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Abstract—This is an overview of the origin and basic ideas of abstract convexity.
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The idea of convexity feeds generation, separation, calculus, and approximation. Generation appears
as duality; separation, as optimality; calculus, as representation; and approximation, as stability. Con-
vexity is traceable from the remote ages and flourishes in functional analysis.

1. HARPEDONAPTAE

Once upon a time mathematics was everything. It is not now but still carries the genome of mathesis
universalis. Abstraction is the mother of reason and the gist of mathematics. It enables us to collect
the particular instances of any many with some property we observe or study. Abstraction entails
generalization and proceeds by analogy. The latter lies behind the algebraic approach to idempotent
functional analysis [2] and, in particular, to the tropical theorems of Hahn–Banach type (for instance,
[3]). Analogy is tricky and sometimes misleading. So, it is reasonable to overview the true origins of any
instance of analogy from time to time. This article deals with abstract convexity which is the modern
residence of Hahn–Banach.

Sometimes mathematics resembles linguistics and pays tribute to etymology, hence, history. Today’s
convexity is a centenarian, and abstract convexity is much younger. Vivid convexity is full of abstraction,
but traces back to the idea of a solid figure which stems from Euclid. Book I of his Elements [1]
expounded plane geometry and defined a boundary and a figure as follows:

Definition 13. A boundary is that which is an extremity of anything.

Definition 14. A figure is that which is contained by any boundary or boundaries.

Narrating solid geometry in Book XI, Euclid travelled in the opposite direction from a solid to a
surface:

Definition 1. A solid is that which has length, breadth, and depth.

Definition 2. An extremity of a solid is a surface.

He proceeded with the relations of similarity and equality for solids:

Definition 9. Similar solid figures are those contained by similar planes equal in multitude.

Definition 10. Equal and similar solid figures are those contained by similar planes equal in multitude
and magnitude.

∗The text was submitted by the author in English.
1This article bases on a talk on abstract convexity and cone-vexing abstraction at the International Workshop
“Idempotent and Tropical Mathematics and Problems of Mathematical Physics,” Moscow, August 25–30,
2007.
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These definitions seem vague, obscure, and even unreasonable if applied to the figures other than
convex polygons and polyhedra. Euclid also introduced a formal concept of “cone” which has a well-
known natural origin. However, convexity was ubiquitous in his geometry by default. The term “conic
sections” was coined as long ago as 200 BCE by Apollonius of Perga. However, it was long before him
that Plato had formulated his famous allegory of cave [6]. The shadows on the wall are often convex.

Now we can see in Euclid’s implicit definition of a convex solid body the intersection of half-spaces.
However, the concept of intersection belongs to set theory which appeared only at the end of the
nineteenth century. We can look at the Euclid definition in another fashion and see an analogy with
the beautiful and deep results such as the Cauchy lemma or the Alexandrov solution of the Minkowski
problem. These views are not uncommon of the Euclid approach to the definition of a solid figure.
However, it is wiser to seek for the origins of the ideas of Euclid in his past rather than his future. Euclid
was a scientist not a foreteller.

The predecessors of Euclid are the harpedonaptae of Egypt as often sounds at the lectures on the
history of mathematics. The harpedonaptae or rope-stretchers measured tracts of land in the capacity of
surveyors. They administered cadastral surveying which gave rise to the notion of geometry.

If anyone stretches a rope that surrounds however many stakes, he will distinguish a convex polygon
which is up to infinitesimals a typical compact convex set or abstract subdifferential of the present-day
mathematics. The rope-stretchers discovered convexity experimentally by measurement. Hence, a few
words are in order about these forefathers of their Hahn–Banach next of kin of today.

Herodotus wrote in Item 109 of Book II Enerpre [4] as follows:

Egypt was cut up: and they said that this king distributed the land to all the Egyptians, giving an equal
square portion to each man, and from this he made his revenue, having appointed them to pay a certain
rent every year: and if the river should take away anything from any man’s portion, he would come to the
king and declare that which had happened, and the king used to send men to examine and to find out by
measurement how much less the piece of land had become, in order that for the future the man might
pay less, in proportion to the rent appointed: and I think that thus the art of geometry was found out and
afterwards came into Hellas also.

Herodotus never used the term “harpedonaptae” but this word is registered firstly in a letter of
Democritus (460–370 BCE) who belonged to the same epoch as Herodotus (484–425 BCE)

Datta in [5] wrote:

. . . One who was well versed in that science was called in ancient India as samkhyajna (the expert
of numbers), parimanajna (the expert in measuring), sama-sutra-niranchaka (uniform-rope-stretcher),
Shulba-vid (the expert in Shulba) and Shulba-pariprcchaka (the inquirer into the Shulba).

Shulba also written as Śulva or Sulva was in fact the geometry of vedic times as codified in
Śulva Sūtras. Since “veda” means knowledge, the vedic epoch and literature are indispensable for
understanding the origin and rise of mathematics. In 1978 Seidenberg [7] wrote:

Old-Babylonia [1700 BC] got the theorem of Pythagoras from India or that both Old-Babylonia and India
got it from a third source. Now the Sanskrit scholars do not give me a date so far back as 1700 B.C.
Therefore I postulate a pre-Old-Babylonian (i.e., pre-1700 B.C.) source of the kind of geometric rituals we
see preserved in the Sulvasutras, or at least for the mathematics involved in these rituals.

Some recent facts and evidence prompt us that the roots of rope-stretching spread in a much deeper
past than we were accustomed to acknowledge. Although the exact chronology still evades us, the time
has come to terminate this digression to the origins of geometry by the two comments of Kak [8] on the
Seidenberg paper [7]:

That was before archaeological finds disproved the earlier assumption of a break in Indian civilization in the
second millennium B.C.E.; it was this assumption of the Sanskritists that led Seidenberg to postulate a
third earlier source. Now with our new knowledge, Seidenberg’s conclusion of India being the source of the
geometric and mathematical knowledge of the ancient world fits in with the new chronology of the texts.
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. . . in the absence of conclusive evidence, it is prudent to take the most conservative of these dates, namely
2000 B.C.E. as the latest period to be associated with the Rigveda.

Stretching a rope taut between two stakes produces a closed straight line segment which is the
continuum in modern parlance. Rope-stretching raised the problem of measuring the continuum. The
continuum hypothesis of set theory is the shadow of the ancient problem of harpedonaptae. Rope-
stretching independent of the position of stakes is uniform with respect to direction in space. The mental
experiment of uniform rope-stretching yields a compact convex figure. The harpedonaptae were experts
in convexity.

We see now that convexity is coeval with the basic ideas of experimental science and intrinsic to
the geometric outlook of Ancient Greece where mathematics had acquired the ripen beauty of the
science and art of provable calculations. It took millennia to transform sensual perceptions into formal
mathematical definitions.

Convexity has found solid grounds in set theory. The Cantor paradise became an official residence of
convexity. Abstraction becomes an axiom of set theory. The abstraction axiom enables us to reincarnate
a property, in other words, to collect and to comprehend. The union of convexity and abstraction was
inevitable. Their child is abstract convexity.

2. GENERATION

Let E be a lattice E with the adjoint top � := +∞ and bottom ⊥ := −∞. Unless otherwise stated,
E is usually a Kantorovich space which is a Dedekind complete vector lattice in another terminology.
Assume further that H is some subset of E which is by implication a (convex) cone in E, and so
the bottom of E lies beyond H . A subset U of H is convex relative to H or H-convex, in symbols
U ∈ V(H,E), provided that U is the H-support set UH

p := {h ∈ H : h ≤ p} of some element p of E.

Alongside the H-convex sets we consider the so-called H-convex elements. An element p ∈ E is
H-convex provided that p = supUH

p ; i.e., p represents the supremum of the H-support set of p. The
H-convex elements comprise the cone which is denoted by C(H,E). We may omit the references to H
when H is clear from the context. It is worth noting that convex elements and sets are “glued together”
by the Minkowski duality ϕ : p �→ UH

p . This duality enables us to study convex elements and sets
simultaneously.

Since the classical results by Fenchel [9] and Hörmander [10, 11] we know definitely that the most
convenient and conventional classes of convex functions and sets are C(A(X), RX ) and V(X ′, RX).
Here X is a locally convex space, X ′ is the dual of X, and A(X) is the space of affine functions on X
(isomorphic with X ′ × R).

In the first case the Minkowski duality is the mapping f �→ epi(f∗), where

f∗(y) := sup
x∈X

(〈y, x〉 − f(x))

is the Young–Fenchel transform of f or the conjugate function of f . In the second case we prefer to

write down the inverse of the Minkowski duality which sends U in V(X ′, R
X) to the standard support

function

ϕ−1(U) : x �→ sup
y∈U

〈y, x〉.

As usual, 〈·, ·〉 stands for the canonical pairing of X ′ and X.
This idea of abstract convexity lies behind many current objects of analysis and geometry. Among

them we list the “economical” sets with boundary points meeting the Pareto criterion, capacities,
monotone seminorms, various classes of functions convex in some generalized sense, for instance, the
Bauer convexity in Choquet theory, etc. It is curious that there are ordered vector spaces consisting of the
convex elements with respect to narrow cones with finite generators. To compute the meet or join of two
reals is nor harder than to compute their sum or product. This simple observation is one of the underlying
ideas of supremal generation and idempotent analysis. Many diverse aspects of abstract convexity are
set forth and elaborated, for instance, in [12]–[17].
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3. SEPARATION

The term “Hahn–Banach” reminds us of geometric separation or algebraic extension. These hy-
postases of convexity are omnipresent in modern books on functional analysis.

Consider cones K1 and K2 in a topological vector space X and put κ := (K1,K2). Given a pair κ,
define the correspondence Φκ from X2 into X by the formula

Φκ := {(k1, k2, x) ∈ X3 : x = k1 − k2 ∈ Kı (ı := 1, 2)}.
Clearly, Φκ is a cone or, in other words, a conic correspondence.

The pair κ is nonoblate whenever Φκ is open at the zero. Since Φκ(V ) = V ∩K1 − V ∩K2 for every
V ⊂ X, the nonoblateness of κ means that

κV := (V ∩ K1 − V ∩ K2) ∩ (V ∩ K2 − V ∩ K1)

is a zero neighborhood for every zero neighborhood V ⊂ X. Since κV ⊂ V − V , the nonoblateness of κ

is equivalent to the fact that the system of sets {κV } serves as a filterbase of zero neighborhoods while
V ranges over some base of the same filter.

Let Δn : x �→ (x, . . . , x) be the embedding of X into the diagonal Δn(X) of Xn. A pair of cones
κ := (K1,K2) is nonoblate if and only if λ := (K1 × K2,Δ2(X)) is nonoblate in X2.

Cones K1 and K2 constitute a nonoblate pair if and only if the conic correspondence Φ ⊂ X × X2

defined as

Φ := {(h, x1, x2) ∈ X × X2 : xı + h ∈ Kı (ı := 1, 2)}
is open at the zero. Recall that a convex correspondence Φ from X into Y is open at the zero if and
only if the Hörmander transform of X × Φ and the cone Δ2(X) × {0} × R

+ constitute a nonoblate pair
in X2 × Y × R.

Cones K1 and K2 in a topological vector space X are in general position provided that

(1) the algebraic span of K1 and K2 is some subspace X0 ⊂ X; i.e., X0 = K1 − K2 = K2 − K1;

(2) the subspace X0 is complemented; i.e., there exists a continuous projection P : X → X such that
P (X) = X0;

(3) K1 and K2 constitute a nonoblate pair in X0.

Let σn stand for the rearrangement of coordinates

σn : ((x1, y1), . . . , (xn, yn)) �→ ((x1, . . . , xn), (y1, . . . , yn))

which establishes an isomorphism between (X × Y )n and Xn × Y n.
Sublinear operators P1, . . . , Pn : X → E ∪ {+∞} are in general position if so are the cones

Δn(X) × En and σn(epi(P1) × · · · × epi(Pn)). A similar terminology applies to convex operators.
Given a cone K ⊂ X, put

πE(K) := {T ∈ L(X,E) : Tk ≤ 0 (k ∈ K)}.
We readily see that πE(K) is a cone in L(X,E).

Theorem. Let K1, . . . ,Kn be cones in a topological vector space X and let E be a topological
Kantorovich space. If K1, . . . ,Kn are in general position then

πE(K1 ∩ · · · ∩ Kn) = πE(K1) + · · · + πE(Kn).

This formula opens a way to various separation results.
Sandwich Theorem. Let P,Q : X → E ∪ {+∞} be sublinear operators in general position. If

P (x) + Q(x) ≥ 0 for all x ∈ X then there exists a continuous linear operator T : X → E such that

−Q(x) ≤ Tx ≤ P (x) (x ∈ X).

Many efforts were made to abstract these results to a more general algebraic setting and, primarily,
to semigroups. The relevant separation results are collected in [18].
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4. CALCULUS

Consider a Kantorovich space E and an arbitrary nonempty set A. Let l∞(A, E) denote the set
of all order bounded mappings from A into E; i.e., f ∈ l∞(A, E) if and only if f : A → E and the
set {f(α) : α ∈ A} is order bounded in E. It is easy to verify that l∞(A, E) becomes a Kantorovich
space if endowed with the coordinatewise algebraic operations and order. The operator εA,E acting from
l∞(A, E) into E by the rule

εA,E : f �→ sup{f(α) : α ∈ A} (f ∈ l∞(A, E))

is called the canonical sublinear operator given A and E. We often write εA instead of εA,E when it is
clear from the context what Kantorovich space is meant. The notation εn is used when the cardinality
of A equals n and we call the operator εn finitely-generated.

Let X and E be ordered vector spaces. An operator p : X → E is called increasing or isotonic
if, for all x1, x2 ∈ X, from x1 ≤ x2 it follows that p(x1) ≤ p(x2). An increasing linear operator is also
called positive. As usual, the collection of all positive linear operators in the space L(X,E) of all
linear operators is denoted by L+(X,E). Obviously, the positivity of a linear operator T amounts to
the inclusion T (X+) ⊂ E+, where X+ := {x ∈ X : x ≥ 0} and E+ := {e ∈ E : e ≥ 0} are the positive
cones in X and E respectively. Observe that every canonical operator is increasing and sublinear, while
every finitely-generated canonical operator is order continuous.

Recall that

∂p := ∂p(0) = {T ∈ L(X,E) : (∀x ∈ X) Tx ≤ p(x)}
is the subdifferential at the zero or the support set of a sublinear operator p.

Consider a set A of linear operators acting from a vector space X into a Kantorovich space E. The
set A is weakly order bounded if the set {αx : α ∈ A} is order bounded for every x ∈ X. Let 〈A〉x
denote the mapping that assigns the element αx ∈ E to each α ∈ A, i.e. 〈A〉x : α �→ αx. If A is weakly
order bounded then 〈A〉x ∈ l∞(A, E) for every fixed x ∈ X. Consequently, we obtain the linear operator
〈A〉 : X → l∞(A, E) that acts as 〈A〉 : x �→ 〈A〉x. Associate with A one more operator

pA : x �→ sup{αx : α ∈ A} (x ∈ X).

The operator pA is sublinear. The support set ∂pA is denoted by cop(A) and referred to as the support
hull of A. These definitions entail the following

Theorem. If p is a sublinear operator with ∂p = cop(A) then P = εA ◦ 〈A〉. Assume further that
p1 : X → E is a sublinear operator and p2 : E → F is an increasing sublinear operator. Then

∂(p2 ◦ p1) =
{
T ◦ 〈∂p1〉 : T ∈ L+(l∞(∂p1, E), F ) ∧ T ◦ Δ∂p1 ∈ ∂p2

}
.

Furthermore, if ∂p1 = cop(A1) and ∂p2 = cop(A2) then

∂(p2 ◦ p1) =
{
T ◦ 〈A1〉 : T ∈ L+(l∞(A1, E), F ) ∧

(
∃α ∈ ∂εA2

)
T ◦ ΔA1 = α ◦ 〈A2〉

}
.

Hahn–Banach in the classical formulation is of course the simplest chain rule for removing any linear
embedding from the subdifferential sign. More details and a huge list of references on subdifferential
calculus are collected in [19] along with some topical applications to optimality.

5. APPROXIMATION

Convexity of harpedonaptae was stable in the sense that no variation of stakes within the surrounding
rope can ever spoil the convexity of the tract to be surveyed.

Study of stability in abstract convexity is accomplished sometimes by introducing various epsilons in
appropriate places. One of the earliest excursions in this direction is connected with the classical Hyers–
Ulam stability theorem for ε-convex functions. The most recent results are collected in [20]. Exact
calculations with epsilons and sharp estimates are sometimes bulky and slightly mysterious. Some
alternatives are suggested by actual infinities, which is illustrated with the conception of infinitesimal
optimality.
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Assume given a convex operator f : X → E ∪ +∞ and a point x in the effective domain dom(f) :=
{x ∈ X : f(x) < +∞} of f . Given ε ≥ 0 in the positive cone E+ of E, by the ε-subdifferential of f at x
we mean the set

∂ εf(x) :=
{
T ∈ L(X,E) : (∀x ∈ X)(Tx − Fx ≤ Tx − fx + ε)

}
,

with L(X,E) standing as usual for the space of linear operators from X to E.

Distinguish some downward-filtered subset E of E that is composed of positive elements. Assuming
E and E standard, define the monad μ(E) of E as

μ(E) :=
⋂

{[0, ε] : ε ∈ ◦E}.

The members of μ(E) are positive infinitesimals with respect to E . As usual, ◦E denotes the external
set of all standard members of E, the standard part of E .

We will agree that the monad μ(E) is an external cone over ◦
R and, moreover, μ(E) ∩ ◦E = 0.

In application, E is usually the filter of order-units of E. The relation of infinite proximity or infinite
closeness between the members of E is introduced as follows:

e1 ≈ e2 ↔ e1 − e2 ∈ μ(E) ∧ e2 − e1 ∈ μ(E).

Since
⋂

ε∈◦E
∂εf(x) =

⋃

ε∈μ(E)

∂εf(x);

therefore, the external set on both sides is the so-called infinitesimal subdifferential of f at x. We
denote this set by Df(x). The elements of Df(x) are infinitesimal subgradients of f at x. If the zero
operator is an infinitesimal subgradient of f at x then x is called an infinitesimal minimum point of f .
We abstain from indicating E explicitly since this leads to no confusion.

Theorem. Let f1 : X × Y → E ∪ +∞ and f2 : Y × Z → E ∪ +∞ be convex operators. Suppose
that the convolution f2 � f1 is infinitesimally exact at some point (x, y, z); i.e.,

(f2 � f1)(x, y) ≈ f1(x, y) + f2(y, z).

If, moreover, the convex sets epi(f1, Z) and epi(X, f2) are in general position then

D(f2 � f1)(x, y) = Df2(y, z) ◦ Df1(x, y).

6. APOLOGY

The essence of mathematics resides in freedom, and abstraction is the freedom of generalization.
Freedom is the loftiest ideal and idea of man, but it is demanding, limited, and vexing. So is abstraction.
So are its instances in convexity. Abstract convexity starts with repudiating the heritage of harpedonap-
tae, which is annoying but may turn out rewarding.

Freedom of set theory empowered us with the Boolean valued models yielding various realizations of
the continuum with idempotents galore. Many instances of Hahn–Banach in modules and semimodules
are just the descents or Boolean interpretations of their classical analogs. The celebrated Hahn–
Banach–Kantorovich theorem is simple Hahn–Banach in a Boolean disguise. In fact, we know now
that many sets with idempotents are indistinguishable from their standard analogs in the paradigm of
distant modeling. Boolean valued analysis [21] has greatly changed the appearance of abstract convexity,
while demonstrating that many seemingly new results are just canny interpretations of harpedonaptae
or Hahn–Banach.

“Scholastic” differs from “scholar.” Abstraction is limited by taste, tradition, and common sense. The
challenge of abstraction is alike the call of freedom. But no freedom is exercised in solitude. The holy gift
of abstraction coexists with gratitude and respect to the legacy of our predecessors who collected the
gems of reason and saved them in the treasure-trove of mathematics.
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