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Nonstandard methods in the modern sense consist of the explicit or im-
plicit appeal to two different models of set theory-"standard" and "non-
standard"-1s investigate concrete mathematical objects and problems. The
main development of such methods dates to the last thirty years, and they
have now crystallized in several directions (see 1291, l42l and the bibliogra-
phy cited there). The main directions are now known as infinitesimal and
Boolean analysis. In this paper we shall outline new applications of non-
standard methods to problems arising in the area of our personal interests,
grouped together under the general heading of geometric functional analysis

[48]; we shall also point out some promising directions of further research.

$1. Infinitesimal analysis

1.1. Infinitesimal analysis, following its creator A. Robinson, is frequently
referred to by the expressive but rather unfortunate phrase "nonstandard
analysis"; nowadays one most frequently speaks of classical or Robinsonian
nonstandard analysis. Infinitesimal analysis is characterized by the use of cer-
tain conceptions, long familiar in the practice of natural sciences but frowned
upon in twentieth-century mathematics, involving the notions of actual in-
finitely large and infinitely small quantities.

1.2. Modern expositions of nonstandard analysis rely on formulas of
E. Nelson's internal set theory IST [58] and its later developments, the exter-
nal set theories of K. Hrbacek (EXT) [49] and T. Kawai (NST) t53]. From the
standpoint of the "working mathematician-Philistine," the essence of these
theories is as follows.
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Ordinary mathematical objects and properties are called internal (and
considered, if a rigorous formalization is desired, within the framework of
Zermelo-Fraenkel set theory ZFC). One introduces a new predicate St(x) , ex-
pressing the property of an object x to be standard (qualitatively speaking-
obtained through existence and uniqueness theorems, i.e., the set of natural
numbers is standard, but the infinitely large natural numbers are nonstan-
dard). Mathematical formulas and concepts in whose construction the new
predicate is used will be called external. "Cantorian" sets endowed with ex-
ternal properties are referred to as external. In Nelson's theory, such sets
are considered only as terms of a metalanguage, which is used only for con-
venience. In EXT and NST one can treat them as objects of Zermelo the-
ory, which requires elaboration of a formalism and introduction of a new
primary predicate Int(x) , stating that the object x is internal. The avail-
able formalisms ensure that the extension of ZFC is conservative, i.e., when
proving mathematical statements whose formulations do not involve external
concepts, we may legitimately invoke the theories IST, EXT, and NST, as no
less reliable than ZFC.

1.3. A point of crucial importance is that the new theories contain addi-
tional rules, easily motivated at the intuitive level, which are known as the
principles of nonstandard analysis. We present their rigorous formulations
in IST.

( 1) Transfer principle:

( v " " , ) " ' ( v " x r ) ( ( v " t r ) q ( x ,  x r  x n )  -  $ x ) p ( x ,  x t ,  . . .  ,  x r ) ) ,

where p is an internal formula and rp - q(x , xr, ... , xn) (i.e., p does not
contain any free variables other than those listed).

(2) Idealization principle:

( v x r ) . . .  l v x r ) ( v " o n r ) ( : x ) ( v y  e  z ) g @ ,  ! ,  x t ,  . . . ,  x n )

* '  ( 3 x ) ( V " t y ) e ( * ,  ! ,  x 1 ,  . . . ,  x n ) ,

where p is an internal formula and g -- p(x , ! , xr, ... , xr) .
(3) Standardization principle:

(vx r )  " '  ( vx , ) (v ' t x ) (3 ' t y ) (Y" t  z )z  e  !  *  z  e  x  A  q (2 ,  x t ,  . . . ,  xn ) ,

where e - e(z , xr, ... , xn) is an arbitrary formula. The index st indicates
that the quantifier in question is relativized to standard sets; the index st fin
has the analogous meaning with regard to standard finite sets.

$2. Boolean-valued analysis

2.1. Boolean-valued analysis is characterized by the extensive use of the
terms lowering and lifting, cyclic hulls and mixing. The development of
this trend, which emerged under the impetus of P. J. Cohen's remarkable
work on the continuum hypothesis, leads to essentially new ideas and results,
first and foremost, in the theory of Kantorovich spaces and von Neumann
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algebras. The modeling device offered by Boolean-valued analysis makes
it possible, in particular, to consider the elements of functional classes as
numbers, which substantially facilitates the analysis and creates a unique
possibility of automatically extending the scope of classical theorems.

2.2. The construction of a Boolean-valued model begins with a complete
Boolean algebra .8. For every ordinal a e On one defines

Vjt) :-  {x:(rB e a)x:dom(x) ---+ B n dom(x) e V}B)}.

After this recursive definition, one introduces the Boolean-valued universe
V@) or class of ^B-sets:

v@) ._ u v:r,.
aeO,

2.3. Taking an arbitrary formula of ZFC and interpreting the connectives
and quantifiers in the natural way in the Boolean algebra B, one defines its
truth value [,p\, which depends on the way in which A is built up from
atomicformulas x:!  and x e y. Thetruthvaluesofthelatteraredefined
for x, y e V@) by a recursion schema:

[ x  e  yn : -  V  yQ)  n f i z  :  x \ ,
z€dom(y)

l l x -yn : -  V  xQ)+ [ .2€yn^  A  yQ)+ f i zex \
z€dom(x) z€dom(y)

(the sign + symbolizes implication in B) .
The universe V@) with the above valuation rule is a ("nonstandard")

model of set theory in the following sense.

2.4. Transfer principle. For any theorem g of ZFC, the formula [p] - 1
is valid, i.e., A is true inside V@) .

2.5. In the class V@) there is a natural equivalence x - !:- [x - ln :
I , which preserves truth values. In this connection, one can use a special
device to go over to a separated universe 7@) , in which x : ! ++ l[x -

yn : 1 . In fact, the identification V@) :- 7@) is usually assumed without
special mention. The basic properties of tr'(B) are expressed by the following
assertions.

2.6. Mixing principle. Let (b)er= be a partition of unity in .B , i.e., I #

4 -be  Abr :0 ,  Vc r=bq-  1 .  Forany fami ty  ( " r )a .=  o f  theun ive rse  V@)
there exists a (unique) mixture of (xa)a6, with probabilities (b6)aE=, i.e., an
element x of the separated universe, denoted bt Dr.= brx, or sixrrrbrxl ,
such that [x - xrn 2 b, for ( e E .

2.7 . Maximum principle.
xo e V@) for which

For every formula e of ZFC there is an element

W=x)q(x)n : ne(xs)n.
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In particular, V@) contains an object ,9 whichplays the role of the field
R inside V@) .

2.8. Besides the above principles, there is an important procedure for pass-
ing to V@) from the ordinary von Neumann universe V , where the latter
is defined by the recursion schema

Vo i:  {x: (38 e a)x € P(Vp)} ,  V :- U Vo.
a € O n

This procedure is defined by the rule

on  : -  a ,  dom(xn)  r -  { /n ry  e  x } ,  im(xn)  : -  { l } .

The element x^ € V@) is known as the standard name of x . We thus have
a canonical embedding of V into V@) . Apart from this we have a technique
of lowerings and liftings of sets and correspondences.

2.9. Given an element x e V@), its lowering x I is defined by the rule
x | :- {t e V@l: [/ e xn : l]. The set x J is cyclic, i.e., closed with respect
to mixing of its elements.

2.10. Let F be a correspondence from X to I inside V@) . There exists
a correspondence f' | -and it is unique- from X I to I I such that for
any subset A of X inside V@) ,we have F(A) J : F I (1 l) .

In particular, a map f : Xn + Y inside V@) defines a function-lowering
f  I :  X - + Y  I  s u c h t h a t  f  J ( x )  - f ( x " ) ( x e X ) .

2 . l l . L e t  x  € P ( V @ ) ) .  D e f i n e  A l : - A  a n d  d o m ( x t ) - x ,  i m ( x J )  -

{1}. The element x f is called the lifting of x. It is easy to see that x 1l
is the least cyclic set containing x,i.e., its cyclic hull: x lJ : mix(x) .

2 . l2 .Let  X,Y e P1V@l)  andlet  F beacorrespondenceform X to Y.
There exists a correspondence ̂ F | -and it is unique- from X I to Y I
inside V@) such that dom(,F 1) : dom(f') f and for every subset A of
dom(f') we have F I @ I) : F (A) 1 if and only if F is extensional, i.e.,

!1e F(x,)  r  l lxr  :  x . rn 3 V W1: !2n.
YeF@r)

Inpart icular, amap f:X ---+Y J generatesafunction f I :X" --+ Y such
that  f  t (x" )  - f (x)  for  x  e X. I f  necessary inspeci f iccases, thelower ing
and lifting procedures can be iterated.

$3. Vector lattices

3.1. There are several excellent monographs on the theory of vector lattices

[4], [18], [19], [55], [70]. Vector lattices are also commonly known as Riesz
spaces, and order-complete vector lattices as Kantorovich spaces or K-spaces.
A K-space is said to be extended if any set of pairwise disjoint positive
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elements in it has a supremum. The most important examples of extended
K-spaces are the following:

( 1) the space M (O , 2 , lt) of equivalence classes of measurable functions,
where (O, I, 1r) is a measure space with lt a o-finite measure (or, more
generally, a space with the direct sum property, see [18]);

(2) the space C*(Q) of continuous functions defined on an extremally
disconnected compact space O with values in the extended real line, taking
the values *oo only on a nowhere dense set [4], [9], [55];

(3) the space V of selfadjoint (not necessarily bounded) operators associ-
ated with a von Neumann algebra (see [66]).

To save space, we shall restrict attention to the real case, since the analysis
of complex K-spaces is entirely analogous. The symbol P(E) will denote the
Boolean algebra of order projections in a K-space E . If E contains an order
unit, C(E) is the Boolean algebra of unit elements (fragments of the identity)
in E. The algebras f@) and €(,8) are isomorphic and known as the base
of E. Throughout the sequel, B will be a fixed complete Boolean algebra.
The basis for Boolean-valued analyris of vector lattices is the following result.

3.2. Theorem (Gordon [6]). Let ,9 be the field of real numbers in the
model V@) . The algebraic system .q I Q.e., .q with lowered operations
and order) is an extended K-space. Moreover, there exists an isomorphism X
of the Boolean algebra B onto the base ry@) such that

b  <  [ x  :  Y \ , -  x (b )x  -  x (b ) !  ,
b  < f ix  < yn *-  x(b)x < x(b)y

f o r a l l  x , y e  . q  I  a n d  b e  B .

Throughout the sequel, R will denote the field of real numbers inside
V@) . If the base of a K-space E is isomorphic to .8, then E itself is
isomorphic to the foundation Eo C.q l, and in this situation ̂ E is extended
if and only if E0 - SE J . Under these circumstances one says that ,% J is a
maximal extension and I a Boolean-valued realization of the K-space .E .
It is noteworthy that Boolean-valued realizations of certain structures lead to
subsystems of the field I .

3.3. Theorem [25].
(l) A subgroup of the additive group of ,q is a Boolean-valued realization

of an archimedean lattice-ordered group.
(2) A vector sublattice of ,q , considered as a vector lattice over the field R^

is a Boolean-valued realization of an archimedean vector lattice.
(3) An archimedean f-ring contains two mutually complementary compo-

nents, one of which is a group with zero multiplication realized as in (l), and
the other has a subring of the ring ,9 as a Boolean-valued realization.

(Q An archimedean f -algebra contains two mutually complementary com-
ponents, one of which is a vector lattice with zero multiplication realized as in
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(2), and the other is realized as a subring and sublattice of ,q , considered as
an f-algebra over R^ .

3.4. Gordon's theorem implies the main structural properties of K-spaces.
We shall dwell on the realization of K-spaces and functional calculus. Let Q
be a Stonean compact subspace of the Boolean algebra B and define C*(Q)
as in 3.1 (2). We call a map e:R -- B a resolution of unity in B if (l)
e(s)  < e( t )  (s  i  r )  ;  (2)  V, .^  e( t )  -  1 ,  A, .^  e( t )  -  0  ;  (3)  V, . ,e(s)  -  e( t )
( l  e R). Let B(R) bethesetof al lresolut ionsof unityin ^8. Thesets C."(Q)
and ^B(R) can be endowed canonically with the structure of an extended K-
space (see [4] and [19]).

3.5. Theorem (1291, t50l). The extended K-space g I is (algebraically
and order) isomorphic to each of the K-spaces B(R) and C*(q . Under
this isomorphism an element x €. g I is mapped onto a resolution of unity
t - el (l e R) and onto afunction 7:Q +R by the formulas

el :- [x < l"n (r e R),
7(q) : -  in f { /  e  R:  [x  < /nn e q]  (a e 91.

3.6. Let gR and ,% (R) be the o-algebra of Borel sets and the vector
lattice of Borel functions, respectively, on the real line. We identify B with
the algebra of fragments of the identity rn ,9 J (see 3.2). For every x €
.q I there exists a unique spectra measure (- sequentially o-continuous
Boolean homomorphism F:9n - B) such that tt(-x , t) : el (l e n; .
The measure p defines an integral

I *(f ) :- [ f Al drt(t) (f e ,q 8)).- -  
JR

In this situation lr(f ) is the unique element of !t I for which

[ . l ' , ( f )  < rnn :p ( f< / ) ) .

3.7. Theorem (1291, [50]). The map I*:,9(R) + .9/ ! is the unique se-
quentially o-continuous lattice and algebraic homomorphism satisfying the
condition

/"( id^) - x.

3.8. For other aspects of Boolean-valued analysis of vector lattices, see [7],
[8], [24], 1291, [50], [51], t651.

$4. Positive operators

4.1. General information about positive and order-bounded operators may
be found in 1241, 1291. Take arbitrary K-spaces Z and E. A positive oper-
ator O: Z - ^E will be called a Maharam operator if it is order continuous
and O([0 ,  z l )  :  [0 ,  O(z) ]  for  every z  e Z- ,  where la ,  b l ; -  {c :  a  1c < b}
is an order interval. Let mZ be a maximal extension of Z and D(O)* the
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set of all O 1 z e mZ such that {Qz': z' e Z, 0 ( t' 1 r} is bounded.
Then D(O) :- D(O)+ - D(O)* is a foundation in mZ and Q extends to
a Maharam operator on the whole of D(O) . We say that O is essentially
positive if O > 0 and O(lrl) - 0 implies z - 0.

4.2. Theorem t221. Let Q be an essentially positive Maharam operator.
There exist a K-space Z and an essentially positive o-continuous functional
e: Z + 9 in the model V@) , and there exists an isomorphism t from D(O)
onto the K-space Z I such that Q: e I o t.

4.3. The above result reduces the investigation of Maharam operators to
analysis of the class of o-continuous positive functionals. What is the situ-
ation with regard to arbitrary positive operators? Various approaches based
on Boolean-valued analysis may be adopted here. Let us consider an order-
bounded operator from a vector lattice Z into E:9 l. There exists an
order-bounded R^-linear functional e: Zn -f R inside V@) for which
Q: g l  o / ,  where j :z -- z^ (z e Z). The map Q -- rp is anjso-
morphism of the space of all order-bounded operators L,(2, ^E) onto Z L
where 7 it the space of order-bounded function als on Z . In particular,
O > 0 if and only if np > 0n - I . The disadvantage of this device is that
the map O + p does not preserve order-continuity.

On the other hand, for a positive operator Q: Z + E one can construct
an essentially positive Maharam operator O and a lattice homomorphism
h:Z - D(iD) such that Q: @o h,where the pair (h,6) is minimal in a
certain sense (see [1]). Appealing to Theorem 4.2, we obtain a representation
Q:e Ior ' ,where t ' : -hot  and g isanessent ia l lyposi t ive o-cont inuous
functional in the model V@) . The disadvantage of this approach is that the
space D(lD-) may prove to be invisible. However, in a fairly general situation,
D(lD) is realized as the space of functions (in two variables) on P * Q, where
P and O are Stonean compact subspaces of Z and ,8, respectively (see

t5 5l).
4.4. The above arguments are easily applied to the algebra of fragments of

an arbitrary positive operator O acting from a vector lattice Z to a K-space
E with filter of units 6 and base f@) (see [] and t39l). We dwell on the
representation of the projection S of an operator Z onto the component

{Afo generated by the operator O. Let us call a set of operutors g in
L,(Z , E) a generating set if Ox- - sup{p@x:p € g} for all x e Z. To
study interesting fragments by lifting into a Boolean-valued universe, one can
reduce everything to the case of functionals. For the latter, using infinitesimal
representations, one readily proves that

Sx- inf* {" pTx; pd Qx ! o , p e ,q} ,

S x - i n f  { " T y , O ( x -  y ) = 0 ,  0 < y  ( x } ,

where * is the standardization symbol, 
o 

the "standard part" operation, r
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denotes infinite smallness and -.. denotes the exactness of the formula, i.e.,
the attainability of equality.

Interpreting the above nonstandard representations and performing the
lowering, one arrives at the following formulas l29l:

Sx -  supinf {zTr*  no Tr ,0 < y  I  x ,  n  eg(E) ,  n i l (x  -  y)  < e} ,
e€€

Sx :  sup in f { (  TEp)d  Tr :pDr  1  e ,  p  e .q ,  f t  q_ f (E ' ) } .
e€(

$5. Banach-Kantorovich spaces

5.1. A Banach-Kantorovich space consists of a (real or complex) vector
space X,d K-space E,andavectornonn l . l :X + E suchthatthefol lowing
conditions hold: (1) the nonn is decomposable, i.e., if lxl - et+e2, where
x  e .  X  a n d  e r , € z e  , E + ,  t h e n  x :  x r * x z  a n d  l x l r l  -  e o  ( k : -  1 , 2 )  f o r
suitable x, x2 e X; (2) X is o-complete, i.e., for any net (x") c X , if
o - l im lxo -  *p l :0 ,  then  o - l im lxo -  x l  :  0  fo r  some x  e  X .  We sha l l

assume that { lxl :x e X}od - E c.q I.  l f  E is extended, i .e.,  E :,9 L
then X is also said to be extended. An example of an extended Banach-
Kantorovich space is the space M(O,Z,lt,Y) of (equivalence classes of)
strongly measurable vector-valued functions with values in a Banach space
Y .

5.2. Theorem 1231. Let x be a Banach space in the model V@) . Then
the lowering x ! is an extended Banach-Kantorovich space. Conversely, if X
is an extended Banach-Kantorovich space, there exists a unique (up to linear
isometry) Banach space x in V@) whose lowering is linearly isometric to X .

5.3. Let us call the bounded part of the space x I the restricted descent of
x. The restricted descents of Banach spaces in V@) constitute the class of
.B-cyclic Banach spaces. Let B be the complete Boolean algebra of norm one
projections in a Banach space X. We shall say that X is cyclic with respect
to B, or .B-cyclic, if, for an arbitrary partition of unity (nr)rr= c B and any
bounded family ("r)r.- c X there exists a unique element x e X such that
nexc: ftex (( e E) and llxll < trp(.= 11x6ll . Let A(B) denote an arbitrary
commutative AW* -algebra whose complete Boolean algebra of idempotents
is isomorphic to B . lf X is an AW* -model over A(B) (see [52]), then X is
a B-cyclic Banach space. All the aforesaid leads to the following realization
theorem.

5.4. Theorem [59]. The restricted descent of a complex Hilbert space in the
model V@) is an AW* -module over the algebra A(B) . Conversely, for any
AW* -module X over A(B) there exists a unique (up to unitary equivalence)
Hitbert space inside V@) whose restricted descent is unitarily equivalent to
X .
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5.5. Let X and Y be Banach-Kantorovich spaces with norming lattices
E and f' , respectively. A linear operator T: X -+ Y is said to be majoriz-
able if there exists a positive operator ,S:E --+ F such that lTxl < S(lxl) for
all x e X .If E - F and S is an orthomorphism, a majorizable operator
is also called bounded, since in that situation 7" coincides with the lowering
from V@) of a bounded linear operator acting in Banach spaces. By inter-
preting Riesz-Schauder theory in a Boolean-valued model one arrives at a
new concept of cyclic compactness and obtains corresponding results on the
solvability of operator equations in Banach-Kantorovich spaces t241. Gen-
eral majorizable operators have a far more complicated structure and their
analysis requires appeal to a considerable variety of methods (see 1241,1261,
t3  1 l ) .

5.6. Banach-Kantorovich spaces and majorizable operators were first in-
troduced by L.V. Kantorovich in [6]. It was he who proposed the first
applications to the solution of operator equations by the method of succes-
sive approximations (see U7l, tl9l). These objects possess a rich structure
and have several important applications in the area of spaces of measurable
vector-valued functions and linear operators in such spaces t261. In partic-
ular, the study of Banach-Kantorovich spaces leads to the notion of Banach
spaces with mixed norms, which is enormously useful in connection with the
isometric classification of Banach function spaces (see [26]).

$6. Banach algebras

6.1. Certain classes of Banach algebras yield some beautiful variations on
the theme outlined in the previous section. Call a C*-algebra A a B- C* -

algebra if A is cyclic with respect to a Boolean algebra of projections B ,
where any projection in ^B is multiplicative, involutive and of unit norm. If
A ts an AW* -algebra and .B a regular subalgebra of the Boolean algebra of
central projections p(,4) , then A is a B- C.-algebra. We shatl therefore say
that A is a ,B- AW' -algebra if .B is a regular subalgebra of ry c@). Now let
A be a J B-algebra and ^B and p.(A) the same as before. lf A is a cyclic
Banach space with respect to .B , we shall say that A is a B- J B-algebra.
An isomorphism that commutes with the projections in B will be called a
B-isomorphism. The following theorem, though in a slightly different form,
was proved in 1671.

6.2. Theorem 1671. The restricted descent of a C* -algebra in the model
V@) is a B- C* -algebra. Conversely, for every B- C. -algebra A , there exists
inside V@) a unique (up to *-isomorphism) C* -algebra .il such that the
restricted descent of ,M H x- B-isomorphic to A.

6.3. Theorem. The restricted descent of an AW* -algebra (J B-algebra)

from the model V@) is a B- AW* -algebra (B- J B-atgebra). Conversely, for
any B- AW* -algebra (B- J B-algebra) A there exists a unique (to within an
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isomorphism) AW* -algebra (J B-algebra) ,M whose restricted descent is B-
isomorphic to A . In addition, "{ witl be a factor in V@) if and only if
B : 9r(A) . The formulated statement concerning AW* -algebras is obtained
in l59l and [601.

6.4. The Boolean-valued realization of von Neumann algebras [66] is also
worthy of mention. The above realization theorems form the foundation for
Boolean-valued analysis of all these classes of Banach algebras (see [59]-[62],
[66], t67l). In particular, it was shown in [59] that for all infinite cardinals
a and P there exists an AW* -algebra that is simultaneously a- and P-
homogeneous (a conjecture of Kaplansky in [52]). This fact is related to the
location of cardinal numbers under embeddings in V@) (see [44], t68l).

$7. Convex analysis

7.1. The subdifferential is one of the most important concepts in convex
analysis (see [24], [28]). In this section, referring to a few examples, we
shall show how to use Boolean-valued analysis to study the internal structure
of subdifferentials. Take avector space X, d K-space E, and a sublinear
operator P: X + E. The subdifferential A P of P at zero is also called
the supporting set of P t281. By Gordon's theorem, we may assume that
E c 9 L so that we can "convert" P inside a suitable model into an ,9 -
valued sublinear operator, i.e., a sublinear functional. To be precise:

7.2. Theorem [54]. There exist a Banach space x and a continuous sublin-
ear functional p: x -+ ,9 in the model V@) such that there is an isomorphic
embedding of X into the Banach-Kantorovich space x I with [(rX) f l,s
d e n s e i n  x \ - 1  a n d  P : F o t . I n t h i s s i t u a t i o n , f o r a n y  U  e ? P  t h e r e i s
a unique element u e V@) for which [u e lpn: I and (J : tt J o l. The
map U -- u is an affine isomorphism of the convex sets 0 P and (0 p) I .

7.3. Thus, the study of 0P largely reduces to that of 0p. For example,
let us look at the extremal structure of the subdifferential 0P. Let Ch(P)
denote the set of extreme points of 0 P. It should be noted that by Theorem
2 the relations U e Ch(P) and [u e Ch(p)] - 1 are equivalent, and one
can then use the classical Krein-Mil'man Theorem and Mil'man's inversion
of it for 0p. For a rigorous formulation of the result, we need some more
definitions. The weak closure o- cl(Q) (cyclic hull mix(A)) is the set of
all operators T e L(X , E) of the form Tx : o-hmTox (x e X) , where
(7") is a net in C) (resp., Tx - o-lnrTrx (x e X) , where (f6) c O
and (26) is a partition of unity in p(E)) . The weak cyclic closure of Cl is
the set o-cl(mix(O)) . If o-clQ - Q or mix(Q) : Q, one says that O is
weakly o-closed or cyclic, respectively. The definition of weak r-closedness
is analogous.
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7.4. Theorem 1271, [281. Q) For any sublinear operator P: X -+ E the
subdffirential coincides with the weakly cyclic closure of the convex hull of its
extreme points Ch(P) .

(2) If P:X -> E is a sublinear operator and T € L(Y,X), then
C h ( P o T ) c C h ( P )  o I .

A set A c L@, ^E) is operator convex (weakly bounded) if oQ+/Q c Q
f o r a n y  o , f  e g  I - ,  o * f  : 1  ( t h e s e t  { T r : T  € O }  i s o r d e r b o u n d e d f o r
a l l  x e X ) .

7.5. Theorem 1241, t271. For a weakly bounded set Q c L(X , E) , the

following assertions are equivalent:
(1) Cl - 0P for some sublinear P: X -. E;
(2) Q rs convex, cyclic, and weakly r-closed;
(3) Q rs convex, cyclic, and weakly o-closed;
(4) Q rs operator convex and weakly o-closed.

7.6. Let Q: Z + E be a positive operator, P a sublinear operator from
a vector space X to a K-space Z . The term disintegration in K-spaces
refers to those parts of the calculus of subdifferentials based on the formula
d(O o P) : O o 0P. This formula is not always true, but it is known to be
valid if O is an order-continuous functional (E - R) . The general case is
analyzed with the help of Theorem 4.2. Let O , e , t be the same as tn 4.2.
There exists an R^-sublinear operator p: Xn --+ Z inside V@) for which
p I "j 

- t o P (cf. a.3). From this and 7.2 weconclude that

O o P  : O o , - t  o  ( r  o P )  -  e  I  o p  I  o j  -  ( g  o  p )  I  o i ,

0 ( O o  P )  :  { u  I  o j : f u  e  0 ( q  "  p )  :  e  o  0  p n  -  l ] .

These arguments yield the following result.

7.7. Theorem 1221. Let O be a positive order-continuous operator. The

formula o(Oo P):Q-o0P is validfor any sublinear operator P if and only
if A is a Maharam operator.

7.8. Further developments of disintegration in K-spaces may be found in

l24l and t281. On nonstandard methods in convex analysis see also [33], 1341,
[36], and [54].

$8. Monadology

8.1. A central concept of infinitesimal analysis is the monad. According to
Euclid's definition, "a monad is that through which the many become one." In
the formal theory, a monad p(q) is defined as an external list of the standard
elementsof astandardfi l ter V,i .e.,  x e p(7; *- '  (V't ,F e V)x e F. A
syntactic characterization of external sets that are monads was proposed not
long ago by Benninghofen and Richter [45]. It is useful to emphasize that
everv monad is a union of ultramonads-monads of ultrafilters. For such a
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monad U the assertions (3x e U)rp(x) and (Vx)p@), where (p - e@) is
an external formula, are equivalent. Hence it is clear that ultramonads are
the genuine "elementary" objects of infinitesimal analysis.

8.2. For applications to the theory of operators, it is of essential impor-
tance to construct a synthetic theory in the framework of which both the
nonstandard methods offered by Boolean-valued models and external set the-
ories can be used. Only preliminary results have so far been achieved in
this direction; they pertain to the study of topological-type notions related
with mixing-cyclic filters, topologies and so on, which play major roles in
K-spaces. We shall point out one of the possible approaches to cyclic mon-
adology.

8.3. Fix a standard complete Boolean algebra B and an external set A
consisting of elements of a separated Boolean-valued universe V@) . An
element x e V@) is a member of the cyclic hull mix(,4) if and only if, for
some internal family (or)rr= of elements of ,,4 and an internal partition of
unity (b)cr= in B, we have

x - mix( eeb€x€.A monad p(V) is said to be cyclic if p(V) - mix p(,V).
A point is said to be essential if it lies in the monad of some pro-ultrafilter-a
maximal cyclic filter or, more rigorously, 8n ultrafilter in V@) .

8.4. Theorem. (l) A standardfilter is cyclic if and only if its monad is cyclic.
(2) A filter is extensional if and only if its monad is the cyclic monadic hull

of the set of its essential points.

As corollaries we cite the following Boolean-valued analogs of some clas-
sical criteria of A. Robinson.

8.5. Theorem. (l) A standard set is the lowering of a compact space if and
only if each of its essential points is near-standard.

(2) A standard set is the lowering of a totally bounded space if and only if
each of its essential points is pre-near-standard.
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