CONVEX ϵ-PROGRAMMING

UDC $513.88+519.95$

S. S. KUTATELADZE

Let X be a vector space, and let $Y \cup\{+\infty\}$ be an ordered vector space Y with adjoined greatest element $+\infty$. Consider a convex operator $F: X \longrightarrow Y \cup\{+\infty\}$, a point x belonging to the effective domain $\operatorname{dom}(F)=\{x \in X \mid F x<+\infty\}$ and a positive element $\epsilon \in Y^{+}$. The set

$$
\partial_{x, \epsilon}(F)=\left\{A \in L(X, Y): A x^{\prime}-A x \leqslant F x^{\prime}-F x+\epsilon, x^{\prime} \in X\right\}
$$

where $L(X, Y)$ is the space of linear operators from X into Y, is called the ϵ-subdifferential of F at x. The point x is called ϵ-optimal for F if $0 \in \partial_{x, \epsilon}(F)$. In this paper, we announce some formulae to calculate ϵ-subdifferentials and corresponding ϵ-optimality criteria which show that suitable versions of the Lagrange principle are valid for ϵ-programming. The classical convex programming theory arises naturally if we set $\epsilon=0$.

Composition of convex operators. Let $G: X \rightarrow Z \cup\{+\infty\}$ be an increasing convex operator, and let Z be a K-space.* If $F[\operatorname{dom}(F)]$ contains an interior point of $\operatorname{dom}(G)$, then for any $\epsilon \in Z^{+}$

$$
\partial_{x, \epsilon}(G \circ F)=\bigcup_{\substack{\epsilon_{1} \geqslant 0, \epsilon_{2} \geqslant 0 \\ \epsilon_{1}+\epsilon_{2}=\epsilon}}^{\cup} \quad B \in \partial_{F_{x}}, \epsilon_{1}(G)<.
$$

Sum of convex operators. Let $F_{1}, \ldots, F_{n}: X \longrightarrow X \cup\{+\infty\}$ be convex operators, and let Y be a K-space. If the domains of the Hörmander transforms of F_{1}, \ldots, F_{n} are in general position [1], then

$$
\partial_{x, \epsilon}\left(F_{1}+\ldots+F_{n}\right)=\bigcup_{\substack{\epsilon_{1} \geqslant 0, \ldots, \epsilon_{n} \geqslant 0 \\ \epsilon_{1}+\ldots+\epsilon_{n}=\epsilon}}^{\cup}\left(\partial_{x, \epsilon_{1}}\left(F_{1}\right)+\ldots+\partial_{x, \epsilon_{n}}\left(F_{n}\right)\right) .
$$

For scalar functions on a finite dimensional space, this formula was announced in [2].
Maximum of convex operators. Let Y be a vector lattice, and let F_{1}, \ldots, F_{n} : $X \rightarrow Y \cup\{+\infty\}$ be convex operators whose Hörmander transforms have domains in general position. If Z is a K -space and $A \in L^{+}(Y, Z)$ is a positive linear operator, then for any $\epsilon \in Z^{+}$

$$
\begin{aligned}
& \partial_{x, \epsilon}\left(A \circ\left(F_{1} \vee \ldots \vee F_{n}\right)\right)= \\
& =\left\{\sum_{k=1}^{n} \partial_{x, \epsilon_{k}}\left(A_{k} \circ F_{k}\right): A_{k} \in L^{+}(Y, Z), \sum_{k=1}^{n} A_{k}=A ;\right. \\
& \left.\epsilon_{k} \geqslant 0, \sum_{k=1}^{\sum} \epsilon_{k}=\epsilon ; \sum_{k=1}^{n} A_{k} \circ F_{k} x \geqslant A \circ F_{1} x \vee \ldots \vee F_{n} x-\epsilon_{n}+1\right\} .
\end{aligned}
$$

Composition with an affine operator. Let X, X_{1} be vector spaces, let Y be a K-space, and let $F: X \rightarrow Y \cup\{+\infty\}$ be a convex operator whose domain contains an interior point belonging to the range of an affine mapping $A_{x}: x_{1} \rightarrow A x_{1}+x$, where $A \rightarrow L\left(X_{1}, X\right), x \in X$. Then

$$
\partial_{x_{1}, \epsilon}\left(F \circ A_{x}\right)=\partial_{A_{x^{x}}, \epsilon}(F) \circ A
$$

whenever $x_{1} \in X_{1}$ is such that $A_{x} x_{1} \in \operatorname{dom}(F)$.
Composition with a regular convex operator. Let X be a vector space, let Y be a Kspace, and let $2 l$ be a weakly order bounded set in $L(X, Y)$. As usual, the symbol 〈 2\rangle denotes the linear operator which carries X into the K -space $\left(Y^{2 \mathrm{e}}\right)_{\infty}$ (the space of order bounded Y-valued functions on \mathfrak{V}) according to the rule $\langle 民\rangle x: A \mapsto A x, A \in\left\{\right.$. The symbol Δ_{ℓ} stands for the natural identification of Y with the diagonal of $\left(Y^{\mathfrak{\imath}}\right)_{\infty}$ and $\epsilon_{\mathfrak{\imath}}$ stands for the canonical sublinear operator

$$
\epsilon_{\mathfrak{2}}:\left(Y^{2 x}\right)_{\infty} \rightarrow Y ; \epsilon_{\Re f} f=\sup \{f(A): A \in \mathscr{Z}\}
$$

Now assume that $F: X \rightarrow Y \cup\{+\infty\}$ is a regular convex operator, i.e. one which can be represented as $F=\epsilon_{थ} \circ\langle\mathscr{U}\rangle_{y}$ for suitably chosen $\mathcal{U} \subset L(X, Y), y \in\left(Y^{\text {थT }}\right)_{\infty}$. Further assume that Z is a K -space and $G: Y \rightarrow Z \cup\{+\infty\}$ is an increasing convex mapping. If the range $F[X]$ contains an interior point of the effective domain $\operatorname{dom}(G)$ and $F x \in \operatorname{dom}(G)$ for certain $x \in X$, then for any $\epsilon \in Z^{+}$

$$
\begin{aligned}
& \partial_{x, \epsilon}(G \circ F)=\left\{B \circ\langle\mathscr{C}\rangle: B \circ \Delta_{\mathfrak{N}} \in \partial_{F x, \epsilon-\epsilon^{\prime}}(G) ; B \in L^{+}\left(\left(Y^{\mathscr{U}}\right)_{\infty}, Z\right) ;\right. \\
& \left.0 \leqslant B \circ \Delta_{\mathfrak{Q}} F x-B \circ\langle\mathscr{A}\rangle_{y} x \leqslant \epsilon^{\prime} \leqslant \epsilon\right\} .
\end{aligned}
$$

ϵ-optimality for regular programs. Consider a regular convex program

$$
G x \leqslant 0, \quad F x \rightarrow \inf
$$

In other words, $G, F: X \rightarrow Y \cup\{+\infty\}$ are convex operators and Y is assumed to be a K -space. For simplicity we also assume that $\operatorname{dom}(F)=\operatorname{dom}(G)=X$ and for any $x \in X$ either $G x \leqslant 0$ or $G x \geqslant 0$. Finally, we assume that there is $x_{0} \in X$ such that $-G x_{0}$ is a unit in Y.

A feasible point x is ϵ-optimal for a regular problem if and only if the following system of conditions is consistent:

$$
\begin{aligned}
& \alpha, \beta \in L^{+}(Y, Y) ; \quad \alpha+\beta=I_{Y} ; \operatorname{Ker}(\alpha)=\{0\} ; \\
& \epsilon_{1} \geqslant 0, \epsilon_{2} \geqslant 0 ; \epsilon_{1}+\epsilon_{2} \leqslant \alpha \epsilon+\beta \circ G x \\
& 0 \in \partial_{x, \epsilon_{1}}(\alpha \circ F)+\partial_{x, \epsilon_{2}}(\beta \circ G) .
\end{aligned}
$$

Here I_{y} is the identity operator in Y.
ϵ-optimality for Slater-regular problems. Consider the convex problem

$$
A x=A x_{0}, \quad G x \leqslant 0, \quad F x \rightarrow \mathrm{inf}
$$

where X_{1}, X are vector spaces, $A \in L(X, Y)$ is a linear operator, $G: X \rightarrow Z \cup\{+\infty\}$ and $F: X \rightarrow Y \cup\{+\infty\}$ are convex operators. For simplicity we assume that $\operatorname{dom}(G)=$ $\operatorname{dom}(F)=X$. Now assume that the problem under consideration is Slater regular; that is, Z is an Archimedean ordered vector space, T is a K-space of bounded elements, and there is a feasible point x_{0} such that $-G x_{0}$ belongs to the interior of the cone Z^{+}.

A feasible point x is ϵ-optimal in a Slater regular program if and only if the following

[^0]system of conditions is consistent:
$\gamma \in L^{+}(Z, Y) ; \mu \in L\left(X_{1}, Y\right) ;$
$\epsilon_{1} \geqslant 0, \quad \epsilon_{2} \geqslant 0 ; \quad \epsilon_{1}+\epsilon_{2} \leqslant \gamma \circ G x+\epsilon ;$
$0 \in \partial_{x, \epsilon_{1}}(F)+\partial_{x, \epsilon_{2}}(\gamma \circ G)+\mu \circ A$.
Pareto ϵ-optimality. Consider a Slater regular program and a positive number ϵ. A feasible point x is called Pareto ϵ-optimal (with respect to a strong unit $\mathbf{1}$ in Y) if for any feasible point x^{\prime} such that $F x^{\prime}-F x \leqslant-\epsilon 1$ we have $F x^{\prime}=F x-\epsilon 1$.

If a feasible point x is Pareto ϵ-optimal for a Slater regular program and $0 \leqslant \epsilon<1$, then there are linear functionals α, β, γ on Y, Z, and X_{1} respectively for which the following system of conditions is consistent

$$
\begin{aligned}
& \alpha>0, \beta \geqslant 0 ; \quad \epsilon_{1} \geqslant 0, \epsilon_{2} \geqslant 0 ; \\
& \epsilon_{1}+\epsilon_{2} \leqslant \epsilon+\beta \circ G x ; \\
& 0 \in \partial_{x, \epsilon_{1}}(\alpha \circ F)+\partial_{x, \epsilon_{2}}(\beta \circ G)+\gamma \circ A .
\end{aligned}
$$

Conversely, if these conditions are fulfilled for a feasible point x and $\alpha(1)=1$, then x is Pareto ϵ-optimal.

Generalized ϵ-solutions. Let Y be a K-space, and let $F_{0}: X \rightarrow Y \cup\{+\infty\}$ be a convex operator. Let a convex set U_{0} be contained in $\operatorname{dom}\left(F_{0}\right)$. A subset $U \subset U_{0}$ is called a generalized ϵ-solution to the program $x \in U_{0}, F_{0} x \rightarrow \inf \operatorname{if} \inf F_{0}\left[U_{0}\right] \geqslant \inf F_{0}[U]-\epsilon$.

Consider the space X^{U} and the operator
$F: X^{U} \rightarrow Y^{U} \cup\{+\infty\} ; F \mathfrak{X}: x \rightarrow F_{0} \mathfrak{X}(x)$.
Let $X: x \rightarrow x$ and assume that for any X_{0} belonging to $\left(\operatorname{dom}\left(F_{0}\right)\right)^{U}$ the relation $F X_{0} \in$ $\left(Y^{U}\right)_{\infty}$ holds. Assume also that X is an interior point of $\left(\operatorname{dom}\left(F_{0}\right)\right)^{U}$.

A set U is a generalized ϵ-solution to the program $x \in U_{0}, F_{0} x \rightarrow \inf$ if and only if the following system of conditions is consistent
$\alpha \in L^{+}\left(\left(Y^{U}\right)_{\infty}, Y\right) ; \quad \alpha \circ \Delta_{U}=I_{Y} ;$
$\alpha \circ F \mathfrak{X}=\inf _{x \in U} F_{0} x ; \quad \epsilon_{1} \geqslant 0, \epsilon_{2} \geqslant 0, \quad \epsilon_{1}+\epsilon_{2}=\epsilon ;$
$0 \in \partial_{\mathfrak{X}, \epsilon_{1}}(\alpha \circ F)+\partial_{\mathfrak{X}, \epsilon_{2}}\left(\delta_{Y}\left(\left(U_{0}\right)^{U}\right)\right)$.
As usual, $\delta_{Y}(V)$ is the indicator operator of the set V.
Institute of Mathematics
Siberian Branch Academy of Sciences of the USSR
Received 22/NOV/78

BIBLIOGRAPHY

1. G. P. Akilov and S. S. Kutateladze, Ordered vector spaces, Novosibirsk, 1978. (Russian)
2. V. F. Dem'janov and V. K. Šomesova, Dokl. Akad. Nauk SSSR 242 (1978), 753; English transl. in Soviet Math. Dokl. 19 (1978).

[^0]: *Translator's note. In other words $Y=C(Q)$ for a certain extremally disconnected compact Q.

