1/tBt

n

)
, (3)

where Ŝn = max
1≤k≤n

Sk. The variable Bn in (3) is random in contrast to the Rosenthal inequal-

ity. Thus, the special problem of estimating the expectation EBt
n arises. If the conditional

variances σ2
k admit the uniform bound

σ2
k < b2

k, (4)
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where b2
k is some sequence of constants then

EBt
n <

( n∑

1

b2
j

)t/2

.

In Burkholder’s paper the constants kt and Kt are not estimated. A step forward in this
direction was made by P. Hitchenko [6] who proved that

Kt < K
t

ln t
, (5)

where K is an absolute constant. In my paper [7] the upper bound of the Burkholder type

is deduced for the moments E
{
St

n; Sn ≥ 0
}

of supermartingales Sn with the constant Kt

satisfying inequality (5). This bound is discussed comprehensively in Section 7.3. Moreover,
the numerical bound for the constant K is obtained in my next paper [8]. A short time later,
the latter was sharpened by E.L. Presman [9].

The detailed survey of moment inequalities is contained in [10].
(B) Probability inequalities. As to probability inequalities for martingales the case

of bounded martingale differences Xk < L or |Xk| < L satisfying in addition condition (4) is
studied for the most part. The point is that in this case the generating function of moments
EehSn admits, in essence, the same bounds as in the case of independent summands Xk.
This allows to get for P(Sn > x) the bounds of the Hoeffding and Bernstein type. The
papers [11,12] were the firsts in this direction. The papers [13–16] are devoted to generalizing
the Hoeffding and Bernstein inequalities. The probabilities of large deviations of Sn are
studied in [17] under condition max

1≤k≤n
E|Xk|t < ∞.

In Bentkus’s paper [18] the probabilities E(Sn > x) are estimated in terms E(Zn > x),
where Zn is a sum of independent identically distributed Bernoulli random variables chosen
in a proper way. The bounds obtained are compared with the Hoeffding inequalities.

In my paper [7] the bound of the new type

P(Sn > x) < c(t)x−t

∫ x

0

Q(εtu)ut−1 du

was obtained, where c(t), εt are constants which are defined below in Section 7.2. In the
next sections I comprehensively describe the probability and moment inequalities obtained
in my papers [7, 8, 19].

7.2. Probability inequalities. After appearance in 1971 the Nagaev – Fuk inequalities
(see [20]) the problem arose to generalize these inequalities to martingales. The first step to
this direct was made by D.Kh. Fuk [21] in 1973 under assumption that for some sequence
{yk}k≥1, yk > 0,

E{X2
k(yk) | Fk−1} < d2

k, E{(X+
k )t(yk) | Fk−1} < ak, (6)

where d2
k and ak are constants, t > 2,

Xk(y) =

{
Xk, Xk ≤ y,

0, Xk > y,
, X+

k (y) = max{0, Xk(y)}.
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These restrictions can seem too strong. It turned out, however, that they are fulfilled, in
particular, for the martingale

E

{∥∥∥
∑n

j=1
Xj

∥∥∥
∣∣∣Fk

}
,

where Xj are independent random variables, taking values in a separable Banach space,
Fk being σ-algebra generated by random variables X1, X2, . . . , Xk, provided

E‖Xj‖t < ∞, j ∈ 1, n

(see, in this connection, [22–24]).
If the martingale Sn does not satisfy Fuk’s conditions, one can attain this under some

restrictions by means of appropriate transformation f(Sn). As applied to Galton – Watson
process, this is made in [25]

In the work [26] one of Fuk’s inequalities, which contains normal component, is general-
ized to Banach space under assumption that

E‖Xj‖3 < ∞, j ∈ 1, n.

In addition a restriction of the same type as Fuk’s one is imposed upon the conditional
second moments.

Haesler [27] generalized one of Fuk’s inequalities as follows: for any x, u, v > 0

P(Sn > x) <

n∑

i=1

P(Xi > u) + P(Bn > v) + P0(x, u, v), (7)

where
P0(x, u, v) = exp

{x

u

(
1 − ln

(xu

v2

))}
.

In [28] this result is extended to continuous-time martingales. In [29] P0 is replaced by
for

P1(x, u, v) = exp
{x

u
−

(v2

u2
+

x

u

)
ln

(xu

v2
+ 1

)}
. (8)

The bound (7) is applied in [27] for estimating the rate of convergence in the functional
CLT for discrete-time martingales. The probability inequalities in [28] and [29] are used in
similar way.

The following inequalities were obtained in my work [7].

Theorem 1. Let 0 < γ ≤ 1 and t satisfy the condition t ≥ max(e6, e4/γ2). Then for
every y > 0

P(Sn > y) < c(t, γ)y−t

∫ y

0

Q(εtu)ut−1du, (9)

where

εt =
ln t − 2 ln ln t

2t
, c(t, γ) =

2e6γt

γ
.

If εt = η/t, η > 0, then the inequality

P(Sn > x) < c1(t, η) x−t

∫ x

0

Q(εtu) ut−1 du (10)
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holds for every t > 0, where c1(t, η) = te3ηα(η)/ηα(η), α(η) = eη+1.

Note that
1

xt

∫ x

0

Q(εtu) ut−1 du =

∫ 1

0

Q(εtsx) st−1 ds

which means that right-hand side of (9) decreases in x.
The bound (9) extends the inequality from Theorem 4 of the paper [20] (see also [30,

Theorem 1.10]). The inequality (9 ) is closed in form to the main inequality of the paper [31].
The method of the proof is similar to that which used in the papers [31–33].

Naturally the question arises, how Theorem 1 associates with Haesler’s inequality (7).
Since the inequalities (7) and (9) strongly differ in form it is not so simply to compare them.
It is shown in [7] that (9) is not a corollary of (7). Analogues considerations show that it is
impossible to derive Burkholder’s inequality (15) (which is a generalization of Rosenthal’s
one) via that of Haesler. The proof of probability inequalities obtained in [7], was later
modified in my paper [8], namely, two statements were selected from the former proof, which
makes the presentation more transparent. However they are of interest independently.

Proposition 1. For every x > 0, y > 0, α > 1 the following inequality holds,

f(x + αy) < f(x) eα(1−ln α) + Q(y), (11)

where f(x) = P(Sn ≥ x).

Proposition 2. If the function f(x) does not increase and for every x > 0, y > 0, α > 1
satisfies inequality (11), then for every α > 1 ε > 0

f(x) <
ω(α, ε)

xs(α,ε)

∫ x

0

Q(εu) us(α,ε)−1 du,

where s(α, ε) = α(ln α − 1)/ ln(1 + αε), ω(α, ε) = (αε)−1e3α(ln α−1).

7.3. Moment inequalities. Moment inequalities are deduced easily from inequality (9)
in the same way as for independent random variables (see [25,30–32,34] in this connection).

Indeed, by multiplying both sides of (9) for t + 1 by txt−1, and integrating with respect
to x from 0 to ∞, we obtain the following inequalities.

For every t and γ such that t > max(e6, e2/γ2) − 1, 0 < γ ≤ 1,

E{S t

n; Sn ≥ 0} < c(t + 1, γ) ε−t
t+1(Dt + EBt

n), (12)

where
Dt = E{X t

n Xn ≥ 0}.
Similarly, if εt = η/t, then for every t > 0

E{S t

n; Sn ≥ 0} < c1(t + 1, η) ε−t
t+1(Dt + EBt

n). (13)

If {Sk}k≥1 being a martingale, the inequalities (12) and (13) remain valid for

E{|S̃n|t; S̃n ≤ 0},
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where S̃n = min
1≤k≤n

Sk, with replacement of Dt by

D̃t = E
{
|Xn|t; min

1≤k≤n
Xk < 0

}
.

By summing the inequalities for E{S t

n; Sn ≥ 0} and E{|S̃n|t; S̃n < 0}, we conclude the
following: if Sn being a martingale, then for every t > 0 and η > 0,

EŜ
t
n < ct(η)(Dt + 2EBt

n), (14)

where Ŝn = max1≤k≤n |Sk|, Dt = E(max1≤k≤n |Xk|t), ct(η) = c1(t + 1, η)((t + 1)/η)t.
If t > max(e6, e4/γ2) − 1, 0 < γ ≤ 1, then inequality (14) holds with the constant

c ′
t(γ) = c(t + 1, γ) ε−t

t+1.
By raising both sides of inequality (14) to the power 1/t, we have for t ≥ 1,

E1/tŜ
t
n < ĉt(D

1/t
t + 21/tE1/tBt

n), (15)

where ĉt = c
1/t
t (η). If t > e6 ∨ e4/γ2, then one can take (c ′

t(γ))1/t as ĉt. As it was said above,
the latter inequality was obtained by Burkholder [4] without any explicit expression for the
constant ĉt.

Since

P(Xn > x) ≤
n∑

1

P(Xj > x), (16)

one may replace Dt in the inequality (12) by

A+
t =

n∑

1

E{X t
j; Xj ≥ 0}.

Respectively in the inequality (14) one may replace Dt by At, making it more close in form
to the Rosenthal inequality [5]. Sharp bounds in the Rosenthal inequality for ES2k

n , where
Sn is the sum independent random variables with zero mean, are given in [35].

The inequalities (9) and (10) allow to estimate E{g(Sn); Sn ≥ 0} for more extensive
class of functions than power ones. We formulate one of such type possible results: if a
differentiable function g(x) with g(0) = 0 satisfies the condition

g′(x)

xt−2
< α

g′(y)

yt−2
, t > 0, α > 0,

then for every η > 0

E{g(Sn); Sn ≥ 0} < αc1(t, η)
(
E{g(ε−1

t Xn); Xn ≥ 0} + Eg(ε−1
t Bn)

)
, (17)

where εt = η
t
. Indeed, in view of the second assertion of Theorem 1,

E{g(Sn); Sn ≥ 0} < c2(t, η)

∫ ∞

0

(
x−t

∫ x

0

Q(εtu)ut−1du
)
g′
1(u)dx ≡ c2(t, η)It.
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Changing the order of integration, we find

It =

∫ ∞

0

ut−1Q(εtu)
(∫ ∞

u

x−tg′(x) dx
)

du < α

∫ ∞

0

Q(εtu)g′(u) du

= −α

∫ ∞

0

g(u) dQ(εtu) = α
(
E{g(ε−1

t Xn); Xn ≥ 0} + Eg(ε−1
t Bn)

)
.

The desired result follows immediately from two last relations. The inequality of type (17)
is deduced in [4] under slightly weaker restrictions on the function g.

Denote βt(n) = E|Xn|t. The following bound is obtained in [19].
Let {Sk}∞0 be a martingale. Then for every t ≥ 2

E|Sn|t ≤ ct

( ∑

j=1

nβ
2/t
t (j)

)t/2

, (18)

where

ct =

(
t(t − 1)

2

)t/2

. (19)

Note that the bound in (18) is achieved under t = 2. For independent random variables
the inequality (18) was obtained by Whittle [36] with the constant

c′t =
23t/2

√
π

Γ
(t + 1

2

)
.

Note that

c′4 ≈ 36.11 Γ
(5

2

)
> c4 = 36

but
c′5 ≈ 204.31 < c5 = 102.5 ≈ 316.22.

The following bound extends to martingales the inequality of Dharmadhikari and Jogdeo [37]
(see, also, [38, P. 98]).

Let βt(j) = βt, 1 ≤ j ≤ n. Then for t > 2

E|Sn|t < ctn
t/2βt,

ct being from (19).
Using the well-known inequality

EŜt
n <

( t

t − 1

)t

E|Sn|t

(see, for example, [39, P. 526, Theorem 2] ),we get the following statement: for every t ≥ 2

EŜt
n < ct

( n∑

j=1

βt(j)
)t/2

, (20)
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where ct =
(

t3

t−1

)t/2

.

If 1 ≤ t < 2, then the following bound for martingale Sn holds,

E|Sn|t < ct

n∑

j=1

βt(j)

(see [40]).

Note that it is not difficult to get inequalities of type (20) for E|Ŝn|2k from (15). Indeed,
using the inequality

E

m∏

l=1

σ2il
l ≤

m∏

l=1

β
il/2k
2k (l),

we have

EB2k
n <

( n∑

j=1

β
1/k
2k (j)

)k

.

Hence,

E|Ŝn|2k < c2k

(
A2k + 2

( n∑

j=1

β
1/k
2k (j)

)k)
,

where c2k = min
η

c2k(η). Making this estimate crude, we can write

EŜ2k
n < 3c2k

( n∑

j=1

β
1/k
2k (j)

)k

.

7.4. Numerical estimates. P. Hitchenko [6] had shown that

EŜ
t
n < K

t

ln t
(D

1/t
t + E1/tBt

n), (21)

where K is an absolute constant (see also [41]).
In connection with the inequality (21) the bound of the quantity

Kt =
E1/t{S t

n; Sn ≥ 0}
D

1/t

t + E1/tBt
n

ln t

t

is of interest.
Putting ĉt = (c ′

t(γ))1/t in (15), we arrive to the bound

lim sup
t→∞

Kt ≤ 2e6γ .

Since γ can be made arbitrarily small, we have the right to state that

lim sup
t→∞

Kt ≤ 2. (22)
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It was shown in [42] that

lim
t→∞

ĉt
ln t

t
=

1

e
if Xk are independent symmetrically distributed random variables.

Estimates for Kt under t > 2 are given in my work [8].
Let us introduce the definitions,

g0(t) =
(
1 +

1

t

)
ln(t + 1) − ln t + ln ln t,

g1(t) = g0(t) +
2.76

t
+ 1.39,

g2(t) = g0(t) +
3.694

t
+ 1.064,

g3(t) = g0(t) +
1.74

ln t − 1.1
−

(
1 +

1

t

)
ln(ln t − 2.86) + 0.57

(
1 +

1

t

)
+

+
0.57

t

(
2.86 − ln t

)
if ln t > 2.86,

g3(t) = ∞ if ln t ≤ 2.86.

The following result was obtained in [8]: for every t > 2

Kt < g(t) := min
1≤j≤3

egj(t). (23)

Analysis of behavior of the functions gi(t), i = 1, 3, leads to the following deduction (see
also Fig. 1 and 2). First of all, g1(t) < g2(t) for 2 < t < t0 = 2.865 . . . , g1(t) > g2(t)
for t > t0.

4 6 8 10 12
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3.2

3.4

g1
g2

10 20 30 40 50 60 70

2.5

2.75

3.25

3.5

3.75

g1

g2

g3

Fig. 1. g1(t)<g2(t), 2<t<t0;
g1(t) > g2(t), t > t0

Fig. 2. g3(t)<g2(t), t>t2

As to the function g3, it decreases, where g3(t) > g2(t) for e2.86 ≡ 17.46 . . . < t < t2 =
49.936 . . . , g3(t) < g2(t) for t > t2, t2 being the root of the equation g2(t) = g3(t). Thus,

Kt <





eg1(t), 2 < t < 3,
eg2(t), 3 ≤ t < t2,
eg3(t), t > t2.
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In particular, the next result follows from the aforesaid,

sup
2<t<3

Kt ≤ eg1(2) ≈ 29, sup
3≤t<4

Kt ≤ eg2(3) ≈ 23.1, sup
t≥4

Kt ≤ eg2(4) ≈ 18.9. (24)

It is easily seen that g3(t) → 0.57 for t → ∞. Consequently,

lim sup
t→∞

Kt ≤ e0.57 < 1.77.

Similar bounds for independent Xi were obtained in [43] as well as in [44].
Recently Presman [9] proved that

lim sup
t→∞

Kt ≤ 1, Kt ≤ 9.46.
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