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MINKOWSKI DUALITY AND ITS
APPLICATIONS

S. S. Kutateladze and A. M. Rubinov

This article is an account of problems grouped around the concept of Minkowski duality —
one of the central constructions in convex analysis. The article consists of an introduction,
four sections, and a commentary.

In §1 we set out the main facts about H-convex elements and introduce the Minkowski—
Fenchel and the Minkowski—Moreau schemes; we consider the space of H-convex sets. Here
we collect together the main examples, namely the convex and sublinear functions, and the
stable, normal, and convex sets in the sense of Fan, amongst others.

§2 is concerned mainly with representations of positive functionals over continuous
H-convex functions and sets. Here we also establish the links between such constructions and
the Choquet theory.

In §3 we introduce various characterizations of H-convexity in the form of theorems on
supremal generators. In particular, we consider in detail theorems on the definability of
convergence of sequences of operators in terms of their convergence on a cone. Other applica-
tions of supremal generators are also given.

In §4 problems of isoperimetric type (with an arbitrary number of constraints) in the
geometry of convex surfaces are analyzed as problems of programming in a space of convex
sets. We examine as particular examples exterior and interior isoperimetric problems, the
Uryson problem, and others.
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Introduction

Within the framework of modern functional analysis a new branch, convex
analysis, has been added, a discipline that studies various problems relating
to convex functions, convex sets, extremal problems, and so on {45]. There
are standard traditional applications of convex analysis in mathematical

137



138 S. 8. Kutateladze and A. M. Rubinov

programming, the constructive theory of functions, the calculus of variations,
linear inequalities, and so on. A basic technique for working in convex
analysis is the systematic use of various notions in duality.

The apparatus of Lagrange duality for extremal problems is set out, for
instance, in [27], [96]. The theory of adjoint convex functions is treated
in detail in [41], [91]. These articles shed light on traditional applications
of convex analysis. A group of ideas in duality theory connected with
mathematical models in economic dynamics is in [77]. For recent applica-
tions of adjoint functions to the theory of differential inequalities, the
reader is referred to [72].

However, the theory of Minkowski duality, in spite of its great clarity
and its many mathematical applications, has not been adequately sorted out.
This paper is an account of the fundamental methods and applications

involving this basic simple algebraic object, namely Minkowski duality. In
§1 we explain the general Minkowski—Fenchel scheme relating to H-convex
sets and H-convex functions, and we introduce various examples and
realizations of this scheme. In §2 we give the basic techniques of duality
methods for representing H-convex functions. The central ideas are the
decomposition theorem and the operator principle of preservation of
inequalities.

The fields of application of the second method are discussed in §3,
where the principle of preservation of inequalities is deduced in the form
of theorems on supremal generators (that is, theorems on the definability
of a sequence of operators in terms of their convergence on a cone). The
detailed account of dual local characterizations of H-convexity is due to the
fact that a considerable literature is devoted precisely to this form of the
question. §4 concerns the application of the results obtained to what was
really the objective that gave rise to Minkowski duality theory, namely to
extremal problems in the geometry of convex sets. In particular, we give a
method of analysis and solutions of a number of problems of isoperimetric
type with an arbitrary number of constraints for which the symmetrization
technique is not applicable on principle.

Qur aim has been to give a fairly broad account of the problem of- the
relationship of Minkowski duality with other constructions of analysis,
without cluttering the text with technical details. With this in mind, we
have illustrated the theory with a large number of examples and have
selected theorems so as to explain the main ideas using the minimal equip-
ment, but providing interesting results.

Comments of a historical and bibliographical nature have on the whole
been collected in the final section. In the paper we use an independent
numbering within the parts of each section.

In cross-references we quote in addition the number of the corresponding
section. The notation and results of the theory-of partially ordered spaces is
taken for granted (see [23], [46]).
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The symbol = means “equal by definition”.

§ 1. H-convex functions and sets

1.0. Preliminary remarks. The first account of convex functions as an
independent object of study was apparently given by Jensen in [39],
although the defining inequality for convex functions (now called Jensen’s
inequality) had previously been studied by Holder [25]. The first mention
of convex functions in a text-book is in [120] by Stolz.

At about the same time, various dual relationships between convex
functions and convex sets were being discovered, the latter objects had been
known long before the introduction of convex functions. The fundamental
discovery was the elucidation of the special role of sublinear (that is,
convex, homogeneous) functions, for the so-called gauge or support
functions (the Minkowski functionals). The bulk of this discovery is due to
Minkowski [80], who with his geometric insight and versatility successfully
applied this class of functions in his numerous and diverse researches. The
main work of Minkowski is gathered together in the two volumes
“Gesammelte Abhandlungen von Hermann Minkowski, 1911, under
Hilbert’s editorship.

An important step forward in the development of Minkowski’s views was
Fenchel’s theorem on the recovery of a convex surface from its support
function. This result, nowadays called the Minkowski—Fenchel theorem,
serves as a fundamental device for applying the theory of convex functions
to the study of convex sets and, conversely, for using geometrical
constructions in a number of problems in analysis.

More recently, especially in the context of Hormander’s work {113}, it
has become clear that the classes of convex (or sublinear) functions and
convex sets are in a certain sense indistinguishable. Their common property,
which plays a decisive role in a number of problems, is the fact that both
classes are H-convex functions, that is, upper envelopes over a cone H (for
appropriate H). It turns out that one can construct in the same way other
(sometimes very wide) classes of functions. Thus, the continuous functions
of one variable do not differ in this sense from the convex functions of
two variables. Therefore, to study certain properties, for instance, of
continuous functions, one can apply the tools of convex analysis. The
investigation of various classes of H-convex functions (and sets) by methods
of convex analysis is, in fact, the essence of the theory of Minkowski
duality.

In this section we collect together the basic facts about H-convex
elements and give the most typical examples and constructions connected
with the Minkowsky—Fenchel scheme.

1.1. Minkowski Duality. Consider a complete lattice ¥ with minimum
element — . Let X be a subset of ¥ and H a subset of X such that
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— oo ¢ H. We say that p € X is H-convex if there exists a set U in H such
that p = sup U. The collection of all H-convex elements of X is denoted by
P(H, X, Y). Forp € ¥ we write U, £ {n € H: h < p}. If U C H and
p 2 sup U, then U C U,, and in addition, p = sup U,. An element 2 € U,
is called a support element to p and the set U, itself is called the set of
supports (or support set) to p.

A set U in H is called H-convex if U = {h € H: h < sup U}, that is,
if U is the support set to p 2 sup U. The collection of all H-convex sets
which support an element of X is denoted by 8B (H, X, Y). (Note that
B (H, Y, Y) is the family of all H-convex sets.) We omit one of the
letters X, Y in the notation P(H, X, Y) and $B(H, X, Y), whenever its
role is clear from the context. We order R (H) by inclusion. We endow
the set P(H) with the ordering induced by Y. It is clear that the mapping
. P(H) »~ B (H) defined by

(1.1) ¢: p — U,

is an order isomorphism between P(H) and 9®B(H). This isomorphism ¢ is
the so-called Minkowski duality.

Let U C H, and set py, = sup U. The set U,,U StheH h< Py} is
called the H-convex hull of U and is denoted by coy(U). Note that coy(U)=U
if and only if U is H-convex. If p,, € X (where H C X C Y), then
cog(U) € B(H, X, Y). The mapping U > coy(U) defined on the family
of all subsets of H is a closure in the sense of Moore [8], that is,
coy (U) D U, cogy(coyg(U)) = coyg(U), cog(Uy) D coxg(Uy) if U, D U,. Tt
follows from Moore’s theorem that for the family (U,),eas of elements of

¥H, Y, Y)wehave \ U, = 1 v, V  Uq = cog( U Uy).
2EAs aEA afA aEA

The Minkowski duality shows that the family P(H, Y, Y) of all H-convex
elements of Y is a complete lattice isomorphic to the lattice B (H, Y, Y).
Furthermore, the supremum of any family (py,).ca of elements of the
lattice P(H, Y, Y) is the same as the supremum of the same family of
points computed in Y. (The corresponding statements for the infimum is
not true, in general.) If X (H C X C Y) is an upper sub-lattice (relative
to the ordering induced by Y) such that the supremum of two elements
of X relative to X is the same as the supremum relative to Y, then the
set P(H, X, Y) is also an upper sub-lattice; furthermore, the suprema of
two elements of P(H, X, Y), considered in X and in P(H, X, Y),
respectively, coincide.

Before giving some examples we note that the main interest of the
standard work on Minkowski duality lies in the description of H-convex
elements and sets in terms of H itself (and not of X). As a rule, X is
realized as a vector lattice of functions defined on a convex set Q, and H
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is a vector subspace consisting of affine functions. In this case, Y is taken

to be the set R? of all functions f: Q > [— e, te], with the natural
ordering. The required description for this situation is obtained by means
of various separation theorems. We now explain the connection between
H-convexity and separation properties for this case.

We denote the complete lattice R@ by Y, where Q is a set. Let X be a
conditionally complete upper sub-lattice of Y such that the supremum (in
X) of any bounded set in X is the same as the pointwise supremum (that
is, the supremum in Y). The following is then immediate from the
definitions:

PROPOSITION 11. Let HC X Aset UC Hisin 8 (H, X,7)
if and only if it is bounded above in X and for any h' € H, h' ¢ U, there
exists an x € Q such that h'(x) > hsg% h(x).

Henceforth, whenever X is a function space, H-convex elements of X
will be called H-convex functions.

We now give some further definitions. The real line is denoted by R,
and the half-line of non-negative reals by R,. The extended real line is
denoted by ﬁ If Q and T are sets, then T9 denotes, as usual, the set of
all functions f: Q - T. The ordering on R® and R? is the natural one.
We denote by Xg the subset of R® consisting of all functions
i Q@ » (— e, +=] together with the function —o0: x > — o (x € Q).
It is clear that Xg, is a complete lattice relative to the ordering induced
by R?. Given a function fin ﬁQ, we call the set
det f 2 {{x,\) € @ X R: X > f(x)}, the supergraph of f. If Q is a
topological space, the supergraph det f of a function in R9 is closed if
and only if f is lower semi-continuous. In this context we call lower semi-
continuous functions closed from below (or, if there is no fear of
ambiguity, merely closed). Consider a locally convex space V. A function
f defined on V is called convex if f € Xy and the supergraph det f is
closed and convex. In other words, f is convex if it is lower semi-
continuous, its range is not the set {— o, + o}, and it satisfies the
“convexity (or Jensen’s) inequality”

(1.2)  floxz + By) < af(z) + B/(y) @ Yy€eEV;a, >0, a4+ p =1).

If of a function fin RV it is merely known that is satisfies (1.2) (and that
(1.2) is meaningful), then it is called weakly convex.! A convex function
p is called a sublinear functional if it is positively homogeneous (that is,
p(Ax) = Ap(x) for X > 0 and x € V). A sublinear functional is subadditive
(that is, p(x + v) < p(x) + p(¥)). A function in Xy is a sublinear

! In the literature, such a function is usually called convex.
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functional if and only if its supergraph is a closed cone (where by
a cone we mean a convex set K such that AK C K for all A > 0).
A convex finite function is called affine if (1.2) holds with the
equality sign. An affine function is continuous and is of the form

fix —Il(x)+c, where l € V', ¢ € R. (Here V' denotes tile dual space
of V.) Let ¢ be a convex subset of V. A function f: ¢ - R is said to be
convex on ¢ if elther it is identically — =, or it is the trace on ¢ of a
convex function f on ¥V such that domf {x EV:f(x) < +} C&.

If £ is a cone, then we define a sublinear functional on £ in similar fashion.

1.2. Examples of H-convex functions and sets. EXAMPLE 2.1. Let V

be a locally convex space, and set Y 2 RV, X2 Xy, H 2 V' Then the

family P(H, X, Y) of H-convex functions consists of all sublinear
functionals defined on V; the family ®8B(H, X, Y) of H-convex sets
consists of all convex subsets of V' that are closed in the weak topology
o(V', V). These statements are proved by Hormander in [113}. (Note that
the assertion about B(H, X, Y) follows immediately from Proposition 1.1.)
In the present case P(H, X, Y) = P(H, Y, Y) (and therefore
BMH, X, Y) = BH, Y, Y)). Furthermore, P(H, Y) and %8B (H, Y) are
complete lattices. We note also that if U C H, then coy(U) is the same as
the closed convex hull co(U) of U.

EXAMPLE 2.2. Let V, Y and H be as in the previous example, but

with X 2 RY. Then P(H, RV) is the set of all finite-valued sublinear
functionals, and B (H, RY) is the set of all non-empty bounded weakly
closed subsets (with respect to o(V', ¥)). In addition, P(H, RV) and
B(H, RV) are conditionally complete upper sublattices.

EXAMPLE 2.3. This time we let X be the space C(V) of continuous
functions' on ¥V (with V, Y and H as before). Then it is clear that
P(H, C(V)) is the family of all continuous sublinear functionals on V. A
sublinear functional on V is continuous if and only if it is bounded, that
is, for any neighbourhood W of the origin we have sg‘)” Ipw) | < + oo, It

w

follows easily that 9B (H, C(V)) is the family of all convex closed (with
respect to o(V’, V')) equicontinuous sets. Note that P(H, C(V)) and
B(H, C(V)) are upper sublattices.

EXAMPLE 2.4. Let K be a closed cone in a locally convex space V.
Assume for the sake of simplicity that K is generating, that is V' = K — K.
Let Y £ RX, and let H be the subset of Xk consisting of all traces on K
of linear functionals on V (that is, elements of V'). The members of
P(H, Xg, Y) can be identified with the sublinear functionals on K. To
describe B(H, Xg), we make the following definition. If L is a cone in a
vector space Z, then a subset 2 of Z such that & + L = Q is called

! Continuous functions are always considered to be finite.



Minkowski duality and its applications 143

L-stable. 1t can be shown (see [94]) that B (H, X ) is the set of all
convex, o(V', V)closed, (— K)*-stable sets (where K* denotes the dual
cone to K). It is not difficult to check that the H-convex hull cogy (U) of

a convex subset U of H is U— K* (where the bar denotes the closure in
a(V', ).

REMARK. Convex closed K-stable sets have various applications in
mathematics. We mention, in particular, the theory of the growth of entire
functions of several complex variables [22], [92] and the theory of models
in economic dynamics [77], [93].

EXAMPLE 2.5. Let K and L be closed cones in a locally convex
space ¥V, with K D L and L generating. Consider the dual cone K* and let
Hyg ; denote the family of traces of functlonals of K* on L. We are
interested in the upper sub-lattices P(H, L) = P(Hg ., RE RL) and
B(Hg, 1) S (Hg, ., R", RL)Y. It will be convenient to identify Hg o
with K*. A subset U of K* (or, what is the same, of Hy . ) is called
L-normal if U = (FZ?) N K* (where the bar denotes the closure in
o(V', V)). It can be shown that B (Hg, ) is the family of all weakly
bounded convex L-normal subsets of V'. If U C Hg ., then
cog, , (U) = (co U—L¥*) n K*. The set P(Hg, 1) consists of all finite sub-
linear functionals p defined on L and having the followmg property: there
exists a sublinear functional p. V - R such that p(v) = p) (v € L),
p@,) > p,) vy € Viv, € vy + K).

REMARK. Lnormal sets play an important role, for instance, in the
theory of economic dynamics [77].

We now go on to consider proper convex functions.

EXAMPLE 2.6. Let V be a locally convex space with Y 2 Rv,

X 2 Xy, H denoting the space A(V) of all affine functions on V.
(Henceforth we identify A(V) with V' X R;if (f,¢) € V' X R,

(x, ) € V X R, then we set (f, ¢) ((x, 1)) 2 f(x)—Ac.) It can be shown,
using Hormander’s results [113], for example, that P(H) 4 PH, X, Y)
coincides with the family of ali convex functions on V. Furthermore, P(H)
is a complete lattice. A subset Uof H=V' X R (U+ @, U+ H) is
H-convex if and only if it is convex, weakly closed ({0} X R . )-stable

and not ({0} X R)stable. (See Example 2.4 for the definition of stability.)
Also, the empty set and the whole of H are H-convex.

REMARK. A set Uis H-convex if and only if it is the supergraph of
some convex function defined on V'. If f is a convex function on V then
the function f* whose supergraph is the set Uy of all supports to f is
determined thus: f*: i — sg.g (h(w)— f(@)). The function f* is called the

v

adjoint of f (see §1.5).
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In the following examples we only consider either H-convex functions or
H-convex sets.

EXAMPLE 2.7. Let £ be a convex subset of a locally convex space V,
and let A; be the family of traces on ¢ of the affine functions on V. Then
it follows from the previous example that P(4;, X, R¥) is the set of all
convex functions on §.

EXAMPLE 28. Let ¢ be a (not necessarily convex) subset of V and
let A, be the family of traces on ¢ of affine functions on V. It is natural
to call the members of P(4;, X, ﬁz) convex functions on . In fact, each
A-convex function admits an extension to a convex function, defined on V.

The above examples use, in one way or another, the idea of a convex
function. We now mention examples of an essentially different kind.

EXAMPLE 2.9. Let H be the cone in C ([a, b]) consisting of the
trinomials x ~> kx2 +Ix + m (where K < 0, ! = 0, m < 0); here a is
assumed to be positive. Then P(H, C({a, b1), R®?) = C({a, b]). (A more
general statement is given in §3.2.) It should be further noted that
PH, X4 1, R'a:%1) consists of all lower semi-continuous functions on [a, b].
This example shows that even such an extensive set as the family of all
lower semi-continuous functions can be generated by means of the
operation of taking the upper envelope (pointwise supremum) from subsets
of a very meagre set — namely a cone spanned by three generators.

EXAMPLE 2.10. Consider again the space C(la, b]), and denote by
é([a, b)) its K-completion (the Dedekind completion) [23]. We denote by
Y the complete lattice obtained by adjoining to é([a, b)) a greatest and a
least element. Let C,, 2 {f € C(la, b)); fla) = f(b)}. Then
P(Cper, C(la, b)), Z) = C(la, b]). Furthermore,

P(Cper, Clla, b)), RI5?) = G, . .

In this example we have an instance where the lattice Y is not R9.
Other examples of this kind are in §3.

EXAMPLE 2.11. Let us touch upon the connection between
H-convexity and Fan convexity. First we give the relevant definition. Let
Q be a set and let ® be a family of finite real-valued functions on Q that
separates the points of Q. (This means that for any distinct points
x, y € Q there is a function v € & such that ¢(x) # ¢(v).) Then a subset
A of Q is called ®-convex (in the sense of Fan [28], [102]) if for each
x € Q \ A there exists a function ¢ € & such that ¢(x) > sup ¢(¥).

yEA

We consider Q embedded in the lattice R® as follows: each x € Q is
identified with the evaluation map X: ¢ > ¢(x) (¢ € ®). The collection of
all functions x, where x € Q, is denoted by Qp. We also use the symbol
~ to denote the image of a subset of Q under the evaluation map. From
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Proposition 1.1 it follows that a subset A of Q is ®-convex if and only if
the subset A of R® is Qg -convex.

1.3. The Minkowski—Fenchel scheme. The Minkowski duality is of special
interest in the case when the sets H and X considered in §1.1 are equipped
with algebraic operations. In this connection we make the following
definition. A set S is called a semilinear space if there is defined on it a
binary operation + under which S is a commutative semigroup, and an
operation of multiplication by positive numbers such that

tes=s5(s€S8), A+ ps =R+ s, (Ans = Mps),
Ms; +82) = hsy + A2 (A>0, p=>0; 5,5 €08).

Convex subsets of a semilinear space are defined in the obvious way. The
simplest example of a semilinear space is a cone in a vector space.

A semilinear space S which is at the same time an upper semilattice is
called a K-semilineal if the following conditions hold: (a) x > y implies
that x + z =2 y + z for all z € §; (b) x > y implies that Ax = Ay (A > 0);
(c) if A ¢ § has a supremum, then for each z € S we have
sup(z + A) = z + sup A. Isomorphism of K-semilineals is defined in the
natural way.

As in §1.1, let Y be a complete lattice, X a subset of Y, and H a
subset of X. Suppose that X is a K-semilineal (where the ordering on X is
the induced ordering from Y, and the supremum in X of two elements of
X is the same as their supremum in Y); we suppose that H is a semilinear
subspace of X. Then P(H, X) is a K-semilineal (with respect to the algebraic
operations and ordering induced by X); furthermore, the supremum of two
elements of P(H) is the same whether regarded in P(H) or in X. Consider
now the set B (H, X). It is easy to verify that its members are convex
sets. We define in %8 (H, X) the operation of multiplication by a positive
number in the obvious fashion, and we define a binary operation
(Minkowski sum) &P, as follows:

U@ Uy &cop(U, + Us)  (U,,U: € B(H, X)).

It can be shown that under these operations and the ordering determined
by inclusion @(H) is a K-semilineal. The following is an immediate
consequence of the definitions:

MINKOWSKI-FENCHEL THEOREM. The Minkowski duality
¢: p — U, is an isomorphism of the K-semilineals P(H, X) and B(H, X).
The Minkowski—Fenchel theorem shows that the Minkowski duality is
analogous to the relationship between convex sets and sublinear functionals
that is established in the classical Minkowski—Fenchel scheme (that is, in
the conditions of Example 2.2 when V is R"). Note that the conditions
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of the Minkowski—Fenchel theorem are satisfied in each of the Examples
2.1-2.10. (We suppose here that in the lattice Xy, where Q is a set, the
algebraic operations are defined thus: in the set Xg \ {— s} these
operations are the natural ones; in addition, x + (— m) = — o for any

x € Xg, and AN(— c>°) (— =) for any A > 0. It is easy to check that this
makes Xy a K-semilineal.) By virtue of the Minkowski—Fenchel theorem
we can consider the sets P(H, X) and 9B(H, X) as different realizations
of the same K-semilineal. It is useful in many applications to endow these
sets with topologies so that the Minkowski duality is a homeomorphism
(see, for example, [26]). In this connection it is often convenient to
identify the K-semilineals P(H, X) and 9 (H, X); more precisely, we
identify the H-convex element p with the H-convex set U, corresponding
to it under the Minkowski duality. We make use of this identification in
the next subsection.

1.4. The space of H-convex sets. Let Y be a complete lattice and let X
be a K-semilineal contained in Y (where the ordering on X is induced by
Y and is such that the supremum of two elements of X is the same
whether taken in X or in Y). Let H be a semilinear subspace of X.
Suppose that X is a K-semilineal with cancellation (that is, x +z =y +z
implies that x =y (x, ¥, z € X)). Then P(H) a PH, X, Y)is also a
K-semilineal with cancellation, and since P(H) and B(#) are algebraically
and order isomorphic, B (H) is also a semilineal with cancellation. This
fact allows us, by the usual method of embedding a semigroup with
cancellation in a group, to construct vector spaces [P(H)] and (B (H)] in
which P(H) and ®(H) are, respectively, embedded (to within
isomorphism) as generating cones. Then [P(H)] and [8B (H)] prove to be
isomorphic. Furthermore, we can endow [P(H)] with an ordering relation,
inducing the original ordering on P(H), so that {P(H)] becomes a K-lineal.
Clearly, we can deal 'with [8 (H)] in similar fashion. (In a typical special
case this construction was carried out by Pinsker [86].) The space [B (H)]
(and its isomorph [P(H)]) is appropriately called the space of convex sets.
If the original K-semilineal X is a vector space, then the space of convex
sets coincides (to within isomorphism) with the vector subspace of X
spanned by the cone P(H). This fact greatly simplifies the study of the

space of convex sets. We consider in detml Just one important example.

Let (V, Il - lI) be a Banach space with Y2 R, X2 RV, H2 V'. Then, as

in Example 2.2, P(H, RY) consists of all finite-valued sublinear functionals
on V, while B(H, RV) consists of all non-empty convex closed and
bounded (in o(V', V)) subsets of ¥’'. Since V is complete, the elements of
B(H, RY) are bounded in norm. It therefore follows easily (see Example
2.3) that the elements of P(H, RV) are continuous functionals. In what
follows we identify a continuous sublinear functional with the set of its
support linear functionals, and denote these two objects by the same letter.
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In the present instance, the space of convex sets [B(H)] coincides with
the subspace of the K-lineal RV consisting of all functionals that can be
expressed as the difference of two sublinear functionals; [B(H)] is a
K-lineal relative to the ordering induced by RY. (Note that the infimum
of two elements of [B(H)] considered in RV is, in general, different from
the infimum considered in {B(H)] .) Furthermore, [B(H)| is an
Archimedean K-lineal of bounded elements (we can take as the unit
element in [B(H)] the sublinear functional x — || x ||). We endow [B(H)]

with the standard norm, setting || p || = sup Ip()i. (The corresponding
loli=1

topology is called the Hausdorff topology [113]). According to the Krein-
Kakutani theorem (see, for instance, [23]), there exists a compactum Q
such that the completion of [B(H)] is isometrically isomorphic to the
space C(Q) of continuous functions on Q. The compactum @ has a
particularly simple desciption in the case when V = R"; we can then take for
Q the unit sphere Z,, (Z, 2 {x € R": Ix 1= 1}, here and from now on,
Ix | denotes the Euclidean length of x); thus, [B(H)] = [B(R™)] is
realized as a dense subspace of C(Z,). This follows from the fact that each
element of [B(R™] (being a positively homogeneous functional) can be
identified with its restriction to the sphere Z,,. In the same way, an
element ¢ in B(R"™) can be identified with the support function
u ~— max (x, u). Henceforth we emphasize this identification by denoting
xel
an element of [B(R™)] and its restriction to Z, by the same symbol. We
denote [B(RY)] by [B,] and the cone B(R™ by B,. The elements of
B, are called convex figures. The solid elements of B, are called convex
bodies or convex surfaces. Strictly convex smooth bodies are called
regular (surfaces).

Note that the equation [B,] = C(Z,) implies the well-known geometrical
fact that any continuous function on the unit sphere can be uniformly
approximated by linear combinations of restrictions of support functions on
Z, [17]. This same equation shows that [®B,]" is the same as C'(Z,), that
is, the space of all Borel measures on Z,,.

1.5. Adjoint functions (the Fenchel-Moreau scheme). As we remarked
in Example 2.6, the set of all supports to a convex function f defined on
a locally convex space V can be regarded as the supergraph of the adjoint
function f*. The theory of adjoint convex functions, developed by Fenchel
and Moreau and further evolved in papers by Rockafellar, Bréndsted and
others, plays an important role in convex analysis [91]. It turns out that
a number of (algebraic) results in this theory are founded on H-convexity.
We illustrate this with the example of the Fenchel-Moreau theorem, which
it is natural to state for H-convex functions.

Consider a set Q and a subset H of R9. Suppose for the sake of
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simplicity that H separates the points of (. As we have already remarked
in Example 2.11, the elements of Q can be regarded as functions in R¥
(if x € Q, then the corresponding function is of the form A& +— h(x));
note that distinct elements give rise to distinct functions. If L C R9, then
we denote by L ® 1 the algebraic sum in R? of the line A1), and L
(here 1 is the evaluation map 1: x - 1 (x € @Q)). Recall that X, denotes
the set (— o, +]Q U {— o},

Let f € X4. The function f* defined on H by the formula

f*: hwsup (h(x)— f(x)) is called the adjoint (or, more precisely, the
xEQ

H-adjoint) function to f or the Young H-transform of f. It follows
immediately from the definition that f* € H,. Furthermore, for x € Q
and # € H Young’s inequality holds: f*(%) = h(x)— f(x).
PROPOSITION 5.1. Forany f€ Xq the function f* is Q © l-convex
(that is, f* € P(Q ® 1, Xy, R¥).
PROOF. Set Ué {(reQ@oel:y=x—fx)l, x € domf}.' Then
f*) = sup (h(x)— f(x) = _Sup ; (x(h)—f(x)) = sup f(x—f(x)l)(h) =

xEQ om x Edom

= sup y(h) for any & € H. This completes the proof.
yeU

Since f* € Xy, the adjoint f** to f* is well defined. It follows from
the definition that f**(x) = sup (A(x) — f*(h)) (x € Q). Note that for

hEH
f € Xq we have f > f*. For by Young’s inequality f(x) > A(x)— f*(),
so that f(x) = sup (h(x)— f*h)) = F**(x).
hEH

THE FENCHEL-MOREAU THEOREM. A function fin Xq is
H ® 1-convex if and only if f = f**.

PROOF. If f=f** then by Proposition 5.1 f is H ® 1-convex.
Suppose, conversely, that f is H ® l-convex. Then there is a subset U of
H ® 1 such that f(x) = s;lg gx) (xe€ Q). Letge U, g = h + al. Then

4

f(x) = h(x) + « for all x € Q, and therefore f*(h) = sup (h(x)— f(x)) <

xEQ
< — a, and it follows that f**(x) = A(x)— f¥*(h) = h(x) + a = g(x).
Finally, f**(x) = sup g(x) = f(x), that is, f** > f; the reverse inequality
gEU

always holds.
COROLLARY. Iffe Xy, then f** is the greatest H ® 1-convex
function minorizing f.

1 Recall that domf={xeEQ: flx)< w‘}r
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We note, in conclusion, that along with H-convex functionals and sets it
is appropriate to consider H-concave functions and sets (interchanging sup
and inf in the relevant definitions and results).

§ 2. Dual methods of representing H-convex functions

2.0. Preliminaries. In this section we shall, as a rule, be concerned with
continuous H-convex functions, or more precisely, elements of
P(H, C(Q), ﬁQ), where Q is a compact topological space, C{Q) is the space
of continuous functions on @, and H is a cone in C(Q). In what follows,
we denote P(H, C(Q), kQ) by P(H), so that an H-convex function is an
element of the cone P(H). Thus, a (continuous) function f is H-convex if

f(z) = sup h(z)
h<f, heH

for all x € Q. In particular, the concept of H-convexity is in the present
situation of a local character; in other words, it makes sense to talk about
a function being H-convex at a point.

Below we shall introduce two fundamental ways of representing H-convex
functions. The first method is tied up with the study of positive measures
on P(H). The main field of application of this first method is to extremal
problems over B(H). In §4 we discuss a number of geometric problems
of this sort.

The second method is tied up with the connection between the
behaviour of operators on the cone H and their properties on P(H). We
leave such techniques for the moment and resume the discussion in §3.

It is interesting to note that for a number of cones one can link the
structure of the adjoint cone with properties of positive operators.

First of all we explain the intuitive idea leading to the required
representations. Consider the case of continuous functions on a compact
convex set . The convexity of f, by definition, implies that for any

n n
representations of the form z = % a,z,, where a, > 0, > «, =1,
h=1 h=1
z,z, € Q, we have
n
(0.1) 2, ol (21) > 1 (2).

n
Denote by N the set of measures of the form kzi OBz — Ez (where ¢,

is the Dirac measure &x:/ > f(z)). Let K(N) be the weakly closed conical
hull of N. The set K(/V) can be represented as a collection of consequences
of Jensen inequalities. It is clear that the polar W* of the cone of convex
functions coincides with K(N). Thus, the integral inequalities
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(0.2) ifdu>f§ fdv,

where u, v = 0 and f is convex, are determined by the element u —»
u—v € K(N).

The first natural attempt to describe the measures satisfying (0.2)
consists in decomposing the measures g and v into parts analogous to the
Jensen inequalities. The formalization of this idea leads to the so-called
Reshetnyak—Loomis decomposition. The second approach to (0.2) is based
on an idea closely related to the work of Choquet. Namely, the measure

> 0z, figuring in (0.1) is, roughly speaking, the measure ¢, (or the
k=1

unit mass at z) distributed at the points z,, ..., z,. It is natural therefore
to represent u as the result of spreading » over . The formalization of
this leads to the concept of H-distributions of measures.

2.1. The decomposition theorem. We turn to the following situation. Let
X be a locally convex space which is at the same time a K-lineal;
H,, ..., H, are closed cones in X. Suppose that the topology and ordering

are such that: (a) the conical slice <0, f) 2 (ge K* g< f}isoX', X)
compact for any f € K* (where K = {x € X: x > 0}); (b) for any f € K*

and arbitrary A, € H,, ..., h, € H, there is a partition{ f, ..., f, } of
f such that f(hy \/ ... \/ k) = é fr (B3). (By a partition {f,, ..., f,}
we mean a collection of functionals f, > 0 (k = 1, ..., n) such that

S f =)

k=1

Under these hypotheses we have:
THE DECOMPOSITION THEOREM. Let f, g € K*.
Then the inequality f(hy \/ ...\ k) > g \/ ...\ h,) holds for any

hy € H, (k= 1, ..., n)if and only if for any partition {g,, ..., &)
of g there is a partition {f,, ..., f,} of f such that f, — g, € Hf
k=1, ..., n).

SUFFICIENCY. Leth, € H, (k=1,...,n) We can find a

n
partition of g for which g(h,\/ ... \/hs)= > gu (k). For this partition we
k=1

choose a partition of f such that f, — g, € HJ. It is clear that

ghy\/ . --th):kz_:lgk (hk)\<k§1 fu (hk)<k='1fk M\ ..V h)=Ff(y\ ... \Vh,).
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NECESSITY. Let S&((f,, ..., f) €E*™ Mfa=1f]. Set
S 25— HFX ... x HFE It is clear that S isa non-empty weakly closed
convex set. Suppose that (g,, ..., g,) $§, where gy, ..., g, 1S a partition
of g. By the separation theorem there exist h, € H, (k =1, ..., n)such
n n ~ ~ ~
that hzlfh(hk)<k2 gk(%k) for Ula L) fn) € S' Let {fls =e s fn } be
= =1

a partition of f such that i Fe)=F(y\ ... V]y). Then
k=1
FON - V) < 2 en()<g V... VE) </ RV ... VFy). This

contradiction completes the proof.
REM AR K. The decomposition theorem holds in each KN-lineal of
bounded elements.
Next we give some further definitions. Let H be a cone in C(Q), and
let u and » be positive (Radon) measures on (. We say that u is an
H-successor of v if u(f) = v(f) for all f € P(H); this will be writtenp > v.
H

We say that u is H-stronger than v if for all partitions {v,, ..., »,} of
v there is a partition {u,, ..., u,} of u such that u, —v, € H*, and
we write 4 > v. We say that the cone H has the Reshetnyak—Loomis

H

property if pu > v =pu > v (clearly the converse always holds). From the
H fij

decomposition theorem we have the corollary:

THEOREM 1.1. A closed cone H in C(Q) has the Reshetnyak—Loomis
property.

Suppose now that 7,, T, € £ *(C(Q), B(Q)), where B(Q) is the space
of bounded functions on Q, and £* (X, Y) denotes the set of positive
operators’ between the partially ordered spaces X and Y. We say that T,

is H-stronger than T, (T, > T,) if for any partition T, ..., Ty} of
H
T, (that is, k; T% = T,, T% > 0) there is a partition {T}, o T
of T: such that T%h > Tih (h € H, k = 1, ..., n). The set {T": T" > T}
H

is called the decompositional germ of T over the cone H and is denoted by
Dpr (7, H).

Throughout, unless explicitly stated to the contrary, an operator is understood to be additive and
homogeneous.
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THEOREM 1.2. Let H, P(H) be closed cones in C(Q). Then f € C(Q)
is H-convex if and only if for any T € £* (C(Q), B(Q)) and
T' € Dpr(T, H) the condition T'f = Tf holds.

This is a slightly modified version of Theorem 1.1.

2.2. The operator principle of preservation of inequalities. It is of
interest to narrow down the set of operators whose decompositional germs
define H-convexity. Consider the triple H C X C Y, where Y is a K-space,
X is a vector subspace and H is a cone in X. We say that H is minorant
if for any x € X the set of supports {h € H: h < x } is non-empty. The
K-space Y becomes a complete lattice if a maximal and a minimal element
are adjoined. Because of this it makes sense to talk about H-convex
elements.

We denote by Spr(7, H) the positive germ of the operator T over the
cone H; Spr(T, H) 2 {T" € 2+(X, Y): Th > Th(h € H)}; E: X > Y
is the inclusion map. For the proof of the operator principle of preserva-
tion of inequalities we need the following:

THE HAHN-BANACH-KANTOROVICH THEOREM ([46]).
Let V be a vector space, Y a K-space and q: V - Y a superadditive
(qx + y) = q(x) + q(»)), positively homogeneous (q(Ax) = Ag(x), X > 0)
operator. Suppose that the operator T, with values in Y is defined on a
vector subspace V| of V, is additive and homogeneous, and satisfies the
inequality Ty x > q(x) (x € V,). Then there is an additive homogeneous
operator T: V - Y extending T, such that Tx = q(x) for all x € V.

THEOREM 21 (THE OPERATOR PRINCIPLE OF
PRESERVATION OF INEQUALITIES). Let H be a minorant
cone in a subspace X of a K-space Y. Then an element x € X is H-convex
if and only if Tx = x for all T € Spr(E, H).

PR OOF. Suppose that x € P(H, X, Y). Then for h € U, we have
Tx = Th = h, that is, Tx = sup U, = x. Conversely, suppose that

x > sup U,. Consider the operator g, : x" +>sup Uy, g4 : X = Y. Then
clearly g,, is superadditive and positively homogeneous. Let X, 2 {ax}aer
and let A,: X, - Y be defined by 4, (ax) = ag, (x). Then A, majorizes
qy on the subspace X,. By the Hahn—Banach—Kantorovich theorem there
is an extension A: X - Y of 4, such that Ax' > ¢, (x") (x' € X).
Clearly A € Spr(£, H). On the other hand, Ax < x.

2.3. H-distributions. It is of interest to connect the operator principle
of preservation of inequalities with the properties of polars of cones of
H-convex functions in C(Q). (For the sake of convenience we take Q to
be a compact metric space.)

To begin with, let H be a closed cone in C(Q), and let » = 2 caey,

be a discrete measure (it is always understood that a discrete measure has
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finitely many carriers), and let u ? v. For the partition {a;e,,, . . ., ocnexn}
of » we find a partition {u,, ..., u,F of u such that u,(h) > @y, h)
(h € H). We now define Ty £ pyfa, (k=1,...,n) and T,(h) 2 e

(x # x,). Note that: (a) 7, is a positive Radon measure; (b) 7, (h) = h(x)
(h € H); (¢) for any f € C(Q) the function x — T, (f) is bounded and

Borel measurable; (d) u(f) = S T.(Ndv for f € C(Q).
Q

If for the positive measures p and » there exists a function x »~ T, such
that conditions (a)—(d) hold, then we say that u is a (weakly measurable)
H-distribution of v and write & D v.

H

The following implications are easily verified:

oy

(3.1) / \

/2 =;*‘V=>/£>>E’V

The problem of replacing the implications by equivalences in (3.1) has
so far not been completely solved. A fairly detailed study has been made
of the case when for any u, » = 0 the equivalence p > v << u > v holds.

H H

In this situation we say that the cone H has the Hardy—Littlewood—Pblya
property, Such a cone automatically satisfies the Reshetnyak—Loomis
property; on the other hand, elementary counterexamples show that the
converse is false.

The study of H-distributions is based on Strassen’s theorem.

Let X be a separable Banach space, and let (2, S, p) be a probability
space. Let w > h,, be a weakly measurable mapping from § into
P(X', R*, R¥), (that is, for any x € X the mapping w w—» A (x) is
S-measurable). It is clear that the function w = |l A2, || (where
WAl 2 \su“p lh(x) 1) is also S-measurable. Suppose that S A, lldu <+ oo,

fxii=1 o
Then the integral x — A(x) 2 S h,, (x)du is a sublinear functional on X.
Q

STRASSEN'S THEOREM ([121]). Let I be a support linear
functional to h. Then there exists a weakly measurable mapping w > I

from Q to X' such that 1, is a support to h,, and I(x) = S I, (x)du
Q

for all x € X.
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From this we can derive the following fact.
THEOREM 3.1. A minorant cone H in C(Q) (Where (Q is a metrizable
compact space) has the Hardy—Littlewood—Polya property.

Here is an outline of the proof. If p > v,then we set
H
E(f) 2 g (coyf)(+)dv (where (cop,f)(x) 2 sup{h(x): he H h < f} =

= sup{p(x): v € P(H), ¢ < /}). Now for positive measures u' we have
' (cogf) =sup u'(p): ¢ € P(H), ¢ < f , so that —u is a support to the

functional —5. The existence of the mapping x = 7, in the definition of
the relation > now follows from Strassen’s theorem.
H

REMARK. It was established above that any closed cone H in C(Q)
has the Reshetnyak—Loomis property. Theorem 3.1 shows that the
condition on H to be closed can be replaced by the condition that it is
minorant. Note also that P(H) being closed does not, in general, imply that
H is closed; on the other hand, if A is minorant, then P(H) is closed.

2.4. Examples. We now give typical applications of the fundamental
technique of decompositions. For details about. H-distributions see [105]
and also §3.

EXAMPLE 4.1. Let Q be a compact convex subset of the locally
convex space V, and let A(Q) be the set of continuous affine functions on

Q (that is, A(Q) 2y !Q + R). The cone A((Q) has the Reshetnyak—

Loomis property (this is the Cartier—Fell-Meyer theorem [47]). If Q is
metrizable, then A(Q) has the Hardy—Littlewood—Po6lya property. This last
result is called the Hardy—Littlewood—Polya—Blackwell—Stein—Sherman—
Cartier theorem [105].

EXAMPLE 4.2. We retain the symbol R” for the subspace of traces
on the sphere of directions Z, of linear functionals on R". Note that
P(R™) (or 9B, ) is the cone of convex compact sets in R"™. The fact that
R™ has the Reshetnyak—Loomis property provides a description of positive
Minkowski linear functionals on convex surfaces. In particular:

THEOREM 4.1. Let g1, -« «» En-1y D10 - - -y Yn-1 be convex surfaces
in R*. Then for any convex figure y the inequality
V(tty « o Tnats 3) > V(bts - s Ynoa, 3) holds if and only if
w(zy - - &1”1)5’ B ooy Yuy) Chere V(- , ..., *)and p(-, ..., *) are

the mixed volume and mixed surface functions, respectively (1], [171)).
To prove this it suffices to note that

1
Vo oo s =5 fmax(e, )duG ot
Zn ¢4
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Vo oor Yoy, 3)‘;71‘ Smax(x, D Ap (Y -y Yany),
Zn XE
and then apply Theorem 1.1.

EXAMPLE 4.3. Let K be a generating cone in R” and N the
collection of traces on K* N Z, of elements of K regarded as functionals
on R". By example 1.2.5 the N-convex sets can be identified in the present
case with the convex K-normal subsets of K. The cone N does not, in
general, have the Hardy—Littlewood—Polya property, but it does have the
Reshetnyak—Loomis property.

EXAMPLE 4.4. Consider R"™! as the hyperplane x, = 0 of R". We
can find functionals which are linear with respect to the Minkowski
operations and positive on the set of conical pyramids with bases in R"™}
and vertices on the (orthogonal) ray L 4 {ae,: a = OL. By definition, a
conical pyramid is the convex hull of an element y € 8, _, and a point of
the ray L (here %n _; is the cone of compact convex subsets of R*™). It
is clear that the present situation falls under the decomposition theéorem
{(with the standard identifications); in other words, the following holds:

THEOREM 4.2. 4 positive functional on the conical pyramids is the
difference of non-negative measures u, v on the sphere such that for any
0 < v, < v there is a measure 0 < y, < p for which y, —v, € %;*1 and
W —u)en) = (v — vy)en).

Note that the polar %,*;_1 can also be described by means of
decompositions.

EXAMPLE 4.5, We define an m-fope as a polyhedron in R™ which is
the convex hull of not more than m points. Let M,, be the set of all
m-topes. Denote by ]Tflm the closed conical hull of M,, in the space of

convex sets. We call the elements of 1171,,, m-hedra. Thus, an m-hedron is
“a continuous positive combination of m-topes”. For the case m = 2 we
obtain the usual polyhedra (see [37]). Using the Minkowski duality and
the decomposition theorem it is not difficult to give a characterization of
the support functions of m-hedra. We will only outline the characteristic
idea for obtaining similar representations. It is necessary to point out that
T e M, = u(z) = 0 for all p € M},. Since M,, consists of functions of
the form z,V ... V z, (p < m), where z; € R" (we recall that we
identify convex compacta with their support functions), it follows that M},
can be described in terms of the decomposition property. So we may
confine our attention to the case of discrete measures u, because we have
the following useful result:

PROPOSITION 4.1. Let H be a convex cone inlB,], H — B,,. Then
the discrete measures are dense in the polar H*.

The proof uses the theorem on simplicial approximation and the
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well-known theorem of Aleksandrov on the reconstruction of a convex
surface from its surface function ([1]) and can be found in [62].

The following example is based on the same technique. It deals with the
tie-up between the Minkowski operations and those of taking the convex
hull and the intersection on Minkowski balls. These questions are related,
for instance, to interpolation theorems (see [82]).

EXAMPLE 4.6. Let S, ..., S, be convex balanced bodies in R"
(that is, symmetrical with respect to the origin). Then their so-called Pinsker
hull #(S,, ..., S,,) is the smallest closed cone in the space of convex sets
[8,], that contains S,, ..., S,,, and is closed with respect to the operation
of taking the convex hull of their union.

The arguments outlined in this last example come down to the following
result.

THEOREM 4.3. A convex figure S (S # {0}) is in n(S,, ..., S,,) if
and only if for any vectors x, ..., x, (not all zero) we have the
inequality (where S° is the polar of S)

S S
. <=2y . y—Sm

¥y
Nl M >
Z! R 0 2 Ix}tll 0 ”Zh” ]
K1 § k=1 St ] Sm

In other words,

Here is an interesting consequence of this fact.

PROPOSITION 4.2. Let O(S,, S,, ..., S,,) be the smallest closed
cone that contains Sy, ..., S,, and is closed with respect to intersections.
Then the smallest closed sublattice M(S,, ..., S,,) in B,, containing the
balls Sy, ..., Sy is 7(Q(Sy, ..., S,,)). Furthermore, a non-zero S is
contained in M(S,, ..., S,,) if and only if

s
S= S (x L
x4\0 ( )ser(si,...,sm) So (@)

We outline the main idea of a proof of Proposition 4.2.
Clearly we merely have to verify that #(Q(S,, ..., S;,)) is closed under
intersections. By Theorem 4.3 it suffices to show that if

n
kzi Si(xx) = §i(v) @ =1, 2) for those x,, ..., x, and y for which
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P
I (So(xa) > So(v) for all Sy € Q(S1, .-, Sp), then
D
rZ‘i (St A\ 8) (2r) >80 A\ S, (y). Since the cone Q(Sy, ..., Sp) is closed

with respect to intersections, according to the appropriate modification of
the decomposition property the matter reduces to measures of the form

u L e, — Be,, where u € (Q(S;, ..., S, ))*, and the required result
follows from this.

EXAMPLE 4.7. Let H be a minorant closed cone in C(Q) and let
lat(H) be the smallest closed cone in C(Q) that is a lattice containing H.
Since in C(Q) the distributive law holds, lat(#) can be obtained as a cone
of P(H)-concave functions. Combining Theorems 1.1 and 3.1 we obtain the
following proposition.

PROPOSITION 4.3. The difference of positive measures (1, v is

contained in [lat(H))* if and only if for each partition {H1, - -5 Hn} of
u there is a partition {vy, ..., v,} of v such that u, is an H-distribution
of v, (k =1, ..., n).

Further examples can be found in [67], [105].

2.5. H-maximal measures. In this subsection we establish a connection
between the theory of H-convex functions and Choquet’s theory. Historically
Choquet theory arose from the problem of balayage in potential theorv, but
for us its main interest is that it has evolved so as to provide an approach
to an important dual description of H-convex functions.

The fundamental problem in Choquet theory is that of obtaining an
integral representation of points of a convex (in our case H-convex)
compact set. The basic apparatus for this is that of maximal measures (that
is, roughly speaking, measures concentrated on the boundary points of the
compact set). In the present situation the concept of an H-maximal measure
is introduced as follows.

Let H be a cone in C(Q). A positive measure which is maximal with
respect to the ordering >H>(;L>H>v <>pu—v € H*), is called H-maximal. It

can be shown that there exist H-maximal measures on H if and only if H
is minorant. Furthermore, given a positive measure there is an f-maximal
measure majorizing it (in the sense of >§).

An immediate check (see, for example, [12]) establishes the following
proposition.

PROPOSITION 5.1. A measure u is H-maximal if and only if for
each function f € C(Q)

p(f)y = sup (k).
h<f, heH

<f. he
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In particular, we have the corollary:

THE PRINCIPLE OF PRESERVATION OF INEQUALITIES. 4
function f is H-convex relative to the minorant cone H if and only if
w(f) = f(z) for each z € Q and positive measure u such that u(h) = h(z) (h € H).

In 2.1 we saw how to define H-convex functions by means of the
preservation of operator inequalities. We shall return to this question
presently; for the moment we establish the following fact:

MAKOBODSKII'S THEOREM. A measure u is maximal with
respect to the cone of H-convex functions P(H) if and only if
u(f) = u(coyf) for each continuous function f.

PROOF. From Proposition 5.1. we have

u(f) = sup p(g) = wz — sup {o(z): o<1, ¢ € P} = u(coy 1)
< f,pE P(H)

On the other hand, if u(coy f) = u(f), then

r(f) = wax — sup {o(x): ¢ <f, 9 € P(H)}) =  sup u(p), that is,

¢<f,0EPH)
u is P(H)-maximal.

We now introduce the following definition. A point z € @ is said to
belong to the Choquet boundary b(H) of the cone H if (coy f)(2) = f(2)
for any f € C(Q) (it would be more correct to call it the “Milman—
Choquet boundary” (see, for instance, {78]), but the terminology
“Choquet boundary” is more customary). In other words, according to
Makobodskii’s theorem a point z is in b(H) if and only if the measure e,
is P(H)}maximal (or, what is the same thing, H-maximal).

Note that a point of the Choquet boundary is an analogue to a
boundary point of a convex compact set (more precisely, the Choquet
boundary of the subspace of affine functions on a convex compact subset
of a locally convex space coincides with the set of boundary points of
this compact set).

Choquet’s theorem on the construction of maximal measures becomes
particularly simple for the case of a metrizable space (in the general case
it does not make sense to talk about “a measure concentrated on the set
of boundary points”). For this reason we confine ourselves below to
“almost metric” spaces. First of all we give the necessary definitions.

AX continuous function f is said to isolate the cone H if
Sy = {z € Q: (coxgf)(z) = f(z)} coincides with the Choquet boundary
of H, that is, if f is not an H-convex function at the points of the
complement of the Choquet boundary b(H) (recall that in the present case
H-convexity is a local property). A cone H is called a Choquet cone if
(a) its Choquet boundary is a non-empty Borel set, (b) there exists a
function isolating H.

CHOQUET'S THEOREM. Let H be a Choquet cone. Then
P(HYymaximal measures are concentrated on the Choquet boundary b(H);
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furthermore, there exists for each z € Q a positive measure y concentrated
on the Choquet boundary such that u(h) > h(z) for all h € H.

PROOF. Let u be a P(H)maximal measure. By Makobodskii’s theorem
u(f) = u(con f), where f is a function isolating H. Clearly b(H) = Sr. On
the other hand, if 4 is open and A C Q \ S, then since f(z) > coy f(z)
for z ¢ A, we have u(4) = 0. Thus, u is concentrated on b(H). The second
part of the theorem is obvious.

R EM A R K. Choquet’s theorem gives an exhaustive characterization of
maximal measures. The fact is that a measure whose support is concentratec
on the Choquet boundary of the cone H is evidently P(H)-maximal (by
Makobodskii’s theorem).

The classical Choquet theorem [105] is obtained from the above result
in the following way: we choose as a function isolating the cone of affine
functions an arbitrary strictly concave function (whose existence, as is well-
known, is equivalent to the metrizability of the original space). We now
apply. this result to the study of convex sets in the sense of Fan. Let Y be
a topological space, and let H be a cone of continuous functions on Y that
contains a straight line passing through 1 and is such that the traces of
elements of H on Q form a Choquet cone, where Q is a Fan-convex
compact set. In other words,

QL {(z€Y: h(z) << sup h(x) (h € H)}.
NZQ

FAN'S THEOREM. The set Q is the H-convex hull of the Choquet
boundary b(H), that is, Q = {z € Y: h(z) < sup h(x) (h € H)}.

xS b(H)

PROOF. The inclusion {z € Y: h(z) < sup h(x) (h € H)} C Qis
xEbH)
obvious. Let z € (. Then by Choquet’s theorem there exists a measure
¢ = 0 concentrated on b(H) such that u(h) = h(z) for » € H, that is,
h(z) < sup A(x)-u(l) = sup A(x). This proves the result.
xEbH) xEb(H)

Finally we look at the notion of a boundary of a cone H. This, by

definition, is a set B C @ such that sup h(x) = sup h(x) for all h € H.
xEQ xER

It follows immediately from the above results that the Choquet boundary

b(H) is contained in any closed boundary of H.

The closure of the Choquet boundary is called the Shilov boundary. In
particular, if the Choquet boundary of the cone H is a boundary of H
(this is by no means the case in general, but is true, for instance, for
Choquet cones), then the Shilov boundary is a minimal closed boundary

of this cone. For further properties of the Choquet and Shilov boundaries
see [105].
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2.6. Weak H-convexity. We saw in the previous subsection that H-convex
functions can be represented by means of integral inequalities. It is well
known, however, that there are two methods for defining “good” classes
of convex functions: by means of the discrete Jensen inequalities, and as
upper envelopes of affine functions or subclasses of them. In general, the
classes of functions determined by these two methods are not necessarily
the same. In this subsection we establish a connection between these two
ways of inducing convexity.

Thus, let Q be a set, X a K-ineal in R® (where the supremum of two
elements taken in X or in R9 is the same), and let H be a cone in X. A

function f € X is weakly H-convex if for any points z, x;, ..., x, € Q
n
and non-negative numbers a,, ..., a, such that » «,h(x,) = h(z) (h € H)
e}

we have hZ] apf(x,) = f(z). We denote the set of all weakly H-convex
=1

functions by P, (H). It is clear that P(H) = P(H, X, R?) is contained in

P, (H). The converse is false, in general. The difference between H-convexity
and weak H-convexity is obvious. The latter class is closed in the topology of

simple convergence; the second is, in general, not. The decomposition theorem

shows that the above circumstance characterizes the difference.

THEOREM 6.1. P,(H) = P(H), where the bar denotes the closure with
respect to the topology of simple convergence in X.

The following is a useful corollary of this theorem.

PROPOSITION 6.1. Let H be a closed cone in the K-semi-lineal B,.
Then every continuous weakly H-convex function is the uniform limit of a
sequence of H-convex functions.

This proposition lies behind the phenomenon described in Example 4.6.

§ 3. Supremal generators

3.0. Preliminary remarks. We introduce in this subsection dual character-
istics of H-convex elements related to the convergence of sequences of
operators and functionals that are based on the operator principle of
preservation of inequalities. It will be convenient to set out the results in
the form of theorems on supremal generators, that is, on cones H such
that every element of the space is (in some sense or another) H-convex.
We adopt this style of exposition because most research concerned with
this topic is devoted to the study of the definability of operators by their
values on subspaces.

The existence of restricted (finite) cones which completely determine the
convergence properties of operators enables us to simplify considerably the
analysis of convergence phenomena. At the same time, generators find
applications in a number of other problems (quasilinearization, classification
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of compacta, etc.).

Research prior to the theory of generators (see the Commentary) has, in
the main, been concerned with the problem of convergence to the identity
of sequences of (usually positive) operators.

The approach based on Minkowski duality allows us to grasp the nature
of similar phenomena, and also to obtain by unified natural methods
necessary and sufficient conditions for convergence to an arbitrary positive
operator, to an operator with an abstract norm, and so on.

3.1. Supremal generators with respect to a K-space. Let Y be a K-space
and X a vector subspace of Y. A minorant cone H in X is said to be a
supremal generator of X with respect to Y if any element x € X is
H-convex, that is, x = sup{h € H: h < x}. It turns out that a supremal
generator can be characterized as follows: convergence to the identity of a
sequence of positive operators on the generator H implies convergence of
this sequence on the whole of X. This is stated more precisely in the next
theorem (using the notation of 2.2).

THEOREM 1.1. Let H be a minorant cone in the .vector subspace X
of the K-space Y. Let E: X —» Y be the inclusion operator. Then the
following statements are equivalent:

(1) H is a supremal generator of X with respect to Y.

(2) For any sequence of operators (T,) such that T, € £*(X, Y) and

0

©
lim T,k > h for all h € H, we have T,x - x (x € X).

(3) Spr(E, H) = {E}. R
PROOF. (1)=» (2). Let xe Xand he€ U, ={ h € H: h < x}. Then
T.x > T,h, and therefore lim 7,,x > lim 7,4 > h. Since sup U, = x, we

have lim 7,x > x. Repeating the argument for — x, we see that

n
lim T, (— x) > — x or, what is the same, lim T,x < x. This completes
I n

the proof.

(2) = (3). This is obvious.

(3) = (1). This follows from the operator principle of preservation of
inequalities (Theorem 2.2.1).

REMARK 1. In the proof of (1) = (2) we have nowhere used the
fact that H is a cone. Instead of the inclusion operator E we can, more
generally, consider a non-linear operator T sending X into a K-space Z,

where T is monotone, odd (that is, 7(— x) = — Tx (x € X)) and
commuting on H with the sup operation (that is, Tx = sup T7h for any
heu,

x € X). Also, the sequence (7,) must consist of monotone odd operators
sending X into Z. If H is a supremal generator, then an operator
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T € £*(X, Z) has the property Spr(T, H) = { T} if and only if T
commutes on H with the sup operation.

REMARK 2. In certain cases the “qualified”” convergence of (7,) on
a supremal generator A implies its ‘“‘qualified” convergence on the whole
of X. Thus, for example, if the cone H is the conical hull of at most a
countable number of elements and (T, ) is such that for all # € H there

A *
exists (*) — lim T,k = b,, where b, > h, then T,x @ x for all x € X.

3.2. Supremal generators of C(Q) relative to B(Q). Let Q be a compact
topological space, C(Q) the K-lineal of continuous functions on @, and
B(Q) the K-space of bounded functions on Q. The study of supremal
generators of C(Q) relative to B(Q) uses the results of §2. From
Proposition 5.1 in §2 and the principle of preservation of inequalities it
follows that a cone H is a supremal generator of C(Q) relative to B(Q) if
and only if the Dirac measure &, is H-maximal for any x € Q. This can be
restated as follows: the Choquet boundary of a cone H is (. (As was
mentioned in §2, the existence of an H-maximal measure is equivalent to
the cone H being minorant.)

Theorem 1.1 describes the supremal generator A in terms of the positive
germ Spr(E, H) of the inclusion operator E: C(Q) —~ B(Q). It is of interest
to clarify whether a generator can be characterized by means of generators
in £*(C(Q), C(Q)). For an operator T € & *(C(Q), C(Q)) we set

Sprey (T, H) 2 {T" € £ *(C(Q), C(Q): T'h > Th (h € H)}.

Let I: C(Q) > C(Q) be the identity operator. It is easy to see that the
claim “if Spreqg) (I, H) = {I}, then H is a supremal generator of C(Q)
relative to B(Q)” is, in general, false. However, one can find a set of
operators T.(Q) such that from Spre(g) (T, H) = {T} for all T € T.(Q)
it follows that H is a generator. Such a set is that of all operators of the
form T,, where ¢ is a continuous mapping of the compactum @ into
itself, T,: f—>f° ¢ (f € C(Q)).

The above remarks form a part of the following theorem.

THEOREM 2.1. Let H be a cone in C(Q). Then the following state-
ments are equivalent:

(1) H is a supremal generator of C(Q) relative to B(Q).

(2) For any x € Q the measure ¢, is H-maximal.

3) If x € Q and the sequence of measures (u, ) is such that
lim u, (k) > h(x) for all h € H, then (u,) converges to &, (in the
n

a(C'(Q), C(Q))rtopology).
(4) For any operator T € T .(Q) the positive germ Sprcqy (T, H) is the
same as {T}.
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S If T e T.(Q) and the sequence (T,) in £* (C(Q), C(Q)) is such that
lim T,h > Th for all h € H (where the convergence is uniform), then
n
W Tnf = Tf Il = O for any f € C(Q).

(6) For any operator T € £+(C(Q), B(Q) the decompositional germ
Dpr (T, H) coincides with {T}.

Note that (5) shows that in the given situation one can, apart from
(o)-convergence, talk about uniform convergence (see Remark 2 to
Theorem 1.1). Theorem 2.1 and modifications of it have various
applications. Note, in particular, that Ray’s theorem on the resolvent (see,
for instance, [105]) is an immediate consequence.

We now formulate criteria for a supremal generator in terms of “‘almost
peaked” functions.

THEOREM 2.2, A minorant cone H is a supremal generator of C(Q)
in the sense of B(Q) if and only if it has the following property (A): for
any ¢ > 0, z € Q, and neighbourhood U of z there exists an h € H
which is a “support to the Uryson peak”, that is, such that

@21 k@) >1—e k)<l (@€0), Ma) <O (z€Q\ U).

REMAR K. Theorem 2.2 is a Bishop—de Leeuw type statement (see,
for instance, [9]), giving a description of the Choquet boundary of
functional algebras in terms of supports to Uryson peaks.

The above theorem often enables us to decide easily whether a given
cone is a generator. The following example illustrates this.

EXAMPLE 2.1. Let Q be a compact subset of the interior of the
positive orthant R} of R". Let us show that the cone H spanned by the
generators — 1, z+—z,, . . ., T+ 2,, 2+ — |z[*> is a supremal generator
of C(Q) relative to B(Q). (Here x,, ..., x, are the coordinates of x.) With
this aim we take & > 0, z € @, and U a neighbourhood of z, and we
consider the function A’: x ~— — |x — z|?>. Then it is clear that #’' € H.
Now we choose a small § > O such that § < {z12 and — 8§ > rena>\(U R (x),

x€EQ
and we set A" 2 (W' + 81)/6. Then it is not difficult to verify that k" € H;
in addition, A" satisfies condition (A) for the given &, z and U. The
required result now follows from Theorem 2.2.

This example demonstrates the existence of finite cones in C(Q) that are
supremal generators relative to B(Q).

EXAMPLE 2.2. The following result (originally due to Korovkin [54])
is an easy corollary to Theorem 2.2. A three-dimensional subspace of
C(la, b)) is a supremal generator of C(la, b]) relative to B(la, b]) if and
only if it contains three functions forming a Chebyshev system on {a, b].

We now touch upon the question of generators of C(Q) relative to a
K-space S(Q). Let p be a Baire measure on a compact set Q whose support
is the whole of . We denote by 5{{; ...« Z-space of all u-measurable
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functions defined on Q (more precisely, classes of p-equivalent functions).
Note that C(Q) can be regarded as a vector subspace of S(Q). Then we
have the following simple result:

PROPOSITION 2.1. Let H be a cone in C(Q) whose Choquet
boundary contains a measurable subset of full measure; then H is a
supremal generator of C(Q) relative to S(Q).

Combining this with Remark 2 after Theorem 1, we can prove the
following result.

THEOREM 2.3. Let H be a separable cone in C(Q) whose Choquet
boundary contains a measurable subset of full measure; let Z be a K-space
normally embedded in S(Q) and containing C(Q); finally, let (T,) be a
sequence of operators in £+ (C(Q), Z) such that for all h € H the limit

(* Ylim T,k 2 b, exists, where b, > h. Then T.f 3 f for all f € C(Q).
n

REMARK 1. We recall that in the K-space S(Q) ( * }convergence is
the same as convergence in measure. If Z is a KB-space, then
(* yconvergence is the same as convergence in norm.

REMARK 2. Using the Banach—Steinhaus theorem one can modify
Theorem 2.3 as follows. Let Z, be a B-space and Z, a KB-space, where
cQ)c zZ, ¢ Z, C S(Q), C(Q) is dense in Z, and Z, is normally
embedded in S(Q). Let H be the same cone as in Theorem 2.3,

T, € £*(Z,, Zy), sup | T, |l < + =, and suppose that lim || T,k — byllz, =0,
n n

where h € H, b, = h. Then | T,f—fllz, > 0 for all f € Z,.

REMARK 3. We can consider the convergence of a sequence (7, ) not
only to the inclusion operator but, more generally, to any operator
commuting with the sup operation. Results of this type for subspaces have
been obtained by Krasnosel’skii and Lifshits [56], [57] using the
“Theorem on complete shadows™.

3.3. Finite generators. Of considerable interest are the finite supremal
generators of a vector space X with respect to a K-space Y (that is, those
spanned by finitely many generators). It turns out that if X is a K-lineal
(in the sense of the order induced by Y), then the existence of a finite
generator in X implies that X is a K-lineal of bounded elements.
Furthermore, we have

PROPOSITION 3.1. A K-lineal X containing a minorant cone H is a
K-lineal of bounded elements.

For the proof it suffices to note that the element —u, where u is the
infimum of the generators of the cone, is a unit in X bounding each
element.

By the Krein—Kakutani theorem, for each Archimedean K-lineal of
bounded elements X there exists a compact set Q such that X is
(algebraically and order) isomorphic to a dense sublattice of C(Q). We can
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therefore confine ourselves to the study of finite generators of C(Q)
relative to B(Q).

It is appropriate to point out that any dense subspace of C(Q) is a supremal generator of
C(Q) with respect to B(Q) (see Theorem 2.1). This fact enables us to give, within the setting
of the K-lineal of bounded elements X, a criterion for a cone H in X (where the latter is
realized as a dense subspace of ((Q)) to be a supremal generator of X (and therefore also of
C(Q)) with respect to B(Q). Namely, H has this property if and onlv if a minimal upper semi-
lattice generating H (that is, a set of elements of the form A, V - ..V h,,, where h; € H,
(i=1,...,m))is dense in X.

We now turn our attention to the problem of what sort of a compactum
Q has to be so that C(Q) has a finite generator, and also what is the
minimal “dimension” of a generator. In this connection we introduce the
following definitions. A number m is called the supremal rank of a compact
set Q (or of the space C(Q)) if: (1) there exists a family f,, ..., f,, of
continuous functions on @ such that the cone spanned by the generators
-1, fi, ..., fm, is a supremal generator of C(Q) with respect to B(Q);

(2) no family g,, ..., g (r < m) has this property. A number m is
called the complete supremal rank of @ if (1) there exists a cone in C(Q)
spanned by m generators that is a supremal generator of C(Q) with respect
to B(Q); (2) no cone spanned by fewer than m generators has this
property. These definitions are justified, in particular, by the fact that
homeomorphic compacta have the same (complete) supremal rank. We
denote the supremal and complete supremal ranks of Q by sim (Q) and
Sim (Q), respectively. If Sim(Q) is defined, then it follows at once from
the definitions that either Sim(Q) = sim(Q) + 1 or Sim(Q) = sim(Q).

Example 2.1 shows that if Q is a compact subset of R, then sim(Q) < n+1.
The following theorem shows that this estimate cannot be improved.

THEOREM 3.1. The supremal rank sim(Q) of a compactum Q is
n+ 1 (n>1)if and only if the smallest dimension of a Euclidean space
into which Q can be topologically embedded is equal to n.

COROLLARY. The space C(Q) has a finite supremal generator relative
to B(Q) if and only if @ is finite-dimensional.

The following result is due to Rutkovskii.

THEOREM 3.2. A compactum Q is homeomorphic to a finite-
dimensional sphere if and only if sim(Q) = Sim(Q).

Next we recall the definition of a Korovkin system (K-system) [115].

.. A . .
This is a system ¢ = (fy, ..., fm) of continuous functions on a compactum

Q such that the subspace of C(Q) generated by it is a supremal generator of
C(@). It is not hard to see that if ¢ = (fy, ..., f,,) is a K-system on Q, then
there exist functions g,, ..., g,, such that ¢ 2 (-1,85, ..., 8n) is also a
K-system. It follows from Theorem 3.2 and from what has just been said that
the supremal rank is a somewhat more refined characterization of a
compactum than the minimal rank of Korovkin systems.
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We conclude this subsection by considering supremal generators of a K-space
Y in itself (in the notation of §3.1 the subspace X is the whole of Y).

THEOREM 3.3 [98]. Let Y be a K-space. The following statements
are equivalent:

(1) Y has a finite supremal generator in itself.

(2) Y has a supremal generator in itself that is spanned by three
generators. R

(3) Y is isomorphic to the K-completion C(Q) of C(Q), where Q is a
finite-dimensional compactum.

4) Y is a K-space of bounded elements whose basis is a separable
Boolean algebra.

REMARK, If Y is not isomorphic to R! or R?, then it does not
contain supremal generators in itself spanned by two generators.

It follows from Theorem 3.3, for instance, that the space /= of all
bounded sequences has generators in itself spanned by three generators; the
space L™ ([0, 1]) of all almost-everywhere bounded functions on [0, 1] (in
the Lebesgue measure) has no finite generator in itself.

3.4. The supremal generator with respect to an operator. Here we study
an important case of the construction of a supremal generator. As a
preliminary we extend the definition of a minorant cone to ordered vector
spaces (which are not necessarily lattices). A cone H in X is said to be
minorant if for any x € X the set U, = {h € H: h < x} is non-empty.

A cone H in an ordered vector space X is called a supremal generator of
X relative to a positive operator T: X - Y (where Y is a K-space) if H is
minorant and Tx = sup Th(x € X). If X C Yand T 4 E is the inclusion

hEU,
operator, then this coincides with the standard definition. In our case the
following analogue to Theorem 1.1 holds.

THEOREM 4.1, Let X be an ordered vector space, Y a K-space, H a
minorant cone in X, and T € £+ (X, Y). Then the following statements
are equivalent:

(1) H is a supremal generator relative to T.

(2) If the sequence (T,), where T,, € £+ (X, Y) is such that lim T,h = Th

n

for all h € H, then (o)lim T,x = Tx for all x € X.

3) Spr(T, H) = {T}.

We illustrate this with the following example.

EXAMPLE 4.1. Let G be a region (assumed to be bounded, for
simplicity) in R" with compact boundary 8G. By H; we denote the space
of harmonic bounded functions in G. Clearly H; is a normal subspace of
the K-space of differences of positive harmonic functions on G. Hence Hg
is a K-space. We denote by H,; the subspace of C(3G) consisting of the
traces on 3G of functions in HC; (where HCg is the space of continuous
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functions on G that are harmonic in G). Note that H,; and HCg are
isometric.

Consider now the operator 7: C(d3G) - H; that associates with a
function f € C(8G) the corresponding solution to the generalized Dirichlet
problem. It is well known that 7' € Z* (C(3G), Hg); furthermore, T takes
fin Hyz to a member of HCz whose trace on 3G is f. Then we have:

KELDYSH'S THEOREM [49]). The positive germ Spr(T, Hyg)
of the operator T on H,g is {T}.

It follows from this and Theorem 4.1 that the solution 7f (corresponding
to f) of the generalized Dirichlet problem is represented as follows:

Tf == sup {h: h € HC7, h(z) < flx) (x € 8ty y,

where the sup is, naturally, computed in the K-space Hg. It is clear that
Keldysh’s theorem is in turn a simple consequence of the above
representation.

3.5. The supremal generator relative to a functional. Let X be a locally
convex space ordered by the cone! K. Here we study supremal generators
relative to functionals u in X'. It is clear that in the present situation

Theorem 4.1 is valid (with Y 2 R). If X is such that every additive homo-
geneous positive functional is continuous, then we can confine ourselves in
Theorem 4.1 to the continuous functionals (more precisely, in (2) we may
suppose that the functionals i, (which are the 7T, in the notation of
Theorem 4.1) belong to X', and in (3) we can set

Spry(u, H) & {u' € K* p'(h) > p(h)(h € H} = K* 0 (u + H*)). This
theorem is particularly useful when the cone K is solid. The fact is that in
this case the equality Spr(u, H) = {u} for some p € K* implies that H is
minorant, so that the latter requirement can be dropped from the condition
of the theorem.

As an example of a generator relative to a functional we consider a
supremal generator of the space C(Q) of order n. This, by definition, is a
cone in C(Q) that is a supremal generator of C(Q) with respect to a
probability measure concentrated at not more than » points.

PROPOSITION 5.1. A cone H is a supremal generator of C(Q) of
order n if and only if for any f € C(Q), any & > 0, and any points
X1, ..., X, € Q there exists an h € H such that h(x) € f(x) (x € Q),
hix;)) > fix))— ¢ G =1,..., n).

Using this result it is not difficult to give examples of generators of
order n. We are only interested in finite generators of this type. These
generators are closely related to generalized Korovkin systems of order
n (K-systems) [115]. Such a system is by definition a family of con-
tinuous functions f;, ..., f, on Q for which the subspace spanned by

! The cone X may contain straight lines, in which case X is merely endowed with a pre-ordering. We

still say, however, that X is ordered by this cone.
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it is a generator of order n. Suppose that fy, ..., f,, are generators of a
finite generator of order n. For x € Q we set Yy (x) 4 100, ..., fin ).
The compactum ¢ (Q) is homeomorphic to @ and is such that the traces

on Yy (Q) of the coordinate functions x ~» x; ( =1, ..., m) are
generators of a generator of order n in C(¢(Q)). This fact enables us to
reduce the study of the generators we are interested in to the description
of compacta in a real space on which the traces of the coordinate functions
are ‘‘supremal generators”. The requisite description of these compacta is
obtained by examining the structure of their convex hulls. Here is a
relevant result.

SHASHKIN'S THEOREM [115]. For the system (—1,f,, ..., fmn)
to be a K, -system it is necessary and sufficient that the mapping
U: x— (f1(x), ..., fn(x)) is injective and that the convex hull of any r

points (1 < r < n) of ¥(Q) is a face of the convex hull co(y¥(Q)) of this
set.
A closer look at the mapping ¢ shows that the following is true:
THEOREM 5.1. For f,, ..., fm to be generators of a generator of
order n in C(Q) it is necessary and sufficient that no positive linear
combination (of length r < n) of rows of the matrix

(]’1(551) fm(:l:]) \

}1 (@mingr) - - - fm (Tmenss)

majorizes any positive linear combination of its other rows (where
X1, -y Xmene1 are any distinct points of Q).

A corresponding result for X, -systems was proved by Shashkin {115].

The following result is due to Rutkovskii:

THEOREM 5.2. The minimal dimension of a K,-system in C(Q) is
the minimal number of generators that a generator of order n in C(Q) can
have.

We now consider supremal generators of H relative to a functional u in
a locally convex space X ordered by a cone K. If K is non-solid, then the
condition on H to be minorant in the definition of a generator becomes
very restrictive. This can be avoided as follows. A cone H is said to be a
generalized supremal generator of X relative to u if for any x € X the
closure of the superlinear functional g: x - [— =, + %) defined by

q(x) 4 sup w(h) is the same as y; in other words,
h<x, h€H

u(x) = sup lim sup w(h), where the outer sup is taken over all nets
(xa) & h<xy hSH

(X4)aca such that x, € H+ K (¢ € 4A) and x, - x. If K is solid, then
A

generatized and ordinary generators are the same.
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THEOREM 5.3. Let H be a cone in X, u € K*. Then the following
statements are equivalent:
(1) H is a generalized supremal generator of X relative to u.
(2) If (,) is an equicontinuous sequence, u, € K*, and lim p,(h) > u(h)
n

for all h € H, then u, ~» u (@in o(X', X)).

(3) Spryx(u, H) 2 K* n (u + H*) = {u}.

EXAMPLE 5.1. A point u is called a point of smoothness of a cone
K if u € K and there exists a unique (to within a factor) non-zero
functional y, in K* such that u, @) = 0.

PROPOSITION 5.2, Suppose that u is a point of smoothness of the cone
Kand that u, in X is such that p,(u, ) # 0. Then for any equicontinuous
sequence of positive functionals (u,) such that p, (W) - 0, u,(u,) - pu,u,),
we have u, —> p, (@n o(X', X).

To prove this it suffices to remark that Spry (u,, H) = fu,}. (Here H is
the plane in X spanned by « and u,).

Points of smoothness were introduced by Klimov, Krasnosel’skii and
Lifshits in [51]. A proof can be found there of Proposition 5.2 for
Banach spaces. The paper also introduces the notion of a saturated and of
a completely saturated subspace; these are used to obtain a number of
results on the uniqueness of an extension of the identity operator and of
convergence to the identity operator. These results easily follow from
Theorems 5.3 and 4.1. Note that in our present situation uniqueness of an
extension of the identity operator does not imply convergence of a
sequence of operators. The notion of a point, of smoothness has been
generalized by Labsker [71]. His results also follow immediately from
Theorem 5.3.

In the next two subsections we shall apply the above results to the study
of operators and functionals that are, in general, non-positive.

3.6. The ordering superstructure and weak convergence of functionals.
Let X be a locally convex space and let U be a convex subset of X' that
contains the origin and is closed with respect to o(X', X). We denote by p
the support function of U and by p the Minkowski gauge functional of

this set: p(x) & sup u(x) (x € X): p() 2 inf {A > 0: u € AU }. Note
ue v

that p(u) = sup {u(x): p(x) < 1} (u € X’). We endow X X R with a pre-
ordering via the cone K of the supergraph of the functional

p: K2 {(x, 1) € X X R: t > p(x)}. It is not difficult to verify that

K* = {(u,s)€ X' X R: s> p(—u);. This fact, together with Theorem
5.3, establishes the following resuit:

THEOREM 6.1. Let H be a cone in X. The following statements
are equivalent:
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(1) The cone H X (—R,) is a generalized supremal generator of X X R
relative to the functional (u,, p(— o)), where — u, belongs to the
conical hull of U.

() If (u,) is an equicontinuous sequence in X' such that

lim p(—u,) < p(— ko) and lim p,(h) > wo(h) (h € H), then u, ~ u (in

o(X', X)).
(B) If u C X', p(—u) < p(—uo) and u(h) > uo(h) (h € H), then p = p,.
REMARK 1. Condition (2) can be replaced by the equivalent

condition
(2'): (2) holds and lim p(—u,) = p(—ue).

REMARK 2. If K is solid, then in (1) we can replace generalized by
ordinary generators, and in (2) we can omit the equicontinuity requirement.

REMARK 3. If U is a cone, then the conditions of Theorems 6.1 and
5.3 are the same. If U is not a cone, then 3*U 2 {ue U pw) =1} # .
Condition (3) in the given situation means that the functional v = — g
from U, which is majorized on H by a functional v, in 3% U, coincides
with v,.

REMARK 4. If » € X is such that the functional p has a unique
support v, for which p(h) = vy (h), then the ray H 2 {ah} 4<o satisfies
each of the equivalent conditions of Theorem 6.1 (relative to the functional
Ho £ - Vo)

We now turn our attention to the case when X is a normed space and U
is the unit ball in X'. Then p is the norm on X and p is the norm on X'.
The space X X R ordered by the cone K, the supergraph of the norm, is
calied the ordering superstructure of X. (Observe that K is solid.) By means
of this superstructure and by applying Theorem 6.1, we can obtain a
number of results on weak convergence. We mention two typical examples.

SHMUL'YAN'S THEOREM. Let (x,) be a sequence of elements of
a uniformly convex space X. Then it converges in norm to x, # 0 if and
only if Tim Il X, It < | Xo Il and lim uo(xn) > po(Xo), where uo is the

n n
unique element of X' such that |l uo Il = pe(xe)/ll X0l = 1.

THEOREM 6.2. Let X be a reflexive Banach space. The following
Statements are equivalent:

(1) The unit ball in X is smooth.

(2) For each subspace H, any functional uy € H', and any sequencee

(n) C X' such that lim || pa | < sup  lue(h) | and
n IxI<LxEH

lim p,(h) = po(h) (h € H), the sequence (u,) is weakly convergent.
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(3) Property (2) holds for one-dimensional subspaces.

The above group of questions is closely connected with the problem of
the uniqueness of extension of functionals (see, for instance, [35], [104],
[114]).

If His a cone in X, then, as is easily seen, the cone H X (—R,) is a
supremal generator of the ordered superstructure relative to the functional
(u, Il 1) if and only if u(x) = sup [u()—lull Il x— A ] for all x € X.

hEH
This shows that these questions are closely related to the Hahn—Banach
theorem.

3.7. Convergence of operators with an abstract norm. A natural generali-
zation of a bounded linear functional (or, what is the same, an operator
from X to the K-space R) is a linear operator 7 from X to a K-space Y
having an abstract norm | T | (we recall that | T | 4 sup | Tx1). It can

=<1
be shown that T: X — Y has an abstract norm not exceeding a € Y, a > 0,
if and only if the operator (7, a) acting on the ordering superstructure of
X into Y according to the rule (7, a): (x, t) — Tx + ta is positive. Using
this fact we can give an analogue to Theorem 6.1 pertaining to the present
situation (it is clear that the generators in condition (1) must be relative to
the operator (7, | T 1)).

In this subsection we are concerned with a basic way of making the
above discussion quite specific when X is a KN-lineal of bounded elements.
Suppose that X is contained in a K-space Y and is given the ordering
induced by Y. If H is a cone in X, then we denote by H the conical hull
of the element (— 1, — 1) (where 1 is the unit in X) and the cone
{(th, —h) € X X X:h € H} in X X X. Then we have

THEOREM 7.1. Let H be a cone in the KN-lineal of bounded
elements X. Then the following statements are equivalent:

(1Y H X (—R,) is a supremal generator of the ordering superstructure
of X relative to the operator (E, 1) (where E: X — Y is the inclusion
operator).

(2) H is a supremal generator of X X X relative to E: (x,, x,) > Xx,.

(3) For any x € X we have x = sup (h—\llx—hil 1.

hEH

() If (T,), where T,: X - Y, is such that lim | T, | < 1 and
lim 7,2 =2 h (h € H), then (O}lim T,x = x for all x € X.

OO X->Y, ITISKland Th=h (h € H), then T = E.

If H is a subspace, then we can talk about ordinary supremal generators;
more precisely, each of the above conditions is equivalent to the assertion
that H is a supremal generator of X X X with respect to the K-space Y X Y.
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This fact allows one occasionally to compute the minimal dimension of
such subspaces (see [117]).

It is of interest to determine when in the above theorem the abstract
norm can be replaced by the “ordinary” norm (it is understood here that
Y is a normed space). Simple examples show that this cannot always be
done. However, when Y is the K-space of all bounded functions, the
situation is different. In more detail, we have:

PROPOSITION 7.1. Let T be an operator from the normed space X
to the KN-space B(Q) of bounded elements. Then | T\ < 1 if and only if
Ty < 1.

This proposition and Theorem 7.1 imply, in particular, certain results in
[117].

In conclusion we mention that the method given in this section can also
be applied to the case of compact (positive or non-expanding) operators in
C(Q). For this purpose, apart from the concept of H-convexity, use is made
of Michael’s theorem [76] on the choice of a continuous selector. We
state a result of this kind for operators with a prescribed norm.

THEOREM 7.2, Let X be a normed space, H a cone in X, and
T: X - C(Q) a compact operator. Then for every € > 0 we have (1)=
(2) = B)and (4) = (1), where

(1) H X (—R,) is a supremal generator of X X R relative to each of
the functionals (T,, | T1), where T,: x = (Tz)(x) (z € Q).

(2) For any T': X » B(Q) such that | T'\| < {| Tl and T'h > Th
(h € H) it follows that T' = T.

(3) For any sequence (T,) of operators T,: X - C(Q) such that

lim | T,Il < | T\l and the uniform limit lim T,h = Th (h € H) it follows

that (T,) is strongly convergent to T.

&) If T' is a compact operator T': X » C(Q) such that
ITN<(d+¢e) WTWand T'h>Th (he H), then T' = T.

3.8. Some examples of supremal generators. Supremal generators find
applications also in problems not connected with convergence and unique-
ness of extensions. We illustrate this with examples of various kinds.

EXAMPLE 8.1. This is an application of generators to a generalization
of Bellman and Kalaba’s quasilinearization method [6], [43]. Following
these authors we explain the idea of this method by an example of the
Cauchy problem for the Riccati equation.

8.1) v' +u? + px +qx) =0, v(xe) = v,.

Since the function x > x2? is convex, x = max (2xu — u?), so that (8.1)
VE R

can be re-written in the form

82) v = min [u? —2uw —px)v—qx)], v(xy) = v,.
uE CR)
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Let w(u, - ) be a solution to the Cauchy problem
w = u? — 2uw — plx)w— qg(x), w(x,) = v,.

Let [x,, x,] be an interval on which the solution v to (8.1) exists. Taking
into account the fact that the operator associating with g the solution to
the Cauchy problem y' = f(x)y + g(x), ¥(xo) = vy is monotone, it is not
difficult to see that

(8.3) v{x) = min w(u, x),

uclU
where U is the space C' [x,, x,]) of continuous differentiable functions on
[x,, x,].

Using the fact that the cone of concave quadratic trinomials supremally
generates the space of continuous functions on the interval, we can use the
method of Bellman and Kalaba in a much more general situation. Consider
the Cauchy problem

(8-4) y,=f(x9y)) y(x0)=y0’

where f is continuous on the rectangle [a, b] X [c, d] and has continuous
partial derivatives fy, f,, there; we suppose that the problem (8.4) has a
solution on [a, b]. Under the given conditions for each x € [a, b] and
v € [c¢, d] the following formula holds:

(8.5) f(x,y)= max [— K@y —1)? +f,(x, )y — 1)+ f(x, D],

c<t<d

where K is a positive number such that K > max (—% flyy X, y)).
a<x<bec<y<d

Using the idea of quasilinearization it is not difficult to verify that the
solution y to (8.4) can be represented as an upper envelope (pointwise
maximum) of solutions to Riccati equations whose right-hand side is
determined by the quadratic trinomials under the max sign in (8.5). Using
(8.3) we can prove the following:

THEOREM 8.1. There exists an interval [a', b'] C [a, b] such that
the solution to (8.4) defined on this interval takes the form

(8.6) y(x) = max minu(, w, x),
vEV wew

A
where V = {v e C'(d', b'1): v(x) € [c, d]l (x € [d', b'N}, W 2 C'({d', b')),
and u(v, w, * ) is a solution to the linear equation

u' =[—2K@—w) + fy(x, v)]lu— K(w? —v?)— f,(x, v)v + f(x, v)
under the initial condition u(x,) = yo. Furthermore, the maxmin in (8.6) is
attained at v = w = y.

This theorem allows us to evaluate the solution to (8.4) as a solution to the
Riccati equation. It also enables us to construct a monotonely convergent
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interative process for the solution to (8.4); at each stage one has to solve
the Riccati equation. This construction can be applied to a number of
partial differential equations.

EXAMPLE 8.2. Let Q be a convex compact subset of a locally convex
space V, let A be the subspace of affine functions (in C(Q)), and P the
cone of concave functions (in C(Q)). The following theorem shows that
every continuous function on Q is obtained from the affine functions via
the “maxmin” operation.

THEOREM 8.2 If fe C(Q), then f(x) = sup inf  A(x).

pPpEP,p<f h€A,h=p
_ For the proof it suffices to check, using Theorem 2.1, for example, that
P is a supremal generator of C(Q) relative to B(Q).

EXAMPLE 83 (THE DIRICHLET PROBLEM FOR CONVEX
FUNCTIONS). Let S be a solid strictly convex compact subset of R"
with boundary 3S. It is easy to verify that every continuous function on
85 is convex, that is, the subspace A of traces on 3§ of affine functions
generates C(9.5) with respect to B(3S). From this it follows that every
lower semicontinuous function f on 985 is convex. For the given function f
and x € 8, set f(x) = sup{ h(x): h € A, h(y) < f(y) (v € 3S}. Then f
is convex and coincides on the boundary with f.

Hence the following simple proposition, which is mentioned, for example,
by Maiergoiz [75], holds: every lower semicontinuous function on a5 can
be extended to a convex function defined on S.

EXAMPLE 8.4, Let n = 4. Denote by A the set of (n X n)matrices
with fixed principal diagonal, and give A the natural ordering.

THEOREM 8.3. For each matrix a € A there exist singular matrices
a,a € A such that a < a < a.

To prove this it suffices to take a three-dimensional generator in R" and
to minorize each row of a by a (row) vector of the generator. The matrix
a determined by these rows has rank not exceeding three and minorizes a.
It is easy to construct it in such a way that it is a member of 4. The
matrix a is constructed similarly.

It is interesting to note that for # < 4 Theorem 8.3 is no longer valid.

§4. An application to extremal problems of geometry

4.0. Preliminary remarks. In this section we are concerned with some
applications of the above results to extremal problems in the geometry of
convex sets; this is the topic which historically was at the basis of
Minkowski duality theory.

The history of the development of the study of isoperimetric problems
within the framework of convex geometry is fairly fully set out, for
instance, in [11], [17], [110]. For us it is important to note that at the
beginning of the century these investigations led to two fundamental results,
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Blaschke’s theorem of choice (which establishes the local compactness of
the cone %, in [®B,]) and the Brunn—Minkowski theorem (on the quasi-
concavity of the mixed volume). Blaschke’s theorem enables us to prove
theorems on the existence of solutions. The Brunn—Minkowski theorem in
its turn enables us to perfect the technique of various kinds of
symmetrization. Let us recall the idea behind this last method by an
example on the Bieberbach problem: to find a convex figure of maximum
volume with a given diameter. According to the Brunn—Minkowski theorem,
under a Minkowski symmetrization the volume does not decrease and the
diameter is not altered. Thus, the solution lies in the class of centrally
symmetric figures. Now a centrally symmetric figure is contained in a ball
of the same diameter. Hence the Bieberbach problem reduces to the follow-
ing simple problem: among the figures lying in a ball of given diameter to
find the figure of maximum volume. In this example of the application of
the very simple technique of symmetrization we see the elegance and the
weakness of similar methods. The basis of the method of symmetrization is
the extremely specific structure of the constraints. No wonder then that
interest in extremal problems in the geometry of convex sets has latterly
been on the wane. The centre of gravity of research has shifted to extremal
problems of another sort and in a class of different objects. However, one
of the most complicated examples of solved extremal problems of complex
geometry is still the problem of maximizing the area of a plane figure with
given perimeter and radii of inscribed and circumscribed circles; this is an
extremal problem with three constraints [14].

A. D. Aleksandrov [1] was the first to draw attention to the fact that a
formal application of the method of Lagrange multipliers to the isoperi-
metric problem immediately leads to the answer. Since the method of
duality of mathematical programming (which is an exact analogue of the
method of Lagrange multipliers) enables us to make a uniform study of
problems with many constraints, it is appropriate to apply the general
methods of convex analysis to the study of problems of isoperimetric type.

To put this approach into effect we have to choose, first of all, a
suitable vector space in which the investigation takes place. The most
natural (although, in principle, not the only) space of this kind is
undoubtedly the space of convex sets constructed in § 1. The reasons for
this are the simple behaviour of geometric functionals with respect to the
topological and algebraic structure of this space, the explicit treatment of
linear functionals (measures closely connected with the convex figures in
Aleksandrov’s theorem) and finally, the standard explicit form of the polar
of a cone of convex sets.

4.1. The general problem of isoperimetric type. We consider the following
situation. We are given convex bodies QIf, ey E’If[_m,, K (i=0,1, ..., )
and numbers b,, ..., b, € R,. '

PROBLEM 1.1. Among the convex figures satisfying the conditions
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Vg, b, (U2, %) < b; (=1, ...,5), to find a figure attaining the
maximum of the function vV, . (%% g, BY).

(Here V,, »(+, +, ) is the comresponding mixed volume. We adhere to
the following standard notation' for mixed volumes and mixed surface
functions [17]:

Vi (B, 2 B) =V Ay s Loy T, s 5, B, 1o, B),

[————

VU, B)=V A, .. , A, B, ..., B),

N ¢ A
Mm,k(?’[’ &, %)éu(g{b ) Ly o0y Ty \Q_iw;_%)7
h
tm (U, By = (A, ..., A B, ..., V).

Thus, in particular,

Veon (U, x, %):% Sgdum,k(‘)l, T, B).
Zn

Note that V(z)=V(z, ..., £); the area of S(x) =nV(z, ..., &, 3a)=

= nVp_q (& 3a)=rV (&, ¥n), &= .8 the unit (Euclidean) ball in R" (n = 2);
AN . .

p@E)=wn(z, ..., 1) is the surface function of z.

We suppose, as in [1], that the ¥, , (A%, -, B7) are extended with
preservation of continuity and multilinearity to 18,1 (or C(Z,)), and we
denote these extensions by G; G =0,1,...,s). Then Problem 1.1 can be
stated as the following problem in mathematical programming. To find an
element z € [B,] such that @) z€3B,; (b) G:(x) <b; G =1,...,5)
(¢) Go(r) attains its maximum.

An important fact is that the G; have Gateaux derivatives. In fact, it

follows from the multilinearity of the G; that for an arbitrary derivative
(Gi)é of G; at 1 the following formula holds (see [66]):

(G2 (8) =" | g iy, (A, 6, B,

n
Zn

We now give the main theorem concering Problem 1.1. This is the well-
known approach developed by Dubovitskii and Milyutin [33]. First of all,

we denote by B ¢ the cone of possible directions at r ¢%B,, that is,

B, ={gC[Ba]: ao > 0: T+2-2€B) (0<a<ay)).

1 We denote by V the mixed volume of n bodies. We recall that, in particular, ¥ is a muttilinear

symmetric form in n variables. The mixed surface function of (# — 1) variables is denoted by u.
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THEOREM 1.1. If the admissible body t is a solution to Problem 1.1,
then there exist numbers «,, ..., a, € R, complementing the non-rigidity,
such that the following Fuler—Lagrange equation holds:

s

2 it g (U 20 ) — g ng (U 3. RO €7

Thus, the application of the general principle of duality (in the form of
the method of possible directions) reduces the question of finding a
solution to Problem 1.1 to the problem of representing elements of the
cone % - and to uniqueness theorems for surface functions. A very simple
fact concerrung the structure of % ni is the following:

PROPOSITION 1.1. If 1 is a regular body, then %23* —:{0}.

We give an example of application of this.

EXAMPLE 1.1. To find a regular body ¢ from the conditions:
@) Vi, z)<b; (i=1,...,5) (x5 ..., g, being regular bodies), (b) V (x)
attains its maximum.

By Theorem 1.1 and Proposition 1.1 there exist numbers a,, ..., o, € R,

Such that M (@) - 1 zui (2 Zl) = Uy (& y XL )

It then follows from the Aleksandrov—Volkov theorem [2] that the

solution z, to within a parallel shift, has the form 21 a; t;- By the same
token, the original problem reduces to that of finding parameters a;, ..., a;,
in other words, to a finite-dimensional problem in mathematical
programming.

4.2. The polar of the cone of possible directions. We consider in more
detail the representation of the cone %:—. The cone R™ (in C(Z,)), as we
have seen, has the Reshetnyak—Loomis ﬁroperty. In connection with this
and with Aleksandrov’s theorem it is convenient to introduce the following
definition. A convex figure 1y is said to be “T-antecedent” to a figure
if  p(x) > w(y); in this situation we use the notation g>-;- y. The notion

RTL

of T-antecedence has a simple intrinsic characterization. From Theorem
2.4.1 we derive:
PROPOSITION 2.1. A figure y is T-antecedent to t if and only if
Vilt, 3)>V.(y, 3) for any convex surface 3.
The connection between > and the relations > > and = plays an
T

important role. We say that by is a “T-constituent™ of % (?;;?/l)) if y
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can be put into z by a parallel shift. The notation ¢ =y means that %
T

and vy coincide to within a shift. Note that if one of the compacta ¢ and
y is solid, then (x > t) and r)> 1) =;3; p. In addition to this, for any g

and t we have (z > t)=>§>-tJ)
PROPOSITION 2.2, Letn=2. Then (z>9 <>z ).
T T

It is interesting to note that for n > 2 this no longer holds. Thus, for
n> 2, a> 1, the figures 3, and a3, , are not comparable under >,
T

although 3n ? @Fnoy. FOr P (%Fn-z) = al/™ 1 (3,-,) = 0. Furthermore,
u(3n) (x) = 0 (x € R"), so that u(3,) 5‘ 0. One must not suppose that
this fact is connected only with the degeneracy of 3n-,. Take, for instance,
gi2gn, Py ig—%—ygn_z, where v = gY"% and where § is chosen so that

1 <p <21 (2" —1)7'. Then since vy > 0, z and yp are not
comparable under the relation > ; on the other hand, it is not difficult to
T

show that V,(z, 3)>V,(y, 3) for any 3¢€%3B,; in other words, by
Proposition 2.2, x > y. From Aleksandrov’s theorem [1] it follows that
T

2.1) By = {u (x) —pn(y): % o}
A
For let p = u; —u,, where u,, o 2 0, u; > p,. Then it is clear that
RVI

S z dpy = S z2duy, = (u, z), where u is a vector in R". It is obvious that the

Zn Zn

~ A ~ A
measures Py =p;+ R (3n)+|u|e_u; Ba=po+p(sn)+luje . are of

Jul jul
Aleksandrov type [66], where u = o, L= ;2. Taking (2.1) and the preceding

proposition into account we obtain the next theorem.
THEOREM 2.1, The following representations hold:

1. %B:,—={u<s>—u<n): 229 VG D=V, )}
2. =@ —pm:z2y VG, 1) =V{(y, o)}
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4.3. The general solution of the plane isoperimetric problem. We consider
the general problem of maximizing an area under arbitrary linear constraints,
that is, restrictions on the mixed area and the support distances of the
required plane figure.

PROBLEM 3.1.WearegivenapolygonPi A {zERz:(z,z,-)<c,-}
i=1

(z; € Z,) and figures Yy, ..., yn. It is required to find among the figures
lying in P for which V(y;, ) < b; (G =1, ..., m), the figure with the
greatest area.

We denote by vy, ..., v, € R* the directions of the boundary rays of

A : .
the cone S = {a € R:: D oz = 0} v, = = O}, ..., v;)) and consider
i=1
A S
the Aleksandrov measures u; = > vie, . Let z,€8, be such that
i=1

pEg=m ¢=1,...,p)
An application of Theorem 2.1 to this problem shows that the solution
¢ satisfies the Euler—Lagrange equation

(3.1) 1_;1 §i81i =+ jgﬁ "FS+J‘P~ (h5)—w (XE) € %;’ T
It follows from (3.1) that (4, ..., v,) € S. In other words, there exist

Bis -« Ep € R, such that ;,- :tg Etv;'. Now we let £ denote the
figure ,Zp', E,g,—}—én]j Vs +.9;; so that by applying Theorem 2.1 we see that
z ?/5 and V(z,z)=V(z, 7). If T is solid, then it follows from all this
that g =1.

THEOREM 3.1. A solid solution y to Problem 3.1 can be represented
to within a shift in the form oz, + ... +aptp+ Opbs - - -« + Apimbm.

It is not difficult to verify that the problem of determining the
coefficients a,, ..., Ep+m € R, is a problem in quadratic programming;
in particular, it can be solved in a finite number of steps.

4.4. Convex isoperimetric problems. Problem 3.1, which we looked at in
the preceding subsection, is a special case of the isoperimetric problems that
can be reduced to problems in (quasi-)convex programming.

Here is a result concerning such a problem.
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PROBLEM 4.1. To find 1 ¢®B, such that (a) V,(y;, t) < b;
G=1, ..., m) (b) V() attains its maximum.

THEOREM 4.1. An admissible body ¢ is a solution to Problem 4.1
if and only if there exist numbers a,, ..., a,, € R,, complementing non-

rigidity such that (o) = 5 V@) =V, (@), ), where

— A —

(o) =auty H ooy, 3 . .. H aphm.

Here the symbol &= stands for the Blaschke sum (we recall that the
Blaschke sum of two bodies ¢ and 1y is the figure with the surface
function p(z)--p(y); in the plane, the Minkowski and Blaschke sums are
the same thing (to within a shift).

An interesting peculiarity of convex problems is the fact that their
solution r induces an.isoperimetric inequality of the form

¢(x, @) = ¢(x, @), where ¢ is the corresponding Lagrange function.
Thus, for the (generalized) Bieberbach problem of maximizing the mixed
volume ¥, (¥, z, B) under the condition d(zr)=d(z) (where d(z) is
the diameter of ), we obtain:

PROPOSITION 4.1. The following conditions are equivalent:

(1) t is a solution to the Bieberbach problem.
(2) For any t¢3B, we have

Vin, 1 (U, B) " (&) = Vi, (U, 7, B) d™" (1) <O.

4.5. Constraints of inclusion type (the plane case). In the next two
sections we show how to handle the simplest operational constraints (that
is, constraints of the form “the figure is contained in such and such” or
“the figure is centrally-symmetric”, and so on) in problems of isoperimetric
type. For convenience we start by explaining the technique for obtaining
optimization criteria (Euler—Lagrange equations) for plane problems; we
then discuss the (fairly routine) way of modifying this technique for
higher-dimensional spaces. For the model problems we consider, as a rule,
only one constraint of general type (that is, on the mixed volume). It is
worth emphasizing that the following account can be carried over verbafim
to the case of an arbitrary number of constraints of this kind (see §4.3),
whereas geometric intuition for these situations naturally breaks down.

PROBLEM 51 (THE INTERIOR ISOPERIMETRIC PROBLEM).
Among the figures lying in a fixed body z, and having a given perimeter

S(x), to find the figure of greatest area.

R EM A R K. Apparently it would not be amiss to point out that for
problems of this sort existence and uniqueness theorems hold trivially (to
within a shift).

The equivalent problem in convex programming in the space [8;] can
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be posed as follows: to find r¢[®B,] such that: (a) 1€, ; (b) gfzo;

(c) Sx)<S (x); 2/ (V(x) V(x)) attains its maximum.

In accordance with the general theory [27], the Lagrange function for
this probiem is defined on 8, X R, X C, (Z,), where
C, (Zy) = {p € C'(Z,): u > 0}, and takes the form

0 (2 o W) = 2 (V@ V (1)) + (S @) —8 (1) -1 (50 —3).-

By the Kuhn—Tucker theorem : is a solution to this problem if and
only if there exist « € R, and a measure g € C, (Z,) such that ¢ has a
saddle-point at (z, «. p), that is, ¢ (x, o, W) >¢ ., @, @) > ¢, o W)
(£€8B,, ach,, pe C,(Zy)). The left-hand half of the saddle inequality
reduces to u (so—x) = 0, and the right-hand half — in differential form —
to w(x)=u-ap(3). By Aleksandrov’s theorem 4 = u(x) for some
L €3B,. Consequently we have:

THEOREM 5.1. An admissible body t is a solution to the interior
isoperimetric problem if and only if there exist a (critical) figure t and a
number o > 0 such that (a) fz;g#,—o_cgg; (b) t(z) = 2z (2) for all
z € s(t). (Here and from now on s(r) is the support of &. that is, the
support of u(zr), the surface function of t.)

PROBLEM 52.(THE EXTERIOR ISOPER!METRIC PROBLEM).
Among the figures containing y, and having a given perimeter, to find the

figure of greatest area.

By analogy with Theorem 5.1 we have:

THEOREM 5.2. An admissible body t is a solution to the exterior isoperi-
metric problem if and only if there exist a critical figure ¢ and a number
a > 0 such that () t+z<azy; () V() +V (@, 1)=aV (x 3);

(©) t(3)=1,(z) for all z2€5(x).

By similar methods we can analyse a condition of the form 9,:_ is
centrally symmetric”. The only refinement is in the description of the
polar of the cone of symmetric figures.

PROPOSITION 5.1. Vi(z, 3)>=V (9, 3) forany centrally-symmetric

figure 3 ifand only if °>y* (where z° denotes the Minkowski symmetriza-
T

X3

tion of z, that is, the figure with support function ur—»—;— [z(u) +z(— u)]).
By way of example we consider the interior isoperimetric problem in
which we look for a solution in the class of the symmetric figures.
THEOREM 5.3. An admissible body z is a solution, in the class of
centrally-symmetric figures, to the interior isoperimetric problem if and
only if there exist a critical figure T and a number o = O such that
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(a) ?7 T +agy () () ==z forall z€sz).

For further examples see [64].

4.6. Constraints of inclusion type (multidimensional case). As we have
seen in §4.1, for the general isoperimetric problem we can, as a rule, only
obtain necessary conditions for an extremum. The arguments of the preced-
ing subsection go over in full measure to the case of convex isoperimetric
problems. Thus, the analogue of the exterior isoperimetric problem is not
the exterior “isophany” problem, but the exterior Uryson probiem, that is,
the problem of maximizing the volume under a given integral range (that is,
under conditions on Vi(3n, *)). We recall that in the plane the integral
range and the perimeter are proportional functionals. The second special
circumstance concerning the plane is that only in this case do the Blaschke
and Minkowski sums coincide. Another point is that in the above theorems
there was the question of dual functional conditions; in particular, in going
over from plane to multidimensional optimization criteria one has to replace
Minkowski sums by Blaschke sums (for instance, in the analogue to
Theorem 5.3 one would be dealing with Blaschke symmetrization). The
third feature of spaces of dimension » > 2 is the existence of non-negative
translation-invariant measures that cannot be treated as surface functions of
certain figures. This means that in the optimization criteria, critical measures
rather than critical figures feature, as a rule. In summary we can say that
the dual study of multidimensional problems has essentially just one
peculiarity — the apparatus of support functions is replaced by that of
surface functions.

We now give an illustrative example.

EXAMPLE 6.1 (THE EXTERIOR URYSON PROBLEM). Among

those bodies containing t, and having a given integral range, to find a

body £ of maximal volume.

The optimization criteria are a restatement of Theorem 5.2 with the
remarks we have made taken into account.

An admissible body z is a solution to the exterior Uryson problem if

and only if there exist a positive critical measure 4 and a number a > 0
such that:

(@) @t (5n) > (2) 15
— 1 — — —_
®) V@ +7 | Tdu=aV. (s, 3
Z

n

©) z(B)=3%(z) (z€s(n)).
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Consider, for instance, the case x, :A % n-1. Then it is clear that the
required body is a spherical lens, and the critical measure is the trace of
the surface function of the ball of radius a¥"™! on the complementary
support %f this lens.

If 1, = %, n = 3, then it follows from the theorem that the solution is
in the class of so-called spindie-shaped surfaces of revolution of constant
curvature [11].

In conclusion we mention that a combination of the methods set out
here enables us to find solutions to a wide class of problems. In this
connection it is appropriate to use the standard methods of geometry and
mathematical programming alongside the techniques developed here. Let us
iltustrate this by a fairly typical example.

EXAMPLE 6.2. For a convex surface of given thickness A and
integral range to maximize its volume.

First of all, according to the formulation, the problem is not “convex
right through to the other side””. However, an application of Minkowski
symmetrization shows that the solution lies in the class of centrally-
symmetric figures. Thus (see §4.0), the problem can be restated as follows:
to find ¢ € B, such that (a) t > ¢ A 5 () @) +1(—2) < A (where
zo is a vector in Z,); (€) Vi(3., 1) = Vi (s, 8); (d) V(z) attains its
maximum.

In this problem, which is one of convex programming, the so-called
Slater condition [27] is not fulfilled. However, the methods that have been
developed here enable us to obtain a sufficient criterion for optimality.

An admissible body t is a solution to the above problem if there are a
critical positive measure p and numbers o, f € R, such that:

(@) p(z)+np < op(3n)+B ez +e—z);
Rn

®) V@ + | sde=aV, (s )+ BIE (@) + 7 (—2);

Z,

© T()=xA forall zegp).

Thus, a figure of the form « 3, 4 B3.-1, having given integral range and
thickness is a solution to the above problem. In particular, for n = 3 a
solution must be sought in the class of so-called cheese-shaped surfaces of
revolution of constant curvature [11].

Commentary

To §1. The basic facts concerning convex functions can be found in Rockafellar’s mono-
graph [91], which contains an ample bibliography. Among other works we mention the
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monographs by Hardy, Littlewood and Pélya [112] and Rutitskii [58]; there is also the
survey [5] of early works in the theory of convex functions.

For various generalizations of convexity see [28]. The construction of H-convexity is, of
course, not new and is typical in the theory of ordered algebraic systems [109]. H-convexity
in.concrete situations occurs in a number of papers, amongst others, [30], [34], [42], [111].
Of special interest are the articles by Fan [102] and by Boboc and Comea {12], [13], where
a related approach to continuous AH-convex functions is set forth. The scheme of §1.3 goes
back to Minkowski and Fenchel [86], [106], [107]. The definitive version of this
construction is due to Hormander [113] . The specific property of quadratic trinomials
(equivalent to generating) was pointed by Bowman and Korovkin (see [24], [53]). R} -stable
sets have been systematically employed, for instance, in the theory of growth of entire
functions (see [21], [22], [75], [92]). The general properties of stable sets have been studied
by Rubinov [94]. R} -normal sets have arisen mainly from the needs of mathematical
economics [77]. The theory of such sets and their connection with the extension of sublinear
functionals were studied by Rubinov {94]. See also [79], [85] concerning sublinear
functionals and operators. For convexity on non-convex sets and geometric applications of
this idea, see [18], [19]. A large area of research on convex sets has been covered by Klee
(see [50]), and also more recent works cited, for instance, in {100]).

The construction of the space of convex sets goes back to Neyman and Birkhoff [109] .
One of the first papers to use this concept in an essential way is certainly [1]. See also [26],
[38], [86] —{88], [113].

Concerning the Fenchel-Moreau scheme and its connection with problems in other
disciplines see [16], [21], [41], [72], [83], [91], [106], [107]. For the connections with
extremal problems see, for instance, the large bibliography in the book [100].

To §2. The notion of decomposition (for sublinear functions) was introduced by
Reshetnyak {89]. Loomis [73] gave an abstract definition of decomposition; see also [31].
The definitive result on convex functions was obtained in [47]. The theorem on polars for
sublinear functions is due to Kutateladze [60] . The proof of the decomposition theorem is
taken from this article. For weakly measurable distributions and topics leading to the theorem
of Hardy—Littlewood—Po6lya—Black well—Stein—Sherman—Cartier, see [10], [105], [112].
For Strassen’s theorem and the related problem on the subdifferential of the integral of
convex functions see [27], [121]. An account of definitive results in this direction can be
found in Ioffe and Levin [40].

Concerning Choquet theory, see [4], [105], [119] and also the widespread literature
devoted in the main to the so-called geometric simplexes (see, in particular, [123], [124],
which contains an ample bibliography).

The principle of preservation of inequalities goes back to Kadison [48] ; subsequently it
has been employed in [12], [13], [122], where the related construct of convexity is
considered.

Subsections 2.1, 2.2 are largely taken from [67]. Later results are due to Kutateladze
[62], [65].

To §3. The first substantial results (on the question of defining convergence of sequences
of operators) were obtained by Korovkin [53]. The general criteria for subspaces of C(Q)
such that convergence on the subspace ensures convergence on the whole space were obtained
by Shashkin (in terms of the Choquet boundary) (see [115], [116]). Here there are also
interesting connections of a topological character. The relation with supremal generators (in
Cla, b]) was first observed, apparently, by Baskakov [3]. The article [29] is devoted to
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convergence in the LP-spaces. The approach making use of points of smoothness is proposed
in [51], [56], [57] (the articles [20], [71] are also relevant). In [57] the connection with
convergence of non-expanding operators is also noted. The first results along these lines were
obtained by Shashkin [117] and Rublev [97]. For ordered superstructures see, for instance,
(321, [57%.

Concerning Shmul’yan’s theorem and the related phenomenon of uniqueness of the Hahn—
Banach extension see, in particular, {35], [36], [103], {104], [114], [118]. A number of
related questions of convergence, not discussed in §3, can be found, for example, in [15],
{551, (701, (81], {991, [108], [84].

Concerning quasi-linearization see [6], [43], [44], [52]. The article [59] also touches on
this. Concerning generators, see in particular [68], [69], [95]. Some results are published
here for the first time.

To §4. With regard to extremal problems of geometry, there is an extensive literature, in
particular, in the survey article of Bonnesen and Fenchel [14] and Busemann; see also
Hadwiger’s book [110] and the cycle of articles by Aleksandrov [1], where there is also an
ample bibliography.

The general scheme whereby the problems of isoperimetric type are treated as problems
in programming in a space of convex sets is due to Kutateladze and Rubinov [66] . Further
results along these lines are due to Kutateladze [63], [64]. Concerning the Bieberbach
problem, see [7], [61]; concerning the Uryson problem, see [101] and also the survey
article by Lyusternik [74].
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