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Boolean-Valued Introduction to the Theorv of Vector Lattices

A. G. Kusraev and S. S. Kutateladze

The theory of vector lattices appeared in early thirties of this century and is
connected with the names of L. V. Kantorovich, F. Riesz, and H. Freudenthal. The
study of vector spaces equipped with an order relation compatible with a given norm
structure was evidently motivated by the general circumstances that brought to life
functional analysis in those years. Here the general inclination to abstraction and uni-
form approach to studying functions, operations on functions, and equations related
to them should be noted. A remarkable circumstance was that the comparison of the
elements could be added to the properties of functional objects under consideration.
At the same time, the general concept of a Banach space ignored a specific aspect
of the functional spaces-the existence of a natural order structure in them, which
makes these spaces vector-lattices.

Along with the theory of ordered spaces, the theory of Banach algebras was being
developed almost at the same time. Although at the beginning these two theories
advanced in parallel, soon their paths parted. Banach algebras were found to be
effective in function theory, in the spectral theory of operators, and in other related
flelds. The theory of vector lattices was developing more slowly and its achievements
related to the characterization of various types of ordered spaces and to the descrip-
tion of operators acting in them was rather unpretentious and specialized.

In the middle of the seventies the renewed interest in the theory of vector lattices
led to its fast development which was related to the general explosive developments in
functional analysis; there were also some specific reasons, the main one being the use
of ordered vector space in the mathematical approach to social phenomena, econom-
ics in particular. The scientific work and the unique personality of L. V. Kantorovich
also played important role in the development of the theory of ordered spaces and
in relating this theory to economics and optimization. Another, though less evident,
reason for the interest in vector lattices was their rather unexpected role in the theory
of nonstandard-Boolean-valued-models of set theory. Constructed by D. Scott,
R. Solovay, and P. Vopenka in connection with the well-known results by P. G. Cohen
about the continuum hypothesis, these models proved to be inseparably linked with
the theory of vector lattices. Indeed, it was discovered that the elements of such
lattices serve as images of real numbers in a suitably selected Boolean model. This
fact not only gives a precise meaning to the initial idea that abstract ordered spaces
are derived from real numbers, but also provides a new possibility to infer common
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properties of vector lattices by using the fact that they, in a precise sense, depict the
sublattices of the field R. Indeed, this possibility was taken as a basis for the present
minicourse of lectures.

The main attention in these lectures is paid to the fundamental concepts. For
brevity, we usually skip the proofs of the formulated theorems.

The bibliography, both in the field of vector lattices and in nonstandard analysis,
is by no means complete. With few exceptions, the list of references consists of
monographs and survey articles containing extensive bibliographies. Other original
works are cited for specific reasons.

LECTURE I. Vector lattices

We start with a brief description of basic concepts of the theory of vector lattices.l
Details can be found in 17, 13, 14,38, 41, 51].

1.1. Let F be a linearly ordered field. An ordered vector space over F is a pair
(E,<), where E is a vector space over the field F and ( is an order relation on E
such that, in addition, the following conditions are fulfilled:

( 1 )  i f  x < y  a n d u  ( u ,  t h e n  x * u < y + u  f o r  a n y  x , ! , t t , u e  E ;
( 2 )  i f  * l y , t h e n ) . x < ) . y  f o r a n y  x , ! € E  a n d 0 < t r e F .
Thus, in an ordered vector space inequalities can be added together and multi-

plied by positive elements from F. This can be expressed as follows: ( is an order
relation compatible with the vector space structure or, in short, ( is a vector order.

The definition of a vector order on a vector space E over the field F is equivalent
to specifying a certain set (called the positive cone) E* c E with the following
properties:

E+*  Ea c  Ea,  ) ,E*  c  E*  (0  < ,1  e  F) ,  E+f i  ( - t * )  :  {0 } .

Moreover, the order ( and the cone Ea are connected by the relation

x  <  y  e  y  -  x  e  E , ,  (x ,y  e  E) .

The elements of the cone Ea arc called positive.

1.2. An ordered vector space that is also a lattice is called a vector lattice. Hence,
for any finite set {x1
sup{x1
xr A. ..Ax, (these elements are, of course, unique). In particular, anyelementx of
a vector lattice has a positive part x+ i: x V 0, a negative part x- ;- (-")* - -x A 0,
and a modulus lx l  : :  x v (-x) .

The disjunction (disjointness relation) I in a vector lattice E is defined by the
following formula:

r : :  { ( x , t )  e  E  x  E :  l " l  n  l y l  :0 } .

A set of the form

M L  : :  { "  .  E :  ( Y y  e  M )  x L ! } ,

where M is an arbitrary nonempty set in E, is called a component or a band of the

I Translator's note. Vector lattices are also called Riesz spaces.
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vector lattice E. The set of all bands of a vector lattice, ordered by inclusion, forms
a complete Boolean algebra ts(E) under the following Boolean operations:

L  A  K  : :  L )  K ,  L v  K  , :  ( L  U  K ) r r ,  L "  : :  L L  ( L , K  €  E ( E ) ) .

The algebra A(E) is called the base of E.
An element 1 e ^E is calledan(order) unit, if {1}rr 

- E, i.e., if E has no nonzero
elements that are disjoint with 1. Let e A (I - r):0 for some 01 e e E. Then
e is said to be a unit element (with respect to 1). The set €(l) :: e(E) of all unit
elements with the order induced from E is a Boolean algebra. The lattice operations
in €(1) are inherited from E, and the Boolean complement has the form e* :: | - e
(e  e  € (E) ) .

Let K be a band of a vector lattice E. If there exists an element sup{rz €
K: 0 1 u I x) in E, then this element is called the projection of x to the band
K and is denoted by [rK]x (or Prr x). For an arbitrary x € E one defines lKlx ::

lKl** - [K]x-. The projection of an element x e E on K exists if and only if
there is a decomposition x : y * z, where y € K, z €. KL. Moreover, in that
case, y : [K]x and z : lKLlx. We shall assume that any element x e E has
a projection on K. Then the operator x H lKlx (" e E) is linear, idempotent,
and 0 < [K1* ( x, for all 0 < x € E. One says that E is a vector lattice with the
projection (principal projection) property if for any band (principal band) K e rB(E)

the projection operator [K] is defined.2

1.3. A linear subspace I of a vector lattice is called an order ideal or an o-ideal
(or just an ideal, if the rest is clear from the context), whenever the inequality l"l < ly I
implies that x € I, for any x e E and y € 1.3

If an ideal / has the aditional property ILL - E (or IL : {0}, which is the
same), then it is called afoundation of E.a

A subspace Es C E is called a sublattice of E if x A !, x Y I e Eo for any x,

I e Eo. It is then said that the sublattice Ee is minorizing (or that it is a minorant)
if for any 0 # * e E1 there exists an element x6 e Eo satisfying the inequalities
0 < xo ( x. We say that Eo is a majoizing (or massive) sublattice if for any x € E
there exists xs e Es such that x I xs. Thus, Eo is a minorizing (majorizing) sublattice
i f  and only i f  E* \  {0} :  E+* (Eo* \ {0})  ( respect ively,  E:  E+ +Eo).

Everywhere below, whenever the field F is not indicated explicitly, a vector lattice
over the linear ordered field R of real numbers is implied. An order interval in E
is  a  se t  o f  the  fo rm [o ,b ) ' -  { "  e  E :  a  I  x  <  b } ,where  a ,b  e  E .  A  se t  in  E  is
called (order) bounded (or o-bounded) if it is contained in some order interval. It is
possible to introduce a seminorm on the ideal I(u):: Up,f-nu,nu)generated by
t h e e l e m e n t 0 { u e E :

l lxl l ,  :: inf {,t € R+ : lxl < Lu) (x e I (u)).

If I(u): E,then u is called a strong unit and E is a vector lattice of bounded
elements. The seminorm ll . ll, it a norm if and only if the lattice I (u) is Archimedean;
i.e., for any x e I (u) the order boundedness of the set {"lrl n € N} implies that
x : 0 .

2 Translator's note. The principal band generated by an element / is {f }LL.
3 Translator's note. A set D is called solid if f e D, lhl <lfl + h e. D.
4 Translator's note. This property is often called "quasi order dense" in the literature (cf. [34, p.

ll0]); "foundation" is the literal translation of the Russian term and is more evocative.
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An element x ) 0 of a vector lattice is said to be discrete if [0, x] : [0, l]x, i.e.,
if 0 < y < x implies | : trx for some 0 < 1< 1. A vector lattice E is called discrete
if for every 0 * y € E+ there exists a discrete element x Q E such that 0 < x < y.
If E has no nonzero discrete elements we say that E is continuous.

1.4. Avector lattice over the field of real numbers in which every nonempty order
bounded set has an infimum and a supremum is called a Kantorovich space, or, in
short, a K-space.s Sometimes instead of a K-space amore descriptive term is applied,
namely (relatively) order complete vector lattice. If infima and suprema exist only for
countable bounded sets, then the corresponding vector lattice is called a Ko-space.
Any K"-space, hence any K-space, is Archimedean. It is said that a K-space (Ko-
space) is extended6 if any set (any countable set) in it consisting of pairwise disjoint
elements is bounded.

A K-space has a projec'ion onto every banci. The set of all projections onto the
bands of E is denoted by the symbol f@).For the projections z and p we define
n < p  i f  a n d o n l y i f  n x l p x f o r  a l l  0 <  x € 8 .

Trmonnu. Let E be an arbitrary K-space. Projecting onto bands defines an iso-
morphism K r- [K] of Boolean algebras A(E) and p(E). If there exists a unit in
E then the mappings n r- nl from ry@) into t(E) and e *' {"}tt from t(E) into
A@) are isomorphisms of Boolean algebras.

1.5. The projection nu onto the principal band {u}tt, where 0 I u € E, can
be computed by means of a simpler rule than is indicated in 1.2:

nux  - -  sup  {x  A  (nu) :  n  €  N} .

In particular, a Ko-space contains the projection of any element onto every
principal band.

Let E be a K-space with unit l. The projection of the unit onto the band

{"}tt is called the trace of the element x and is denoted by the symbol e". Thus,
er : sup{l A(nlxl): n € N}. The trace ex can be used both as a unit in {x}rr and
as a unit element in E. For any real number )., el denotes the trace of the positive
part of the element Al - x, i.e., eI : e6r-x1+. The associated function ), v- ei is
called the spectral function or the characteristic of x.

1.6. An ordered space E over F is called an ordered algebra over F, if it is an
algebra over F and, moreover, the following condition is satisfied: if x, y € E with
x ) 0 and y ) 0, then xy ) 0. In order to characterize the positive cone Ea of
an ordered algebra E, another property should be added to those mentioned in 1.1:
E* . E* C E+. We say that E is a lattice ordered algebra if E is a vector lattice and
an ordered algebra, simultaneously. A lattice ordered algebra is called an f -algebra

if for any q, x, y € E1 from the condition x Ay:0 it follows that (ax) n./:0 and
(xa) n!:0. An f -algebra is called faithful if for any two elements x and y the
equality xy :0 implies x Ly . It is not difficult to show that an f -algebra is faithful
if and only if it has no nonzero nilpotent elements. The faithfulness of an f -algebra

is also equivalent to the absence of strictly positive elements with zero square.

5 Translator's note. This is the Russian terminology for a Dedekind complete vector lattice.
6 Translator's note. Literally translated from the Russian; in the French translation of [3] this is

called "achev6", and in [30] the phrase "universally complete" is used for this notion.
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1.7. The complexification E e tn (i is the imaginary unit) of a real vector lattice
E is called a complex vector lattice. In addition, it is often required that

lz l  : : sup  {  F te (e io  z ) :  0  (  0  <  n }

for any element z € E @ iE. In the case of a K-space or an arbitrary Banach
lattice this requirement is automatically fulfilled. Thus, a complex K-space is the
complexification of a real K-space. Speaking of order properties of a complex vector
lattice E @ iE, we have in mind its real part E. The notions of a sublattice, ideal,
bands of projection, etc. are naturally extended to the case of a complex vector lattice
with the help of suitable complexifications.

1.8. Various types of convergence are related with the order relation in a vector
lattice. Let (A, <) be an upwards-filtered set (i.e., filtered with respect to increase).
A net (xo) :: (x.).,e.q in E is said to be increasing (decreasing) if xo ( xp (xp ( xo)
f o r o < f ( o , f e A ) .

It is said that a net (xo) o-converges to an element x € E if there exists a
decreasing net (e.)oe,q in E with the properties inf{e a 1 e € A}:0 and l*o - xl3 eo
(a e A).If this is the case, x is called an o-limit of the net (xo) and this is denoted

by x:o-l im xa ot *o 9x. In a K-space E,the upper and lower o-l imits for an
order bounded net are introduced by the following formulas:

limsup xa i: M*" 
,: ltfnill rr,

liminf xs ;: 
H*"': ::? igf.ru

There is an evident relation between these objects:

x : o- l:&r" *-- limsup xa : x : liy,,;2f x..

It is said that the net (xo)o E1 rcgvlator converges to x e E if there exist an
element 0 I u e E, which is called a regulator of convergence, and a net of numbers
(l,),e,q with the properties l im tro:0 and l"* - xl1 )"ou (a e A). In additiol,," it

called a r-limit of the net (x,) and this is denoted &s x: r-lim.,alxo or xo lL x.
Clearly, regulator convergence is convergence in the normed space (f (r),ll .ll,).

The presence of o-convergence in a K-space allows us to define the sum of an
infinite family (")<.r. Indeed, let A::Fnn(E) be the set of all finite subsets of E.
W e  w r i t e  l a t :  x l r * . . . +  x 6  f o r  d , : :  { ( t , . . .  , ( n }  e  A ,  o b t a i n i n g  a  n e t  ( y . ) o r n ,

where.,4 is naturally ordered by inclusion. If x :: o-lim.,al yo exists, then the element
x is called the o-sum of the family (x6) and it is denoted as x : o- Dr.- x1 ot simply

" 
: D(. = x1. lt is clear that for xc 2 0 (( e e) the o-sum of the family (x6) exists

if and only if the family (!)oee is order bounded; moreover,

o- f xt, : suP -/o'
7r= a€A

If the elements of the family (xa) are pairwise disjoint, then
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Any K-space is o-complete in the following sense. If a net (xo)oet in E satisfies
the condition lim sup lxo - *Bl ': i!{ sup lxo - xBl: 0, then there exists an element

Y € A  a , f ) y

x e  E  s u c h t h a t  x : o - l i m x o .

1.15. Comments. (a) The history of functional analysis in ordered vector spaces
is usually related to the contributions of G. Birkhoff, L. V. Kantorovich, M. G. Krein,
H. Nakano, F. Riesz, H.Freudenthal, etc. At the present time, the theory and appli-
cations of ordered vector spaces forms an extensive domain in mathematics which,
essentially, is one of the main branches of contemporary functional analysis. The
field is well presented in monographs; see llr 7, 13,14r 16, 18, 20r 25r 261 29,31,32,
3G39,41,50,511. We should also mention the surveys with extensive bibliographies

12-41. The necessary information on the theory of Boolean algebras can be found
in [6, 24, 30].

(b) L. V. Kantorovich singled out the most important class of ordered vector
spaces-the order complete vector lattices, i.e., K-spaces. They were introduced in
Kantorovich's first fundamental work on the subject [11], where he wrote: "In this
note I define a new type of spaces which I call linear semi-ordered spaces. The
introduction of these spaces allows us to study linear operations of one general class
(operations with values belonging to such a space) as linear functionals."

In the same paper Kantorovich formulated an important methodological prin-
ciple-a heuristic transfer principle for the K-spaces. As an example of application
of this principle one can take Theorem 3 from [11] which is also called the Hahn-
Banach theorem. It states that the Kantorovich principle can be realized in the case
of the classical theorem on the majorized extension of a linear functional, i.e., the real
numbers in the Hahn-Banach-Kantorovich theorem can be replaced by the elements
of an arbitrary K-space, and the linear functionals by linear operators with values
in this K-space.

LECTURE 2. Boolean-valued models

This lecture presents a short survey of necessary information from the theory of
Boolean-valued models. The details can be found in [10, 18,21, 40, 4*47].

The main feature of the method of Boolean-valued models lies in the compar-
ative analysis of two models-standard and nonstandard (Boolean-valued)-using
a certain technique of descents and ascents. In addition, a syntactic comparison of
formal strings has often to be applied. Therefore, before starting our study of the
technique of descents and ascents we need to have a more precise idea about the
status of mathematical objects within the framework of formalized set theory.

2.1. At present, the Zermelo-Frenkel set theory is the most widely used ax-
iomatic basis of mathematics. We recall briefly some of the concepts of this theory,
concentrating on the details that will be necessary below. It should be noted that
regarding formal set theory we shall use (since it is unavoidable) the level of rigor
that is accepted in mathematics; we shall introduce abbreviations with the help of
the definition operator :: and we will not go into the concomitant details.

( I ) The alphabet of the Zermelo-Frenkel theory (shortene d ZF or ZFC) consists
of symbols for variables; parentheses ( , ); propositional connectives (: operations
of the propositional algebra); v, A, +, *', I ; the quantifiers V, 3; the sign of equality
-; and a symbol for a special two-place predicate €. Conceptually, the range of the
variables of ZF is conceived as the world (universe) of sets. In other words, the
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universe of ZF has no other objects but sets. Instead of e (x, y), one writes x e y
and says that x is an element of y.

(2) The formulas of ZF are defined by the usual procedure. In other words, the
ZF formulas are finite strings obtained from the atomic formulas of the form x : !
and x € y, where x, y are variables of ZF, with the help of reasonable placements of
parentheses, quantifiers, and propositional connectives. Natural meaning is given to
the terms of free and bound variables (or, equivalently, to the concept of the action
area of a quantifier).

(3) When studying ZF theory, it is convenient to use the expressions that are
absent in its formal language. In particular, it is appropriate to use the notions of
a class and of a definable class, and also corresponding symbols for classes of the
fotT Ag ::  AvO r- {" :  p(x)} and Ay i :  Av,(. ,y) ' :  {" :  V(x,y)},  where g, V
are formulas from ZF, and y is a selected set of variables. If one wishes to make the
resulting notations more precise (or eliminate them) one can assume that the use of
classes and classifiers is only related to the usual conventions about the introduction
of abbreviations. This convention, sometimes called the Church scheme, is postulated
as follows:

z e{x :  p(x)} *-,  pQ),

z  e {x  :  V (x ,y ) }  *  VQ,y ) .

When working with ZF, abbreviations widely used in mathematics are involved.
Some of them are:

U x : : { z : ( J y e x ) z e y } ;
f t x : : { z : ( y y e x ) z e y } ;
x C y z - ( V z ) ( z e x + z e y ) i
g(*):- the class of all subsets of x :: {z : z C 

"hV :- the class of all sets :: {x : x - x}.
We note that in further discussions more complicated descriptions, in which a

lot is implicitly understood, are allowed:
Funct(/) :: f is a function;
dom(/) :- the domain of definition of /;
im(,f) :- the range of values of f ;
p ts V :- ((V is derivable from cp));
t h e c l a s s  A i s a  s e t : -  A e  V ; : ( 3 x ) ( V y ) y  € x < - - +  y € A .
Similar simplifications without special stipulations are used in writing down com-

plicated concepts and formulas. For instance, the following formulas of ZF, which
are rather large in the language of ZF itself, are simply written down as:

f , * --+ y:: f is a function from x to y;
E is a K-space.

2.2. ln ZF set theory we accept the usual axioms and inference rules for first-
order theories with equality, which fix the standard methods of classical reasoning
(syllogisms, law of the excluded middle, modus ponens, generalization, etc.). Besides,
the following special and characteristic axioms are assumed.

(l) Axiom of extensionality:

( V x ) ( V y )  ( " c  y A y  C x - - - r  x : y ) .

(2) Axiom of union:
( V " )  u x € V

109
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(3) Axiom of power set:

(V") 9(x) e V

(4) Axiom scheme of replacement:

(VxX((Vy)(vt)(Vu)p(y,z) ^p(y,u) - z -u)

- - )  {z  :  (1y e x)p(y,z) }  e  V) .

(5) Axiom of foundation:

( V x ) ( x  # s - -  ( l y e  x ) ( y n x : a ) ) .

(6) Axiom of infinity:

(=a)( (s  e @)n (Vx e ar) (x  u { " }  €  ar) ) .

(7) Axiom of choice:

(Vr)(Vx)(Vy)((* * s A F : x --+ e(y))

-  ( (1 f ) f  :  x- - -+ y  n(Vz e x)  f  ( r )  e  F(z)) ) .

The precise concept of the class of all sets as the von Neumann universe Z is
based on the presented axiomatics. The initial object in this construction is the empty
set a. A simple step for introducing new sets consists in forming the union of sets or
in taking subsets of the sets already constructed. The transfinite repetition of such
steps exhausts the class of all sets. More precisely, it is assumed that V ,: 

olorVo,
where Or is the class of all ordinals and

Vs:: e; Va+t t: 9(V.); VB :- U V" (f ir a limit ordinal).
a<p

The class Z is the standard model of ZF theory.

2.3. Now we shall describe the construction of a Boolean-valued universe. Let
^B be a complete Boolean algebra. For each ordinal o we set

V:B) :- {x :  Funct(x)  ̂(=P)(P ( o Adom(x) c V;B) nim(x) c B)}.

Thus, in more detailed notation:
vlB) :- o;
V[!*\,: {x : x is a function with domain iyt V@) and with range in ^B}:

v[B) :- p v;".
p<a

The following class is considered as the Boolean-valued universe y@)'
y(B) ._ U V:u).

a € O r

Elements of the class V@) are called B-valued sets. It is worth noting that V@)
consists only of functions. In particular, Z is the function with the domain o and
the range Q.



. BOOLEAN-VALUED THEORY OF VECTOR LATTICES

2.4. Suppose we have an arbitrary formula g : g(ut u) from ZF theory.
By replacing the variables ur,... ,u, with elements xI,.. ,xn e V@) we obtain a
certain statement about the objectS xl, . . . , xn, the validity of which we try to estimate.
The desired truth-value [rp] should be an element ffom the algebra ,8. In the process
we wish the ZF theorems to be judged valid, i.e., the largest truth value in .8, namely
one, to be ascribed to them.

The assignment of truth-values is carried out by a double induction which takes
into account the character of constructing formulas from the atomic ones, and assigns
the truth-values for [x € y] and [x : y], where x, | € y(B) , based on the method
of construction o1 Y$)

It is clear that if g and Vl are already estimated ZF formulas, and flpn e ^B and
[,fn e B are their truth-values, then one should put

[p ̂  vn:- fpn n [rrn;
fpvV\ : : [pnv[ rzn;

[p * Vn:_ flpn =+ [rZn;
ilen :- [pn*;

[(vx)rp(x)n :- A [p(")n;
* ? Y @ )

[(]x)p(x)n :: V [p(")n,
x e v @ )

where on the right-hand sides we have the Boolean operations corresponding to the
logical connectives and quantifiers from the left sides: A is the infimum, V the supre-
mum, * the complement, I and ! denote the infimum and supremum of arbitrary
sets, and the operation + is introduced in the following way: a + b :: a* Y b
(a,b e B). Only these definitions allow us to obtain the unit truth-value for the
classical tautologies.

Now we pass to the estimation of atomic formulas x € y and x: ! for x, y e
y@) . The intuitive idea is that a .B-valued set is a"fuz.7y (lattice) set'', i.e., a "set that
contains an element z from dom (y) with the probability y(z)". Taking into account
this idea as well as the goal to save both the logical truth x e y *, (12 e y)x - z &rd
the extensionality axiom, we are compelled to use the following recursive definition:

[x e y] : :  V yQ) nfz - xl ,
zedom(y)

[ " - yn : :  A  x (z )+ fzey \A  A  y (z )+ fzex \ .
z€dom(x) zedom(y)

2.5. Now, we are already in a position to give meaning to formal expressions of
the form p(xr xr), where xr, . . . , xn e V@) and <p is a ZF formula, i.e., to give
precise meaning to the expression: "a set-theoretic expression g(ut zr) holds
for the elements xr,.. ., xn € y@)'. Namely, we say that the formula p(xr,.. ., xn)
is true inside V@) or that the elements x;,... ,x,, possess the property g in V@) if
[p(* r  x , )n :  1 .  This  is  denoted by y@) p p(xr , . . .  ,x , ) .

It is not difficult to be convinced that the axioms and theorems of the first-order
predicate calculus with equality are valid in y@). In particular,

(1) [x - x] l  :  l ,

l l l
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(2) [x : Y\: IY : xn,
(3) [" :  ynn[y :  z\< [x :  zn,
(4) [x : yn A[3 € xn < [t e yn,
(5) [" :yn A [x e zn <[y e zn.

It is useful to note that, in general, for every formula g the following holds:
y @ )  p  x :  !  n p ( * )  - -  p ( y ) ,

i.e., written out explicitly
(6) [" : ynn [p(x)n < [eQ)n.
2.6. In a Boolean"valued universe the relation [x : yn: I does not mean at all

that the functions x and y (considered as elements of V) coincide. For instance, the
zero function on any layer V:t) , where a ) I, plays the role of the empty set in y@) .
This makes some constructions more difficult. In view of this, we can introduce a
separated Boolean-valued universe V@), which is often denoted by the same symbol
y@). i.e., one sets Z(B) :-_ I7@). In order to define y@) inthe class V@), the relation

{(*,y) : [x - yn:1] is considered, which evidently is an equivalence. Selecting
an element (a representative of the smallest rank) from every equivalence class one
arrives at the separated universe V@). It should be noted that for every formula g
of ZF theory and any elements x, ! e V@) the following holds:

[" : Y\: | ---, [qQ)n : [PO)n.

Therefore, in a separated universe the truth-value of formulas can be computed
independently of the method of selecting representatives. In general, when dealing
with a separated universe, the equivalence class is often replaced (with the necessary
precaution) by a certain representative, as it is done, for instance, in the case of
function spaces.T

2.7. The most important properties of a Boolean-valued universe are contained
in the following three principles.

Transfer principle. All the theorems of the ZF theory are true in V@); i.e., the
transfer principle, symbolically written down as

Y@) 7 ZF theorem,

is valid.
The transfer principle is established by a rather laborious test showing that all

ZF axioms have the truth-value 1, and that the derivation rules preserve the validity
of formulas. The transfer principle is sometimes expressed by saying that V\B) is a
Boolean-valued model of ZF set theory.

Maximum principle. For every formula g of ZF theory there is xe € Z(B) such
that

[(3x)rp(x)n : [p("0)n.

In particular, if it is true that in V@) there exists x for which p(x) holds, then, in

7 Translator's note. Such as t2(R), where one usually thinks in terms of true functions instead of
equivalence classes of functions that differ on sets of measure zero.
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fact, in y{n) $n the sense of Vl) there can be found an element xs such that p(xil.
Symbolically,

Y(a) 7 ( lx)<p(x) -- ( lxo) Y@) s e7i.

In other words, for any formula cp of the ZF theory the maximum principle holds:

( txse v@)[p(*o) ] :  V [e(") ] .
l sE l t@)

The latter equality also explains the origin of the term "maximum principle". The
proof of this principle is a simple application of the following mixing principle.

Mixing principle. Let (b)aee be a partition of unity in B, i.e., a family of
elements from the Boolean algebra .B such that € # q --- b1 Aba - 0 and V*.= bC - l.

For any family of elements (x6)66s of the universe V@) andany partition of unity
(bde ,= there exists a (unique) mixing (x6) with the probabilities (b); i.e., there exists
an element x of the separated universe V@) such that for all ( e E the following
ho lds :  [ "  -  xcn2be .

The mixing x of the set (x6) with respect to (06) is denoted as

x r- nrix(bex) - mix {bex< : ( e E}.

2.8. The comparative analysis which was discussed at the beginning of this lecture
is possible due to a close interrelation of the worlds V and y@). In other words,
it is necessary to have a rigorous mathematical technique that would permit us to
determine interrelations between interpretations of the same fact in the models Z and
V@) . The basis of this technique consists in introducing the operations of canonical
imbedding, descent, and ascent, which will be defined below. Let us begin with the
canonical imbedding of the von Neuman universe. For x e V the standard name of
x in V@) is xn, so that we have the following recursion scheme:

gA: :  @,  dom(x^ )  , -  { yn  :  y  e  x } ,  im(x^ ) ' -  { l } .

We note the necessary properties of the mapping x -* xn.
(l) For every x e V and formula g the following holds

[ ( ]y  e x")p(y) \ :  V{ [ ,p(  z \n:  z  e x] ;

[(Vy e xn)p(y)\- A{tre( zn)n: z e x}.

(2) lf x, y are elements from V, then using the transfinite induction, one estab-
lishes the following:

x e  y * - V @ )  F x ^  e  y n ,

x  : ' !  * t Y ( B )  F  x ^  e  Y n .

In other words, the standard name can be considered as an imbeddin g of V into
y(n). Moreover, the standard name maps V onto VQ), as can be noticed from the
following fact.

(3) The following statement holds:

( V u  e  V @ ) ( 3 ! x  e  V ) v { n )  F  u :  x A .

(4) A formula is called bounded if all occurring variables are included into it
under the signs of bounded quantifiers, i.e., quantifiers which range over some set.
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The latter phrase means that any occurring variable x is found in the domain of
action of a quantifier of the form (vx € y) or (3x € y),for some /.

The principle of bounded transfer. For any bounded formula g of ZF theory and
for any family xt, . . . , xn € v the following equivalence holds:

g ( x r , . . . , x n )  < - - +  y ( B )  t r  p ( r | , . . . , * l ) .

Let us agree, in the study of a separated universe t@) below, to keep the symbol
x^ for a selected element of the class corresponding to x.

(5) Let us note, as an example, that the principle of bounded transfer implies

(O is a correspondence from x to y)

*. (V@) F <D is a correspondence from x^ to y^);

(,f is a function from x to y)

<-+ Qt@) tr -f 
n is a function from x^ to y^).

Moreover, f(o)" - fn(a^) for every a e x.

Thus, the standard name can be regarded as a covariant functor from the category
of sets (or correspondences) of V into a suitable subcatego ry VQ) of the ..pu*trd
universe y@).

2.9. Fot an arbitrary element x from the (separated) Boolean-valued universe
v@) the descent x J of this element is defined by the formula

xJ : -  { y  e  V tu ) '  [ y  €  x ]  -  11 .

Let us mention the main properties of the descent procedure.
(l) The class xJ is a set; i.e., x Ie v for every x e v@). If [x + an- l, then

x J is a nonempty set.
(2) Let s q V@) and ffz # an: l. Then for any formula g of ZF theory the

following holds:

[ (Vxe z )p@)n:A{ t r ,p (x ) ] :x  e  z Ih

[ (3xe  z )p ( in -V{n ,p (x ) ] : x  e  , I } .

In addition, there exists xs e zJ such that fqQo)n : [(lx e z)p(in.
(3) Let (D be a correspondence from X into y in y@). Thus e, x, y are

elements sg v@) and, moreover, [<D c x x yl - 1. Then there exists a unique
correspondence (D j from X j into I/ J such that for any nonempty subset .q of ihe
set X in Y@) the following holds:

aI vt)  _ o(/)J .
The correspondence O J from X J into IZ J that appears in this statement is called
the descent of the correspondence <D from X into y is y@).

(a) The descent of the composition of correspondences in y@) itthe composition
of the descents of these correspondences:

( Y o O ) J : Y J o < D J .

(5) If (D is a correspondence in V@), then (O(-t)J- OJ-r.
(6) Let Ix be the identity mapping of a set X E y@). Then (I) I_ Ixt.
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(7) Let f  ,  X, y qV@) besuch thatff  :  X--- Yn: l ;  i .e.,  f  isamappingfrom
X into Y in V@). Then,f j is the unique mapping from Xf into IZJ for which

M1 (")  -  f (x)  ln  :  I  (x  e x1) .

As illustrated by statements (l)-(7), the operation of descent can be regarded
as a functor from .B-valued sets and mappings (correspondences) into the category
of usual (i.e., in the sense of V) sets and mappings (correspondences).

(8) For xt,. .., xn € V@) wedenote the corresponding ordered n-tuple in V@)
by ("r x,)B.Let us assume that P is an n-ary relation on X in V@);i.e., X,
p E y@) and [P C Xnn: | (n € @). Then there exists an n-ary relation P' on X !
such that

( r r , .  . . , x n )  e  P t  * - - ,  [ ( " t ,  . . .  , x n ) B  €  P ] : 1 .

The relation P' is also denoted by the symbol Pj and is called the descent of P.

2.10. Let x e V and * q y(n); i.e., x is a set consisting of .B-valued sets or, in
other words, x e g(ytn\. We put QI;: Q and

dom(x f )  : :  x ,  im(x1)  : :  { l }

if x I o. The element xf (of the separated universe V@), i.e., the selected repre-
sentative of the class {y e y@) .[y: xtn: l]) is called the ascent of x.

(1) For any x € g(y{n)) and any formula g the following equalities hold:

[(Yz e xl) pQ)n: n [ej)n;
yex

[ (32 e xI)pQ)n- V[eO)n.
yex

To introduce the ascent of a correspondence @ c X x Y it is necessary to exercise
some caution related to the distinction between the source domain X and the domain
of definition dom(O) :: {" e X : (D(x) + s}.For our further investigations this
distinction is not essential; therefore, we can assume that in talking about the ascent
we always consider everywhere defined correspondences, i.e., such that dom (O) - X.

(2) Let X, Y, A e 9(y{n\. Further, let <D be a correspondence from X into
Y. There exists a (unique) correspondence Of from XJ into If such that for every
subset A of the set X the following is fulfilled:

oI  @t)  -  o( ,4) t
if and only if <D is extensional, i.e., satisfies the condition

/r € @(x,) - fixt : xz\ < V [Yr : Yzn
heQ(x2)

for x1 , x2 € dom(O) - X. Further, (Dl: O'1, where @'::  {(r,y)t:  (x,y) € O}.
The element <Df is called the ascent of the initial correspondence @.

(3) The composition of extensional correspondences is extensional. Moreover,
the ascent of a composition is equal to the composition of ascents (in V@l ' y@) p
(Voo) t :Y too1) .

It should be noted that if @ and @-r are extensional, then (Ot)-t - (O-t)1.
However, the extensionality of O does not guarantee the extensionality of O-1.
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(4) It is worth noting that if an extensional correspondence f is a function from
X into IZ, then the ascent /J is a function from Xf into I'f . Here, the extensionality

f can be formulated in the following way:

fixr - xzn < [,f Gr) : f G) ("r , x2 € X).

For a set X q y@) the symbol mix (X) denotes the set of all the mixings of the
form mix(bax), where ("<) c X and (b6) is an arbitrary partition of unity. The
following statements are called the rules of reducing arrows or the rules of "descent-
ascent" and " ascent-descent" .

(5) Let X and X' be subsets from V@) and let f : X --- X' be an extensional
mapping. Let Y, Y', g E y\n) be such that [Y * an: [g : Y ---+ Y'\: l. Then
the following relations hold:

XI L: mix (X), f I I: f , YII: Y gIT: g.

2.11. Let X e V, X * a; i.e., X is a nonempty set. We denote by the letter I
the imbedding x *r xA (x e X). Then t(X)1: X^ and X -- t-t (Xnl). Using these
relations we can extend descent and ascent to the case when @ is a correspondence
from X into If and [Y is a correspondence from X^ into Yn: l, where y E y@) .
Namely, we set Of:: (<Dor)f and Yf:- Yf or. We call (Df the modifiedascent of
the correspondence @, and Yf the modified descent of the correspondence Y. (If the
context precludes misunderstandings, then one can consider just ascent and descent,
and use ordinary arrows.) It is not difficult to see that (Df is the only correspondence
in y@) satisfying the following relation:

lo f  (xn)  :o(x) ln :  l  6  e X).

Analogously, Yf is the only correspondence from X into Ij satisfying the following
equality:

YL ( " )  :Y (x " )J  GeX) .

If @ :- f and Y :: g are functions, then these defining relations take the form:

[ , f f ( " n )  : / ( x ) ] : 1 ,  g L ( x )  : s ( x n )  ( x e X ) .

2.12. (1) A pair (X,d), where X e V, X * s, and d is a mapping from X x X
into a Boolean algebra ̂B is called a Boolean set or a B-sef, or just a set with B-
structure, if for any x, !, z € X it satisfies the follbwing conditions:

( " )  d ( * , y ) : 0 *  x : l l
(b )  d (x ,Y)  :  d (Y , * ) ;
( c )  d ( x , y )  <  d ( x , z ) v  d ( z , y ) .

As an example of a B-set we can take any a + X C V\B) by setting d(x,y) ::
[,x # !\: [x : .yn* (x, y € X). As another example, take a nonempty sets X with
the  "d isc re te ,B-met r i c "  d ; i .e . ,  d ( * , y ) :  I  i f  x  I  y  and  d ( * , y ) :0  i f  x :  ! .

(2) Let (X, d) be some B-set. There exist an element gz 6 V\il and an injection
r , :  X  - -  X ' : :%I  such tha t  d ( t , y ) : f zx  # ry \ (x ,y  e  X)  andanye lementx t { -  X l
admits a representation x' : mix6.s(D1r*q), where ("<)<.= c X and (b6)66s is a
partition of unity in B.

The element % q y\a) is called the Boolean realization of X.If X is a discrete
,B-set, then % : XA andtx: xA (x e X). lf X c V(B), then zf is an injection
from Xt into % 6n Y\a)\.
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A mapping f from a ^B-set (X,d) into a .B-set (X',d') is called nonexpanding
i f  d(x ,y)  > d ' ( f  ( * ) , f  (y) ) ,  for  a l l  x ,y  e X.

(3) Let X and Y be some B-sets, % and / their Boolean realizations, and z
andrc thecor respond ing in jec t ions  X  - -+  %landY -+V I .  I f  f  :X  - - -+  I i sa
nonexpanding correspondence, then there exists a unique element g e V@) such that
I S  :  %  - - V n :  I  a n d  f  :  n - t  o  g I o z .

A similar statement holds for correspondences.
( ) We shalt present an example of a .B-set which is important below. Let ̂ E be

a vector lattice and B :- E(E). We put

d ( * , y )  ' :  { 1 ,  - / l } t t  ( x , y  e  E ) .

It is not difficult to.verify that d satisfies the conditions (b), (c) in (l), while condition
(a) in (1) is fulfilled only for an Archimedean E (see 1.3).

Thus, (E,d) is a -B-set if and only if the vector lattice E is Archimedean.

2.13. Starting from the results of 2.9 we can define the descent of an algebraic
system. For simplicity we shall restrict ourselves to the case of a finite signature.
Letl1!4 be an algebraic system of finite signature in V@). This means that there exist
elements A, f t f ,, Pr P* € V@) and natural numbers a(f),... , a(f ,),
a(Pr), . . . , a(P*) such that the following conditions (all in V@) are fulfilled:

A  I  g ,  P r  C  Aa(Pk)n  (k  : :  1 , .  . .  ,m) ;

f  t  :  A o ( f  r ) "  - -  A  ( l  : :  1 , . . .  , r ) ;
2 L : :  ( . q , f t  f r , P t , . . . , P ^ ) .

Having obtained the descent of the set A, of the functions /1 f n, and of the
relations Pr,... ,P^ according to the rules 1.9, we obtain an algebraic system 2{-
(4, f ,1, , f nI, Pl,. .. , P*I) which is called the descent of %. Thus the descent
of the algebraic system 2[ is the descent of the base set .,4 together with the descended
operations and relations.

2.14. Comments. (a) As was noted above in 1.15(b), the heuristic transfer prin-
ciple introduced by Kantorovich in connection with the concept of a K-space sub-
sequently found many confirmations in the investigations of Kantorovich himself
and his followers. Essentially, this principle is one of those ideas, which as the
organizing and direction-giving idea in a new field, finally brought about a profound
and complete theory of K-spaces, rich with various applications. Already at the
beginning of the development of this theory attempts were made to formalize these
heuristic arguments. There were also so-called theorems on preservation of relations,
which state that if a certain proposition containing a finite number of functional
relations is proved for the real numbers, then a similar fact is automatically valid for
elements of a K-space (see [7, l4]).

However, the intrinsic mechanism controlling the phenomenon of preservation
of relations, the bounds of applicability of such statements, and also the general
reasons for a number of analogies and parallels with classical function theory were
still obscure. The depth and the universal character of the Kantorovich principle
became apparent in the framework of Boolean-valued analysis.

(b) The part of functional analysis which uses a special model-theoretic tech-
nique, the Boolean-valued models of the set theory, is called Boolean-valued analysis.
It is of interest to note that the construction of Boolean-valued models was not related

n 7
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to the theory of ordered vector spaces. The necessary language and technical tools
were already forged within mathematical logic by the 1960s. However, there was at
that time no general idea to give life to this mathematical apparatus and to lead
to progress in model theory. This idea only came with the discovery of P. Cohen,
who established the absolute unsolvability (in a precise mathematical sense) of the
classical continuum problem. Indeed, it was in connection with Cohen's method of
forcing that there emerged Boolean-valued models of set theory, whose creation is
associated with the names of P. Vopenka, D. Scott, and R. Solovay (see [43, 45, 48,
4el).

(c) The method of forcing is naturally divided into two parts: general and
special. The general part is the technique of Boolean-valued models of set theory,
i.e., the construction of a Boolean-valued universe V\B) and the interpretation of set-
theoretic statements in it. Here the complete Boolean algebra ̂ B is totally arbitrary.
The special part consists in the construction of a specific Boolean algebra B that
provides necessary (rather frequently pathological, exotic) properties of objects (for
instance, of a K-space) obtained from ,8. Both parts are of independent interest,
but the most effective results are obtained by combining them. In this section, as in
most investigations in Boolean-valued analysis, only the general part of the method of
forcing is applied. The special part is most actively used in proofs of independence or
consistency (see 110,27,47]). Further progress in Boolean-valued analysis probably
will be connected with full application of the forcing method.

(d) The material in 2.1-2.8 is standard and a detailed description of it can be
found in [18, 21,27, 47]; see also [10, 23]. Various versions of the methods presented
in 2.9-2.1 I are widely applied in investigations of Boolean-valued models. In ll7, 221
the descent and ascent technique is given in a form that is better adapted to problems
of analysis. Indeed, in this form they are studied in [21]. The imbedding (2.10) of
sets with Boolean structure into a Boolean-valued universe was introduced in [17].
The basis of such an imbedding is the Solovay-Tennenbaum method, proposed earlier
for imbeddings of complete Boolean algebras 1441.

LECTURE 3. Vector lattices and numerical systems

Boolean-valued analysis can be traced back to the statement by Scott and Solovay
that the image of the field of real numbers in a Boolean model is an extended K-space.
Depending on what Boolean algebra B (algebra of measurable sets, or of regular open
sets, or of projections in a Hilbert space) is used as a base in constructing a Boolean-
valued model V@), different K-spaces are obtained (spaces of measurable functions,
or of semicontinuous functions, or of selfadjoint operators). Thereby there arises a
remarkable possibility of transferring what is known about numbers to many classical
objects of analysis. This will be discussed in the present lecture.

3.1. By the field of real numbers we understand an algebraic system in which
the axioms of an Archimedean ordered field (with different zero and unit element)
and the axiom of completeness are fulfilled. We recall two well-known statements.

(l) The field R of real numbers exists and is unique up to isomorphism.
(2) If P is an Archimedean ordered field, then there exists an isomorphic imbed-

ding h of the field P into lR such that the image h(P) is a subfield of IR containing
the subfield of rational numbers. In particular, h(P) is dense in IR.

Applying to (1) consecutively the transfer and maximum principles, we can find
an element ,9 e V\B), for which [9 is a field of real numbers n : l. Moreover,
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if any g' e Z(B) satisfies the condition [,9t'is a fleld of real numbers n: l, then
the condition I the ordered fields ,9{ and 9' are isomorphic ] : I is also satisfied.
In other words, in the model V@) there exists a field of real numbers I which is
unique up to isomorphism.

Let us also note that the formula .p(R) representing the formal description of
the axioms of an Archimedean ordered fleld is bounded and, therefore, [p(Rn)n: 1;
i.e., ilR^ is an Archimedean ordered field n : 1. "Having passed" the statement (2)

through the transfer principle we can the conclude that [R^ is isomorphic to a dense
subfield of the field 9\: l. Based on this fact, we will assume below that I is a
field of real numbers in the model y@) and that IR^ is a dense subfield in it. As is
easy to see, the elements 0 :: 0^ and I :: ln are the zero and the unit element of
the field ,9.

It should be emphasized that in the general case the equality 9: IRn does not
hold. Indeed, the completeness axiom for IR is not a bounded formula, and it might
fail for lR^ in Y@).

Now we shall consider the descent ,9 | of the algebraic system 9. In other
words, the descent of the carrier set of the system ,94 is regarded together with the
descended operations and order. For simplicity we shall denote the operations and
order relation in,9 and 9l by the same symbols *, ., 1. Thus, to be more precise,
the addition and multiplication, and the relation of order in,9 J are introduced by
the following formulas:

z : x I y * fz : x * "yn 
: l;

Z : X . y < - - + [ z : x . I n : l ;

x < y * ' [ x S y n - l ;

( * , y , 2  e  g  D .

Multiplication by real numbers can also be introduced in g I by the rule:

! : ) " x * - [ A ^ x : ! \ : |  ( , 1  e  R ;  x , ! e  g D .

3.2. Trmonnrvr (Gordon). tel IR be an ordered firia o7 real numbers in the model
y(n). Then I I fuith operations and order descended) is an extended K-space with
unit l. Moreover, there exists an isomorphism y of the Boolean algebra B onto the
base 9(9 l) such that the following equivalences are valid:

X@)x  :X@)y  < - -+  b  < [x  - . yn ,

x@)x <x(b)y <--+ b 1[x  < yn

for all x, y e,9l! and b e B.

3.3. The extended K-space 9l is at the same time a faithful f -algebra with ring
unit l, where for any b e B the projection y(b) is the operator of multiplication by
the unit element X(b)\.

From what was said above it is clear that the mapping b r- X(b)l (b e B)
is a Boolean isomorphism between B and the algebra of unit elements in e(g D.
This isomorphism is denoted by the same letter X. Thus, depending on the context,
x r- X(b)x is either a band projection or the operaior of multiplication by the unit
element X(b).
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3.4. Everywhere below I is the field of real numbers in the model y@). Let us
explain the meaning of exact bpunds and order limits in the K-space ,fl !.

(1) Let (bt)e.= be a partition of unity in B, and (x)aEs a set in,flJ. Then

mil{tr,ax) : o-D_x@e)u.
rca

(2) For a nonempty set A c I J and arbitrary a e 9, b e B the following
equivalences are valid:

b < [a - sup(24 t)n * x(b)a : sup(D),4;

b < [a - inf(At)n * x(b)a - inf x(b)A.

(3) Let A be an upwards filtered set and let s : A -- I ! bea net in 9J. Then
l^ is upwards filtered and o:- s t : AA -- ,9 is a net in fr (in V@11. moreover, for
a n y x e , q l a n d b € E w e h a v e

b < [x: l im on * X@)x - o- l im X@) o s.

(a) Let the elements I and o 6 y@) be such that [rA is upwards filtered and
o : A - ,qn : l. Then ,4 J is an upwards filtered set and thus the mapping
.t :- oJ : A!--+ I I isa net in I I. Besides, for any x e g I and b e .8, the following
is satisfied:

b <[, -  l imon ,- X@)x - o-l im X@) o s.

(5) Let .f be a mapping from a nonempty set E into I ! and g:: /f. Then
for any x €,9 | and b e B the following holds:

b < [r: t s(()n *, x@)x - t x@f @.
(eE^ 

,  
(€E

3.5. For every element x e 9l the following relations hold:

ex - x$p - 0n), eI : x([x < inn) (,1 e R).

A real number / is not equal to zero if and only if the supremum of the set
{l n (nltl): n € @} is equal to l. Consequently, according to the transfer principle,
for x e g I we have b;-[x *0n: [sup,4: ln, where 1E y@) is defined by the
formula A:- {l n (nlxl): n € aln}. lf C :: {l n (nlxl): n e @}, then, by using the
second formula from 2.10(1) and the representation o)A : Qcu)I from 2.11, we shall
prove that [C I: A\: l. So [sup(,e) : sup(Ct)n : l. Invoking3.aQ), we derive

6 - fsup(C t) :  l ]  -  [sup(C) :  l ]  -  [e" - ln.

On the other hand, [e* - 0n : [e* : ln* : 6*. According to 3.2, we can write

X@)e*  -  x@) l  -  x@) ;  x (b* )e* :0  -  x@)e .  -  ex .

Finally, X(b) : €x.
Let us take /. e IR and define ! t: (),1 - x)+. Since [,tn : lln - l, we have

[y - (1" - x)+n - l. Consequently, eI: ey - X([y - 0n). It remains to note that
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in V@) the number y - (1" - x) v0 is not equal to zero only if A^ - x > 0, i.e.,

[ ,y#0n: [x<1"n.
3.6. Truonnu. Let E be an Archimedean vector lattice, I afield of real numbers

in the model V@), and j an isomorphism of B onto the base A(D. There exists qn
element g 6 y@) safisfying the following conditions:

(l) y@) S (@ it a vector sublattice of the field ,4 regarded as a vector lattice
ouer JR^));

(2) E' :: E I is a vector sublattice of g I invariant under every projection X(b)
(b e B) and such that any set of the positive pairwise disjoint sets has a supremum;

(3) there exists a }-continuous lqttice isomorphism t: E ---, Et such that {E) is a
minorant sublattice in 9I;

(Q for every b e B the operator ofprojection onto a band generated in I ! by the
set t(i(b)) coincides with X(b).

Let us set d(*,y) ,: j-'({1" - /l}tt). Let E be a Booleanrealization of a
-B-set (E,d) and Et ;- E J (see 2.12(4)). By 2.12(2), we can say without loss of
general i ty that E c E',  d(*,y): [r  # yn(x,y e E), and E' :mix(E). Further, in
the set E' we can introduce the structure of vector lattice. For that we take a number
,t e IR and elements x, y e E' of the form x :: mix(bgx), I :: mix(bay), where
("<) c E, (y) c E, and (b) is a partition of unity in B, and define

x + y : : m i x ( b e ? e + y ) ) ;

)"x ::mix(be(Lx<));

x < Y * ' x : m i x ( b a Q a A Y ) ) .

Inside V@) we define addition O, multiplication e, and order relation I on
the set E as ascents of the corresponding operations from E'. More precisely, the
operations @: E x E - E andO: lR^ x E - E andthe relation CC E x E are
defined by

[ x O I : x * " y n : l ;

[ ,1"  e !  :  Lxn:  |  (x ,y  e E ' ,  A€R),

fix@yn : V{[" 
- x'nA [.y : y'n.. x',y' € E', x' 1 y'].

Then we can claim that E is a vector lattice over the field IR.^ and, in particular,
it is a lattice ordered group in V{n). It is also clear that the Archimedean axiom is
valid for E because the lattice E' is Archimedean.

Note that if x €. E+, then {x}rl : d(x,0) : [,* * 0]; i.e., {"}t - [x 
- 0n.

Consequent ly,  for  d is jo int  x,y e E we get [x :0n v [y :0n:  {"} t  v {y} t  
-  ln.

From this it is easy to derive that IE is linearly ordered n : 1, since

[ (Vx e  E) (vy  eE)( l " l  n  ly l  :  0  - *  x  :  0V.y  :  0 )n  :  l .

It is well known that the Archimedean linearly ordered groups are isomorphic to
additive subgroups of the field of real numbers. Applying this statement to E in V@) ,
it can be assumed without any loss of generality that E is an additive subgroup of the
field .9 . In addition, we shall assume that I e E; otherwise E can be replaced by the
group e-t7, 0 < e e E, which is isomorphic to E. The multiplication Q represents
a R^-bilinear continuous mapping from lR^ x E into E. Let f : I x I + I be its
extensionbycont inui ty.  ThenB is Z-bl l inearand P( l , l )  :  l^O 1:  l .  Consequent ly,
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p coincides with the usual multiplication in 9; i.e., 8 is a vector sublattice of the
field,9/, regarded as a vector lattice over IR^. Thereby E' c9l.

The minorant property of E' in ,9 | evidently follows from the fact that

IE is dense in,9!:1. We shall prove lhat E is minorantin E'-
From the properties of the isomorphism I (see 3.2) it is clear that

/ b ) t x :  0  *  j ( b )  < { " } t  < - - +  x  €  j ( b ) t

for any b e B and x e E+.Thus X(b) is the projection onto the band generated in
,9  tby  the  se t  t ( j (b ) ) .Bes ides ,  i f  X(b)x :0  fo r  a l l  x  e  E* ,  then b :  {0 } .  So ,  fo r
any b € ^B there can be found a strictly positive element y e E, for which y: X(b)y.
Now we shall take 0 < z € Et. The representation z --mix(bc*d, where (b6) is a
partition of unity in .B and ("<) c E'1, holds. Apparently, X(bdxC l0 for at least
one index 1. Let ft:: X(bc) " X([*< l0n) and y be a strictly positive element in E,
for which y - ny. Then for xs :: ! Ax6 we have 0 ( xs ( Ttxl I X(b*i)xa I z and
xo € E. Therefore, E is minorant in E'.

3.7. The element 8 e V@ from Theorem 3.6 is called the Boolean realization of
E. Thus, vector sublattices of the field of real numbers ,9 regarded as vector lattices
over the field lR^ serve as Boolean rcalizations of Archimedean vector lattices.

Now we shall note several corollaries from 3.2 and 3.6 keeping the same notations
B , E , E " E , t , , q .

(l) For every x' € E'there exists a set ("<) c E and a partition of unity (ft€)

in 9(,9 f ) such that
r \ -x -- o- 

l="=n"*''

(2 )  For  any  x  e  ,qLande tOrn . . . . ^ r r , ,  x1  e  E tsuch tha t  l * - *e l  < r l .
(3) If h: E ---+ I J is a lattice isomorphism and for every b e B the projection

onto the band generated by the set h(i (t)) in I J coincides with X(b), then there
exists an a e ,9 l, for which hx : a . t(x) (x e E).

(4) If E contains the order unit 1, then the isomorphism I is uniquely defined
by the additional requirement l1 : l.

(5)  I f  E is  a K-space,  thenE:9,  E ' :9 ! ,and r (E)  is  a foundat ion of  the
K-space,9/ l. Moreover, t-r o X(b) " r is the projection onto the band of 7(D) for
every b e B.

(6) The image r(E) coincides with all of ,9 | if and only if E is an extended
K-space.

(7) Extended K-spaces are isomorphic if and only if their bases are isomorphic.
(8) Let E be an extended K-space with unit 1. Then the there exists a unique

multiplication in ,E such that E is a faithful f -algebra with the multiplication unit
1 .

3.8. We shall dwell on questions of extension and completion of Archimedean
vector lattices.

By a maximal extension of an Archimedean vector lattice E we understand a K=
space mE :: ,9 I, where I is afield of real numbers in the model V@) , B :: E(E). lt
is clear from the Theorem 3.6 that there exists an isomorphism t: E -- mE; moreover,
the sublattice 4E) is minorant in mE and I(E)LL -- mE. The maximal extension
is defined up to isomorphism by these properties. To be more precise, the following
statements are valid.
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(l) Let E be an Archimedean vector lattice and F an extended K-space. We
assume that an isomorphism & from E onto a minorant sublattice of F is given
and h(E)rr - F. Then there exists an isomorphism rc from F onto lnE such that
t : n o h .

From the above conditions it is easy to derive that j:b,- j(b):- ft(b)[ is
an isomorphism from B :: A(E) into E(F). According to 3.6(5),(6) there exists
an isomorphism fr from F onto mE, for which k-t o X(b) " k is the projection
onto the band r(D) (for each b € B). We shall apply 3.6(3) to Fo :- h(E) and
g : _  t o h - l : F o  -  g  I . T h e r e c a n b e f o u n d a n e l e m e n t a  e  g  I  s u c h t h a t
g(x) :  a .  k(r) (x e Fo). Now set rc(x) : :  e. k(*) (x e F). Then t :  n o h.

(2) For any Archimedean vector lattice E there exists a K-spaca oE, unique up
to isomorphism and an o-continuous lattice isomorphism t: E --+ oE such that

suP{tx: x e E, tx < !} :  Y : inf{ lx :  x € E, w > Y}

for every element y e oE.
Let F be a K-space and A c F. We denoteby dA the set of all x e F that can

be represented in the form o-Deezneo(, where (o) c A and (26) is a partition of
unity in F(F). Let rA be the set of ,all elements x e F of the form x : r-limn q,,
where (cr) is an arbitrary regular convergent sequence in l.

(3) For an Archimedean vector lattice E the formula oE : rdE holds.

3.9. Interpreting the notion of convergent numerical net i11 y@) and invoking
3.4(3),3.7(5) one can obtain useful tests for o-convergence in a K-space E with unit
l .

Tnnonru. Let (x.).,e; be an order bounded net in E and x e E. The following
statements are equivalent:

(l) the net (x) o-converges to the element x;
(2) for any number € > 0 the net of unit elements (r!(")).rn, where y(a) r- lr - xol,

o-converges to zero;
(3) for any number e ) 0 there exists a partition of unity (n).,e7 in the Boolean

algebra ry@) such that
n o l x - x p l < e l (o, f e A);

@) for any number e ) 0 there exists an increosing net of projections (p.)oE1
c p(E) such that

p o l x - x p l  < u l  ( o , f  e  A ;  f  > a ) .

3.10. Comments. (a) The Boolean status of K-spaces is established by the Gor-
don Theorem 3.2 (see [S]). This fact can be formulated in the following way: an
extended K-space is an interpretation of the field of real numbers in a suitable
Boolean-valued model. In addition, it turns out that any theorem (within the frame-
work of ZF theory) on real numbers has its analogue in the corresponding K-space.
Conversion of one kind of theorems into others is realized by certain precisely defined
procedures: ascent, descent, canonical imbeddingi i.e., as a matter of fact it is realized
algorithmically. Therefore, the Kantorovich statement "the elements from a K-space
are generalizednumbers" finds a precise mathematical formulation in Boolean-valued
analysis. On the other hand, Boolean-valued analysis turns the heuristic transfer
principle, which played an auxiliary guiding role in most investigations of the pre-
Boolean theory of the K-spaces, into a precise research method.

t23



r24 A. G. KUSRAEV AND S. S. KUTATELADZE

(b) If in 3.2 ^B is the o-algebra of measurable sets modulo sets of measurezero
for a measure p, then I I is isomorphic to the extended K-space of measurable
functions L0(tt). This fact (for the Lebesgue measure on the interval) was already
known to Scott and Solovay (see I43l). If B is the complete Boolean algebra of
projections in a Hilbert space, then I J is isomorphic to the space of those self-
adjoint operators which have a spectral function acting in ,8. The two special cases
of the Gordon theorem noted above were effectively used by G. Takeuti; see [45], and
also the bibliography in [21]. The object I I for general Boolean algebras was also
considered by T. Jech [33, 34] who essentially rediscovered the Gordon theorem. The
difference is that in [33] a (complex) extended K-space with unit is defined by another
system of axioms and is called a complete Stone algebra. The interconnections from
3.4, 3.5 between properties of numerical objects and corresponding objects in a K-
space I { werc obtained essentially by Gordon [8, 9].

(c) The Realization Theorem 3.6 was obtained by Kusraev [f9]. There is a closely
related result (formulated in other terms) in [35], where a Boolean interpretation of
the theory of linearly ordered sets is developed. Corollaries 3.7(7),(8) are well known
(see [Z 1a]). The concept of maximal extension for a K-space was introduced by
Pinsker in a different way. He also proved the existence of a maximal extension unique
up to isomorphism, for an arbitrary K-space. Theorem 2.8(2) on order completion
of an Archimedean vector lattice was stated by Yudin. Corresponding references are
in [7,14]. Statement 2.6(3) was obtained by Veksler [5].

The tests for o-convergence 3.9(2) and 3.9(4) (for sequences) were established
by Kantorovich and Vulikh, respectively (see [14]). In 3.8 it is shown that these
tests are, essentially, just interpretations of convergence properties of numerical nets
(sequences).

(d) As was noted in 2.14(a), the first attempts to formalize the heuristic Kan-
torovich principle led to theorems on preservation of relations (see [7, l4]). Modern
forms of theorems on preservation of relations, which use the method of Boolean-
valued models, can be found in [9, 35] (see also [21]).

(e) Boolean realizations (not only of Archemedean vector spaces) provide sub-
systems of the field I (see 3.6(1)). For example, the following statements are formu-
lated in [19]: (l) a Boolean realization of an Archimedean lattice ordered groups
is a subgroup of the additive group of 9; (2) an Archimedean f -ringcontains two
mutually complementary bands, one of which has zero multiplication and is realized
as (l), and the other is realized as a subringof ,9; (3) an Archimedean f -algebra

contains two mutually complementary bands, one of which is realized as in 3.6, and
the other is a sublattice and a subalgebra of the field I considered as a lattice ordered
algebra over the field IR^ (see also t35l).
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