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Abstract—This is an overview of a few possibilities that are open by model theory in applied
mathematics. The most attention is paid to the present state and frontiers of the Cauchy method of
majorants, approximation of operator equations with finite-dimensional analogs, and the Lagrange
multiplier principle in multiobjective decision making.

DOI: 10.1134/S1990478909010116

The union of functional analysis and applied mathematics celebrates its sixtieth anniversary this

year.1 The present article focuses on the trends of interaction between model theory and the methods of
domination, discretization, and scalarization.

1. PURE AND APPLIED MATHEMATICS

Provable counting is the art of calculus which is mathematics in modern parlance. Mathematics
exists as a science more than two and a half millennia, and we can never mixed it with history or
chemistry. In this respect our views of what is mathematics are independent of time.

The objects of mathematics are the quantitative forms of human reasoning. Mathematics functions as
the science of convincing calculations. Once-demonstrated, the facts of mathematics will never vanish.
Of course, mathematics renews itself constantly, while the stock increases of mathematical notions and
constructions and the understanding changes of the rigor and technologies of proof and demonstration.
The frontier we draw between pure and applied mathematics is also time-dependent.

Francis Bacon wrote in his celebrated book “The Advancement of Learning”:2

The Mathematics are either pure or mixed. To the Pure Mathematics are those sciences belonging which
handle quantity determinate, merely severed from any axioms of natural philosophy; and these are two,
Geometry and Arithmetic; the one handling quantity continued, and the other dissevered. Mixed hath for
subject some axioms or parts of natural philosophy, and considereth quantity determined, as it is auxiliary
and incident unto them. For many parts of nature can neither be invented with sufficient subtlety, nor
demonstrated with sufficient perspicuity, nor accommodated unto use with sufficient dexterity, without the
aid and intervening of the mathematics; of which sort are perspective, music, astronomy, cosmography,
architecture, enginery, and divers others.

In the Mathematics I can report no deficience, except it be that men do not sufficiently understand
the excellent use of the Pure Mathematics, in that they do remedy and cure many defects in the wit and
faculties intellectual. For if the wit be too dull, they sharpen it; if too wandering, they fix it; if too inherent
in the sense, they abstract it. So that as tennis is a game of no use in itself, but of great use in respect it
maketh a quick eye and a body ready to put itself into all postures; so in the Mathematics, that use which
is collateral and intervenient is no less worthy than that which is principal and intended. . . . And as for the
Mixed Mathematics, I may only make this prediction, that there cannot fail to be more kinds of them, as
nature grows further disclosed.

*E-mail: sskut@member.ams.org
1 Cp. [1, 2].
2 The complete title was as follows: “The tvvoo bookes of Francis Bacon, of the proficience and aduancement of learning,

diuine and humane. To the King. At London: Printed for Henrie Tomes, 1605.”
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After the lapse of 150 years Leonhard Euler used the words “pure mathematics” in the title of one of
his papers Specimen de usu observationum in mathesi pura in 1761. It was practically at the same
time that the term “pure mathematics” had appeared in the eldest Encyclopaedia Britannica. In the
nineteenth century “mixed” mathematics became to be referred to as “applied.”

The famous Journal de Mathématiques Pures et Appliquées was founded by Joseph Liouville
in 1836 and The Quarterly Journal of Pure and Applied Mathematics started publication in 1857.

The intellectual challenge, beauty, and intrinsic logic of the topics under study are the impetus
of many comprehensive and deep studies in mathematics which are customarily qualified as pure.
Knowledge of the available mathematical methods and the understanding of their power underlie the
applications of mathematics in other sciences. Any application of mathematics is impossible without
creating some metaphors, models of the phenomena and processes under examination. Modeling is a
special independent sphere of intellectual activities which is out of mathematics.

Application of mathematics resides beyond mathematics in much the same way as maladies exist in
nature rather than inside medicine. Applied mathematics acts as an apothecary mixing drugs for battling
illnesses.

The art and craft of mathematical techniques for the problems of other sciences are the content of
applied mathematics.

2. LINEAR INEQUALITIES AND KANTOROVICH SPACES

Classical mechanics in the broadest sense of the words was the traditional sphere of applications of
mathematics in the nineteenth century. This historical tradition is reflected in the numerous mechanics
and mathematics departments of the best universities of Russia.

The beginning of the twentieth century was marked with a broad enlargement of the sphere of
applications of mathematics. Quantum mechanics appeared, requesting for new mathematical tools.
The theory of operators in Hilbert spaces and distribution theory were oriented primarily to adapting
the heuristic methods of the new physics. At the same time the social phenomena became the object
of the nonverbal research requiring the invention of especial mathematical methods. The demand for
the statistical treatment of various data grew rapidly. Founding new industries as well as introducing of
promising technologies and new materials, brought about the necessity of elaboration of the technique
of calculations. The rapid progress of applied mathematics was facilitated by the automation and
mechanization of accounting and standard calculations.

In the 1930s applied mathematics rapidly approached functional analysis. Of profound importance
in this trend was the research of John von Neumann in the mathematical foundations of quantum
mechanics and game theory as a tool for economic studies. Leonid Kantorovich was a pioneer and
generator of new synthetic ideas in Russia.

Kantorovich considered as his principal mathematical achievement in functional analysis the intro-
duction of the special class of Dedekind complete vector lattices which are referred to as K-spaces or

Kantorovich spaces in the Russian literature.3

It was already in his first paper of 1935 in this new area of mathematics that Kantorovich wrote:4

In this note, I define a new type of space that I call a semiordered linear space. The introduction of this kind
of spaces allows us to study linear operations of one abstract class (those with values in these spaces) in
the same way as linear functionals.

So was firstly formulated the major methodological rule that is now referred to as Kantorovich’s
heuristic principle. It is worth observing that Kantorovich included Axiom I6 of relative order complete-
ness into his definition of semiordered linear space. Kantorovich demonstrated the role of K-spaces by
the example of the Hahn–Banach theorem. He proved that this central principle of functional analysis
admits the replacement of reals with elements of an arbitrary K-space while substituting linear and
sublinear operators with range in this space for linear and sublinear functionals. These observations

3 He wrote about “my spaces” in his working notebooks.
4 Cp. [3] and [9, pp. 49–50].
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laid grounds for the universal heuristics based on his intuitive belief that the members of an abstract
Kantorovich space are a sort of generalized numbers.

Kantorovich spaces have provided the natural framework for developing the theory of linear in-
equalities which was a practically uncharted area of research those days. The concept of inequality
is obviously relevant to approximate calculations where we are always interested in various estimates
of the accuracy of results. Another challenging source of interest in linear inequalities was the stock
of problems of economics. The language of partial comparison is rather natural in dealing with what
is reasonable and optimal in human behavior when means and opportunities are scarce. Finally, the
concept of linear inequality is inseparable with the key idea of a convex set. Functional analysis implies
the existence of nontrivial continuous linear functional over the space under consideration, while the
presence of a functional of this type amounts to the existence of nonempty proper open convex subset of
the ambient space. Moreover, each convex set is generically the set of solutions of an appropriate system
of simultaneous linear inequalities.

Linear programming is a technique of maximizing a linear functional over the positive solutions of a
system of linear inequalities. It is no wonder that the discovery of linear programming was immediate
after the foundation of the theory of Kantorovich spaces.

At the end of the 1940s Kantorovich formulated and explicated the thesis of interdependence between

functional analysis and applied mathematics:5

There is now a tradition of viewing functional analysis as a purely theoretical discipline far removed from

direct applications, a discipline which cannot deal with practical questions. This article6 is an attempt
to break with this tradition, at least to a certain extent, and to reveal the relationship between functional
analysis and the questions of applied mathematics. . . .

He distinguished the three techniques: the Cauchy method of majorants also called domination,
the method of finite-dimensional approximations, and the Lagrange method for the new optimization
problems motivated by economics.

Kantorovich based his study of the Banach space versions of the Newton method on domination in
general ordered vector spaces.

Approximation of infinite-dimensional spaces and operators by their finite-dimensional analogs,
which is discretization, must be considered alongside the marvelous universal understanding of com-
putational mathematics as the science of finite approximations to general (not necessarily metrizable)

compacta.7

The novelty of the extremal problems arising in social sciences is connected with the presence of
multidimensional contradictory utility functions. This raises the major problem of agreeing conflicting
aims. The corresponding techniques may be viewed as an instance of scalarization of vector-valued
targets.

3. DOMINATION

Let X and Y be real vector spaces lattice-normed with Kantorovich spaces E and F . In other words,
given are some lattice-norms · X and · Y . Assume further that T is a linear operator from X to Y and
S is a positive operator from X into Y satisfying

X
T

−−−→ Y

· X ↓ ↓ · Y

E −−−→
S

F

5 Cp. [2] and [7]. The excerpt is taken from [10, p. 171].
6 Implied is the article [2] which appeared in the citation of the Stalin Prize of Second Degree with prize money of 100,000

rubles which was awarded to Kantorovich in 1948.
7 This revolutionary definition was given in the joint talk [5] submitted by S. L. Sobolev, L. A. Lyusternik, and L. V.

Kantorovich at the Third All-Union Mathematical Congress in 1956. Also see [6, pp. 443–444].
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Fig. 1.

Moreover, in case

Tx Y ≤ S x X (x ∈ X),

we call S the dominant or majorant of T . If the set of all dominants of T has the least element, then the
latter is called the abstract norm or least dominant of T and denoted by T . Hence, the least dominant
T is the least positive operator from E to F such that

Tx ≤ T
(

x
)

(x ∈ X).

Kantorovich wrote about this matter as follows:8

The abstract norm enables us to estimate an element much sharper that a single number, a real norm.
We can thus acquire more precise (and more broad) boundaries of the range of application of successive
approximations. For instance, as a norm of a continuous function we can take the set of the suprema of
its modulus in a few partial intervals. . . . This allows us to estimate the convergence domain of successive
approximations for integral equations. In the case of an infinite system of equations we know that each
solution is as a sequence and we can take as the norm of a sequence not only a sole number but also finitely
many numbers; for instance, the absolute values of the first entries and the estimation of the remainder:

(ξ1, ξ2, . . . ) = (|ξ1|, |ξ2|, . . . , |ξN−1|, sup
k≥N

|ξk|) ∈ R
N .

This enables us to specify the conditions of applicability of successive approximations for infinite simul-
taneous equations. Also, this approach allows us to obtain approximate (surplus or deficient) solutions of
the problems under consideration with simultaneous error estimation. I believe that the use of members of
semiordered linear spaces instead of reals in various estimations can lead to essential improvement of the
latter.

It is worth recalling that Kantorovich carried out his classical studies of the Newton method by using

the most general domination technique.9

These days the development of domination proceeds within the frameworks of Boolean valued

analysis.10 The modern technique of mathematical modeling opened an opportunity to demonstrate
that the principal properties of lattice normed spaces represent the Boolean valued interpretations
of the relevant properties of classical normed spaces. The most important interrelations here are as
follows: Each Banach space inside a Boolean valued model becomes a universally complete Banach–

Kantorovich space in result of the external deciphering of constituents. Moreover, each lattice normed
space may be realized as a dense subspace of some Banach space in an appropriate Boolean valued
model. Finally, a Banach space X results from some Banach space inside a Boolean valued model by a
special machinery of bounded descent if and only if X admits a complete Boolean algebra of norm-one
projections which enjoys the cyclicity property. The latter amounts to the fact that X is a Banach–

Kantorovich space and X is furnished with a mixed norm.11

8 Cp. [1].
9 Cp. [4].

10 Cp. [12].
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4. DISCRETIZATION

Summarizing his research into the general theory of approximation methods, Kantorovich wrote:12

There are many distinct methods for various classes of problems and equations, and constructing and
studying them in each particular case presents considerable difficulties. Therefore, the idea arose of evolving
a general theory that would make it possible to construct and study them with a single source. This theory
was based on the idea of the connection between the given space, in which the equation to be studied
is specified, and a more simple one into which the initial space is mapped. On the basis of studying the
“approximate equation” in the simpler space the possibility of constructing and studying approximate
methods in the initial space was discovered. . . .

It seems to me that the main idea of this theory is of a general character and reflects the general
gnoseological principle for studying complex systems. It was, of course, used earlier, and it is also used in
systems analysis, but it does not have a rigorous mathematical apparatus. The principle consists simply in
the fact that to a given large complex system in some space a simpler, smaller dimensional model in this or
a simpler space is associated by means of one-to-one or one-to-many correspondence. The study of this
simplified model turns out, naturally, to be simpler and more practicable. This method, of course, presents
definite requirements on the quality of the approximating system.

The classical scheme of discretization as suggested by Kantorovich for the analysis of the equation
Tx = y, with T : X → Y a bounded linear operator between some Banach spaces X and Y , consists in
choosing finite-dimensional approximating subspaces XN and YN and the corresponding embeddings
ıN and N :

X
T

−−−→ Y

ıN ↓ ↓ N

XN −−−→
TN

YN

In this event, the equation

TNxN = yN

is viewed as a finite-dimensional approximation to the original problem.

Boolean valued analysis enables us to expand the range of applicability of Banach–Kantorovich
spaces and more general modules for studying extensional equations. Many promising possibilities are
open by the new method of hyperapproximation which rests on the ideas of infinitesimal analysis. The
classical discretization approximates an infinite-dimensional space with the aid of finite-dimensional
subspaces. Arguing within nonstandard set theory we may approximate an infinite-dimensional vector
space with external finite-dimensional spaces. Undoubtedly, the dimensions of these hyperapproxima-
tions are given as actually infinite numbers.

The tentative scheme of hyperapproximation is reflected by the following diagram:

E
T

−−−→ F

ϕE ↓ ↓ ϕF

E# −−−−→
T#

F#

Here E and F are normed vector space over the same scalars; T is a bounded linear operator from E
to F ; and # symbolizes the taking of the relevant nonstandard hull.

11 The modern theory of dominated operators is thoroughly set forth in the book [11] by A. G.Kusraev.
12 Cp. [8] and [9, pp. 49–50].
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Let E be an internal vector space over ∗
F, where F is the basic field of scalars; i.e., the reals R or

complexes C, while ∗ is the symbol of the Robinsonian standardization. Hence, we are given the two
internal operations

+ : E × E → E, · : ∗
F × E → E

satisfying the usual axioms of a vector space. Since F ⊂ ∗
F, the internal vector space E is a vector space

over F as well. In other words, E is an external vector space which is not a normed nor Hilbert space
externally even if E is endowed with either structure as an internal space. However, with each normed or
pre-Hilbert space we can associate some external Banach or Hilbert space.

Let (E, ‖ · ‖) be an internal normed space over ∗
F. As usual, x ∈ E is a limited element provided that

‖x‖ is a limited real (whose modulus has a standard upper bound by definition). If ‖x‖ is an infinitesimal
(=infinitely small real) then x is also referred to as an infinitesimal. Denote the external sets of limited
elements and infinitesimals of E by ltd(E) and µ(E). The set µ(E) is the monad of the origin in E.
Clearly, ltd(E) is an external vector space over F, and µ(E) is a subspace of ltd(E). Denote the factor-
space ltd(E)/µ(E) by E#. The space E# is endowed with the natural norm by the formula

‖ϕx‖ := ‖x#‖ := st(‖x‖) ∈ F (x ∈ ltd(E)).

Here

ϕ := ϕE := (·)# : ltd(E) → E#

is the canonical homomorphism, and st stands for the taking of the standard part of a limited real. In this
event (E#, ‖ · ‖) becomes an external normed space that is called the nonstandard hull of E. If (E, ‖ · ‖)
is a standard space then the nonstandard hull of E is by definition the space (∗E)# corresponding to the
Robinsonian standardization ∗E.

If x ∈ E then φ(∗x) = (∗x)# belongs to (∗E)#. Moreover, ‖x‖ = ‖(∗x)#‖. Therefore, the mapping
x 7→ (∗x)# is an isometric embedding of E in (∗E)#. It is customary to presume that E ⊂ (∗E)#.

Suppose now that E and F are internal normed spaces and T : E → F is an internal bounded linear
operator. The set of reals

c(T ) := {C ∈ ∗
R : (∀x ∈ E) ‖Tx‖ ≤ C‖x‖}

is internal and bounded. Recall that ‖T‖ := inf c(T ).

If the norm ‖T‖ of T is limited then the classical normative inequality ‖Tx‖ ≤ ‖T‖ ‖x‖ valid for all
x ∈ E, implies

T (ltd(E)) ⊂ ltd(F ), T (µ(E)) ⊂ µ(F ).

Consequently, we may soundly define the descent of T to the factor space E# as the external operator
T # : E# → F#, acting by the rule

T #ϕEx := ϕF Tx (x ∈ E).

The operator T # is linear (with respect to the members of F) and bounded; moreover, ‖T #‖ = st(‖T‖).
The operator T # is called the nonstandard hull of T . It is worth noting that E# is automatically a
Banach space for each internal (possible, incomplete) normed space E. If the internal dimension of an
internal normed space E is finite then E is referred to as a hyperfinite-dimensional space. To each
normed vector space E there is a hyperfinite-dimensional subspace F ⊂ ∗E containing all standard
members of the internal space ∗E.

Infinitesimal methods also provide new schemes for hyperapproximation of general compact spaces.
As an approximation to a compact space we may take an arbitrary internal subset containing all standard

elements of the space under approximation.13

13 Cp. [17].
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5. SCALARIZATION

Scalarization in the most general sense means reduction to numbers. Since each number is a
measure of quantity, the idea of scalarization is clearly of a universal importance to mathematics. The
deep roots of scalarization are revealed by the Boolean valued validation of the Kantorovich heuristic
principle. We will dwell upon the aspects of scalarization most important in applications and connected

with the problems of multicriteria optimization.14

Kantorovich observed as far back as in 1948 as follows:15

Many mathematical and practical problems lead to the necessity of finding “special” extrema. On the one
hand, those are boundary extrema when some extremal value is attained at the boundary of the domain of
definition of an argument. On the other hand, this is the case when the functional to be optimized is not
differential. Many problems of these sorts are encountered in mathematics and its applications, whereas
the general methods turn out ineffective in regard to the problems.

The main particularity of the extremal problems of economics consists in the presence of numerous
conflicting ends and interests which are to be harmonized. In fact, we encounter the instances of
multicriteria optimization whose characteristic feature is a vector-valued target. Seeking for an optimal
solution in these circumstances, we must take into account various contradictory preferences which
combine into a sole compound aim. Further more, it is impossible as a rule to distinguish some particular
scalar target and ignore the rest of the targets without distorting the original statement of the problem
under study. This circumstance involves the specific difficulties that are untypical in the scalar case:
we must specify what we should call a solution of a vector program and we must agree upon the
method of conforming versatile ends provided that some agreement is possible in principle. Therefore,
it is actual to seek for the reasonable concepts of optimality in multiobjective decision making. Among
these we distinguish the concepts of ideal and generalized optimum alongside Pareto-optimum as well
as approximate and infinitesimal optimum.

Assume that X is a vector space, E is an ordered vector space,

f : X → E• := E ∪ +∞

is a convex operator, and C ⊂ X is a convex set. A vector program we call a pair (C, f) which is written
in symbols as follows:

x ∈ C, f(x) → inf.

A vector program is often referred to as a multiobjective or multicriteria problem. The operator f is
the target of (C, f), and C is the constraint of (C, f). The members x ∈ C are feasible elements or,
rarely, plans of (C, f).

The above record of a vector program reflects the fact that under consideration is the following
extremal problem: Find the least upper bound of the values of f at the members of C. In case C = X,
we speak about an unconditional or unconstrained problem.

The constraint of an extremal problem may be of a compound nature possibly including equalities and
inequalities. Let g : X → F • be a convex operator and Λ be a linear operator from X to Y , and y ∈ Y ,
with Y a vector space and F a preordered vector space. If the constraints C1 and C2 have the form

C1 := {x ∈ C : g(x) ≤ 0}, C2 := {x ∈ X : g(x) ≤ 0, Λx = y},

then we will rephrase (C1, f) and (C2, f) as (C, g, f) and (Λ, g, f) or even more impressively as

x ∈ C, g(x) ≤ 0, f(x) → inf;

Λx = y, g(x) ≤ 0, f(x) → inf.

The element e := infx∈C f(x) (if existent) is called the value of (C, f). A feasible element x0 is an
ideal oprimum or solution provided that e = f(x0). Hence, x0 is an ideal optimum if and only if f(x0)
is a least element of the image f(C); i.e., x0 ∈ C and f(C) ⊂ f(x0) + E+.

14 More details are in [16].
15 Cp. [1].
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It is immediate by definition that x0 is a solution of the unconditional problem f(x) → inf if and only
if the zero operator belongs to the subdifferential ∂f(x0). In other words,

f(x0) = inf
x∈X

f(x) ↔ 0 ∈ ∂f(x0).

Variational analysis distinguishes between local and global optima. This subtlety is usually irrele-
vant for the problems of minimization of convex operators which will be addressed further.

Let x0 ∈ C be a local ideal optimum of (C, f) in the following rather weak sense: There is an
absorbing set U ⊂ X such that

f(x0) = inf{f(x) : x ∈ C ∩ (x0 + U)}.

Then f(x0) = inf{f(x) : x ∈ C}.

It is an easy matter to see from rather elementary examples that this is a rare event to observe an ideal
optimum in a vector program. This drives us to try and introduce some concepts of optimality that are
reasonable for particular classes of problems. Among these is listed approximate optiomality useful
already in the scalar situation; i.e., in the problems with a numeric target.

Fix a positive element ε ∈ E. A feasible point x0 is an ε-solution or ε-optimum if (C, f) provided
that f(x0) ≤ e + ε, with e the value of (C, f). Therefore, x0 is an ε-solution of (C, f) if and only if x0 ∈ C
and f(x0) − ε is a lower bound for the image f(C) or, which is the same,

f(C) + ε ⊂ f(x0) + E+.

Obviously, x0 is an ε-solution of the unconditional program f(x) → inf if and only if zero belongs
to ∂εf(x0); i.e.,

f(x0) ≤ inf
x∈X

f(x) + ε ↔ 0 ∈ ∂εf(x0).

Here we see the ε-subdifferential ∂εf(x0). Recall that a member l of the latter is a linear operator from
X to E satisfying

(∀x ∈ X)l(x − x0) ≤ f(x) − f(x0) + ε.

A generalized ε-solution of (C, f) is a set A ⊂ C provided that infx∈A f(x) ≤ e+ ε, with e the value
of (C, f). If ε = 0 then we speak about a generalized solution. Some generalized ε-solution is always
available (for instance, A = C), but we are interested in a more reasonable instances. An inclusion-
minimal generalized ε-solution is an ideal ε-optimum for A = {x0}. It is curious that each generalized
ε-solution is a ε-solution of a relevant vector problem of convex programming.

The above concepts of optimality are connected with the greatest lower bound of the target over the
set of feasible elements; i.e., with the value of the program under study. The concept of minimal element
leads to a principally different concept of optimality.

It will be useful for us to assume now that E is a preordered vector space; i.e., the positive cone of E
is not necessarily salient. In other words, the subspace E0 := E+ ∩ (−E+), may differ from the origin
in general. Given u ∈ E, put

[u] := {v ∈ E : u ≤ v, v ≤ u}.

The record u ∼ v means that [u] = [v].

A feasible point x0 is called ε-optimal in the sense of Pareto or ε-Pareto-optimal for (C, f)
provided that f(x0) is a minimal element of the set U + ε, with U := f(C); i.e.,

(f(x0) − E+) ∩ (f(C) + ε) = [f(x0)].

In more detail, the ε-Pareto optimality of x0 means that x0 ∈ C and for all x ∈ C from f(x0) ≥ f(x) + ε
it follows that f(x0) ∼ f(x) + ε. If ε = 0 then we speak about Pareto optimality, omitting any indication
of ε.

Study of Pareto optimality proceed often by scalarization; i.e., reduction of the original vector
program to a scalar extremal problem with a sole numerical target. There are a few approaches to
scalarization. We will discuss just one of the possibilities.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 3 No. 1 2009
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x1
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Fig. 2.

Assume that the preorder ≤ on E is given by the formula:

u ≤ v ↔ (∀l ∈ ∂q) lu ≤ lv,

with q : E → R a sublinear functional. In other words, the cone E+ has the form

E+ := {u ∈ E : (∀l ∈ ∂q) lu ≥ 0}.

A feasible point x0 is then an ε-Pareto-optimal for (C, f) if and only if for all x ∈ C we have f(x0) ∼
f(x) + ε or there is l ∈ ∂q satisfying lf(x0) < l(f(x) + ε). In particular,

inf
x∈C

q(f(x) − f(x0) + ε) ≥ 0

for an ε-Pareto-optimal point x0 ∈ C. The converse fails in general since the above inequality amounts
to the weaker concept of optimality: x0 ∈ C is weakly ε-Pareto-optimal provided that to each x ∈ C
there is l ∈ ∂q satisfying l(f(x) − f(x0) + ε) ≥ 0; i.e., the system of strict inequalities

lf(x0) < l(f(x) + ε) (l ∈ ∂q)

is inconsistent for any x ∈ C. Clearly, the weak ε-Pareto-optimality of x0 may be rephrased as

q(f(x) − f(x0) + ε) ≥ 0 for all x ∈ C,

and this concept is nontrivial only if 0 /∈ ∂q.

The role of ε-subdifferentials is revealed in particular by the fact that an ε-solution with a sufficiently
small ε may be viewed as a candidate for a “practical optimum,” a practically reasonable solution of the
original problem. The calculus of ε-subdifferentials is a formal apparatus for calculating the error bounds
for a solution of an extremal problem. The relevant technique is now rather perfect and we may even call
it exquisite and subtle. At the same time, the corresponding exact formulas are rather bulky and do
not agree fully with the practical optimization technique that rests on the heuristic rules for “neglecting

infinitely small errors.” Available is an adequate apparatus of infinitesimal subdifferentials,16 free of these
shortcomings, which bases on the modern opportunities open up by nonstandard set theory.

Assume that E has some downward-filtered set E of strictly positive elements. Assume further X,
E, and E are standard objects. Take a standard convex operator f : X → E• and a standard convex
set C ⊂ X. Recall that the record e1 ≈ e2 means the validity of the inequality −ε ≤ e1 − e2 ≤ ε for all
standard ε ∈ E .

Suppose that the value e := infx∈C f(x) of (C, f) is limited. A feasible point x0 is an infinitesimal
solution of (C, f) provided that f(x0)≈ e; i.e.,

f(x0) ≤ f(x) + ε for all x ∈ C and all standard ε ∈ E .

16 Cp. [15].
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A point x0 ∈ X is an infinitesimal solution of the unconditional program f(x) → inf if and only
if 0 ∈ Df(x0), where Df(x0) is the external union of the corresponding ε-subdifferentials over all
infinitesimal ε.

The ideas of scalarization and convex ε-programming, formulated already at the end of the 1970s,17

turn out rather relevant.18

6. VISTAS OF THE FUTURE

Adaptation of the modern ideas of model theory to functional analysis projects among the most im-
portant directions of developing the synthetic methods of pure and applied mathematics. This approach
yields new models of numbers, spaces, and types of equations. The content expands of all available
theorems and algorithms. The whole methodology of mathematical research is enriched and renewed,
opening up absolutely fantastic opportunities. We can now use actual infinities and infinitesimals,
transform matrices into numbers, spaces into straight lines, and noncompact spaces into compact
spaces, yet having still uncharted vast territories of new knowledge.

Quite a long time had passed until the classical functional analysis occupied its present position of
the language of continuous mathematics. Now the time has come of the new powerful technologies
of model theory in mathematical analysis. Not all theoretical and applied mathematicians have already
gained the importance of modern tools and learned how to use them. However, there is no backward
traffic in science, and the modern methods are doomed to reside in the realm of mathematics for ever
and in a short time they will become as elementary and omnipresent in calculuses and calculations as
Banach spaces and linear operators.
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