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INTRODUCTION

Boolean valued analysis is a general mathematical method that rests on a special model-theoretic
technique. This technique consists generally in comparison between the representations of arbitrary
mathematical objects and theorems in two different set-theoretic models whose constructions start with
principally distinct Boolean algebras. We usually take as these models the cosiest Cantorian paradise,
the von Neumann universe of Zermelo–Fraenkel set theory, and a special universe of Boolean valued
“variable” sets trimmed and chosen so that the traditional concepts and facts of mathematics acquire
completely unexpected and bizarre interpretations. The use of two models, one of which is formally
nonstandard, is a family feature of nonstandard analysis. For this reason, Boolean valued analysis
means an instance of nonstandard analysis in common parlance. By the way, the term Boolean valued
analysis was minted by G. Takeuti.

Proliferation of Boolean valued models is due to P. Cohen’s final breakthrough in Hilbert’s Problem
Number One. His method of forcing was rather intricate and the inevitable attempts at simplification
gave rise to the Boolean valued models by D. Scott, R. Solovay, and P. Vopěnka.

A grievous event is of relevance to this article: Saunders Mac Lane, a cofather of category theory,
passed away in San Francisco on April 14, 2005. The power of mathematics rests heavily on the trick
of socializing the objects and problems under consideration. The understanding of the social medium of
set-theoretic models belongs to category theory.

A category is called an elementary topos provided that it is cartesian closed and has a subobject
classifier. A. Grothendieck and F. W. Lawvere, the followers of Saunders Mac Lane, created topos
theory in the course of “point elimination” and in the dream of invariance of the objects we operate
in mathematics. It is on this road that we met the conception of variable sets, underlying the notion of
topos and bringing about the understanding of the social medium of set-theoretic models. The Boolean
valued models belong happily to the family of Boolean toposes enjoying the classical Aristotle logic.

Category theory, alongside set theory, serves as a universal language of modern mathematics.
Categories, functors, and natural transformations are widely used in all areas of mathematics, allowing
us to look uniformly and consistently on various constructions and formulate the general properties
of diverse structures. The impact of category theory is irreducible to the narrow frameworks of its
outstanding expressive conveniences. This theory has drastically changed our general outlook on the
foundations of mathematics and widened the room of free thinking in mathematics.

∗The text was submitted by the authors in English.
1This article is an extended version of a talk at the International Conference “Positivity IV: Theory and
Applications” held by Technische Universität Dresden in 2005 (cp. [36]).

2In memory of Saunders Mac Lane (1909–2005)
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Set theory, a great and ingenious creation of Georg Cantor, occupies in the common opinion of the
twentieth century the place of the sole solid base of modern mathematics. Mathematics becomes sinking
into a section of the Cantorian set theory. Most active mathematicians, teachers, and philosophers view
as obvious and undisputable the thesis that mathematics cannot be grounded on anything but set theory.
The set-theoretic stance transforms paradoxically into an ironclad dogma, a clear-cut forbiddance
of thinking (as L. Feuerbach once put it wittily). Such an indoctrinated view of the foundations of
mathematics is false and contradicts conspicuously to the leitmotif, nature, and pathos of the essence
of all creative contribution of G. Cantor who wrote as far back as in 1883 that “denn das Wesen der
Mathematik liegt gerade in ihrer Freiheit.”

Topos theory provides a profusion of categories of which classical set theory is an ordinary member.
Mathematics has thus acquired infinitely many new degrees of freedom. All these achievements rest on
category theory.

“There remains to us, then, the pursuit of truth, by way of proof, the concatenation of those
ideas which fit, and the beauty which results when they do fit.” So wrote Saunders Mac Lane, a
great genius, creator, master, and servant of mathematics. We reverently dedicate this article to the
memory of this eternal and tragicomical mathematical Knight of the Sorrowful Figure and Category.

1. BOOLEAN REQUISITES

We start with recalling some auxiliary facts about the construction and treatment of Boolean valued
models.

1.1. Let B be a complete Boolean algebra. Given an ordinal α, put

V
(B)
α := {x : x is a function ∧ (∃β)(β < α ∧ dom(x) ⊂ V

(B)
β ∧ im(x) ⊂ B)}.

After this recursive definition the Boolean valued universe V
(B) or, in other words, the class of

B-sets is introduced by

V
(B) :=

⋃

α∈On

V
(B)
α ,

with On standing for the class of all ordinals.
In case of the two element Boolean algebra 2 := {O, 1I} this procedure yields a version of the classical

von Neumann universe V (see 2.1 (2)).
Let ϕ be an arbitrary formula of ZFC, Zermelo–Fraenkel set theory with choice. The Boolean truth

value [[ϕ]] ∈ B is introduced by induction on the length of a formula ϕ by naturally interpreting the
propositional connectives and quantifiers in the Boolean algebra B and taking into consideration the
way in which this formula is built up from atomic formulas. The Boolean truth values of the atomic
formulas x ∈ y and x = y, with x, y ∈ V

(B), are defined by means of the following recursion schema:

[[x ∈ y]] =
∨

t∈dom(y)

y(t) ∧ [[t = x]],

[[x = y]] =
∨

t∈dom(x)

x(t) ⇒ [[t ∈ y]] ∧
∨

t∈dom(y)

y(t) ⇒ [[t ∈ x]].

The sign ⇒ symbolizes the implication in B; i.e., a ⇒ b := a∗ ∨ b where a∗ is as usual the complement
of a.

The universe V
(B) with the Boolean truth value of a formula is a model of set theory in the sense that

the following statement is fulfilled.

1.2. Transfer Principle. For every theorem ϕ of ZFC, we have [[ϕ]] = 1I; i.e., ϕ is true inside V
(B).

Enter into the next agreement: If x is an element of V
(B) and ϕ(·) is a formula of ZFC then the phrase

“x satisfies ϕ inside V
(B)” or, briefly, “ϕ(x) is true inside V

(B)” means that [[ϕ(x)]] = 1I. This is sometimes
written as V

(B) |= ϕ(x).
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Given x ∈ V
(B) and b ∈ B, define the function bx : z �→ bx(z) (z ∈ dom(x)). Here we presume that

b∅ := ∅ for all b ∈ B.
There is a natural equivalence relation x ∼ y ↔ [[x = y]] = 1I in the class V

(B). Choosing a repre-
sentative of the smallest rank in each equivalence class or, more exactly, using the so-called “Frege–

Russell–Scott trick,” we obtain a separated Boolean valued universe V
(B)

in which

x = y ↔ [[x = y]] = 1I.

It is easily to see that the Boolean truth value of a formula remains unaltered if we replace in it each

element of V
(B) by one of its equivalents. In this connection from now on we take V

(B) := V
(B)

without
further specification.

Observe that in V
(B)

the element bx is defined correctly for x ∈ V
(B)

and b ∈ B since

[[x1 = x2]] = 1I → [[bx1 = bx2]] = b ⇒ [[x1 = x2]] = 1I.

For a similar reason, we often write O := ∅, and in particular O∅ = ∅ = Ox for x ∈ V
(B).

1.3. Mixing Principle. Let (bξ)ξ∈Ξ be a partition of unity in B, i.e.

sup
ξ∈Ξ

bξ = sup B = 1I, ξ �= η → bξ ∧ bη = O.

To each family (xξ)ξ∈Ξ in V
(B) there exists a unique element x in the separated universe such that

[[x = xξ]] ≥ bξ (ξ ∈ Ξ).

This element is called the mixing of (xξ)ξ∈Ξ by (bξ)ξ∈Ξ and is denoted by
∑

ξ∈Ξ bξxξ.

1.4. Maximum Principle. If ϕ is a formula of ZFC then there is a B-valued set x0 satisfying
[[(∃x)ϕ(x)]] = [[ϕ(x0)]].

2. THE ESCHER RULES

Boolean valued analysis consists primarily in comparison of the instances of a mathematical object
or idea in two Boolean valued models. This is impossible to achieve without some dialog between the
universes V and V

(B). In other words, we need a smooth mathematical toolkit for revealing interplay
between the interpretations of one and the same fact in the two models V and V

(B). The relevant
ascending-and-descending technique rests on the functors of canonical embedding, descent, and
ascent.

2.1. We start with the canonical embedding of the von Neumann universe V.

Given x ∈ V, let x∧ denote the standard name of x in V
(B); i.e., the element defined by the following

recursion schema:

∅
∧ := ∅, dom(x∧) := {y∧ : y ∈ x}, im(x∧) := {1I}.

Observe some properties of the mapping x �→ x∧ we need in the sequel:
(1) For an arbitrary x ∈ V and a formula ϕ of ZFC, we have

[[(∃y ∈ x∧)ϕ(y)]] =
∨

z∈x

[[ϕ(z∧)]], [[(∀y ∈ x∧)ϕ(y)]] =
∧

z∈x

[[ϕ(z∧)]].

(2) If x and y are elements of V then, by transfinite induction, we establish

x ∈ y ↔ V
(B) |= x∧ ∈ y∧, x = y ↔ V

(B) |= x∧ = y∧.

In other words, the standard name can be considered as an embedding of V into V
(B). Moreover, it

is beyond a doubt that the standard name sends V onto V
(2), which fact is demonstrated by the next

proposition:

(3) The following holds: (∀u ∈ V
(2)) (∃!x ∈ V) V

(B) |= u = x∧.
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A formula is called bounded or restricted if each bound variable in it is restricted by a bounded
quantifier; i.e., a quantifier ranging over a particular set. The latter means that each bound variable x is
restricted by a quantifier of the form (∀x ∈ y) or (∃x ∈ y) for some y.

2.2. Restricted Transfer Principle. For each bounded formula ϕ of ZFC and every collec-
tion x1, . . . , xn ∈ V the following holds: ϕ(x1, . . . , xn) ↔ V

(B) |= ϕ(x∧
1 , . . . , x∧

n).

Henceforth, working in the separated universe V
(B)

, we agree to preserve the symbol x∧ for the
distinguished element of the class corresponding to x.

For example, observe that the restricted transfer principle yields:

“Φ is a correspondence from x to y”

↔ V
(B) |= “Φ∧ is a correspondence from x∧ to y∧”;

“f : x → y” ↔ V
(B) |= “f∧ : x∧ → y∧”

(moreover, f(a)∧ = f∧(a∧) for all a ∈ x). Thus, the standard name can be considered as a covariant
functor of the category of sets (or correspondences) inside V to an appropriate subcategory of V

(2) in the
separated universe V

(B).

2.3. A set X is finite if X coincides with the image of a function on a finite ordinal. In symbols, this is
expressed as fin(X); hence,

fin(X) := (∃n)(∃ f)(n ∈ ω ∧ f is a function ∧ dom(f) = n ∧ im(f) = X)

(as usual ω := {0, 1, 2, . . . }). Obviously, the above formula is not bounded. Nevertheless there is a simple
transformation rule for the class of finite sets under the canonical embedding. Let Pfin(X) denote the
class of all finite subsets of X; i.e.,Pfin(X) := {Y ∈ P(X) : fin(Y )}. For an arbitrary set X the following
holds: V

(B) |= Pfin(X)∧ = Pfin(X∧).

2.4. Given an arbitrary element x of the (separated) Boolean valued universe V
(B), we define the

descent x↓ of x as x↓ := {y ∈ V
(B) : [[y ∈ x]] = 1I}. We list the simplest properties of descending:

(1) The class x↓ is a set, i.e., x↓ ∈ V for all x ∈ V
(B). If [[x �= ∅]] = 1I then x↓ is a nonempty set.

(2) Let z ∈ V
(B) and [[z �= ∅]] = 1I. Then, for every formula ϕ of ZFC, we have

[[(∀x ∈ z)ϕ(x)]] =
∧

x∈z↓
[[ϕ(x)]], [[(∃x ∈ z)ϕ(x)]] =

∨

x∈z↓
[[ϕ(x)]].

Moreover, there exists x0 ∈ z↓ such that [[ϕ(x0)]] = [[(∃x ∈ z)ϕ(x)]].

(3) Let Φ be a correspondence from X to Y in V
(B). Thus, Φ, X, and Y are elements of V

(B)

and, moreover, [[Φ ⊂ X × Y ]] = 1I. There is a unique correspondence Φ↓ from X↓ to Y ↓ such that
Φ↓(A↓) = Φ(A)↓ for every nonempty subset A of X inside V

(B). The correspondence Φ↓ from X↓ to
Y ↓ of the above proposition is called the descent of the correspondence Φ from X to Y inside V

(B).

(4) The descent of the composite of correspondences inside V
(B) is the composite of their descents:

(Ψ ◦ Φ)↓ = Ψ↓ ◦ Φ↓.

(5) If Φ is a correspondence inside V
(B) then (Φ−1)↓ = (Φ↓)−1.

(6) Let IdX be the identity mapping inside V
(B) of a set X ∈ V

(B). Then (IdX)↓ = IdX↓.

(7) Suppose that X,Y, f ∈ V
(B) are such that [[f : X → Y ]] = 1I, i.e., f is a mapping from X to Y

inside V
(B). Then f↓ is a unique mapping from X↓ to Y ↓ satisfying [[f↓(x) = f(x)]] = 1I for all x ∈ X↓.

By virtue of (1)–(7), we can consider the descent operation as a functor from the category of B-valued
sets and mappings (correspondences) to the category of the usual sets and mappings (correspondences)
(i.e., in the sense of V).
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(8) Given x1, . . . , xn ∈ V
(B), denote the corresponding ordered n-tuple inside V

(B) by (x1, . . . , xn)B.
Assume that P is an n-ary relation on X inside V

(B); i.e., X,P ∈ V
(B) and [[P ⊂ Xn∧

]] = 1I, where
n ∈ ω. Then there exists an n-ary relation P ′ on X↓ such that

(x1, . . . , xn) ∈ P ′ ↔ [[(x1, . . . , xn)B ∈ P ]] = 1I.

Slightly abusing notation, we denote the relation P ′ by the same symbol P↓ and call it the descent of P .

2.5. Let x ∈ V and x ⊂ V
(B); i.e., let x be some set composed of B-valued sets or, in other words,

x ∈ P(V(B)). Put ∅↑ := ∅ and dom(x↑) := x, im(x↑) := {1I} if x �= ∅. The element x↑ (of the separated
universe V

(B), i.e., the distinguished representative of the class {y ∈ V
(B) : [[y = x↑]] = 1I}) is called the

ascent of x.
(1) For all x ∈ P(V(B)) and every formula ϕ we have the following:

[[(∀z ∈ x↑)ϕ(z)]] =
∧

y∈x

[[ϕ(y)]], [[(∃z ∈ x↑)ϕ(z)]] =
∨

y∈x

[[ϕ(y)]].

Introducing the ascent of a correspondence Φ ⊂ X × Y , we have to bear in mind a possible
distinction between the domain of departure X and the domain dom(Φ) := {x ∈ X : Φ(x) �= ∅}.
This circumstance is immaterial for the sequel; therefore, speaking of ascents, we always imply total
correspondences; i.e., dom(Φ) = X.

(2) Let X,Y,Φ ∈ V
(B), and let Φ be a correspondence from X to Y . There exists a unique

correspondence Φ↑ from X↑ to Y ↑ inside V
(B) such that Φ↑(A↑) = Φ(A)↑ is valid for every subset A

of dom(Φ) if and only if Φ is extensional; i.e., satisfies the condition

y1 ∈ Φ(x1) → [[x1 = x2]] ≤
∨

y2∈Φ(x2)

[[y1 = y2]]

for x1, x2 ∈ dom(Φ). In this event, Φ↑ = Φ′↑, where Φ′ := {(x, y)B : (x, y) ∈ Φ}. The element Φ↑ is
called the ascent of the initial correspondence Φ.

(3) The composite of extensional correspondences is extensional. Moreover, the ascent of a com-
posite is equal to the composite of the ascents inside V

(B): On assuming that dom(Ψ) ⊃ im(Φ), we
have

V
(B) � (Ψ ◦ Φ)↑ = Ψ↑ ◦ Φ↑.

Note that if Φ and Φ−1 are extensional then (Φ↑)−1 = (Φ−1)↑. However, in general, the extensionality
of Φ in no way guarantees the extensionality of Φ−1.

(4) It is worth mentioning that if an extensional correspondence f is a function from X to Y then
the ascent f↑ of f is a function from X↑ to Y ↑. Moreover, the extensionality property can be stated as
follows: [[x1 = x2]] ≤ [[f(x1) = f(x2)]] for all x1, x2 ∈ X.

2.6. Given a set X ⊂ V
(B), we denote the set of all mixings of the form mix(bξxξ) by the sym-

bol mix(X), where (xξ) ⊂ X and (bξ) is an arbitrary partition of unity. The following propositions are
referred to as the arrow cancellation rules or ascending-and-descending rules. There are many good
reasons to call them simply the Escher rules [17].

(1) Let X and X ′ be subsets of V
(B) and let f : X → X ′ be an extensional mapping. Suppose that

Y, Y ′, g ∈ V
(B) are such that [[Y �= ∅]] = [[ g : Y → Y ′]] = 1I. Then X↑↓ = mix(X), Y ↓↑ = Y , f↑↓ = f ,

and g↓↑ = g.
(2) From 2.3 (8) we easily infer the useful relation: Pfin(X↑) = {θ↑ : θ ∈ Pfin(X)}↑.
Suppose that X ∈ V, X �= ∅; i.e., X is a nonempty set. Let the letter ι denote the standard name

embedding x �→ x∧ (x ∈ X). Then ι(X)↑ = X∧ and X = ι−1(X∧↓). Using the above relations, we
may extend the descent and ascent operations to the case in which Φ is a correspondence from X

to Y ↓ and [[Ψ is a correspondence from X∧ to Y ]] = 1I, where Y ∈ V
(B). Namely, we put Φ↑ := (Φ ◦ ι)↑

and Ψ↓ := Ψ↓ ◦ ι. In this case, Φ↑ is called the modified ascent of Φ, and Ψ↓ is called the modified
descent of Ψ. (If the context excludes ambiguity then we briefly speak of ascents and descents using
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simple arrows.) It is easy to see that Ψ↑ is a unique correspondence inside V
(B) satisfying the relation

[[Φ↑(x∧) = Φ(x)↑]] = 1I (x ∈ X). Similarly, Ψ↓ is a unique correspondence from X to Y ↓ satisfying the
equality Ψ↓(x) = Ψ(x∧)↓ (x ∈ X), If Φ := f and Ψ := g are functions then these relations take the form
[[f↑(x∧) = f(x)]] = 1I and g↓(x) = g(x∧) for all x ∈ X.

2.7. Various function spaces reside in functional analysis, and so the problem is natural of replacing
an abstract Boolean valued system by some function-space analog, a model whose elements are
functions and in which the basic logical operations are calculated “pointwise.” An example of such
a model is given by the class V

Q of all functions defined on a fixed nonempty set Q and acting into V. The
truth values on V

Q are various subsets of Q: The truth value [[ϕ(u1, . . . , un)]] of ϕ(t1, . . . , tn) at functions
u1, . . . , un ∈ V

Q is calculated as follows:

[[ϕ(u1, . . . , un)]] =
{
q ∈ Q : ϕ

(
u1(q), . . . , un(q)

)}
.

A. G. Gutman and G. A. Losenkov solved the above problem by the concept of continuous polyverse
which is a continuous bundle of models of set theory. It is shown that the class of continuous sections
of a continuous polyverse is a Boolean valued system satisfying all basic principles of Boolean valued
analysis and, conversely, each Boolean valued algebraic system can be represented as the class of
sections of a suitable continuous polyverse. More details are collected in [35, Chapter 6].

2.8. Every Boolean valued universe has the collection of mathematical objects in full supply: available
in plenty are all sets with extra structure: groups, rings, algebras, normed spaces, etc. Applying the
descent functor to such internal algebraic systems of a Boolean valued model, we distinguish some
bizarre entities or recognize old acquaintances, which leads to revealing the new facts of their life and
structure.

This technique of research, known as direct Boolean valued interpretation, allows us to produce
new theorems or, to be more exact, to extend the semantical content of the available theorems by means
of slavish translation. The information we so acquire might fail to be vital, valuable, or intriguing, in
which case the direct Boolean valued interpretation turns out into a leisurely game.

It thus stands to reason to raise the following questions: What structures significant for mathematical
practice are obtainable by the Boolean valued interpretation of the most typical algebraic systems? What
transfer principles hold true in this process? Clearly, the answers should imply specific objects whose
particular features enable us to deal with their Boolean valued representation which, if understood duly,
is impossible to implement for arbitrary algebraic systems.

An abstract Boolean set or set with B-structure is a pair (X, d), where X ∈ V, X �= ∅, and d is
a mapping from X × X to B such that

d(x, y) = O ↔ x = y, d(x, y) = d(y, x), d(x, y) ≤ d(x, z) ∨ d(z, y)

for all x, y, z ∈ X.

To obtain an easy example of an abstract B-set, given ∅ �= X ⊂ V
(B) put

d(x, y) := [[x �= y]] = ¬[[x = y]]

for x, y ∈ X.
Another easy example is a nonempty X with the discrete B-metric d; i.e., d(x, y) = 1I if x �= y and

d(x, y) = O if x = y.

Let (X, d) be some abstract B-set. There exist an element X ∈ V
(B) and an injection ι : X → X ′ :=

X↓ such that d(x, y) = [[ιx �= ιy]] for all x, y ∈ X and every element x′ ∈ X ′ admits the representation
x′ = mixξ∈Ξ(bξιxξ), where (xξ)ξ∈Ξ ⊂ X and (bξ)ξ∈Ξ is a partition of unity in B. The element X ∈ V

(B)

is referred to as the Boolean valued realization of X.
If X is a discrete abstract B-set then X = X∧ and ιx = x∧ for all x ∈ X. If X ⊂ V

(B) then ι↑ is
an injection from X↑ to X (inside V

(B)). A mapping f from a B-set (X, d) to a B-set (X ′, d′) is said to
be contractive if d(x, y) ≥ d′(f(x), f(y)) for all x, y ∈ X.

We see that an abstract B-set X embeds in the Boolean valued universe V
(B) so that the Boolean

distance between the members of X becomes the Boolean truth value of the negation of their equality.
The corresponding element of V

(B) is, by definition, the Boolean valued representation of X.
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In case a B-set X has some a priori structure we may try to furnish the Boolean valued representation
of X with an analogous structure, so as to apply the technique of ascending and descending to the
study of the original structure of X. Consequently, the above questions may be treated as instances of
the unique problem of searching a well-qualified Boolean valued representation of a B-set with some
additional structure.

We call these objects algebraic B-systems. Located at the epicenter of exposition, the notion of
an algebraic B-system refers to a nonempty B-set endowed with a few contractive operations and B-
predicates, the latter meaning B-valued contractive mappings.

The Boolean valued representation of an algebraic B-system appears to be a conventional two valued
algebraic system of the same type. This means that an appropriate completion of each algebraic B-
system coincides with the descent of some two valued algebraic system inside V

(B).
On the other hand, each two valued algebraic system may be transformed into an algebraic B-system

on distinguishing a complete Boolean algebra of congruences of the original system. In this event, the
task is in order of finding the formulas holding true in direct or reverse transition from a B-system to
a two valued system. In other words, we have to seek here for some versions of the transfer or identity
preservation principle of long standing in some branches of mathematics.

3. BOOLEAN VALUED NUMBERS

Boolean valued analysis stems from the fact that each internal field of reals of a Boolean valued model
descends into a universally complete Kantorovich space. Thus, a remarkable opportunity opens up to
expand and enrich the treasure-trove of mathematical knowledge by translating information about the
reals to the language of other noble families of functional analysis. We will elaborate upon the matter in
this section.

3.1. Recall a few definitions. Two elements x and y of a vector lattice E are called disjoint (in symbols
x ⊥ y) if |x| ∧ |y| = 0. A band of E is defined as the disjoint complement

M⊥ := {x ∈ E : (∀y ∈ M)x ⊥ y}
of a nonempty set M ⊂ E.

The inclusion-ordered set B(E) of all bands in E is a complete Boolean algebra with the Boolean
operations:

L ∧ K = L ∩ K, L ∨ K = (L ∪ K)⊥⊥, L∗ = L⊥ (L,K ∈ B(E)).

The Boolean algebra B(E) is often referred as to the base of E.

A band projection in E is a linear idempotent operator in π : E → E satisfying the inequalities
0 ≤ πx ≤ x for all 0 ≤ x ∈ E. The set P(E) of all band projections ordered by π ≤ ρ ⇐⇒ π ◦ ρ = π
is a Boolean algebra with the Boolean operations:

π ∧ ρ = π ◦ ρ, π ∨ ρ = π + ρ − π ◦ ρ, π∗ = IE − π (π, ρ ∈ (E)).

Let u ∈ E+ and e∧ (u− e) = 0 for some 0 ≤ e ∈ E. Then e is a fragment or component of u. The set
E(u) of all fragments of u with the order induced by E is a Boolean algebra where the lattice operations
are taken from E and the Boolean complement has the form e∗ := u − e.

3.2. A Dedekind complete vector lattice is also called a Kantorovich space or K-space, for short.
A K-space E is universally complete if every family of pairwise disjoint elements of E is order bounded.

(1) Theorem. Let E be an arbitrary K-space. Then the correspondence π �→ π(E) determines
an isomorphism of the Boolean algebras P(E) and B(E). If there is an order unity 1I in E then the
mappings π �→ π1I from P(E) into E(E) and e �→ {e}⊥⊥ from E(E) into B(E) are isomorphisms
of Boolean algebras too.

(2) Theorem. Each universally complete K-space E with order unity 1I can be uniquely
endowed by multiplication so as to make E into a faithful f-algebra and 1I into a ring unity.
In this f-algebra each band projection π ∈ P(E) is the operator of multiplication by π(1I).

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 2 No. 1 2008



88 KUSRAEV, KUTATELADZE

3.3. By a field of reals we mean every algebraic system that satisfies the axioms of an Archimedean
ordered field (with distinct zero and unity) and enjoys the axiom of completeness. The same object can
be defined as a one-dimensional K-space.

Recall the well-known assertion of ZFC: There exists a field of reals R that is unique up to
isomorphism.

Successively applying the transfer and maximum principles, we find an element R ∈ V
(B) for which

[[R is a field of reals ]] = 1I. Moreover, if an arbitrary R ′ ∈ V
(B) satisfies the condition [[R ′ is a field

of reals ]] = 1I then [[ the ordered fields R and R ′ are isomorphic ]] = 1I. In other words, there exists an
internal field of reals R ∈ V

(B) which is unique up to isomorphism.
By the same reasons, there exists an internal field of complex numbers C ∈ V

(B) which is unique
up to isomorphism. Moreover, V

(B) |= C = R⊕ iR. We call R and C the internal reals and internal
complexes in V

(B).

3.4. Consider another well-known assertion of ZFC: If P is an Archimedean ordered field then
there is an isomorphic embedding h of the field P into R such that the image h(P) is a subfield of R

containing the subfield of rational numbers. In particular, h(P) is dense in R.
Note also that ϕ(x), presenting the conjunction of the axioms of an Archimedean ordered field x,

is bounded; therefore, [[ϕ(R∧) ]] = 1I, i.e., [[ R∧ is an Archimedean ordered field ]] = 1I. “Pulling” 3.2 (2)
through the transfer principle, we conclude that [[ R∧ is isomorphic to a dense subfield of R ]] = 1I. We
further assume that R

∧ is a dense subfield of R and C
∧ is a dense subfield of C. It is easy to note that the

elements 0∧ and 1∧ are the zero and unity of R.
Observe that the equalities R = R

∧ and C = C
∧ are not valid in general. Indeed, the axiom of

completeness for R is not a bounded formula and so it may thus fail for R
∧ inside V

(B).

3.5. Look now at the descent R↓ of the algebraic system R. In other words, consider the descent
of the underlying set of the system R together with descended operations and order. For simplicity, we
denote the operations and order in R and R↓ by the same symbols +, · , and ≤. In more detail, we
introduce addition, multiplication, and order in R↓ by the formulas

z = x + y ↔ [[ z = x + y ]] = 1I,

z = x · y ↔ [[ z = x · y ]] = 1I,

x ≤ y ↔ [[x ≤ y ]] = 1I (x, y, z ∈ R↓).
Also, we may introduce multiplication by the usual reals in R↓ by the rule

y = λx ↔ [[λ∧x = y ]] = 1I (λ ∈ R, x, y ∈ R↓).
The fundamental result of Boolean valued analysis is Gordon’s Theorem which reads as follows:

Each universally complete Kantorovich space is an interpretation of the reals in an appropriate
Boolean valued model. Formally, we have the following

3.6. Gordon Theorem. Let R be the reals inside V
(B). Then R↓, (with the descended operations

and order, is a universally complete K-space with order unity 1. Moreover, there exists an iso-
morphism χ of B onto P(R↓) such that

χ(b)x = χ(b)y ↔ b ≤ [[x = y ]], χ(b)x ≤ χ(b)y ↔ b ≤ [[x ≤ y ]]

for all x, y ∈ R↓ and b ∈ B.
The converse is also true: Each Archimedean vector lattice embeds in a Boolean valued model,

becoming a vector sublattice of the reals (viewed as such over some dense subfield of the reals).

3.7. Theorem. Let E be an Archimedean vector lattice, let R be the reals inside V
(B), and let j

be an isomorphism of B onto B(E). Then there is E ∈ V
(B) such that

(1) E is a vector sublattice of R over R
∧ inside V

(B);

(2) E′ := E↓ is a vector sublattice of R↓ invariant under every band projection χ(b) (b ∈ B) and
such that each set of positive pairwise disjoint sets in it has a supremum;
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(3) there is an o-continuous lattice isomorphism ι : E → E′ such that ι(E) is a coinitial
sublattice of R↓;

(4) for every b ∈ B the band projection in R↓ onto {ι(j(b))}⊥⊥ coincides with χ(b).

Note also that E and R coincide if and only if E is Dedekind complete. Thus, each theorem about the
reals within Zermelo–Fraenkel set theory has an analog in an arbitrary Kantorovich space. Translation
of theorems is carried out by appropriate general functors of Boolean valued analysis. In particular, the
most important structural properties of vector lattices such as the functional representation, spectral
theorem, etc. are the ghosts of some properties of the reals in an appropriate Boolean valued model.
More details and references are collected in [35].

3.8. The theory of vector lattices with a vast field of applications is thoroughly covered in many
monographs (see [5, 7, 24, 25, 43, 54, 55, 65, 67]). The credit for finding the most important instance
among ordered vector spaces, an order complete vector lattice or K-space, is due to L. V. Kantorovich.
This notion appeared in Kantorovich’s first article on this topic [23] where he wrote: “In this note, I define
a new type of space that I call a semiordered linear space. The introduction of such a space allows us to
study linear operations of one abstract class (those with values in such a space) as linear functionals.”

Thus the heuristic transfer principle was stated for K-spaces which becomes the Ariadna thread
of many subsequent studies. The depth and universality of Kantorovich’s principle are explained within
Boolean valued analysis.

3.9. Applications of Boolean valued models to functional analysis stem from the works by E. I. Gor-
don [11, 12] and G. Takeuti [59]. If B in 3.6 is the algebra of µ-measurable sets modulo µ-negligible
sets then R↓ is isomorphic to the universally complete K-space L0(µ) of measurable functions. This
fact (for the Lebesgue measure on an interval) was already known to D. Scott and R. Solovay (see [35]).
If B is a complete Boolean algebra of projections in a Hilbert space then R↓ is isomorphic to the space
of selfadjoint operators A(B). These two particular cases of Gordon’s Theorem were intensively and
fruitfully exploited by G. Takeuti (see [59] and the bibliography in [35]). The object R↓ for general
Boolean algebras was also studied by T. Jech [18]–[20] who in fact rediscovered Gordon’s Theorem.
The difference is that, in [21], a (complex) universally complete K-space with unity is defined by another
system of axioms and is referred to as a complete Stone algebra. Theorem 3.7 was obtained by
A. G. Kusraev [30]. A close result (in other terms) is presented in T. Jech’s article [20], where some
Boolean valued interpretation is revealed of the theory of linearly ordered sets. More details can be found
in [35].

4. BAND PRESERVING OPERATORS

This section deals with the class of band preserving operators. Simplicity of these operators notwith-
standing, the question about their order boundedness is far from trivial.

4.1. Recall that a complex K-space is the complexification GC := G ⊕ iG of a real K-space G
(see [54]). A linear operator T : GC → GC is band preserving or contractive or a stabilizer if, for all
f, g ∈ GC, from f ⊥ g it follows that Tf ⊥ g. Disjointness in GC is defined just as in G (see 3.1), whereas

|z| := sup{Re(eiθz) : 0 ≤ θ ≤ π}, z ∈ GC.

(1) Let EndN (GC) stand for the set of all band preserving linear operators in GC, with G := R↓.
Clearly, EndN (GC) is a complex vector space. Moreover, EndN (GC) becomes a faithful unitary
module over the ring GC if we define gT as

gT : x �→ g · Tx for all x ∈ G.

This follows from the fact that multiplication by a member of GC is a band preserving operator
and the composite of band preserving operators is band preserving too.

(2) Let EndC∧(C) denote the element of V
(B) representing the space of all C

∧-linear mappings from
C to C. Then EndC∧(C) is a vector space over C

∧ inside V
(B), and EndC∧(C)↓ is a faithful unitary

module over GC.
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4.2. Following [31] it is easy to prove that a linear operator T in the K-space GC is band preserving
if and only if T is extensional. Since each extensional mapping has an ascent, T ∈ EndN (GC) has the
ascent τ := T↑ which is a unique internal functional from C to C such that [[τ(x) = Tx]] = 1I (x ∈ GC).
We thus arrive at the following assertion:

The modules EndN (GC) and EndC∧(C)↓ are isomorphic by sending each band preserving
operator to its ascent.

By Gordon’s Theorem this assertion means that the problem of finding a band preserving operator
in G amounts to solving (for τ : C → C) inside V

(B) the Cauchy functional equation: τ(x + y) =
τ(x) + τ(y) (x, y ∈ C) under the subsidiary condition τ(λx) = λτ(x) (x ∈ C, λ ∈ C

∧).
As another subsidiary condition we may consider the Leibniz rule τ(xy) = τ(x)y + xτ(y)(in which

case τ is called a C
∧-derivation) or multiplicativity τ(xy) = τ(x)τ(y). These situations are addressed

in 4.5.

4.3. An element g ∈ G+ is locally constant with respect to f ∈ G+ if g =
∨

ξ∈Ξ λξπξf for some
numeric family (λξ)ξ∈Ξ and a family (πξ)ξ∈Ξ of pairwise disjoint band projections. A universally complete
K-space GC is called locally one-dimensional if all elements of G+ are locally constant with respect
to some order unity of G (and hence each of them). Clearly, a K-space GC is locally one-dimensional if
each g ∈ GC may be presented as g = o-

∑
ξ∈Ξ λξπξ1If with some family (λξ)ξ∈Ξ ⊂ C and partition of

unity (πξ)ξ∈Ξ ⊂ P(G).

4.4. A σ-complete Boolean algebra B is called σ-distributive if
∨

n∈N

∧

m∈N

bn,m =
∧

ϕ∈NN

∨

n∈N

bn,ϕ(n).

for every double sequence (bn,m)n,m∈N in B. Other equivalent definitions are collected in [57]. As an
example of a σ-distributive Boolean algebra we may take a complete atomic Boolean algebra, i.e.,
the boolean of a nonempty set. It is worth observing that there are nonatomic σ-distributive complete
Boolean algebras (see [32, 5.1.8]).

We now address the problem which is often referred to in the literature as Wickstead’s problem:
Characterize the universally complete vector lattices spaces in which every band preserving linear
operator is order bounded.

According to 4.2, Boolean valued analysis reduces Wickstead’s problem to that of order boundedness
of the endomorphisms of the field C viewed as a vector space and algebra over the field C

∧.

4.5. Theorem. Let P be a dense subfield of the field of complexes C. The following are
equivalent:

(1) P = C;
(2) every P-linear function on C is order bounded;
(3) there are no nontrivial P-derivations on C;
(4) each P-linear endomorphism on C is the zero or identity function;
(5) there is no P-linear automorphism on C other than the identity.
The equivalence (1) ↔ (2) is checked by using a Hamel basis of the vector space C over P. The

remaining equivalences rest on replacing a Hamel basis with a transcendence basis (for details see [33]).
Recall that a linear operator D : GC → GC is a C-derivation if D(fg) = D(f)g + fD(g) for all

f, g ∈ GC. It can be easily checked that every C-derivation is band preserving.

Interpreting Theorem 4.5 in V
(B), we arrive at

4.6. Theorem. If B is a complete Boolean algebra then the following are equivalent:

(1) C = C
∧ inside V

(B);
(2) every band preserving linear operator is order bounded in the complex vector lattice C↓;
(3) there is no nontrivial C-derivation in the complex f-algebra C↓;
(4) each band preserving endomorphism is a band projection in C↓;
(5) there is no band preserving automorphism other than the identity in C↓.
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(6) the K-space R↓ is locally one-dimensional;
(7) B is σ-distributive.

4.7. The question was raised by A. W. Wickstead in [66] whether every band preserving linear
operator in a universally complete vector lattice is automatically order bounded. The first example of
an unbounded band preserving linear operator was suggested by Yu. A. Abramovich, A. I. Veksler, and
A. V. Koldunov in [1, 2]. The equivalence (1) ↔ (6) is trivial, whereas (2) ↔ (6) combines a result of
Yu. A. Abramovich, A. I. Veksler, and A. V. Koldunov [1, Theorem 2.1] and that of P. T. N. McPolin
and A. W. Wickstead [45, Theorem 3.2]. The equivalence (6) ↔ (7) was obtained by A. E. Gutman
[15]; he also found an example of a purely nonatomic locally one-dimensional Dedekind complete vector
lattice (see [14]). The equivalences (1) ↔ (3) ↔ (4) ↔ (5) belong to A. G. Kusraev [33].

5. BOOLEAN VALUED POSITIVE FUNCTIONALS

A linear functional on a vector space is determined up to a scalar from its zero hyperplane. In contrast,
a linear operator is recovered from its kernel up to a simple multiplier on a rather special occasion.
Fortunately, Boolean valued analysis prompts us that some operator analog of the functional case is
valid for each operator with target a Kantorovich space, a Dedekind complete vector lattice. We now
proceed along the lines of this rather promising approach.

5.1. Let E be a vector lattice, and let F be a K-space with base a complete Boolean algebra B. By 3.2,
we may assume that F is a nonzero space embedded as an order dense ideal in the universally complete
Kantorovich space R↓ which is the descent of the reals R inside the separated Boolean valued universe
V

(B) over B.
An operator T is F -discrete if [0, T ] = [0, IF ] ◦ T ; i.e., for all 0 ≤ S ≤ T there is some 0 ≤ α ≤ IF

satisfying S = α ◦ T . Let L∼
a (E,F ) be the band in L∼(E,F ) spanned by F-discrete operators and

L∼
d (E,F ) := L∼

a (E,F )⊥. By analogy we define (E∧∼)a and (E∧∼)d. The members of L∼
d (E,F ) are

usually called F-diffuse.

5.2. As usual, we let E∧ stand for the standard name of E in V
(B). Clearly, E∧ is a vector lattice

over R
∧ inside V

(B). Let τ := T↑ be the ascent of T to V
(B). Clearly, τ acts from E∧ to the ascent F↑ = R

of F inside the Boolean valued universe V
(B). Therefore, τ(x∧) = Tx inside V

(B) for all x ∈ E, which
means in terms of truth values that

[[τ : E∧ → R]] = 1I, (∀x ∈ E) [[τ(x∧) = Tx]] = 1I.

Let E∧∼ stand for the space of all order bounded R
∧-linear functionals from E∧ to R. Clearly, E∧∼ :=

L∼(E∧,R) is a K-space inside V
(B). The descent E∧∼↓ of E∧∼ is a K-space. Given S, T ∈ L∼(E,F ),

put τ := T↑ and σ := S↑.

5.3. Theorem. For each T ∈ L∼(E,F ), the ascent T↑ of T is an order bounded R
∧-linear

functional on E∧ inside V
(B); i.e., [[T↑ ∈ E∧∼]] = 1I. The mapping T �→ T↑ is a lattice isomorphism

of L∼(E,F ) and E∧∼↓. Moreover, the following hold:
(1) T ≥ 0 ↔ [[ τ ≥ 0 ]] = 1I;
(2) S is a fragment of T ↔ [[σ is a fragment of τ ]] = 1I;
(3) T is a lattice homomorphism if and only if so is τ inside V

(B);
(4) T is F -diffuse ↔ [[ τ is diffuse ]] = 1I;
(5) T ∈ L∼

a (E,F ) ↔ [[ τ ∈ (E∧∼)a ]] = 1I;
(6) T ∈ L∼

d (E,F ) ↔ [[ τ ∈ (E∧∼)d ]] = 1I.
Since τ , the ascent of an order bounded operator T , is defined up to a scalar from ker(τ), we infer the
following analog of the Sard Theorem:

5.4. Theorem. Let S and T be linear operators from E to F . Then ker(bS) ⊃ ker(bT ) for all b ∈ B

if and only if there is an orthomorphism α of F such that S = αT .
We see that a linear operator T is, in a sense, determined up to an orthomorphism from the family of

the kernels of the strata bT of T . This remark opens a possibility of studying some properties of T in
terms of the kernels of the strata of T .
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5.5. Theorem. An order bounded operator T from E to F may be presented as the difference
of some lattice homomorphisms if and only if the kernel of each stratum bT of T is a vector
sublattice of E for all b ∈ B.

Straightforward calculations of truth values show that T+↑ = τ+ and T−↑ = τ− inside V
(B). More-

over, [[ker(τ) is a vector sublattice of E∧]] = 1I whenever so are ker(bT ) for all b ∈ B. Since the ascent
of a sum is the sum of the ascents of the summands, we reduce the proof of Theorem 5.5 to the case of
the functionals on using 5.3 (3).

5.6. Recall that a subspace H of a vector lattice E is a G-space or Grothendieck subspace
(cp. [13, 41]) provided that H enjoys the following property:

(∀x, y ∈ H) (x ∨ y ∨ 0 + x ∧ y ∧ 0 ∈ H).

By simple calculations of truth values we infer that [[ker(τ) is a Grothendieck subspace of E∧]] = 1I
if and only if the kernel of each stratum bT is a Grothendieck subspace of E. We may now assert that the
following appears as a result of “descending” its scalar analog.

5.7. Theorem. The modulus of an order bounded operator T : E → F is the sum of some
pair of lattice homomorphisms if and only if the kernel of each stratum bT of T with b ∈ B is
a Grothendieck subspace of the ambient vector lattice E.

To prove the relevant scalar versions of Theorems 5.5 and 5.7, we use one of the formulas of
subdifferential calculus (cp. [34]):

5.8. Decomposition Theorem. Assume that H1, . . . ,HN are cones in a vector lattice E. Assume
further that f and g are positive functionals on E. The inequality

f(h1 ∨ · · · ∨ hN ) ≥ g(h1 ∨ · · · ∨ hN )

holds for all hk ∈ Hk (k := 1, . . . , N) if and only if to each decomposition of g into a sum of N
positive terms g = g1 + · · · + gN there is a decomposition of f into a sum of N positive terms
f = f1 + · · · + fN such that fk(hk) ≥ gk(hk) (hk ∈ Hk, k := 1, . . . , N).

5.9. Theorems 5.5 and 5.7 were obtained by S. S. Kutateladze in [39, 40]. Theorem 5.8 appeared
in this form in [37]. Note that the sums of lattice homomorphisms were first described by S. J. Bernau,
C. B. Huijsmans, and B. de Pagter in terms of n-disjoint operators in [9]. A survey of some conceptually
close results on n-disjoint operators is given in [32].

6. BOOLEAN VALUED BANACH SPACES

In this section we discuss the transfer principle of Boolean valued analysis in regard to lattice-normed
spaces. It turns out that the interpretation of a Banach space inside an arbitrary Boolean valued model
is a Banach–Kantorovich space. Conversely, the universal completion of each lattice-normed space
becomes a Banach space on ascending in a suitable Boolean valued model. This open up an opportunity
to transfer the available theorems on Banach spaces to analogous results on lattice-normed spaces by
the technique of Boolean valued analysis.

6.1. Consider a vector space X and a real vector lattice E. Note that all vector lattices under
consideration are assumed Archimedean. An E-valued norm is a mapping · : X → E+ such that

(1) x = 0 ⇐⇒ x = 0 (x ∈ X);

(2) λx = |λ| x (λ ∈ R, x ∈ X);

(3) x + y ≤ x + y (x, y ∈ X).

A vector norm is decomposable if
(4) for all e1, e2 ∈ E+ and x ∈ X, from x = e1 + e2 it follows that there exist x1, x2 ∈ X such that

x = x1 + x2 and xk = ek (k := 1, 2).

If (4) is valid only for disjoint e1, e2 ∈ E+ then the norm is d-decomposable. A triple
(
X, · , E

)
as

well as briefer versions is a lattice-normed space over E whenever · is an E-valued norm on X.
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6.2. By a Boolean algebra of projections in a vector space X we mean a set B of commuting
idempotent linear operators in X. Moreover, the Boolean operations have the following form:

π ∧ ρ := π ◦ ρ = ρ ◦ π, π ∨ ρ = π + ρ − π ◦ ρ,

π∗ = Ix − π (π, ρ ∈ B),

and the zero and identity operators in X serve as the zero and unity of the Boolean algebra B.

Suppose that E is a vector lattice with the projection property and

E = X ⊥⊥ := { x : x ∈ X}⊥⊥.

If (X,E) is a d-decomposable lattice-normed space then there exists a complete Boolean algebra
B of band projections in X and an isomorphism h from P(E) onto B such that

b x = h(b)x
(
b ∈ P(E), x ∈ X

)
.

We identify the Boolean algebras P(E) and B and write π x = πx for all x ∈ X and π ∈ P(E).

6.3. A net (xα)α∈A in X is bo-convergent to x ∈ X (in symbols: x = bo-lim xα) if ( x − xα )α∈A is
o-convergent to zero. A lattice-normed space X is bo-complete if each net (xα)α∈A is bo-convergent
to some element of X provided that ( xα − xβ )(α,β)∈A×A is o-convergent to zero. A decomposable bo-
complete lattice-normed space (X, · , E) is called a Banach–Kantorovich space. If E is a universally
complete Kantorovich space then X is also referred to as universally complete. By a universal com-
pletion of a lattice-normed space (X,E) we mean a universally complete Banach–Kantorovich space
(Y,m(E)) together with a linear isometry ı : X → Y such that each universally complete bo-complete
subspace of (Y,m(E)) containing ı(X) coincides with Y . Here m(E) is a universal completion of E.

6.4. Theorem. Let (X , ‖ · ‖) be a Banach space inside V
(B). Put X := X↓ and · := ‖ · ‖↓(·). Then(

X, · ,R↓
)

is a universally complete Banach–Kantorovich space. Moreover, X can be endowed
with the structure of a faithful unitary module over the ring Λ := C↓ so that ax = |a| x and
b ≤ [[x = 0 ]] ↔ χ(b)x = 0 for all a ∈ C↓, x ∈ X, and b ∈ B, where χ is an isomorphism of B onto
P(X).

6.5. Theorem. To each lattice-normed space (X, · ), there exists a unique Banach space (up to
a linear isometry) X inside V

(B), with B � B
(

X ⊥⊥)
, such that the descentX↓ ofX is a universal

completion of X.

As in 3.1, we call x ∈ X and y ∈ Y disjoint and write x ⊥ y whenever x ∧ y = 0. Let X and Y be
Banach–Kantorovich spaces over some K-space G.

An operator T is band preserving if x ⊥ y implies Tx ⊥ y for all x ∈ X and y ∈ Y . Let LG(X,Y )
denote the space of all band preserving operators T : X → Y that send all norm-o-bounded sets into
norm-o-bounded sets.

6.6. Theorem. Let X and Y be Boolean valued representations for Banach–Kantorovich spaces
X and Y normed by some universally complete K-space G := R↓. Let LB(X ,Y) be the space
of bounded linear operators from X into Y inside V

(B), where B := B(G). The descent and
ascent mappings (for operators) implement linear isometries between the lattice-normed spaces
LG(X,Y ) and LB(X ,Y)↓.

6.7. The concept of lattice-normed space was suggested by L. V. Kantorovich in 1936 [23]. It is
worth stressing that [23] is the first article with the unusual decomposability axiom for an abstract
norm. Paradoxically, this axiom was often omitted as inessential in the further papers by other authors.
The profound importance of 6.1 (4) was revealed by Boolean valued analysis. The connection between
the decomposability and existence of a Boolean algebra of projections in a lattice-normed space was
discovered in [28, 29]. The theory of lattice-normed spaces and dominated operators is set forth in [32].
As regards the Boolean valued approach, see [35].
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7. BOOLEAN VALUED ORDER CONTINUOUS FUNCTIONALS

We now address the class of o-continuous order bounded operators that turn into o-continuous
functionals on ascending to a suitable Boolean valued model.

7.1. Assume that a lattice-normed space X is simultaneously a vector lattice. The norm · : X → E+

of X is monotone if from |x| ≤ |y| it follows that x ≤ y (x, y ∈ X). In this event, X is a lattice-
normed vector lattice. Moreover, if X is a Banach–Kantorovich space then X is called a Banach–
Kantorovich lattice.

We say that the norm · in X is additive if x + y = x + y for all x, y ∈ X+; it is order
semicontinuous or o-semicontinuous for short if sup xα = supxα for each increasing net (xα) ⊂ X
with the least upper bound x ∈ X; and it is order continuous or o-continuous if inf xα = 0 for every
decreasing net (xα) ⊂ X with infα xα = 0.

The Boolean valued interpretation of Banach–Kantorovich lattices proceeds along the lines of the
previous section.

7.2. Theorem. Let (X, · ) be a Banach–Kantorovich space and let (X , ‖ · ‖) ∈ V
(B) stand for its

Boolean valued realization. Then

(1) X is a Banach–Kantorovich lattice if and only if X is a Banach lattice inside V
(B);

(2) X is an order complete Banach–Kantorovich lattice if and only if X is an order complete
Banach lattice inside V

(B);

(3) the norm · is o-continuous (order semicontinuous, monotone complete, or additive)
if and only if the norm ‖ · ‖ is o-continuous (order semicontinuous, monotone complete,
or additive) inside V

(B).

7.3. Let E be a vector lattice, let F be some K-space, and let T be a positive operator from E to F .
Say that T possesses the Maharam property if, for all x ∈ E+ and 0 ≤ f ≤ Tx ∈ F+, there is

some 0 ≤ e ≤ x satisfying f = Te. An o-continuous positive operator with the Maharam property is
a Maharam operator.

Observe that T ∈ L(E,F )+ possesses the Maharam property if only if the equality T ( [0, x] ) =
[0, Tx] holds for all x ∈ E+. Thus, a Maharam operator is exactly an o-continuous order-interval
preserving positive operator.

Let T be an essentially positive operator from E to F enjoying the Maharam property. Put e :=
T (|x|) (e ∈ E). Then (E, · ) is a disjointly decomposable lattice-normed space over F .

Put FT := {T (|x|) : x ∈ E}⊥⊥, and let Dm (T ) stand for the greatest order dense ideal of the
universal completion m(E) of E among those to which T can be extended by o-continuity. In other
words, z ∈ Dm (T ) if and only if z ∈ m(E) and the set {T (x) : x ∈ E, 0 ≤ x ≤ |z|} is bounded in F .
In this event there exists a minimal extension of T to Dm(T ) presenting an o-continuous positive
operator.

Let E and F be some K-spaces, and let T : E → F be a Maharam operator. Put X := Dm(T )
and x := Φ(|x|) (x ∈ X), where Φ is an o-continuous extension of T to X. Then (X, · ) is
a Banach–Kantorovich lattice whose norm is o-continuous and additive.

7.4. Theorem. Let X be an arbitrary K-space and let E be a universally complete K-space R↓.
Assume that Φ : X → E is a Maharam operator such that X = XΦ = Dm (Φ) and E = EΦ. Then
there are elements X and ϕ in V

(B) satisfying

(1) [[X is a K-space, ϕ : X → R is a positive o-continuous functional, andX = Xϕ = Dm (ϕ)]] =
1I;

(2) if X ′ := X↓ and Φ′ = ϕ↓ then X ′ is a K-space and Φ′ : X ′ → E is a Maharam operator;

(3) there is a linear and lattice isomorphism h from X onto X ′ such that Φ = Φ′ ◦ h;
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(4) for a linear operator Ψ, the containment Ψ ∈ {Φ}⊥⊥ is true if and only if there is ψ ∈ V
(B)

such that ψ ∈ {ϕ}⊥⊥ inside V
(B) and Ψ = (ψ↓) ◦ h.

Theorem 7.4 enables us to claim that each fact about o-continuous positive linear functionals in K-
spaces has a parallel version for Maharam operators which can be revealed by using 7.4. For instance,
we state the abstract

7.5. Radon–Nikodým Theorem. Let E and F be K-spaces. Assume further that S and T are
o-continuous positive operators from E to F , with T enjoying the Maharam property. Then the
following are equivalent:

(1) S ∈ {T}⊥⊥;

(2) Sx ∈ {Tx}⊥⊥ for all x ∈ E+;

(3) there is an extended orthomorphism 0 ≤ ρ ∈ Orth∞(E) satisfying Sx = T (ρx) for all x ∈ E
such that ρx ∈ E;

(4) there is a sequence of orthomorphisms (ρn) ⊂ Orth(E) such that Sx = supn T (ρnx) for all
x ∈ E.

7.6. A brief description for Maharam’s approach to studying positive operators in the spaces of
measurable functions and the main results in this area are collected in [44]. W. A. J. Luxemburg and
A. R. Schep [42] extended a portion of Maharam’s theory on the Radon–Nikodým Theorem to the case
of positive operators in vector lattices.

Theorem 7.2 and 7.4 were obtained by A. G. Kusraev [27] and Theorem 7.5, by W. A. J. Luxemburg
and A. R. Schep [42]. About various applications of the above results on Maharam operators and some
extension of this theory to sublinear and convex operators see [29, 32, 34, 35].

8. SPACES WITH MIXED NORM

The definitions of various objects of functional analysis rest often on some blending of the norm and
order properties. Among these are listed the spaces with mixed norm and the classes of linear operators
between them.

8.1. If (X,E) is a lattice-normed space whose norm lattice E is a Banach lattice. Since, by
definition, x ∈ E for x ∈ X, we may introduce the mixed norm on X by the formula

|||x||| := ‖ x ‖ (x ∈ X).

In this situation, the normed space (X, ||| · |||) is called a space with mixed norm. A Banach space with
mixed norm is a pair (X,E) with E a Banach lattice and X a br-complete lattice-normed space with
E-valued norm. The following proposition justifies this definition.

Let E be a Banach lattice. Then (X, ||| · |||) is a Banach space if and only if the lattice-normed
space (X,E) is relatively uniformly complete.

8.2. Let Λ be the bounded part of the universally complete K-space R↓, i.e. Λ is the order-dense
ideal in R↓ generated by the order unity 1I := 1∧ ∈ R↓. Take a Banach space X inside V

(B). Put

X⇓ := {x ∈ X↓ : x ∈ Λ},
|||x||| := ‖ x ‖∞ := inf{0 < λ ∈ R : x ≤ λ1I}.

Then X⇓ is a Banach–Kantorovich space called the bounded descent of X . Since Λ is an order
complete AM-space with unity, X⇓ is a Banach space with mixed norm over Λ.

Thus, we came to the following natural question: Which Banach spaces are linearly isometric to the
bounded descents of internal Banach spaces? The answer is given in terms of B-cyclic Banach spaces.

8.3. Let X be a normed space. Suppose that L(X) has a complete Boolean algebra of norm one
projections B which is isomorphic to B. In this event we will identify the Boolean algebras B and B,
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writing B ⊂ L(X). Say that X is a normed B-space if B ⊂ L(X) and for every partition of unity (bξ)ξ∈Ξ

in B the two conditions hold:
(1) If bξx = 0 (ξ ∈ Ξ) for some x ∈ X then x = 0;

(2) If bξx = bξxξ (ξ ∈ Ξ) for x ∈ X and a family (xξ)ξ∈Ξ in X then

‖x‖ ≤ sup{‖bξxξ‖ : ξ ∈ Ξ}.

Given a partition of unity (bξ), we refer to x ∈ X satisfying the condition (∀ ξ ∈ Ξ) bξx = bξxξ

as a mixing of (xξ) by (bξ). If (1) holds then there is a unique mixing x of (xξ) by (bξ). In these
circumstances we naturally call x the mixing of (xξ) by (bξ). Condition (2) maybe paraphrased as
follows: The unit ball UX of X is closed under mixing.

A normed B-space X is B-cyclic if we may find in X a mixing of each norm-bounded family by each
partition of unity in B. It is easy to verify that X is a B-cyclic normed space if and only if, given a partition
of unity (bξ) ⊂ B and a family (xξ) ⊂ UX , we may find a unique element x ∈ UX such that bξx = bξxξ

for all ξ.

A linear operator (linear isometry) S between normed B-spaces is B-linear (B-isometry) if S
commutes with the projections in B; i.e., π ◦ S = S ◦ π for all π ∈ B. Let LB(X,Y ) denote the set of
all bounded B-linear operators from X to Y . We call X# := LB(X, B(R)) the B-dual of X. If X# and Y
are B-isometric to each other then we say that Y is a B-dual space and X is a B-predual of Y .

8.4. Theorem. A Banach space X is linearly isometric to the bounded descent of some Banach
space X inside V

(B) (called a Boolean valued representation of X) if and only if X is B-cyclic. If
X and Y are B-cyclic Banach spaces and X and Y stand for some Boolean valued representations
of X and Y then the space LB(X,Y ) is B-isometric to the bounded descent of the internal space
L(X ,Y) of all bounded linear operators from X to Y .

8.5. Let Λ be a Stone algebra with unity 1I (= an order complete complex AM-space with strong order
unity 1I and uniquely defined multiplicative structure) and consider a unitary Λ-module X. The mapping
〈· | ·〉 : X × X → Λ is a Λ-valued inner product, if for all x, y, z ∈ X and a ∈ Λ the following are
satisfied:

(1) 〈x |x〉 ≥ O; 〈x |x〉 = O ↔ x = O;

(2) 〈x | y〉 = 〈y |x〉∗;
(3) 〈ax | y〉 = a〈x | y〉;
(4) 〈x + y | z〉 = 〈x | z〉 + 〈y | z〉.
Using a Λ-valued inner product, we may introduce the norm of x ∈ X by

|||x||| :=
√

‖〈x|x〉‖
and the decomposable vector norm of x ∈ X by

x :=
√
〈x|x〉.

Obviously, |||x||| =
∥∥ x

∥∥ for all x ∈ X, and so X is a space with mixed norm.

8.6. Let X be a Λ-module with an inner product 〈· | ·〉 : X × X → Λ. If X is complete with respect
to the mixed norm ||| · ||| then X is called a C∗-module over Λ. It can be proved (see [32]) that for
a C∗-module X the pair (X, ||| · |||) is a B-cyclic Banach space if and only if (X, · ) is a Banach–
Kantorovich space over Λ. If a unitary C∗-module satisfies one of these equivalent conditions then it
is called a Kaplansky–Hilbert module.

8.7. Theorem. The bounded descent of a Hilbert space in V
(B) is a Kaplansky–Hilbert module

over the Stone algebra C⇓. Conversely, if X is a Kaplansky–Hilbert module over C⇓ then there
is a Hilbert space X in V

(B) whose bounded descent is unitarily equivalent with X. This space is
unique up to unitary equivalence inside V

(B).
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8.8. Theorem. Let X and Y be Hilbert spaces inside V
(B). Suppose that X and Y are the

bounded descents of X and Y . Then the space LB(X,Y ) of all B-linear bounded operators is a B-
cyclic Banach space B-isometric to the bounded descent of the internal Banach space LB(X ,Y)
of bounded linear operators from X to Y .

8.9. Boolean valued analysis approach gives rise to an interesting concept of cyclically compact
operator in a Banach B-space [32, 8.5.5]. Without plunging into details we formulate a result on the
general form of cyclically compact operators in Kaplansky–Hilbert modules.

Theorem. Let X and Y be Kaplansky–Hilbert modules over a Stone algebra Λ and let T be
a cyclically compact operator from X to Y . There are orthonormal families (ek)k∈N in X, (fk)k∈N

in Y , and a family (µk)k∈N in Λ such that the following hold:

(1) µk+1 ≤ µk (k ∈ N) and o-limk→∞ µk = 0;

(2) there exists a projection π∞ in Λ such that π∞µk is a weak order unity in π∞Λ for all k ∈ N;

(3) there exists a partition (πk)∞k=0 of the projection π⊥
∞ such that π0µ1 = 0, πk ≤ µk, and

πkµk+1 = 0 for all k ∈ N;

(4) the representation is valid

T = π∞ bo-
∞∑

k=1

µke
#

k ⊗ fk, +bo-
∞∑

n=1

πn

n∑

k=1

µke
#

k ⊗ fk.

8.10. The bounded descent of 8.2 appeared in the research by G. Takeuti into von Neumann algebras
and C∗-algebras within Boolean valued models [61, 62] and in the research by M. Ozawa into Boolean
valued interpretation of the theory of Hilbert spaces [46]. Theorems 8.4 and 8.9 were obtained by
A. G. Kusraev in [28, 29, 32]. Theorems 8.7 and 8.8 were proved by M. Ozawa [46].
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