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Abstract. This is an overview of the basic techniques and applications of
Boolean valued analysis. Exposition focuses on the Boolean valued transfer
principle for vector lattices and positive operators, Banach spaces and injective
Banach lattices, AW ∗-modules and AW ∗-algebras, etc.
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1 Boolean Valued Requisites
In the beginning of the 1960s Cohen propounded his method of forcing and proved
that the negation of the continuum hypothesis is consistent with the axioms of
Zermelo–Fraenkel set theory (cp. [16]). The contemplation over the Cohen method
gave rise to the Boolean valued models of set theory, which were first introduced
by Scott and Solovay (see [115] and [129]). A systematic account of the theory of
Boolean valued models and its applications to independence proofs can be found in
[11], [40], [119], and [128].

Scott foresaw the role of Boolean valued models in mathematics and wrote as
far back as in 1969 (see [116, p. 91]): “We must ask whether there is any interest in
these nonstandard models aside from the independence proof; that is do they have
any mathematical interest? The answer must be yes, but we cannot yet give a really
good arguments.” Some impressive arguments are available today (see, for example,
[67], [68], [69], and [122]).
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The term “Boolean valued analysis” appeared within the realm of mathematical
logic. It was Takeuti, a renowned expert in proof theory, who introduced the term.
Takeuti defined Boolean valued analysis in [122, p. 1] as “an application of Scott–
Solovay’s Boolean valued models of set theory to analysis.” More precisely, Boolean
valued analysis signifies the technique of studying the properties of an arbitrary
mathematical object by comparison between its representations in two different set-
theoretic models whose construction utilizes principally distinct Boolean algebras.
As these models, the classical Cantorian paradise in the shape of the von Neumann
universe V and a specially-trimmed Boolean valued universe V(B) are usually taken.
Comparison analysis is carried out by some interplay between the universes V and
V(B).

The needed information on the theory of Boolean valued analysis is briefly pre-
sented in [56, Chapter 9] and [69, Chapter 1]; details may be found in [67] and [68].
A short survey of the Boolean machinery is also in [78]. See more on the Boolean
valued models and the independence proofs in [11], [40], and [128].

Throughout the sequel B is a complete Boolean algebra with unity 1 and zero 0.
A partition of unity in B is a family (bξ)ξ∈Ξ ⊂ B such that ∨ξ∈Ξ bξ = 1 and bξ∧bη = 0
whenever ξ 6= η. We let := denote the assignment by definition, while R and C
symbolize the reals and the complexes. Recall also that ZFC is an abbreviation for
Zermelo–Fraenkel axiomatic set theory with the axiom of choice.

1.1. Boolean valued universe and Boolean valued truth [69, § 1.2]. Given
a complete Boolean algebra B, we can define the Boolean valued universe V(B), the
class of B-valued sets. For making statements about V(B) take an arbitrary formula
ϕ = ϕ(u1, . . . , un) of the language of set theory and replace the variables u1, . . . , un
by elements x1, . . . , xn ∈ V(B). Then we obtain some statement about the ob-
jects x1, . . . , xn. There is a natural way of assigning to each formula some element
[[ϕ(x1, . . . , xn)]] ∈ B that serves as the “Boolean truth-value” of ϕ(u1, . . . , un) in V(B)

and is defined by induction on the complexity of ϕ, using the naturally defined truth-
values [[x ∈ y]] ∈ B and [[x = y]] ∈ B, where x, y ∈ V(B). We say that ϕ(x1, . . . , xn) is
valid within V(B) provided that [[ϕ(x1, . . . , xn)]] = 1. In this event, we will also write
V(B) � ϕ(x1, . . . , xn).

1.2. Ascending–descending machinery [69, § 1.5, § 1.6, and § 2.2]. No com-
parison is feasible without some dialog between V and V(B). The relevant technique
of ascending and descending bases on the operations of the canonical embedding,
descent, and ascent.

(1) The canonical embedding. There is a canonical embedding of the von
Neumann universe V into the Boolean valued universe V(B) which sends x ∈ V
to its standard name x∧ ∈ V(B). The standard name sends V onto V(2), where
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2 := {0, 1} ⊂ B.
(2) Descent. Given a member x of a Boolean valued universe V(B), define the

descent x↓ of x by x↓ := {y ∈ V(B) : [[y ∈ x]] = 1}. The class x↓ is a set; i.e., x↓ ∈ V
for every x ∈ V(B).

(3) Ascent. Assume that x ∈ V and x ⊂ V(B). Then there exists a unique
x↑ ∈ V(B) such that [[u ∈ x↑]] = ∨{[[u = y]] : y ∈ x} for all u ∈ V(B). The member x↑
is the ascent of x.

The operations of descent, ascent, and canonical embedding can be naturally
extended to mappings and relations, so that they are applicable to algebraic struc-
tures. The various functors of Boolean valued analysis thus arise whose interplay is
of import in applications; see [67, Chapter 3] and [68, Chapter 5].

1.3. Principles of Boolean valued set theory [69, § 1.4]. The main properties
of a Boolean valued universe V(B) are collected in the four propositions:

(1) Transfer Principle. If ϕ(x1, . . . , xn) is a theorem of ZFC then so is the
following formula:

(∀x1, . . . , xn ∈ V(B))V(B) |= ϕ(x1, . . . , xn).
(2) Maximum Principle. To each formula ϕ of ZFC there is a member x0

of V(B) satisfying [[(∃x)ϕ(x)]] = [[ϕ(x0)]]. In particular, if V(B) |= (∃x)ϕ(x), then
there exists x0 ∈ V(B) such that V(B) |= ϕ(x0).

(3) Mixing Principle. For every family (xξ)ξ∈Ξ in V(B) and every partition
of unity (bξ)ξ∈Ξ in B there exists a unique x ∈ V(B) satisfying bξ ≤ [[x = xξ]] for
all ξ ∈ Ξ. This unique x is the mixing of (xξ) by (bξ) and is denoted as follows:
x = mixξ∈Ξ(bξxξ) = mix{bξxξ : ξ ∈ Ξ}.

A formula is bounded or restricted provided that each of its quantifiers occurs in
the form (∀x ∈ y) or (∃x ∈ y) or if it can be proved to be equivalent in ZFC to
such a formula.

(4) Restricted Transfer Principle. Given a restricted formula ϕ of ZFC
and x1, . . . , xn ∈ V, we have in ZFC that

ϕ(x1, . . . , xn)⇐⇒ V(B) |= ϕ(x∧1 , . . . , x∧n).

The transfer principle tells us that all theorems of ZFC are true in V(B); the
maximum principle guarantees the existence of various “Boolean valued objects”;
the mixing principle shows how these objects may be constructed. The transfer
principle does not mean that if a theorem is true for an algebraic structure A within
V(B), then the theorem is true also for its descent A↓ in V. The question of when
this happens was first studied by Gordon [25] and Jech [38].

1.4. Boolean valued technology. To prove the relative consistency of some
set-theoretic propositions we use a Boolean valued universe V(B) as follows: Let
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T and S be some enrichments of Zermelo–Fraenkel theory ZF (without choice).
Assume that the consistency of ZF implies the consistency of S . Assume further
that we can define B so that S |= “B is a complete Boolean algebra” and S |=
[[ϕ]] = 1 for every axiom ϕ of T . Then the consistency of ZF implies the consistency
of T . That is how we use V(B) in foundational studies.

Other possibilities for applying V(B) base on the fact that irrespective of the
choice of a Boolean algebra B, the universe is an arena for testing an arbitrary
mathematical event. By the principles of transfer and maximum, every V(B) has
the objects that play the roles of numbers, groups, Banach spaces, manifolds, and
whatever constructs of mathematics that are already introduced into practice or still
remain undiscovered. These objects may be viewed as some nonstandard realizations
of the relevant originals.

All ZFC theorems acquire interpretations for the members of V(B), attaining
the top truth-value. We thus obtain a new technology of comparison between the
interpretations of mathematical facts in the universes over various complete Boolean
algebras. Developing the relevant tools is the crux of Boolean valued analysis.

A general scheme of the method is as follows (see [68] and [69]). Assume that
X ⊂ V and X ⊂ V(B) are two classes of mathematical objects and we are able to
prove the possibility of

Boolean Valued Representation: Each X ∈ X embeds into a Boolean valued
model, becoming an object X ∈ X within V(B).

The Boolean Valued Transfer Principle tells us that every theorem about X
within Zermelo–Fraenkel set theory has its counterpart for the original object X
interpreted as a Boolean valued object X .

The Boolean Valued Machinery enables us to perform some translation of theo-
rems from X ∈ V(B) to X ∈ V by using the appropriate general operations and the
principles of Boolean valued analysis.

2 Vector Lattices
The reader can find the relevant information on the theory of vector lattices and
order bounded operators in Aliprantis and Burkinshaw [4], Kusraev [56], Luxemburg
and Zaanen [86], Meyer–Nieberg [89], Schaefer [114], Vulikh [130], and Zaanen [132].

Definition 1. A vector lattice or a Riesz space is a real vector space X equipped
with a partial order ≤ for which the join x ∨ y and the meet x ∧ y exist for all
x, y ∈ X, and such that the positive cone X+ := {x ∈ X : 0 ≤ x} is closed under
addition and multiplication by positive reals and for any x, y ∈ X the relations
x ≤ y and 0 ≤ y − x are equivalent. A Banach lattice is a vector lattice that is
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also a Banach space whose order is connected with the norm by the condition that
|x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x, y ∈ X.

In the sequel, we assume that all vector lattices X are Archimedean; i.e., for
every pair x, y ∈ X it follows from (∀n ∈ N) nx ≤ y that x ≤ 0. Most of the vector
spaces that appear naturally in analysis (Lp, lp, C(K), c, c0, etc.) are Archimedean
vector lattices with respect to the pointwise or coordinatewise order.

Definition 2. Two elements x, y ∈ X are disjoint and write x ⊥ y if |x| ∧ |y| = 0
where the modulus |x| of x is defined as |x| := x∨ (−x). A vector 0 < 1 ∈ X said to
be a weak order unit whenever 1⊥ = {0}. A band in a vector lattice X is a subset
of the form B := A⊥ := {x ∈ X : (∀ a ∈ A) |x| ∧ |a| = 0} for a nonempty A ⊂ X.
The inclusion ordered set of all bands in X is a complete Boolean algebra denoted
by B(X).

Definition 3. A band B in X such that X = B ⊕B⊥ is referred to as a projection
band, while the associated projection (onto B parallel to B⊥) is a band projection.
The set of all band projections P(X) in X also forms a Boolean algebra in which
π ≤ ρ means π(X) ⊂ ρ(X). If each band in X admits a band projection then
B(X) ' P(X).

Definition 4. A subset U ⊂ X is order bounded if U lies in an order interval [a, b] :=
{x ∈ X : a ≤ x ≤ b} for some a, b ∈ X. A vector lattice X is Dedekind complete
(respectively, laterally complete) if every nonempty order bounded set (respectively,
each nonempty set of pairwise disjoint positive vectors) U in X has a least upper
bound sup(U) ∈ X. The vector lattice that is laterally complete and Dedekind
complete simultaneously is referred to as universally complete.

Definition 5. Say that a net (xα) in a vector lattice X o-converges to x ∈ X
and write x = o-lim xα if there exists a decreasing net (eβ)β∈B in X such that
inf{eβ : β ∈ B} = 0 and for each β ∈ B there is α(β) ∈ A with |xα − x| ≤ eβ for all
α ≥ α(β).

Example 6. Assume that a measure space (Ω,Σ, µ) is semifinite; i.e., if A ∈ Σ and
µ(A) = ∞ then there exists B ∈ Σ with B ⊂ A and 0 < µ(A) < ∞. The vector
lattice L0(µ) := L0(Ω,Σ, µ) (of cosets) of µ-measurable functions on Ω is universally
complete if and only if (Ω,Σ, µ) is localizable. In this event Lp(Ω,Σ, µ) is Dedekind
complete; see [21, 241G]. Observe that P(L0(Ω,Σ, µ)) ' Σ/µ−1(0).

Example 7. Given a complete Boolean algebra B of orthogonal projections in
a Hilbert space H, denote by 〈B〉 the space of all selfadjoint operators on H whose
spectral resolutions are in B; i.e., A ∈ 〈B〉 if and only if A =

∫
R λ dEλ and Eλ ∈ B
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for all λ ∈ R. Define the partial order in 〈B〉 by putting A ≥ B whenever 〈Ax, x〉 ≥
〈Bx, x〉 holds for all x ∈ D(A) ∩ D(B), where D(A) ⊂ H stands for the domain of
A. Then 〈B〉 is a universally complete vector lattice and P(〈B〉) ' B.

Applying the transfer principle and the maximum principle to the theorem of
ZFC stating the existence of the field of real numbers, we find R ∈ V(B), the reals
within V(B) for which [[R is the reals]] = 1. The fundamental result of Boolean
valued analysis is the Gordon Theorem describing an interplay between R, R∧, R,
and R = R↓; see [69, § 2.2–§ 2.4].

Theorem 8. (Gordon Theorem). Let B be a complete Boolean algebra, and let R
be the reals within V(B). Endow R with the descended operations and order. Then

(1) The algebraic structure R is a universally complete vector lattice.
(2) The field R ∈ V(B) can be chosen so that [[ R∧ is a dense subfield of R ]] = 1.
(3) There is a Boolean isomorphism χ from B onto P(R) such that

χ(b)x = χ(b)y ⇐⇒ b ≤ [[ x = y ]],
χ(b)x ≤ χ(b)y ⇐⇒ b ≤ [[ x ≤ y ]]

(x, y ∈ R; b ∈ B).

As regards the further development of the theory of vector lattices on using
Theorem 8; see Kusraev and Kutateladze [69, § 2.2–§ 2.11]. Note that the versions of
the Gordon Theorem which involve the multiplicative structure and complexification
are true as well.

Definition 9. An f -algebra is a vector lattice X equipped with a distributive
multiplication such that if x, y ∈ X+ then xy ∈ X+, and if x ∧ y = 0 then
(ax) ∧ y = (xa) ∧ y = 0 for all a ∈ X+. An f -algebra is semiprime provided
that xy = 0 implies x ⊥ y for all x and y. A complex vector lattice XC is the
complexification XC := X ⊕ iX (with i standing for the imaginary unity) of a real
vector lattice X.

In the complex version of Example 7, 〈B〉 consists of all normal operators A+ iB
with A,B ∈ 〈B〉 and the product AB is defined as the unique selfadjoint extension
of the operator x 7→ A(Bx) = B(Ax) (x ∈ D(A) ∩D(B)).

Theorem 10. (1) The universally complete vector lattice R↓ with the descended
multiplication is a semiprime f -algebra with the ring unity 1 := 1∧. Moreover, for
every b ∈ B the band projection χ(b) ∈ P(R) acts as multiplication by χ(b)1.

(2) Let C be the field of complex numbers within V(B). Then the algebraic sys-
tem C ↓ is a universally complete complex f -algebra. Moreover, C ↓ is the complex-
ification of the universally complete real f -algebra R↓; i.e., C ↓ = R↓ ⊕ iR↓.
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Remark 11. If µ is a Maharam measure and B in the Gordon Theorem is the algebra
of all µ-measurable sets modulo µ-negligible sets, then R↓ is lattice isomorphic
to L0(µ); see Example 6. If B is a complete Boolean algebra of projections in
a Hilbert space H then R↓ is isomorphic to 〈B〉; see Example 7. The two indicated
particular cases of Gordon’s Theorem were intensively and fruitfully exploited by
Takeuti [122]–[125]. The object R↓ for general Boolean algebras was also studied by
Jech [37], [38], and [39] who in fact rediscovered Gordon’s Theorem. The difference
is that in [37] a (complex) universally complete vector lattice with unit is defined by
another system of axioms and is referred to as a complete Stone algebra. Selecting
special B’s, it is possible to obtain some properties of R. For instance, Solovay
proved the existence of B such that all subsets of the reals are Lebesgue measurable
in V(B); see [118].

Remark 12. Interpretation of an arbitrary field in a Boolean valued model leads to
the class of rationally complete semiprime commutative rings (see Lambek [82] for
the definitions). Gordon proved in [26] that if K is a rationally complete semiprime
commutative ring and B stands for the Boolean algebra of all annihilator ideals of
K, then there is an internal field K ∈ V(B), the Boolean valued representation of
K, such that the ring K is isomorphic to K ↓. It follows that the Horn theories
of fields and rationally complete semiprime commutative rings coincide. Details
may be found in [67, Theorems 4.5.6 and 4.5.7] and [68, Theorems 8.3.1 and 8.3.2].
Note also that Smith in [120] established an equivalence between the category of
commutative regular rings and the category of Boolean valued fields. Boolean valued
rings, integral domains, and fields were examine also by Nishimura [97] and [103].
Here we also point out the article by Nishimura [90] on the Boolean-valued analysis
of continuous geometries and the article by Chupin [15] with a solution to Problem
18 in the book by Goodearl [22, p. 346].

Remark 13. In another article [27], Gordon found the following description of the
class of modules arising as descents of vector spaces from Boolean valued models:
Assume that K and K are the same as in Remark 12. For every strongly unital
injective K-module M there exists M ∈ V(B), the Boolean valued representation of
the moduleM , such thatM is isomorphic to M ↓; also see [67, 4.5.10 (5)]. Now, if M
and M ′ are Boolean valued representations of M and M ′, respectively, then by the
transfer principle, M and M ′ are isomorphic if and only if they have Hamel bases
of the same cardinality. Using the descent functor and the description of Boolean
valued cardinals enables us to obtain a classification of strongly unitary injective
modules. The result was obtained recently by Chilin and Karimov [14] with the
superfluous assumption K = L0(µ) (but without any instance of Boolean valued
analysis).
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3 Positive Operators
The aim of this section is to establish some variants of the Boolean valued transfer
principle from functionals to operators between vector lattices.

Let X and Y be vector lattices. By L(X,Y ) we denote the space of all linear
operators from X to Y . Take T ∈ L(X,Y ). Call T positive and write T ≥ 0 provided
that T (X+) ⊂ Y+. Call T order bounded or o-bounded whenever T sends each order
bounded subset of X to an order bounded subset of Y .

The set of all order bounded operators from X to Y is denoted by L∼(X,Y ).
The order relation in L∼(X,Y ) is defined as follows: S ≥ T ⇐⇒ S − T ≥ 0.

The celebrated Riesz–Kantorovich Theorem tells us that if X and Y are vector
lattices with Y Dedekind complete, then L∼(X,Y ) is a Dedekind complete vector
lattice. Moreover, in this event every order bounded operator T is regular ; i.e., T
can be presented as a difference of two positive operators.

The fact that X is a vector lattice over the ordered field R may be rewritten as
a restricted formula, say, ϕ(X,R). Hence, recalling the restricted transfer principle,
we come to the identity [[ϕ(X∧,R∧) ]] = 1 which amounts to saying that X∧ is
a vector lattice over the ordered field R∧ within V(B). Similarly, the positive cone
X+ is defined by a restricted formula; hence V(B) |= (X∧)+ = (X+)∧. By the same
reason |x∧| = |x|∧, (x ∨ y)∧ = x∧ ∨ y∧, (x ∧ y)∧ = x∧ ∧ y∧ for all x, y ∈ X, since the
lattice operations ∨, ∧, and | · | in X are defined by restricted formulas.

Let X∧∼ := L∼R∧(X∧,R) be the space of regular R∧-linear functionals from X∧

to R. More precisely, R is considered as a vector space over the field R∧ and by
the maximum principle there exists X∧∼ ∈ V(B) such that [[X∧∼, the set of R∧-linear
order bounded functionals from X∧ to R, is a vector space over R ordered by
the cone of positive functionals ]] = 1. A functional τ ∈ X∧∼ is positive whenever
[[τ ≥ 0]] = 1.

Definition 14. Let X ∈ V and Y ∈ V(B) be such that X 6= ∅ and [[Y 6= ∅]] = 1.
Given an operator T : X → Y ↓, there exists a unique T↑ ∈ V(B) (called the modified
ascent of T ) such that [[T↑ : X∧ → Y ]] = 1 and [[T↑(x∧) = T (x)]] = 1 for all x ∈ X.
Given a member τ ∈ V(B) with [[τ : X∧ → Y ]] = 1, there exists a unique τ↓ : X → Y ↓
(called the modified descent of τ) with [[τ(x∧) = τ↓(x)]] = 1 for all x ∈ X.

Definition 15. A linear operator T from X to Y is a lattice homomorphism when-
ever T (x1∨x2) = Tx1∨Tx2 for all x1, x2 ∈ X. Say that T is disjointness preserving
if |x| ∧ |y| = 0 implies |T (x)| ∧ |T (y)| = 0 for all x, y ∈ X. Two vector lattices X and
Y are said to be lattice isomorphic if there is a lattice isomorphism from X onto Y .
Let Hom(X,Y ) and L∼dp(X,Y ) stand for the sets of all lattice homomorphisms and
all disjointness preserving operators from X to Y , respectively.
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Theorem 16. Let X and Y be vector lattices with Y universally complete and rep-
resented as Y = R↓. Given T ∈ L∼(X,Y ), the modified ascent T↑ is an order
bounded R∧-linear functional on X∧ within V(B); i.e., [[T↑ ∈ X∧∼ ]] = 1. The map-
ping T 7→ T↑ is a lattice isomorphism between the Dedekind complete vector lattices
L∼(X,Y ) and X∧∼↓.

As an example of the application of Theorem 16, we will describe some property
of an order bounded operator T ∈ L∼(X,Y ) in terms of the kernels ker(bT ) =
{x ∈ X : b ◦ Tx = 0} of its stratum bT with b ∈ P(Y ). To this end, assume
Y = R↓, put τ := T↑, and observe that T ∈ Hom(X,Y ) if and only if [[ τ ∈
Hom(X∧,R) ]] = 1 and T ∈ L∼dp(X,Y ) if and only if [[ τ ∈ (X∧∼)dp ]] = 1. Moreover,
X0 is an order ideal (or sublattice, or Grothendieck subspace) in X if and only if
[[ so is X∧0 in X∧ ]] = 1. Recall that a subspace X0 ⊂ X is a Grothendieck subspace
provided that x ∨ y ∨ 0 + x ∧ y ∧ 0 ∈ X0 for all x, y ∈ X0. Combining the above,
we can reduce the problem about the operator T to studying the functional τ . The
following result is due to Kutateladze [76] and [77]; also see [69, § 3.4–§ 3.6].

Theorem 17. Let X and Y be vector lattices with Y Dedekind complete, B := P(Y ),
and let T : X → Y be an order bounded operator. The following assertions hold:

(1) T is disjointness preserving if and only if the kernel of each stratum bT of T
with b ∈ P(Y ) is an order ideal in X.

(2) An operator T is the difference of two lattice homomorphisms if and only if
the kernel of each stratum bT of T with b ∈ B is a vector sublattice of X.

(3) The modulus |T | of T is the sum of some pair of lattice homomorphisms if
and only if the kernel of each stratum bT of T with b ∈ B is a Grothendieck subspace
of X.

The modified ascent mapping T 7→ T↑ has the disadvantage that it does not pre-
serve order continuity. Now consider an embedding into V(B) preserving o-continuity.

Definition 18. An operator T : X → Y between vector lattices is order continuous
provided that o-limTxα = 0 in Y for every net (xα) with o-lim xα = 0 in X. A
positive operator T : X → Y enjoys the Maharam property (or is order interval
preserving) whenever T [0, x] = [0, Tx] for every 0 ≤ x ∈ X; i.e., if for all 0 ≤ x ∈ X
and 0 ≤ y ≤ Tx there is some 0 ≤ u ∈ X such that Tu = y and 0 ≤ u ≤ x.
A Maharam operator is an order continuous linear operator whose modulus has the
Maharam property.

Definition 19. A positive operator T : X → Y has the Levi property if Y =
T (X)⊥⊥ and supxα exists inX for every increasing net (xα) ⊂ X+, provided that the
net (Txα) is order bounded in Y . Given an order bounded order continuous operator
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T from X to Y , denote by Dm(T ) the largest ideal of the universal completion Xu

onto which we may extend T by order continuity. For a positive order continuous
operator T we have X = Dm(T ) if and only if T has the Levi property.

The following result states that each Maharam operator is representable as an
order continuous linear functional in an appropriate Boolean valued model. This
Boolean valued status of the concept of Maharam operator was found by Kusraev
[50] and [51].

Theorem 20. Let X be a Dedekind complete vector lattice, Y := R↓, and let T :
X → Y be a positive Maharam operator with Y = T (X)⊥⊥. Then there are X and
τ ∈ V(B) such that

(1) [[ X is a Dedekind complete vector lattice and τ : X → R is an order
continuous strictly positive functional with the Levi property ]] = 1.

(2) X ↓ is a Dedekind complete vector lattice and a unital f -module over the
f -algebra R↓.

(3) τ↓ : X ↓ → R↓ is a strictly positive Maharam operator with the Levi property
and an R↓-module homomorphism.

(4) There exists an order continuous lattice homomorphism ϕ : X → X ↓ such
that ϕ(X) is order dense ideal of X ↓ and T = τ↓ ◦ ϕ.
Remark 21. The Maharam operators stem from the theory of Maharam’s “full-
valued” integrals which was developed in 1949–1953 (see the survey [87]). Luxem-
burg in the joint articles with de Pagter [84] and Schep [85] extended some portion
of Maharam’s theory to the case of positive operators in Dedekind complete vector
lattices; in particular, some operator versions of the Hahn Decomposition Theo-
rem and the Radon–Nikodým Theorem were obtained in [85]. The Maharam ideas
were transferred to the convex operators by Kusraev [48] and [49]. More results,
applications, and references on Maharam operators can be found in [56], [66], and
[69].
Remark 22. Suppose that X is a vector lattice over a dense subfield F ⊂ R and
ϕ : X → R is a strictly positive F-linear functional. Then the completion Xϕ of the
normed lattice (X, ‖ · ‖ϕ) with ‖x‖ϕ := ϕ(|x|) is an AL-space that includes X. This
simple constriction interpreted within a Boolean valued model yields an extension of
an arbitrary positive operator to a Maharam operator, i.e. the Maharam extension.
This was done by Akilov, Kolesnikov, and Kusraev in [5] and [6]. Later, Luxemburg
and de Pagter [84] constructed the Maharam extension for a given ideal of operators
in L∼(X,Y ) without using Boolean valued analysis.
Remark 23. In 1935 Kantorovich in his first definitive article on vector lattices (see
[41]) wrote: “In this note, I define the new type of space that I call a semiordered
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linear space. The introduction of such a space allows us to study linear operations
of one abstract class (those with values in such a space) as linear functionals.” Here
Kantorovich stated an important heuristic transfer principle; Theorems 16 and 20
present two instances of the mathematical implementation of this principle.

4 Boolean Valued Banach Spaces
In this section we discuss Banach spaces within a Boolean valued universe. We
start with the concept of Banach–Kantorovich space (not to be confused with that
of Kantorovich–Banach space or, shortly, KB-space which is by definition a Banach
lattice with an order continuous Levi norm; see [2, p. 89] and [89, Definition 2.4.11].)

Definition 24. Consider a vector space X and a real vector lattice Λ. A Λ-valued
norm is a mapping· : X → Λ+ such thatx= 0 implies x = 0,λx= |λ|x,
andx+ y

≤x+yfor all x, y ∈ X and λ ∈ R. A Λ-valued norm is decomposable
if, for each decompositionx= λ1 + λ2 with λ1, λ2 ∈ Λ+ and x ∈ X, there exist
x1, x2 ∈ X such that x = x1 + x2 andxk

= λk (k := 1, 2).

Definition 25. A Banach–Kantorovich space over a Dedekind complete vector lat-
tice Λ is a vector space X with a decomposable norm·: X → Λ which is norm
complete in the sense that, given a net (xα)α∈A in X with (

xα − xβ
)(α,β)∈A×A

o-convergent to the zero of Λ, there exists x ∈ X such that (xα − x
)α∈A is o-

convergent to the zero of Λ.

Definition 26. A Banach–Kantorovich space over Λ is universally complete in case
Λ is universally complete. By a universal completion of a Λ-normed space (X,·)
we mean a universally complete Banach–Kantorovich space Y over Λu together with
a linear isometry ı : X → Y (i.e.,

ι(x)
=xfor all x ∈ X) such that each universally

complete subspace of Y containing ı(X) coincides with Y .

Definition 27. A linear operator T : X → Y between Banach–Kantorovich spaces
over Λ is Λ-bounded ifTx≤ λ

x(x ∈ X) for some λ ∈ Λ+; the least such λ is
denoted byT. Define LΛ(X,Y ) as the space of Λ-bounded operators from X to Y .

The following two theorems stating that the category of Banach–Kantorovich
spaces over Λ = R↓ and Λ-bounded linear operators is equivalent to the category of
Banach spaces and bounded linear operators within V(B) were established by Kusraev
[51] (see [52], [56], and [67] for full details).

Theorem 28. Let (X , ‖ · ‖) be a Banach space within the model V(B). If X := X ↓
and·:= ‖ · ‖↓, then (X,·) is a universally complete Banach–Kantorovich space
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over R↓; moreover, the relations b ≤ [[ x = 0 ]] and χ(b)x = 0 are equivalent for
all b ∈ B and x ∈ X. Conversely, for every lattice-normed space (X,·) with
B ' P (X⊥⊥), there exists a unique (up to a linear isometry) Banach space X
within V(B), for which the descent X ↓ is a universal completion of X.

Theorem 29. Let X and Y be Boolean valued representations of Banach-
Kantorovich spaces X and Y over some universally complete vector lattice Λ. Let
L B(X ,Y ) be the space of bounded linear operators from X into Y within V(B),
where B := P(E). The descent and ascent operations implement linear isometries
between the Banach–Kantorovich spaces LΛ(X,Y ) and L B(X ,Y )↓.

Let Λ:= R⇓ be the bounded part of the vector lattice R↓; i.e., Λ consists of all
x ∈ R↓ with |x| ≤ C1 for some C ∈ R, where 1 := 1∧ ∈ R↓. Take a Banach space
X within V(B) and put X ⇓ := {x ∈ X ↓ : x ∈ Λ}. Endow X ⇓ with a mixed
norm

|||x||| :=
∥∥x

∥∥
∞ := inf{0 < C ∈ R : x ≤ C1}.

We will write Λ = Λ(B) if R ∈ V(B) and Λ̄ := C⇓ = Λ⊕ iΛ; i.e., Λ̄ is the complexifi-
cation of Λ.

Definition 30. The normed space (X ⇓, |||·|||) is the bounded descent of X . If
τ : X → Y is a bounded linear operator then τ⇓ denotes the restriction of τ↓ to
X ⇓.

The bounded descent of an internal Banach space is a Banach space. Thus, the
natural question arises: Which Banach spaces are linearly isometric to the bounded
descents of internal Banach spaces? The answer is given in terms of B-cyclic Banach
spaces. Let B be a complete Boolean algebra of norm one projections in a Banach
space X with the Boolean operations: π ∧ ρ := π ◦ ρ = ρ ◦ π, π ∨ ρ = π + ρ− π ◦ ρ,
π∗ = IX − π (π, ρ ∈ B), and the zero and identity operators in X serve as the zero
and unity of the Boolean algebra B.

Definition 31. If (bξ)ξ∈Ξ is a partition of unity in B and (xξ)ξ∈Ξ is a family in
X, then the element x ∈ X with bξxξ = bξx for all ξ ∈ Ξ is a mixing of (xξ) with
respect to (bξ). A Banach space X is B-cyclic if B is a complete Boolean algebra
isomorphic to B and the mixing of every family in the unit ball of X with respect
to every partition of unity in B (with the same index set) exists in the unit ball and
is unique; see [56, Definitions 7.3.1 and 7.3.3]. In the sequel we will identify B and
B.

Let X and Y be Banach spaces with B ⊂ L (X) and B ⊂ L (Y ). An operator
T : X → Y is B-linear, whenever T is linear and commutes with all projections in
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B, i.e. in the case that b ◦ T = T ◦ b. The set of all bounded B-linear operators
from X into Y denote by LB(X,Y ). The terms B-isomorphism and B-isometry are
self-evident. The space X# := LB(X,Λ), where Λ = Λ(B), is B-dual to X.

The following result can be easily deduced from Theorem 28 and the fact that
a Banach lattice (X, ‖ · ‖) is B-cyclic with respect to a complete Boolean algebra B
of projections if and only if X is a Banach–Kantorovich space with a Λ(B)-valued
norm·such that ‖x‖ = ‖x‖∞ for all x ∈ X; see Kusraev [53].

Theorem 32. The bounded descent of a Banach space from the model V(B) is a
B-cyclic Banach space. Conversely, if X is a B-cyclic Banach space, then in the
model V(B) there is a Banach space X unique up to an isometric isomorphism whose
bounded descent X ⇓ is B-isometric to X.

The element X ∈ V(B) from Theorem 32 is the Boolean valued representation
of X. Let X and Y be the Boolean valued representations of B-cyclic Banach
spaces X and Y , respectively. Denote by L (X ,Y ) an element in V(B) representing
the space of bounded linear operators from X into Y . As in Theorem 29, the
bounded descent of the Banach space L (X ,Y ) and the B-cyclic Banach space
LB(X,Y ) are isometrically B-isomorphic. Moreover, the functor of bounded descent
establishes an equivalence of the category of Banach spaces and bounded linear
operators within V(B) with the category of B-cyclic Banach spaces and norm bounded
B-linear operators.

Definition 33. Let Λ̄ = Λ̄(B) with unity 1 and consider a unital Λ̄-module X. The
mapping 〈· | ·〉 : X × X → Λ̄ is a Λ̄-valued inner product if, for all x, y, z ∈ X and
λ ∈ Λ̄, the following are satisfied:

(1) 〈x |x〉 ≥ 0; 〈x |x〉 = 0⇐⇒ x = 0;
(2) 〈x | y〉 = 〈y |x〉∗;
(3) 〈λx | y〉 = λ〈x | y〉;
(4) 〈x+ y | z〉 = 〈x | z〉+ 〈y | z〉.

Using a Λ̄-valued inner product, we introduce the norm by |||x||| :=
√
‖〈x|x〉‖

(x ∈ X) and the decomposable Λ-valued norm byx:=
√
〈x|x〉 (x ∈ X). Obviously,

|||x||| =
∥∥x

∥∥
∞ for all x ∈ X, and so X is a space with mixed norm.

Definition 34. Let X be a Λ̄-module with an inner product 〈· | ·〉 : X ×X → Λ̄. If
X is complete with respect to the mixed norm |||·||| then X is a C∗-module over Λ̄.
A unitary C∗-module X over Λ̄(B) is a Kaplansky–Hilbert module or AW ∗-module
if X enjoys one (hence, both) of the equivalent conditions: (1) (X, |||·|||) is a B-cyclic
Banach space and (2) (X, · ) is a Banach–Kantorovich space over Λ̄(B).
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The equivalence (1) ⇐⇒ (2) in Definition 34 follows from Theorem 32 and it is
clear that some counterparts of Theorems 28 and 29 are true for Kaplansky–Hilbert
modules. This result was obtained by Ozawa in [104] and [106].
Theorem 35. The bounded descent functor establishes an equivalence of the cate-
gory of Hilbert spaces and bounded linear operators within V(B) with the category of
Kaplansky–Hilbert modules over Λ̄(B) and bounded B-linear operators.
Remark 36. The concept of vector space normed by the elements of a vector lattice
was introduced by Kantorovich in 1936 [42]. The first applications of vector norms
and metrics were related to the method of successive approximations in numerical
analysis. The modern theory of lattice-normed spaces and dominated operators on
them is presented in Kusraev [56].
Remark 37. The bounded descent of 30 appeared in the research by Takeuti into
von Neumann algebras and C∗-algebras within Boolean valued models; see [126]
and [127]. Then the technique was developed in the research by Ozawa into the
Boolean valued interpretation of the theory of Hilbert spaces; see [104] and [106].
Theorem 32 is due to Kusraev in [51], [53]; also see [52] and [56]. Similar results were
obtained by Ozawa [111, Theorem 5.2]; the difference is in the fact that Ozawa [111]
deals with Banach spaces possessing an extra module structure over Λ(B) which
may be recovered in each B-cyclic Banach space. Nishimura [100] established the
Boolean valued transfer principle from L∗-algebras to AL∗-algebras in the spirit
of the Takeuti–Ozawa theory of AW ∗-modules; also see [95]. (An L∗-algebra is a
complex Lie algebra whose vector space is a Hilbert space endowed with an involution
and some axiom connecting the Lie bracket, inner product, and involution.)
Remark 38. In [106] Ozawa found a complete system of isomorphism invariants for
Kaplansky–Hilbert modules: There is one-to-one correspondence between the iso-
morphism classes of Kaplansky–Hilbert modules over Λ̄(B) and the cardinals in V(B).
At the same time each Kaplansky–Hilbert module admits a direct sum decompo-
sition into homogeneous components. Using these results, Kusraev obtained the
following functional representation: To each Kaplansky–Hilbert module X there ex-
ist a set of cardinals Γ and a family of nonempty extremally disconnected compact
spaces (Qγ)γ∈Γ such that there is a unitary equivalence X ' ∑⊕γ∈ΓC#(Qγ , l2(γ)).
(Here C#(Q,X) is the space of cosets of X-valued bounded continuous functions
defined on comeager subsets of Q; see [67, 6.4.1] and [69, 5.13.3].) The represen-
tation is not unique and, as discovered Ozawa in [106], the reason for this is the
cardinal shift phenomena in V(B): Given two infinite cardinals κ < λ, there is a
complete Boolean algebra B such that V(B) |= |κ∧| = |λ∧|, and so the injective
Banach lattices C#

(
K, l2(κ)

)
and C#

(
K, l2(λ)

)
are lattice B-isometric with K the

Stone representation space for B; see [67] and [68].
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5 Injective Banach Lattices
In this section we present the instance of the Boolean valued transfer principle from
AL-spaces to injective Banach lattices which states that each injective Banach lattice
is embedded into an appropriate Boolean valued model, becoming an AL-space; see
Kusraev [59], [60], [61], and [62]. First we consider Boolean valued Banach lattices.

Definition 39. A Banach lattice X is an AL-space (resp., AM -space) if ‖x+ y‖ =
‖x‖+ ‖y‖ (resp., ‖x∨ y‖ = max{‖x‖, ‖y‖}) whenever x∧ y = 0. An AM -space has
a (strong order) unit u ≥ 0 if the order interval [−u, u] is the unit ball of X.

Definition 40. A band projection π in a Banach lattice X is an M -projection if
‖x‖ = max{‖πx‖, ‖π⊥x‖} for all x ∈ X, where π⊥ := IX − π. The collection of all
M -projections forms a subalgebra M(X) of P(X) in X. A Banach lattice X is B-
cyclic whenever X is a B-cyclic Banach space for a complete subalgebra B ⊂ M(X).
A B-isometric lattice homomorphism is referred to as lattice B-isometry.

Theorem 41. The bounded descent of a Banach lattice from the model V(B) is a
B-cyclic Banach lattice. Conversely, if X is a B-cyclic Banach lattice, then in the
model V(B) there is a Banach lattice X unique up to an isometric isomorphism whose
bounded descent is lattice B-isometric to X. Moreover, π 7→ π⇓ is an isomorphism
of Boolean algebras M(X )↓ and M(X); in symbols, M(X )↓ ' M(X ⇓).

Definition 42. A real Banach lattice X is injective whenever, for every Banach
lattice Y , every closed vector sublattice Y0 ⊂ Y , and every positive linear operator
T0 : Y0 → X there exists a positive linear extension T : Y → X with ‖T0‖ = ‖T‖.

Thus, the injective Banach lattices are the injective objects in the category of
Banach lattices with the positive contractions as morphisms. Arendt [7, Theo-
rem 2.2] proved that the injective objects are the same if the regular operators with
contractive modulus are taken as morphisms.

The first example of an injective Banach lattice was indicated by Abramovich
in [1] without introducing the term: A Dedekind complete AM -space with unit is
an injective Banach lattice. Later this fact was rediscovered by Lotz in [83], where
the concept of injective Banach lattice was introduced. Lotz also proved that each
AL-space is an injective Banach lattice; see [83, Proposition 3.2]. This shows that
there is an essential difference between the injective Banach lattices and injective
Banach spaces, since C(K) with an extremally disconnected compact set K is the
only injective object (up to isomorphism) in the category of Banach spaces and linear
contractions (see the Nachbin–Goodner–Kelley–Hasumi Theorem [81, Theorem 6])
An important contribution to the study of injective Banach lattices was made by
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Cartwright [13] who found the order intersection property and proved that a Banach
lattice X is injective if and only if X has the order intersection property and there
exists a positive contractive projection in X ′′ onto X (the property (P )); see [69,
Definition 5.10.9 (3), Theorems 5.10.10, and 5.10.11]. Another significant advance
is due to Haydon [30]. He discovered that an injective Banach space has a mixed
AM -AL-structure and proved three representation theorems [30, Theorems 5C, 6H,
and 7B].

Theorem 43. The bounded descent X ⇓ of an AL-space X from V(B) is an injective
Banach lattice with B ' M(X ⇓). Conversely, if X is an injective Banach lattice
and B ' M(X), then there exists an AL-space X within V(B) whose bounded descent
is lattice B-isometric to X; in symbols, X 'B X ⇓.

According to Theorem 43, each theorem about AL-spaces within Zermelo–
Fraenkel set theory has its counterpart for injective Banach lattices. Translation
of theorems from AL-spaces to injective Banach lattices is carried out by the func-
tors of Boolean valued analysis. Combining Theorems 20 and 43 yields the following
result.

Theorem 44. If Φ is some strictly positive Maharam operator with the Levi prop-
erty that takes values in a Dedekind complete AM -space Λ with unit and |||x||| =
‖Φ(|x|)‖∞ (x ∈ L1(Φ)), then (L1(Φ), |||·|||) is an injective Banach lattice and there is
a Boolean isomorphism ϕ from B := P(Λ) onto M(L1(Φ)) such that π ◦Φ = Φ ◦ϕ(π)
for all π ∈ B. Conversely, every injective Banach lattice X is lattice B-isometric to
(L1(Φ), |||·|||) for some strictly positive Maharam operator Φ with the Levi property
that takes values in a Dedekind complete AM -space Λ with unit, where B = P(Λ) '
M(X).

Consider the question of the functional representation of injective Banach lat-
tices. For every cardinal γ, there exists a canonical measure on the unit cube [0, 1]γ ,
i.e. the γth power of Lebesgue’s measure on [0, 1]. The associated Banach lattice
of integrable functions will be denoted by L1([0, 1]γ). The celebrated Kakutani–
Maharam representation result tells us that for each AL-space X there exists a
unique family of cardinals (δγ)γ∈Γ∪{0} with Γ a set of infinite cardinals such that δγ
is either equal to 1 or is uncountable for all γ ∈ Γ and

X ' l1(γ0)⊕
∑⊕

γ∈Γ
δγL1

(
[0, 1]γ

)
, (1)

where ' stands for lattice isometry, while ⊕ and∑⊕ denote l1-joins, and δY denotes
the l1-join of δ copies of Y ; see [81] and [117]. Thus, the Banach lattices l1(γ0) and
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L1([0, 1]γ) are the “building blocks” for AL-spaces. By transfer the result is true for
a Boolean valued representation X of an injective Banach lattice X. Having worked
with the descent and ascent functors, we can find that the building blocks for X
are injective Banach lattices C#(K, l1(α)) and C#(K,L1([0, 1]γ)). Every injective
Banach lattice is lattice B-isometric to a injective direct sum of these building blocks.
For an injective Banach lattice X there exist families (Kβγ)β∈B(γ) (γ ∈ Γ) and
(Kα)α∈A, where Γ is a set of infinite cardinals, A and B(γ) are the sets of cardinals,
and each element of B(γ) is either equal to 1 or is uncountable for all γ ∈ Γ, such
that Kβγ and Kβγ make up the partition of unity in the Boolean algebra of clopen
subsets of the Stone representation space of M(X) and the representation holds:

X 'B

( ∑

α∈A
C#
(
Kα, l

1(α)
))

∞
�
∑

γ∈Γ

�
( ∑

β∈B(γ)
β � C#

(
Kβγ , L

1([0, 1]γ)
))

∞
, (2)

where β � Y stands for the injective direct sum of δ copies of Y and ∑ denotes the
l∞-join. The formula (2) is the descent of the internal representation (1), while the
injective direct sum ∑� of injective Banach lattices can be defined as the descent of
the internal l1-join within V(B). For more details see [60], [61]. The representation
(2) of an injective Banach lattice is not unique in general for the same reason as
in Remark 38: If κ < λ and V(B) |= |κ∧| = |λ∧|, then C#

(
K,L1([0, 1]κ)

)
and

C#
(
K,L1([0, 1]γ)

)
are lattice B-isometric. The above enables us to give a complete

isometric classification of injective Banach lattices; see [60] and [61].

Remark 45. We indicate a few more results obtained by using the Boolean valued
transfer principle for injective Banach lattices. The Daugavet equation in injective
Banach latices, injective Banach lattices of operators, the Boolean valued inter-
pretation of the theory of cone absolutely summing operators, and the operators
factoring through injective Banach lattices are examined in Kusraev [63]; Kusraev
and Wickstead [72] (also see [69]). The following Boolean value version of Ando’s
Theorem was obtained by Kusraev and Kutateladze [70, Theorem 6.4]: Each closed
B-complete sublattice in a B-cyclic Banach lattice X admits a positive contractive
projection commuting with projections from B = M(X) if and only if there exists a
partition of unity (πγ)Γ∪{0} in B with Γ being a nonempty set of cardinals such that
π0X 'π0B L

p(Φ) for some 1 ≤ p ∈ Λu and injective Banach lattice L := L1(Φ), for
which M(L) ' π0B, and πγX 'πγB C#(Qγ , c0(γ)) for all γ ∈ Γ, where Qγ is a clopen
subset of the Stone representation space Q of B corresponding to the projection πγ .
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6 C∗-Algebras and AW ∗-Algebras

This section deals with a transfer principle for C∗-algebras and AW ∗-algebras and
a classification of type I AW ∗-algebras. We start with C∗-algebras. See Berberian
[12], Sakai [113], and Takesaki [121] for the needed information on the topic.

Definition 46. A B-cyclic C∗-algebra or B-C∗-algebra A is a C∗-algebra that is a
B-cyclic Banach space and for each projection π ∈ B we have π(xy) = π(x)y = xπ(y)
and π(x∗) = π(x)∗ for all x, y ∈ A. An element z ∈ A is central provided that z
commutes with every member of A. The center of a T ∗-algebra A is the set Z (A)
of all central elements. Clearly, Z (A) is a commutative C∗-subalgebra of A and
C1 ⊂ Z (A).

The Boolean valued transfer principle for C∗-algebras, discovered by Takeuti
[127], is stated below in terms of the complete Boolean algebra of projections. As
regards other formulations that use a module structure, see Ozawa [109, Theorem
2], [111, Theorem 6.3] and Takeuti [127, Theorem 1.1]).

Theorem 47. If A is a C∗-algebra within V(B) then A := A ⇓ is a B-C∗-algebra.
Conversely, for each B-C∗-algebra A there exists C∗-algebra A within V(B) such that
A is ∗-B-isomorphic to A ⇓.

Definition 48. An AW ∗-algebra is a C∗-algebra presenting a Baer ∗-algebra. More
explicitly, an AW ∗-algebra is a C∗-algebra A whose every right annihilator M⊥ :=
{y ∈ A : (∀x ∈M) xy = 0} has the form pA, with p a projection. A projection p is
a hermitian (p∗ = p) idempotent (p2 = p) element. If Z (A) = {λ1 : λ ∈ C} then
the AW ∗-algebra A is an AW ∗-factor.

The symbol P(A) stands for the set of all projections of an involutive algebra A.
Denote the set of all central projections by Pc(A). Observe that Λ̄ := C⇓ is a
commutative AW ∗-algebra and P(Λ̄) = Pc(Λ). If Λ̄ = Z (A) then Λ̄ = Λ̄(B) with
B = Pc(A). An AW ∗-algebra A is a B-cyclic C∗-algebra for every order closed sub-
algebra B of the complete Boolean algebra Pc(A). This fact together with Theorem
32 yields the following result due to Ozawa [109].

Theorem 49. If A is an AW ∗-algebra within V(B) then A := A ⇓ is also an AW ∗-
algebra and Pc(A) has an order closed subalgebra isomorphic to B. Conversely, if A
is an AW ∗-algebra and B is an order closed subalgebra of the Boolean algebra Pc(A)
then there is an AW ∗-algebra A within V(B) such that A ⇓ is ∗-B-isomorphic with
A. Moreover, A is an AW ∗-factor if and only if B := Pc(A).
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The classification of an AW ∗-algebra into types is determined from the structure
of its lattice of projections; see [56] and [113]. It is important to emphasize the abso-
luteness of types; i.e., the Boolean valued representation preserves this classification;
see Takeuti [126] and Ozawa [109]. Similar absoluteness theorems in a completely
lattice-theoretical framework were established by Nishimura [93]. We recall only the
definition of type I AW ∗-algebra.
Definition 50. A projection π ∈ A is abelian provided that the algebra πAπ is
commutative. An algebra A has type I, if each nonzero projection in A contains
a nonzero abelian projection. Say that a C∗-algebra A is B-embeddable whenever
there are a type I AW ∗-algebra N with B = Pc(N) and a ∗-monomorphism π : A→
N such that π(A) coincides with the bicommutant π(S)′′ of π(A) in N . Furthermore,
if B = Pc(A) then A is centrally embeddable.
Definition 51. A B-cyclic Banach space Y is B-dual or B-bidual provided that,
respectively, Y 'B X

# or Y 'B X
## for some B-cyclic Banach space X, where 'B

stands for isometric B-isomorphy. (Recall that X# := LB(X,B(Λ)) and Λ = Λ(B).)
Say that Y is a B-predual of X if Y # 'B X and Y is B-selfdual if Y 'B Y

#.
Ozawa [111, Theorems A, B, and C] characterized those C∗-algebras that are B-

dual, B-bidual, and B-selfdual (in terms of the Λ̄(B)-module instead of the Boolean
algebra of projections B). He also proved that a B-embeddable C∗-algebra has a
predual unique up to B-isometry which is a Kaplansky–Hilbert module over Λ̄(B);
see [111, Theorem D]).

Let X be a Kaplansky–Hilbert module over Λ̄ and denote by BΛ(X) the space of
all continuous Λ̄-linear operators in X. Since a Λ̄-linear operator is continuous if and
only if it has an adjoint, BΛ(X) is an AW ∗-algebra of type I with center isomorphic
to Λ̄. As it was shown by Kaplansky [45], a type I AW ∗-algebra A is isomorphic to
BΛ̄(X) for some Kaplansky–Hilbert module X over Λ̄(B) with B = Pc(A). Taking
into account Theorem 35, we arrive at the following transfer principle from von
Neumann algebras to embeddable AW ∗-algebras (see Ozawa [107, Theorem 2.3]
and [109, Theorem 6]):
Theorem 52. Let A be a C∗-algebra within V(B) and let A be the bounded descent
of A . Then A is a B-embeddable AW ∗-algebra if and only if A is a von Neumann
algebra within V(B). The algebra A is centrally embeddable if and only if A is a von
Neumann factor within V(B).

We now present a complete system of ∗-isomorphism invariants for type I AW ∗-
algebras due to Ozawa [106]. Every automorphism π of a complete Boolean algebra
B can be extended to a Boolean truth-value preserving automorphism π∗ of V(B);
see [69, § 1.3].
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Definition 53. Two internal cardinals α, β ∈ V(B) are said to be congruent if there
is an automorphism π of B with β = π∗(α). The congruence class of α is defined as
[α] := {π∗(α) : π is an automorphism of B}. Given a type I AW ∗-algebra A with
center isomorphic to Λ̄(B), define the degree Deg(A) of A as [Dim(X)], where X is
a Kaplansky–Hilbert module over Λ̄(B) such that A is ∗-isomorphic to BΛ(X) and
Dim(X) ∈ V(B) is the dimension of the Boolean valued representation X ∈ V(B)

of X.

Theorem 54. Two type I AW ∗-algebras are ∗-isomorphic if and only if their centers
are ∗-isomorphic and they have the same degree. For every nonzero cardinal α
within V(B) there is a type I AW ∗-algebra A with Z (A) isomorphic to Λ̄(B) and
Deg(A) = [α].

Remark 55. The modern structural theory of AW ∗-algebras originates with the arti-
cles [43]–[45] by Kaplansky. These objects appear naturally by way of algebraization
of the theory of von Neumann operator algebras. The study of C∗-algebras and von
Neumann algebras by Boolean valued models was started by Takeuti with [125]
and [126]. See Korol′ and Chilin [46], Nishimura [91], [94], [98], [101], and Ozawa
[104]–[111] for further related developments.
Remark 56. Combining the results about the Boolean valued representations of
AW ∗-algebras with the analytical representations for dominated operators, we come
to some functional representations of AW ∗-algebras (see Kusraev [56]): To each type
I AW ∗-algebra A there exist a set of cardinals Γ and a family of nonempty extremally
disconnected compact spaces (Qγ)γ∈Γ such that there is a ∗-B-isomorphism:

A '
⊕∑

γ∈Γ
SC#(Qγ , B(l2(γ))).

Remark 57. Boolean valued analysis of AW ∗-algebras yields a negative solution to
the Kaplansky problem of unique decomposition of a type I AW ∗-algebra into the
direct sum of homogeneous components. Ozawa gave this solution in [106] and [108].
The lack of uniqueness is tied with the effect of the cardinal shift. The cardinal shift
is impossible in the case when the Boolean algebra of central idempotents B under
study satisfies the countable chain condition, and so the decomposition in question
is unique. Kaplansky established the uniqueness of the decomposition on assuming
that B satisfies the countable chain condition and conjectured that uniqueness fails
in general; see [45].
Remark 58. The concept of Kaplansky–Hilbert module was introduced by Kaplansky
in [45] under the name AW ∗-module. In the introduction he wrote: “. . . the new
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idea is to generalize Hilbert space by allowing the inner product to take values in
a more general ring then the complex numbers. After the appropriate preliminary
theory of these AW ∗-modules has been developed, one can operate with a general
AW ∗-algebra of type I in almost the same manner as with the factor.” In other
words, the central elements of an AW ∗-algebra can be taken as complex numbers
and one can work with factors rather than general AW ∗-algebras. Needles to say,
this is a version of Kantorovich’s heuristic principle; see Remark 23.

7 Miscellany
7.1 The Wickstead problem

An operator in a vector lattice is band preserving if each band is its invariant sub-
space. The following question was raised by Wickstead in [131]: Which vector
lattices have the property (sometimes called the Wickstead property) that every lin-
ear band preserving operator in them is automatically order bounded? One of the
principal technical tools is the concept of d-basis which is presented in the memoir
[3, Section 4]. Boolean valued analysis reduces the Wickstead problem to that of
order boundedness of the endomorphisms of the field R or C viewed as a vector
lattice and algebra over the field R∧ or C∧, respectively; see [69, § 4.2]. In particular,
each d-basis is just a Boolean valued Hamel basis [69, § 4.5]. Gutman [33] proved
that a vector lattice X has the Wickstead property if and only if the Boolean alge-
bra P(X) is σ-distributive if and only if R and R∧ coincide within V(B). Kusraev
[57] established that in a universally complete complex vector lattice X with a fixed
f -algebra multiplication the Wickstead property is equivalent to each of the follow-
ing assertions: (1) there is no nonzero derivation in X; (2) every band preserving
endomorphism in X is a band projection; (3) there is no nontrivial band preserving
automorphism in X. The history and state of the art of the Wickstead problem are
presented in [34] and [69, Chapter 4]. It worth mentioning here that the question
of automatic continuity of homomorphisms from a Banach algebra of continuous
functions into an arbitrary Banach algebra is independent of ZFC; see Dales and
Woodin [18] as well as Dales and Oliveri [17].

7.2 A transfer principle in harmonic analysis

In [124] Takeuti introduced the Fourier transform for the mappings defined on a lo-
cally compact abelian group and having as values pairwise commutable normal op-
erators in a Hilbert space. By applying the transfer principle, he developed a general
technique for translating classical results to operator-valued functions. In particu-
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lar he established a version of the Bochner Theorem describing the set of all inverse
Fourier transforms of positive operator-valued Radon measures. Similar results were
obtained by Gordon and Lyubetskii within their theory of the Boolean extension of
a uniform space; see [28] and [29]. Nishimura [92] extended Takeuti’s Boolean valued
approach to abstract harmonic analysis on locally compact abelian groups to locally
compact groups (not abelian in general). Kusraev and Malyugin in [71] improved
Takeuti’s results in the following directions: more general arrival spaces (including
Banach spaces and Dedekind complete vector lattices) were considered, the class of
dominated mappings was identified with the set of all inverse Fourier transforms
of order bounded quasi-Radon vector measures, and the construction of a Boolean
valued universe was eliminated from the definitions and statements of the results.

7.3 Boolean compactness

Combining the notions of Boolean mixing and compactness yields the concept of mix-
compactness (or cyclic compactness) and the corresponding class of linear operators.
Consider a Λ-metric space (X, ρ) with Λ = R↓. A subset K ⊂ X is mix-compact
if K is mix-complete and for every sequence (xn)n∈N ⊂ K there is x ∈ K such
that infn>k ρ(xn, x) = 0 for all k ∈ N. Clearly, in case Λ = R mix-compactness is
equivalent to compactness in the metric topology. The concept of cyclic compact-
ness was first studied by Kusraev [47] and [52]. Section 8.5 in [56] deals with the
cyclically compact linear operators on B-cyclic Banach spaces. Gönüllü [31] and [32]
found the Lidskii trace formula and the Rayleigh–Ritz minimax formula for cycli-
cally compact operators in Kaplansky–Hilbert modules. The equivalent concept
of mix-compact subset of a lattice-normed space was introduced in Gutman and
Lisovskaya [35]. Basing on Boolean valued analysis, they proved some counterparts
of the three classical theorems for arbitrary lattice-normed spaces over universally
complete vector lattices, namely, the boundedness principle, the Banach–Steinhaus
Theorem, and the uniform boundedness principle for a compact convex set; see [35,
Theorems 2.4, 2.6, and 3.3]. In [63] and [72] Kusraev and Wickstead examine the
question of when the space of compact operators is a vector lattice or an injective
vector lattice. Moreover, a Dodds–Fremlin–Wickstead type domination result for
cyclically compact operators was obtained in [72, Theorem 8.13].

7.4 JB-algebras

The JB-algebras are nonassociative real analogs of C∗-algebras and von Neumann
operator algebras. The theory of these algebras exists as a branch of functional
analysis since the mid 1960s; see [10] and [36]. The Boolean valued approach to
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JB-algebras is outlined by Kusraev [54] and [55]. In [54] a B-JB-algebra is defined
as a JB-algebra that is a B-cyclic Banach space with respect to a complete Boolean
algebra of central idempotents B and, naturally, it turns out that B-JL-algebras are
the bounded descents of JB-algebras from V(B) [54, Theorem 3.1]. Then it is proved
that a B-JB-algebra A is a B-dual space if and only if A is monotone complete
and admits a separating set of Λ(B)-valued normal states [54, Theorem 4.2]. An
algebra A satisfying one of these equivalent conditions is a B-JBW -algebra. Each
B-JBW -factor A admits a unique decomposition A = eA ⊕ e∗A with a central
projection e ∈ B, e∗ := 1− e, such that the algebra eA has a faithful representation
in the algebra of selfadjoint operators on a Kaplansky–Hilbert module and e∗A is
isomorphic to C(Q,M8

3 ), where Q is the Stone representation space of the Boolean
algebra e∗B := [0, e∗] and M8

3 := M3(O) is the algebra of hermitian (3× 3)-matrices
over the Cayley numbers O; see [54, Theorem 4.6]. A full classification of type I2
AJW -algebras was obtained in [55]. More details and references are collected in
[54], [58], and [68].

7.5 Convex analysis

One of the most important concepts in convex analysis is that of support set or
subdifferential at zero, i.e. the convex set of linear operators majorized by a sub-
linear operator; see [66]. The intrinsic characterization of subdifferentials was first
formulated as a conjecture by Kutateladze in [73] and then it was proved by Kusraev
and Kutateladze (see [64] and [65]): A weakly order bounded set of operators is a
subdifferential if and only if it is operator convex and closed with respect to pointwise
order convergence. The result is well known for functionals and the Boolean valued
transfer principle enables one to translate the result to the operators taking values
in the universally complete vector lattice that is the descent of the reals. Similarly,
we can recover a subdifferential from its extreme points on using the classical Krein–
Milman Theorem and its Milman’s inversion. Kutateladze in [74] and [75] weakened
the boundedness assumption in the spirit of the classical theory of caps which was
developed by Choquet and his followers; see [8] and [112]. The peculiarity of his
approach consists in working with the new notion of operator cap. An operator cap
is not a cap in the classical sense in general but becomes a usual cap in the scalar
case. More precisely, when studying convex sets of operators it is appropriate to use
operator caps rather than conventional caps, i.e. the descents of scalar caps from
a suitable Boolean valued model; see [66] for details. Recently Kutateladze applied
Boolean valued analysis to deriving the operator versions of the classical Farkas
Lemma in the theory of simultaneous linear inequalities and proved the Lagrange
principle for dominated polyhedral sublinear operators; see [79] and [80].
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7.6 Mathematical finance

In order to provide an analytical basis to some problems of mathematical finance
in a multiperiod setup with a dynamic flow of information, the two approaches
were proposed: randomized convex analysis (Filipovic, Kupper, and Vogelpoth [20])
and conditional set theory (Drapeau, Jamnesahn, Karliczek, and Kupper [19]). It
is proved in Avilés and Zapata [9, Theorems 2.2 and 3.1] that: (1) the category of
mix-complete L0-convex modules and continuous L0-linear operators is equivalent
to the category of locally convex spaces and continuous linear operators within
V(B); (2) the category of conditional sets and conditional mappings is equivalent
to the category of sets and mappings within V(B); also see [133]. Thus, Boolean
valued analysis provides a natural framework for the study of locally L0-convex
analysis and conditional set theory and to explore new applications to conditional
risk measures, equilibrium theory, optimal stochastic control, financial preferences,
etc. More details and references are collected in [9], [133], and [134].
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