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The notion of monad is central to external set theory. Justifying the simultaneous use of infinitesimals
and the technique of descending and ascending in vector lattice theory requires adaptation of monadol-
ogy for the implementation of filters in Boolean valued universes. This is still a rather uncharted area of
research. The two approaches are available now. One is to apply monadology to the descents of objects.

The other consists in applying the standard monadology inside the Boolean valued universe V
(B) over

a complete Boolean algebra B, while ascending and descending by the Escher rules (cp. [1] and [2]).
These approaches are sketched and illustrated by tests for order convergence and rules for fragment-

ing and projecting positive operators in vector lattices. Also, Lagrange’s principle is shortly addressed
in polyhedral environment with inexact data.

1. BASICS OF MONADOLOGY

The concept of monad stems from Ancient Greece. Monadology as a philosophical doctrine is
a creation of Leibniz (cp. [3] and [4]). The general theory of the monads of filters was proposed by
Luxemburg (cp. [5]) within Robinson’s nonstandard analysis (cp. [6]).

Let F be a standard filter; ◦F , the standard core of F ; and aF := F \ ◦F , the external set of remote
elements of F . Note that

µ(F) :=
⋂

◦F =
⋃

aF

is the monad of F . Also, F = ∗ fil ({µ(F)}); i.e., F is the standardization of the collection fil (µ(F)) of
all supersets of µ(F).

Let A be a filter on X × Y , and let B be a filter on Y × Z. Put

B ◦ A := fil{B ◦ A | A ∈ A, B ∈ B},

where we may assume all B ◦ A nonempty. Then

µ(B ◦ A) = µ(B) ◦ µ(A).

Granted Horizon Principle. Let X and Y be standard sets. Assume further that F and G are
standard filters on X and Y respectively satisfying µ(F) ∩ ◦X 6= ∅. Distinguish a remote set F
in aF . Given a standard correspondence f ⊂ X × Y meeting F , the following are equivalent:

(1) f(µ(F) − F ) ⊂ µ(G);

(2) (∀F ′ ∈ aF) f(F ′ − F ) ⊂ µ(G);
(3) f(µ(F)) ⊂ µ(G).

∗The text was submitted by the author in English.
1This article bases on a talk at the 20th St. Petersburg Summer Meeting in Mathematical Analysis, June
24–29, 2011.

**E-mail: sskut@math.nsc.ru
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2. FILTERS WITHIN V
(B)

Let B be a complete Boolean algebra. Given an ordinal α, put

V (B)
α := {x | (∃β ∈ α) x : dom(x) → B,dom(x) ⊂ V

(B)
β }.

The Boolean valued universe V
(B) is

V
(B) :=

⋃

α∈On

V (B)
α ,

with On the class of all ordinals.
The truth value [[ϕ]] ∈ B is assigned to each formula ϕ of ZFC relativized to V

(B).

Let Q be the Stone space of a complete Boolean algebra B. Denote the (separated) Boolean valued

universe V
(B) by U. Given q ∈ Q, put

u ∼q v ↔ q ∈ [[u = v]].

Consider the bundle

V Q :=
{(

q,∼q(u)
)
| q ∈ Q, u ∈ U

}

and denote
(
q,∼q(u)

)
by û(q). Hence, û : q 7→ û(q) is a section of V Q for every u ∈ U. Note that to each

x ∈ V Q there are u ∈ U and q ∈ Q satisfying û(q) = x. Moreover, we have û(q) = v̂(q) if and only if
q ∈ [[u = v]].

Make each fiber V q of V Q into an algebraic system of signature {∈} by letting

V q |= x∈ y ↔ q ∈ [[u∈ v]],

where u, v ∈ U are such that û(q) = x and v̂(q) = y.

The class {û(A) | u ∈ U}, with A a clopen subset of Q, is a base for some topology on V Q. Thus V Q

as a continuous bundle is called a continuous polyverse. By a continuous section of V Q we mean

a section that is a continuous function. Denote the class of all continuous sections of V Q by C.

The mapping u 7→ û is a bijection between U and C, yielding a convenient functional realization of the

Boolean valued universe V
(B). This universal construction belongs to Gutman and Losenkov (cp. [7]).

The functional realization visualizes descending and ascending, the Escher rules, and the Gordon
Theorem (cp. [8]).

Let G be a filterbase on X, with X ∈ P(V(B)). Put

G′ := {F ∈ P(X↑)↓ | (∃G ∈ G) [[F ⊃ G↑ ]] = 1I},

G′′ := {G↑ | G ∈ G}.

Then G′↑ and G′′↑ are bases of the same filter G↑ on X↑ inside V
(B)

—the ascent of G. If fil(G) is the set of
all mixings of nonempty families of elements of G and G consists of cyclic sets; then fil(G) is a filterbase

on X and G↑ = fil(G)↑.

If F is a filter on X inside V
(B) then put F↓ := fil ({F↓ | F ∈ F↓}). The filter F↓ is the descent of F .

A filterbase G on X↓ is extensional provided that fil (G) = F for some filter F on X.

The descent of an ultrafilter on X is a proultrafilter on X↓. A filter with a base of cyclic sets is cyclic.
Proultrafilters are maximal cyclic filters.

Fix a standard complete Boolean algebra B and think of V
(B) to be composed of internal sets. If A

is external then the cyclic hull fil(A) of A consists of x ∈ V
(B) admitting an internal family (aξ)ξ∈Ξ of

elements of A and an internal partition (bξ)ξ∈Ξ of unity in B such that x is the mixing of (aξ)ξ∈Ξ by
(bξ)ξ∈Ξ; i.e., bξx = bξaξ for ξ ∈ Ξ or, equivalently, x = filξ∈Ξ(bξaξ).

Given a filter F on X↓, let

F↑↓ := fil ({F↑↓ | F ∈ F}).

Then fil(µ(F)) = µ(F↑↓) and F↑↓ is the greatest cyclic filter coarser than F .
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The monad of F is called cyclic if µ(F) = fil(µ(F)). Unfortunately, the cyclicity of a monad is not
completely responsible for extensionality of a filter.

The cyclic monad hull µc(U) of an external set U is defined as follows:

x ∈ µc(U) ↔ (∀stV = V ↑↓)V ⊃ U → x ∈ µ(V ).

If B = 22 then µc(U) is the monad of the standardization of the external filter of supersets of U , i.e., the
(discrete) monad hull µd(U).

The cyclic monad hull of a set is the cyclic hull of its monad hull

µc(U) = fil(µd(U)).

A special role is played by the essential points of X↓ constituting the external set eX. By definition,
an essential point of eX belongs to the monad of some proultrafilter on X↓. The collection eX of all
essential points of X is usually external.

Test for Essentiality. A point x ∈ eX if and only if x can be separated by a standard set from
every standard cyclic set not containing x.

If there is an essential point in the monad of an ultrafilter F then µ(F) ⊂ eX; moreover, F↑↓ is
a proultrafilter.

A filter F is extensional if and only if µ(F) = µc(
eµF ). A standard set A is cyclic if and only if

A is the cyclic monad hull of eA.

Test for the Mixing of Filters. Let (Fξ)ξ∈Ξ be a standard family of extensional filters, and let
(bξ)ξ∈Ξ be a standard partition of unity. The filter F is the mixing of (Fξ)ξ∈Ξ by (bξ)ξ∈Ξ if and
only if

(∀ Stξ ∈ Ξ) bξµ(F) = bξµ(Fξ).

Properties of Essential Points. (1) The image of an essential point under an extensional
mapping is an essential point of the image;

(2) Let E be a standard set, and let X be a standard element of V
(B). Consider the product

XE∧
inside V

(B), where E∧ is the standard name of E in V
(B). If x is an essential point of XE∧

↓
then for every standard e ∈ E the point x↓(e) is essential in X↓;

(3) Let F be a cyclic filter in X↓, and let eµ(F) := µ(F) ∩ eX be the set of essential points of its

monad. Then eµ(F) = eµ(F↑↓).

Let (X,U) be a uniform space inside V
(B). The descent (X↓,U↓) is procompact or cyclically com-

pact if (X,U) is compact inside V
(B). A similar sense resides in the notion of pro-total-boundedness

and so on.

Every essential point of X↓ is nearstandard, i.e., infinitesimally close to a standard point, if and only
if X↓ is procompact.

Existence of many procompact but not compact spaces provides a lot of examples of inessential
points.

Test for Proprecompactness. A standard space is the descent of a totally bounded uniform
space if and only if its every essential point is prenearstandard, i.e., belongs to the monad of
a Cauchy filter.

Let Y to be a universally complete vector lattice. By Gordon’s Theorem, Y is the descent R↓ of the

reals R inside V
(B) over the base B := B(Y ) of Y .

Denote by E the filter of order units in Y , i.e.,

E := {ε ∈ Y+ | [[ ε = 0 ]] = O0}.

Put x ≈ y ↔ (∀stε ∈ E) (|x − y| < ε). Given a, b ∈ Y , write a < b if [[ a < b ]] = 1I; in other words,
a > b ↔ a− b ∈ E . Thus, there is some deviation from the understanding of the theory of ordered vector
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spaces. Clearly, this is done in order to adhere to the principles of introducing notation while descending
and ascending.

Let ≈Y be the nearstandard part of Y . Given y ∈ ≈Y , denote by ◦y (or by st(y)) the standard part
of y, i.e., the unique standard element infinitely close to y.

Tests for Order Convergence. For a standard filter F in Y and a standard z ∈ Y , the following
are true:

(1) infF∈F supF ≤ z ↔ (∀y ∈ .µ(F↑↓)) ◦y ≤ z ↔ (∀y ∈ eµ(F↑↓)) ◦y ≤ z;

(2) supF∈F inf F ≥ z ↔ (∀y ∈ .µ(F↑↓)) ◦y ≥ z ↔ (∀y ∈ eµ(F↑↓)) ◦y ≥ z;

(3) infF∈F supF ≥ z ↔ (∃y ∈ .µ(F↑↓)) ◦y ≥ z ↔ (∃y ∈ eµ(F↑↓)) ◦y ≥ z;

(4) supF∈F inf F ≤ z ↔ (∃y ∈ .µ(F↑↓)) ◦y ≤ z ↔ (∃y ∈ eµ(F↑↓))◦y ≤ z;

(5) S F
(o)
z ↔ (∀y ∈ eµ(F↑↓))y ≈ z ↔ (∀y ∈ µ(F↑↓))y ≈ z.

Here
.µ(F↑↓) := µ(F↑↓) ∩ ≈Y,

and, as usual, eµ(F↑↓) is the set of essential points of the monad µ(F↑↓), i.e.,

eµ(F↑↓) = µ(F↑↓) ∩ eR.

3. BOOLEAN VALUED MONADS

Let us follow the classical approach of Robinson inside V
(B). In other words, the classical and internal

universes and the corresponding ∗-map (Robinson’s standardization) are understood to be members

of V
(B). Moreover, the nonstandard world is supposed to be properly saturated.

The descent of the ∗-map is referred to as descent standardization. Alongside the term “descent
standardization” the expressions like “B-standardization,” “prostandardization,” etc. are in common
parlance. Furthermore, denote the Robinson standardization of a B-set A by ∗A.

The descent standardization of a set A with B-structure, i.e., a subset of V
(B), is defined as (∗(A↑))↓

and is denoted by ∗A (it is meant here that A↑ is an element of the standard universe located inside V
(B)).

Thus, ∗a ∈ ∗A ↔ a ∈ A↑↓. The descent standardization ∗Φ of an extensional correspondence Φ
is also defined in a natural way.

Considering the descent standardizations of the standard names of elements of the von Neumann
universe V, use the abbreviations ∗x := ∗(x∧) and ∗x := (∗x)↓ for x ∈ V. The rules of placing and
omitting asterisks (by default) in descent standardization are also assumed as liberal as those for the
Robinson ∗-map.

Transfer. Let ϕ = ϕ(x, y) be a formula of ZFC without any free variables other than x and y.
Then

(∃x ∈ ∗F ) [[ϕ(x, ∗z) ]] = 1I ↔ (∃x ∈ F↓) [[ϕ(x, z) ]] = 1I;

(∀x ∈ ∗F ) [[ϕ(x, ∗z) ]] = 1I ↔ (∀x ∈ F↓) [[ϕ(x, z) ]] = 1I

for a nonempty element F in V
(B) and for every z.

Idealization. Let X↑ and Y be classical elements of V
(B), and let ϕ = ϕ(x, y, z) be a formula

of ZFC. Then

(∀finA ⊂ X) (∃y ∈ ∗Y ) (∀x ∈ A) [[ϕ(∗x, y, z) ]] = 1I ↔ (∃y ∈ ∗Y ) (∀x ∈ X) [[ϕ(∗x, y, z) ]] = 1I

for an internal element z in V
(B).

Given a filter F of sets with B-structure, define the descent monad m(F) of F as

m(F) :=
⋂

F∈F

∗F.
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Meets of Descent Monads. Let E be a set of filters, and let E↑ := {F↑ | F ∈ E} be its ascent

to V
(B). The following are equivalent:

(1) the set of cyclic hulls E , i.e., E↑↓ := {F↑↓ | F ∈ E}, is bounded above;

(2) E↑ is bounded above inside V
(B);

(3)
⋂
{m(F) | F ∈ E} 6= ∅.

Moreover, in this event

m(sup E↑↓) =
⋂

{m(F) | F ∈ E}; sup E↑ = (sup E)↑.

It is worth noting that, for an infinite set of descent monads, its union and even the cyclic hull of this
union is not a descent monad in general. The situation here is the same as for ordinary monads.

Nonstandard Tests for a Proultrafilter. The following are equivalent:

(1) U is a proultrafilter;

(2) U is an extensional filter with inclusion-minimal descent monad;

(3) the representation U = (x)↓ := fil ({U↑↓ | x ∈ ∗A}) holds for each point x of the descent
monad m(U);

(4) U is an extensional filter whose descent monad is easily caught by a cyclic set; i.e., either
m(U) ⊂ ∗U or m(U) ⊂ ∗(X \ U) for every U = U↑↓;

(5) U is a cyclic filter satisfying the condition: for every cyclic U , if ∗U ∩m(A) 6= ∅ then U ∈ U .

Nonstandard Test for the Mixing of Filters. Let (Fξ)ξ∈Ξ be a family of filters, let (bξ)ξ∈Ξ be

a partition of unity, and let F = filξ∈Ξ(bξF
↑
ξ ) be the mixing of F↑

ξ by bξ. Then

m(F↓) = filξ∈Ξ(bξm(Fξ)).

A point y of ∗X is called descent-nearstandard or simply nearstandard if there is no danger of

misunderstanding whenever ∗x ≈ y for some x ∈ X↓; i.e., (x, y) ∈ m(U↓), with U the uniformity on X.

Nonstandard Test for Procompactness. A set A↑↓ is procompact if and only if every point
of ∗A is descent-nearstandard.

Truth Value on a Proultrafilter. Let ϕ = ϕ(x) be a formula of ZFC. The truth value of ϕ is
constant on the descent monad of every proultrafilter A; i.e.,

(∀x, y ∈ m(A)) [[ϕ(x) ]] = [[ϕ(y) ]].

Let ϕ = ϕ(x, y, z) be a formula of ZFC, and let F and G be filters of sets with B-structure.

Rules of Descent Standardization. The following quantification rules are valid (for internal y

and z in V
(B)):

(1) (∃x ∈ m(F)) [[ϕ(x, y, z) ]] = 1I ↔ (∀F ∈ F) (∃x ∈ ∗F ) [[ϕ(x, y, z) ]] = 1I;

(2) (∀x ∈ m(F)) [[ϕ(x, y, z) ]] = 1I ↔ (∃F ∈ F↑↓)(∀x ∈ ∗F ) [[ϕ(x, y, z) ]] = 1I;

(3) (∀x ∈ m(F)) (∃y ∈ m(G))[[ϕ(x, y, z) ]] = 1I

↔ (∀G ∈ G) (∃F ∈ F↑↓) (∀x ∈ ∗F ) (∃y ∈ ∗G) [[ϕ(x, y, z) ]] = 1I;

(4) (∃x ∈ m(F)) (∀y ∈ m(G)) [[ϕ(x, y, z) ]] = 1I

↔ (∃G ∈ G↑↓) (∀F ∈ F) (∃x ∈ ∗F ) (∀y ∈ ∗G) [[ϕ(x, y, z) ]] = 1I.

(5) (∃x ∈ m(F)) [[ϕ(x, ∗y, ∗z) ]] = 1I ↔ (∀F ∈ F) (∃x ∈ F↑↓) [[ϕ(x, y, z) ]] = 1I;

(6) (∀x ∈ m(F)) [[ϕ(x, ∗y, ∗z) ]] = 1I ↔ (∃F ∈ F↑↓) (∀x ∈ F ) [[ϕ(x, y, z) ]] = 1I;

(7) (∀x ∈ m(F)) (∃y ∈ m(G)) [[ϕ(x, y, ∗z) ]] = 1I

↔ (∀G ∈ G) (∃F ∈ F↑↓) (∀x ∈ F ) (∃y ∈ G↑↓) [[ϕ(x, y, z) ]] = 1I;

(8) (∃x ∈ m(F)) (∀y ∈ m(G)) [[ϕ(x, y, ∗z) ]] = 1I

↔ (∃G ∈ G↑↓) (∀F ∈ F) (∃x ∈ F↑↓) (∀y ∈ G) [[ϕ(x, y, z) ]] = 1I.
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4. THE ESCHER RULES IN VECTOR LATTICES

The fact that E is a vector lattice is a restricted formula, say, ϕ(E, R). Hence, recalling the restricted
transfer principle, we come to the equality [[ϕ(E∧, R∧) ]] = 1I; i.e., E∧ is a vector lattice over the ordered

field R
∧ inside V

(B).
Let E∧∼ be the space of regular R

∧-linear functionals from E∧ to R. It is easy that E∧∼ := L∼(E∧,R)

is a K-space, i.e., a Dedekind complete vector lattice, inside V
(B). Since E∧∼ is a K-space, the descent

E∧∼↓ of E∧∼ is a K-space too.

Turn to the universally complete vector lattice F := R↓. For every operator T ∈ L∼(E,F ) the ascent
T↑ is defined by the equality [[Tx = T↑(x∧) ]] = 1I for all x ∈ E. If τ ∈ E∧∼ then [[ τ : E∧ → R ]] = 1I;
hence, the operator τ↓ : E → F is available. Moreover, τ↓↑ = τ . On the other hand, T↑↓ = T .

For every T ∈ L∼(E,F ), the ascent T↑ is a regular R
∧-functional on E∧ inside V

(B); i.e.,

[[T↑ ∈ E∧∼ ]] = 1I.

The mapping T 7→ T↑ is a linear and lattice isomorphism between L∼(E,F ) and E∧∼↓.

An operator S ∈ L∼(E,F ) is a fragment or component of 0 ≤ T ∈ L∼(E,F ) if S ∧ (T − S) = 0.
Say that T is F -discrete whenever [0, T ] = [0, IF ] ◦ T ; i.e., for every 0 ≤ S ≤ T there is an operator
0 ≤ α ≤ IF satisfying S = α ◦ T . Let L∼

a (E,F ) be the band of L∼(E,F ) generated by F-discrete

operators, and write L∼
d (E,F ) := L∼

a (E,F )⊥. The bands (E∧∼)a and (E∧∼)d are introduced similarly.
The elements of L∼

d (E,F ) are usually referred to as F -diffuse operators. The R-discrete or R-diffuse
operators are called for the sake of brevity discrete or diffuse functionals.

Rules of Descending. Consider S, T ∈ L∼(E,F ) and put τ := T↑; σ := S↑. The following are
true:

(1) T ≥ 0 ↔ [[ τ ≥ 0 ]] = 1I;

(2) (S is a fragment of T ) ↔ [[σ is a fragment of τ ]] = 1I;

(3) (T is F -discrete) ↔ [[ τ is discrete ]] = 1I;

(4) T ∈ L∼
a (E,F ) ↔ [[ τ ∈ (E∧∼)a ]] = 1I;

(5) T ∈ L∼
d (E,F ) ↔ [[ τ ∈ (E∧∼)d ]] = 1I.

(6) (T is a lattice homomorphism) ↔ [[ τ is a lattice homomorphism ]] = 1I.

Let E stand for a vector lattice and F , for a K-space. A set P of band projections in L∼(E,F )
generates the fragments of T , 0 ≤ T ∈ L∼(E,F ), provided that Tx+ = sup{pTx | p ∈ P} for all
x ∈ E. If this happens for all 0 ≤ T ∈ L∼(E,F ) then P is a generating set.

Put F := R↓ and let p be a band projection in L∼(E,F ). Then there is a unique element p↑ ∈ V
(B)

such that [[ p↑ is a band projection in E∧∼ ]] = 1I and (pT )↑= p↑ T↑ for all T ∈ L∼(E,F ).

Rules of Fragmenting. Consider some set P of band projections in L∼(E,F ) and a positive
operator T ∈ L∼(E,F ). Put τ := T↑ and P↑ := {p↑ | p ∈ P}↑. Then

[[P↑ is a set of band projections in E∧∼ ]] = 1I

and the following are true:

(1) (P generates the fragments of T ) ↔ [[P↑ generates the fragments of τ ]] = 1I;

(2) (P is a generating set) ↔ [[P↑ is a generating set ]] = 1I.

Given a set A in a K-space, denote by A∨ the result of adjoining to A suprema of every nonempty

finite subset of A. Let A↑ stand for the result of adjoining to A suprema of nonempty increasing nets of

elements of A. The symbols A↑↓ and A↑↓↑ are understood naturally (cp. [9]–[11]).

Put P(f) := {pf | p ∈ P} and note that E will for a time being stand for a vector lattice over a dense
subfield of R while P is a set of band projections in E∼. Let E(f) stand for the set of all fragments of f .

Up-Down Theorem. The following are equivalent:

(1) P(f)∨(↑↓↑) = E(f);

(2) P generates the fragments of f ;
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(3) (∀x ∈ ◦E)(∃p ∈ P)pf(x) ≈ f(x+);

(4) a functional g in [0, f ] is a fragment of f if and only if

inf
p∈P

(p⊥g(x) + p(f − g)(x)) = 0

for every 0 ≤ x ∈ E;

(5) (∀g ∈ ◦E(f))(∀x ∈ ◦E+)(∃p ∈ P)|pf − g|(x) ≈ 0;

(6) inf{|pf − g|(x) | p ∈ P} = 0 for all fragments g ∈ E(f) and x ≥ 0;

(7) for x ∈ E+ and g ∈ E(f), there is an element p ∈ P(f)∨(↑↓↑) satisfying

|pf − g|(x) = 0.

Proof. The implications (1) → (2) → (3) are obvious.

(3) → (4): We will work within the standard entourage; i.e., we presume that all free variables are
standard. Note first that validity of the sought equality for all functionals g and f satisfying 0 ≤ g ≤ f

amounts to existence of p ∈ P, given a standard x ≥ 0, such that p⊥g(x) ≈ 0 and p(f − g)(x) ≈ 0.

(As usual, p⊥ is the complementary band projection to p.) Thus,

◦p(g ∧ (f − g))(x) ≤ ◦p(f − g)(x) = 0, ◦p⊥((f − g) ∧ g)(x) ≤ ◦p⊥g(x) = 0,

i.e., g ∧ (f − g) = 0.

Prove now that, on assuming (3), the sought equality ensues from the conventional criterion for
disjointness:

inf{g(x1) + (f − g)(x2) | x1 ≥ 0, x2 ≥ 0, x1 + x2 = x} = 0.

Given a standard x, find internal positive x1 and x2 such that x = x1 + x2 and, moreover, g(x1) ≈ 0
and f(x2) ≈ g(x2). By (3), it follows from the Kreı̆n–Milman Theorem that the fragment g belongs
to the weak closure of P(f). In particular, there is an element p ∈ P satisfying g(x1) ≈ pf(x1) and

g(x2) ≈ pf(x2). Thus, p⊥g(x2) ≈ 0, because p⊥g ≤ p⊥f . Finally, p⊥g(x) ≈ 0. Hence,

p(f − g)(x) = pf(x2) + pf(x1) − pg(x) ≈ g(x2) + g(x1) − pg(x) ≈ p⊥g(x) ≈ 0.

This yields the claim.

(4) → (5): Using the equality |pf − g|(x) = p⊥g(x) + p(f − g)(x), we may find p ∈ P so that

p⊥g(x) ≈ 0 and p(f − g)(x) ≈ 0. This justifies the claim.

The equivalence (5) ↔ (6) is clear. The implications (5) → (7) → (1) are standard. The proof is
complete.

We now turn to principal bands. For positive functionals f and g and for a generating set of band
projections P, the following are equivalent:

(1) g ∈ {f}⊥⊥;

(2) If x is a limited element of E, i.e. x ∈ finE := {x ∈ E | (∃x ∈ ◦E)|x| ≤ x}, then pg(x) ≈ 0
whenever pf(x) ≈ 0 for p ∈ P;

(3) (∀x ∈ E+) (∀ε > 0)(∃δ > 0) (∀p ∈ P) pf(x) ≤ δ → pg(x) ≤ ε.

With the principal bands available, we may proceed to the principal projections.

Let f and g be positive functionals on E, and let x be a positive element of E. Denote the band

projection to {f}⊥⊥ by bf .

Principal Projection on a Functional. The following representations hold:

(1) bfg(x) ⇀ inf ∗{◦pg(x) | p⊥f(x) ≈ 0, p ∈ P},
where ⇀ means that the formula is exact, i.e., equality is attained;

(2) bfg(x) = supε>0 inf{pg(x) | p⊥f(x) ≤ ε, p ∈ P};

(3) bfg(x) ⇀ inf ∗{◦g(y) | f(x − y) ≈ 0, 0 ≤ y ≤ x};

(4) (∀ε > 0) (∃δ > 0) (∀p ∈ P) pf(x) < δ → bfg(x) ≤ p⊥g(x) + ε;
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(∀ε > 0) (∀δ > 0) (∃p ∈ P) pf(x) < δ ∧ p⊥g(x) ≤ bfg(x) + ε;

(5) (∀ε > 0) (∃δ > 0) (∀0 ≤ y ≤ x) f(x − y) ≤ δ → bfg(x) ≤ g(y) + ε;

(∀ε > 0) (∀δ > 0) (∃0 ≤ y ≤ x) f(x − y) ≤ δ ∧ g(y) ≤ bfg(x) + ε.

Ascending to and descending from the appropriate Boolean valued universe, we implement principal
bands in the operator case:

For a set of band projections P in L∼(E,F ) and 0 ≤ S ∈ L∼(E,F ), the following are equiva-
lent:

(1) P(S)∨(↑↓↑) = E(S);

(2) P generates the fragments of S;

(3) T ∈ [0, S] is a fragment of S if and only if

inf
p∈P

(p⊥Tx + p(S − T )x) = 0

for all 0 ≤ x ∈ E;

(4) (∀x ∈ ◦E) (∃p ∈ P↑↓) pSx ≈ Sx+.

Using the simplest Escher rules and Nelson’s algorithm yields the description of the principal band
generated by an operator:

For positive operators S and T and a generating set P of band projections in L∼(E,F ), the
following are equivalent:

(1) T ∈ {S}⊥⊥;

(2) (∀x ∈ finE) (∀p ∈ P) (∀b ∈ B) bpSx ≈ 0 → bpTx ≈ 0;

(3) (∀x ∈ finE) (∀b ∈ B) bSx ≈ 0 → bTx ≈ 0;

(4) (∀x ≥ 0) (∀ε ∈ E) (∃δ ∈ E) (∀p ∈ P) (∀b ∈ B) bpSx ≤ δ → bpTx ≤ ε;

(5) (∀x ≥ 0) (∀ε ∈ E) (∃δ ∈ E) (∀b ∈ B)bSx ≤ δ → bTx ≤ ε.

Let E be a vector lattice, and let F be a K-space having the filter of order units E and the base B.
Suppose that S and T are positive operators in L∼(E,F ) and R is the band projection of T to the band

{S}⊥⊥.

Theorem of Principal Projection. For a positive x ∈ E, the following are valid:

(1) Rx = supε∈E inf{bTy + b⊥Sx | 0 ≤ y ≤ x, b ∈ B, bS(x − y) ≤ ε};

(2) Rx = supε∈E inf{(bp)⊥Tx | bpSx ≤ ε, p ∈ P, b ∈ B},

where P is a generating set of band projections in F .

In closing, turn to the revisited Farkas Lemma (cp. [8], [12], and [13]). Let X be a Y -seminormed real
vector space, with Y a K-space. Given are some dominated polyhedral sublinear operators P1, . . . , PN

from X to Y and a dominated sublinear operator P : X → Y .

Polyhedral Lagrange Principle. The finite value of the constrained problem

P1(x) ≤ u1, . . . , PN (x) ≤ uN , P (x) → inf

is the value of the unconstrained problem for an appropriate Lagrangian without any constraint
qualification but polyhedrality.

Polyhedrality is omnipresent and so finds applications in inexact data processing (cp. [14]). Let X
be a Y -seminormed real space, with Y a K-space. Assume given a dominated polyhedral sublinear
operator P : X → Y , a dominated sublinear operator Q : X → Y , and u, v ∈ Y . Assume further that
{P ≤ u} 6= ∅.

Interval Farkas Lemma. The following are equivalent:

(1) for all b ∈ B, with B the base of Y , the sublinear operator inequality bQ◦ ∼ (x) ≥ −bv is
a consequence of the polyhedral sublinear operator inequality bP (x) ≤ bu, i.e.,

{bP ≤ bu} ⊂ {bQ◦ ∼≥ −bv},
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with ∼ (x) := −x for all x ∈ X;

(2) there are A ∈ ∂(P ), B ∈ ∂(Q), and a positive orthomorphism α ∈ Orth(m(Y )) on the
universal completion m(Y ) of Y satisfying

B = αA, αu ≤ v.
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