Докл. Акад. Наук СССР Том 245 (1979), № 5

Soviet Math. Dokl. Vol. 20 (1979), No. 2

CONVEX *e*-PROGRAMMING

UDC 513.88 + 519.95

S. S. KUTATELADZE

Let X be a vector space, and let $Y \cup \{+\infty\}$ be an ordered vector space Y with adjoined greatest element $+\infty$. Consider a convex operator $F: X \longrightarrow Y \cup \{+\infty\}$, a point x belonging to the effective domain dom $(F) = \{x \in X | Fx < +\infty\}$ and a positive element $\epsilon \in Y^+$. The set

 $\partial_{x,\epsilon}(F) = \{ A \in L(X, Y) : Ax' - Ax \leq Fx' - Fx + \epsilon, x' \in X \},\$

where L(X, Y) is the space of linear operators from X into Y, is called the *e-subdifferential* of F at x. The point x is called *e-optimal* for F if $0 \in \partial_{x,e}(F)$. In this paper, we announce some formulae to calculate *e*-subdifferentials and corresponding *e*-optimality criteria which show that suitable versions of the Lagrange principle are valid for *e*-programming. The classical convex programming theory arises naturally if we set $\epsilon = 0$.

Composition of convex operators. Let $G: X \to Z \cup \{+\infty\}$ be an increasing convex operator, and let Z be a K-space.* If $F[\operatorname{dom}(F)]$ contains an interior point of $\operatorname{dom}(G)$, then for any $\epsilon \in Z^+$

$$\partial_{x,\epsilon}(G \circ F) = \bigcup \qquad \bigcup \qquad \partial_{x,\epsilon_2}(B \circ F).$$

$$\epsilon_1 \ge 0, \epsilon_2 \ge 0 \qquad B \in \partial_{F_X}, \epsilon_1(G)$$

Sum of convex operators. Let $F_1, \ldots, F_n: X \to X \cup \{+\infty\}$ be convex operators, and let Y be a K-space. If the domains of the Hörmander transforms of F_1, \ldots, F_n are in general position [1], then

$$\partial_{x, \epsilon}(F_1 + \ldots + F_n) = \bigcup_{\substack{\epsilon_1 \ge 0, \ldots, \epsilon_n \ge 0\\ \epsilon_1 + \ldots + \epsilon_n = \epsilon}} (\partial_{x, \epsilon_1}(F_1) + \ldots + \partial_{x, \epsilon_n}(F_n)).$$

For scalar functions on a finite dimensional space, this formula was announced in [2]. **Maximum of convex operators.** Let Y be a vector lattice, and let F_1, \ldots, F_n : $X \to Y \cup \{+\infty\}$ be convex operators whose Hörmander transforms have domains in general position. If Z is a K-space and $A \in L^+(Y, Z)$ is a positive linear operator, then for any $e \in Z^+$

$$\partial_{x, \epsilon} (A \circ (F_1 \vee \ldots \vee F_n)) =$$

$$= \left\{ \sum_{k=1}^n \partial_{x, \epsilon_k} (A_k \circ F_k) : A_k \in L^+(Y, Z), \sum_{k=1}^n A_k = A; \atop k = 1 \right\}$$

$$\epsilon_k \ge 0, \sum_{k=1}^n \epsilon_k = \epsilon; \sum_{k=1}^n A_k \circ F_k x \ge A \circ F_1 x \vee \ldots \vee F_n x - \epsilon_{n+1} \right\}.$$

1980 Mathematics Subject Classification. Primary 49B30, 90C25.

*Translator's note. In Western linteature, K-spaces are usually called conditionally (or boundedly) complete vector lattices.

Composition with an affine operator. Let X, X_1 be vector spaces, let Y be a K-space, and let $F: X \longrightarrow Y \cup \{+\infty\}$ be a convex operator whose domain contains an interior point belonging to the range of an affine mapping $A_x: x_1 \longrightarrow Ax_1 + x$, where $A \longrightarrow L(X_1, X), x \in X$. Then

$$\partial_{x,\ldots,\epsilon}(F \circ A_x) = \partial_{A,x,\ldots,\epsilon}(F) \circ A,$$

whenever $x_1 \in X_1$ is such that $A_x x_1 \in \text{dom}(F)$.

Composition with a regular convex operator. Let X be a vector space, let Y be a K-space, and let \mathfrak{A} be a weakly order bounded set in L(X, Y). As usual, the symbol $\langle \mathfrak{A} \rangle$ denotes the linear operator which carries X into the K-space $(Y^{\mathfrak{A}})_{\infty}$ (the space of order bounded Y-valued functions on \mathfrak{A}) according to the rule $\langle \mathfrak{A} \rangle x: A \mapsto Ax, A \in \mathfrak{A}$. The symbol $\Delta_{\mathfrak{A}}$ stands for the natural identification of Y with the diagonal of $(Y^{\mathfrak{A}})_{\infty}$ and $\epsilon_{\mathfrak{A}}$ stands for the canonical sublinear operator

$$\epsilon_{\mathfrak{N}}: (Y^{\mathfrak{U}})_{\mathfrak{m}} \to Y; \ \epsilon_{\mathfrak{N}}f = \sup\{f(A): A \in \mathfrak{U}\}.$$

Now assume that $F: X \to Y \cup \{+\infty\}$ is a regular convex operator, i.e. one which can be represented as $F = \epsilon_{\mathfrak{A}} \circ \langle \mathfrak{A} \rangle_{y}$ for suitably chosen $\mathfrak{A} \subset L(X, Y), y \in (Y^{\mathfrak{A}})_{\infty}$. Further assume that Z is a K-space and $G: Y \to Z \cup \{+\infty\}$ is an increasing convex mapping. If the range F[X] contains an interior point of the effective domain dom(G) and $Fx \in \text{dom}(G)$ for certain $x \in X$, then for any $\epsilon \in Z^+$

 $\partial_{x,\epsilon}(G \circ F) = \{ B \circ \langle \mathfrak{A} \rangle : B \circ \Delta_{\mathfrak{A}} \in \partial_{Fx,\epsilon-\epsilon'}(G); B \in L^+((Y^{\mathfrak{A}})_{\omega'}, Z); \\ 0 \leq B \circ \Delta_{\mathfrak{A}}Fx - B \circ \langle \mathfrak{A} \rangle_{\mathcal{V}} x \leq \epsilon' \leq \epsilon \}.$

 ϵ -optimality for regular programs. Consider a regular convex program

$$Gx \leq 0, Fx \rightarrow \inf$$
.

In other words, $G, F: X \longrightarrow Y \cup \{+\infty\}$ are convex operators and Y is assumed to be a K-space. For simplicity we also assume that dom(F) = dom(G) = X and for any $x \in X$ either $Gx \leq 0$ or $Gx \geq 0$. Finally, we assume that there is $x_0 \in X$ such that $-Gx_0$ is a unit in Y.

A feasible point x is ϵ -optimal for a regular problem if and only if the following system of conditions is consistent:

 $\begin{aligned} \alpha, \beta \in L^+(Y, Y); \ \alpha + \beta = I_Y; \ \operatorname{Ker}(\alpha) = \{0\}; \\ \epsilon_1 \ge 0, \ \epsilon_2 \ge 0; \ \epsilon_1 + \epsilon_2 \le \alpha \epsilon + \beta \circ Gx; \\ 0 \in \partial_{x, \epsilon_1}(\alpha \circ F) + \partial_{x, \epsilon_2}(\beta \circ G). \end{aligned}$

Here I_{y} is the identity operator in Y.

e-optimality for Slater-regular problems. Consider the convex problem

 $Ax = Ax_0, Gx \le 0, Fx \rightarrow \inf,$

where X_1, X are vector spaces, $A \in L(X, Y)$ is a linear operator, $G: X \to Z \cup \{+\infty\}$ and $F: X \to Y \cup \{+\infty\}$ are convex operators. For simplicity we assume that dom(G) = dom(F) = X. Now assume that the problem under consideration is Slater regular; that is, Z is an Archimedean ordered vector space, T is a K-space of bounded elements, and there is a feasible point x_0 such that $-Gx_0$ belongs to the interior of the cone Z^+ .

A feasible point x is e-optimal in a Slater regular program if and only if the following

*Translator's note. In other words Y = C(Q) for a certain extremally disconnected compact Q.

system of conditions is consistent:

$$\begin{split} &\gamma \in L^+(Z, Y); \ \mu \in L(X_1, Y); \\ &\epsilon_1 \ge 0, \ \epsilon_2 \ge 0; \ \epsilon_1 + \epsilon_2 \le \gamma \circ Gx + \epsilon; \\ &0 \in \partial_{x, \epsilon_1}(F) + \partial_{x, \epsilon_2}(\gamma \circ G) + \mu \circ A. \end{split}$$

Pareto ϵ -optimality. Consider a Slater regular program and a positive number ϵ . A feasible point x is called *Pareto* ϵ -optimal (with respect to a strong unit 1 in Y) if for any feasible point x' such that $Fx' - Fx \leq -\epsilon 1$ we have $Fx' = Fx - \epsilon 1$.

If a feasible point x is Pareto ϵ -optimal for a Slater regular program and $0 \le \epsilon < 1$, then there are linear functionals α , β , γ on Y, Z, and X_1 respectively for which the following system of conditions is consistent

 $\begin{aligned} \alpha > 0, \ \beta \ge 0; \ \epsilon_1 \ge 0, \ \epsilon_2 \ge 0; \\ \epsilon_1 + \epsilon_2 \le \epsilon + \beta \circ Gx; \\ 0 \in \partial_{x, \epsilon_1} (\alpha \circ F) + \partial_{x, \epsilon_2} (\beta \circ G) + \gamma \circ A. \end{aligned}$

Conversely, if these conditions are fulfilled for a feasible point x and $\alpha(1) = 1$, then x is Pareto ϵ -optimal.

Generalized e-solutions. Let Y be a K-space, and let $F_0: X \to Y \cup \{+\infty\}$ be a convex operator. Let a convex set U_0 be contained in dom (F_0) . A subset $U \subset U_0$ is called a generalized e-solution to the program $x \in U_0, F_0 x \to \inf$ inf if $\inf F_0[U_0] \ge \inf F_0[U] - \epsilon$.

Consider the space X^U and the operator

 $F: \mathcal{X}^U \to \mathcal{Y}^U \cup \{+\infty\}; \ F\mathcal{X}: x \to F_0 \mathcal{X}(x).$

Let $\mathfrak{X}: x \to x$ and assume that for any \mathfrak{X}_0 belonging to $(\operatorname{dom}(F_0))^U$ the relation $F\mathfrak{X}_0^{\mathbb{Z}} \in (Y^U)_{\infty}$ holds. Assume also that \mathfrak{X} is an interior point of $(\operatorname{dom}(F_0))^U$.

A set U is a generalized ϵ -solution to the program $x \in U_0$, $F_0 x \longrightarrow \inf$ inf if and only if the following system of conditions is consistent

 $\begin{aligned} \alpha &\in L^{*}\left(\left(Y^{U}\right)_{\infty}, Y\right); \quad \alpha \circ \Delta_{U} = I_{Y}; \\ \alpha \circ F \mathfrak{X} &= \inf_{x \in U} F_{0}x; \quad \epsilon_{1} \ge 0, \ \epsilon_{2} \ge 0, \quad \epsilon_{1} + \epsilon_{2} = \epsilon; \end{aligned}$

 $0 \in \partial_{\mathfrak{X}, \epsilon_1} (\alpha \circ F) + \partial_{\mathfrak{X}, \epsilon_2} (\delta_Y((U_0)^U)).$

As usual, $\delta_{Y}(V)$ is the indicator operator of the set V.

Institute of Mathematics

Siberian Branch Academy of Sciences of the USSR

Received 22/NOV/78

BIBLIOGRAPHY

1. G. P. Akilov and S. S. Kutateladze, Ordered vector spaces, Novosibirsk, 1978. (Russian)

2. V. F. Dem'janov and V. K. Šomesova, Dokl. Akad. Nauk SSSR 242 (1978), 753; English transl. in Soviet Math. Dokl. 19 (1978).

Translated by A. D. IOFFE