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On the Occasion of the Centenary of Leonid Kantorovich

INTRODUCTION

Analysis is the technique of differentiation and integration. Differentiation discovers trends, and
integration forecasts the future from trends. Analysis relates to the universe, reveals the glory of the
Lord, and implies equality and smoothness.

Optimization is the choice of what is most preferable. Nonsmooth analysis is the technique of
optimization which speaks about the humankind, reflects the diversity of humans, and involves inequality
and obstruction. The list of the main techniques of nonsmooth analysis contains subdifferential calculus
(cp. [1, 2]).

A model within set theory is nonstandard if the membership between the objects of the model differs
from that of the originals. In fact, the nonstandard tools of today use a couple of set-theoretic models
simultaneously. The most popular are infinitesimal analysis (cp. [3, 4]) and Boolean-valued analysis
(cp. [5, 6]).

Infinitesimal analysis provides us with a novel understanding for the method of indivisibles or
monadology, synthesizing the two approaches to calculus which belong to the inventors.

Boolean valued analysis originated with the famous works by Paul Cohen on the continuum
hypothesis and distinguishes itself by the technique of ascending and descending, cyclic envelopes and
mixings, and B-sets.

Calculus reduces forecast to numbers, which is scalarization in modern parlance. Spontaneous so-
lutions are often labile and rarely optimal. Thus, nonsmooth analysis deals with inequality, scalarization
and stability. Some aspects of the latter are revealed by the tools of nonstandard models to be discussed.

∗The text was submitted by the author in English.
1This article bases on the talk at the conference “Constructive Nonsmooth Analysis and Related Topics” in
the Euler Mathematical Institute, St. Petersburg, on June 18, 2012.

**E-mail: sskut@math.nsc.ru
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1. ENVIRONMENT FOR OPTIMIZATION

The best is divine—Leibniz wrote to Samuel Clarke (see [7, p. 54] and cp. [8]):

God can produce everything that is possible or whatever does not imply a contradiction, but he wills only
to produce what is the best among things possible.

Choosing the best, we use preferences. To optimize, we use infima and suprema for bounded sets
which is practically the least upper bound property. So, optimization needs ordered sets and primarily
boundedly complete lattices.

To operate with preferences, we use group structure. To aggregate and scale, we use linear structure.

All these are happily provided by the reals R, a one-dimensional Dedekind complete vector lattice.
A Dedekind complete vector lattice is a Kantorovich space.

Since each number is a measure of quantity, the idea of reducing to numbers is of a universal
importance to mathematics. Model theory provides justification of the Kantorovich heuristic principle
that the members of his spaces are numbers as well (cp. [9] and [10]).

Life is inconceivable without numerous conflicting ends and interests to be harmonized. Thus, the
instances appear of multiple criteria decision making. It is impossible as a rule to distinguish some
particular scalar target and ignore the rest of them. This leads to vector optimization problems, involving
order compatible with linearity.

Linear inequality implies linearity and order. When combined, the two produce an ordered vector
space. Each linear inequality in the simplest environment of the sort is some half-space. Simultaneity
implies many instances and so leads to the intersections of half-spaces. These yield polyhedra as well as
arbitrary convex sets, identifying the theory of linear inequalities with convexity [11].

Assume that X is a vector space, E is an ordered vector space, f : X → E• is some operator, and
C := dom(f) ⊂ X is a convex set. A vector program (C, f) is written as follows:

x ∈ C, f(x) → inf.

The standard sociological trick includes (C, f) into a parametric family yielding the Legendre
trasform or Young–Fenchel transform of f :

f∗(l) := sup
x∈X

(l(x) − f(x)),

with l ∈ X# a linear functional over X. The epigraph of f∗ is a convex subset of X# and so f∗ is convex.
Observe that −f∗(0) is the value of (C, f).

A convex function is locally a positively homogeneous convex function, a sublinear functional.
Recall that p : X → R is sublinear whenever

epi p := {(x, t) ∈ X × R | p(x) ≤ t}

is a cone. Recall that a numeric function is uniquely determined from its epigraph.

Given C ⊂ X, put

H(C) := {(x, t) ∈ X × R
+ | x ∈ tC},

the Hörmander transform of C. Now, C is convex if and only if H(C) is a cone. A space with a cone is
a (pre)ordered vector space.

Thus, convexity and order are intrinsic to nonsmooth analysis. The umbilical cord of nonsmooth
analysis with convexity will never be cut (cp. [12]).
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2. BOOLEAN TOOLS IN ACTION

Assume that X is a real vector space, Y is a Kantorovich space. Let B := B(Y ) be the base of Y ;
i.e., the complete Boolean algebras of positive projections in Y ; and let m(Y ) be the universal completion
of Y . Let L(X,Y ) denote the space of linear operators from X to Y . In case X is furnished with some

Y -seminorm on X, by L(m)(X,Y ) we mean the space of dominated operators from X to Y . As usual,

{T ≤ 0} := {x ∈ X | Tx ≤ 0}; ker(T ) = T−1(0) for T : X → Y . Also, P ∈ Sub(X,Y ) means that P is
sublinear, while P ∈ PSub(X,Y ) means that P is polyhedral, i.e., finitely generated. The superscript
(m) suggests domination.

Kantorovich’s Theorem (cp. [2, p. 51]). Consider the problem of finding X satisfying

(1): (∃X) XA = B ↔ ker(A) ⊂ ker(B).

(2): If W is ordered by W+ and A(X) − W+ = W+ − A(X) = W then

(∃X ≥ 0) XA = B ↔ {A ≤ 0} ⊂ {B ≤ 0}.

The Farkas Alternative (cp. [13, Th. 1]). Let X be a Y -seminormed real vector space, with Y

a Kantorovich space. Assume that A1, . . . , AN and B belong to L(m)(X,Y ).

Then one and only one of the following holds:

(1) There are x ∈ X and b, b′ ∈ B such that b′ ≤ b and

b′Bx > 0, bA1x ≤ 0, . . . , bANx ≤ 0.

(2) There are positive orthomorphisms α1, . . . , αN ∈ Orth(m(Y ))+ such that B =
∑N

k=1 αkAk.

Theorem 1 (cp. [14, Th. 1]). Let X be a Y -seminormed real vector space with Y a Kan-

torovich space. Assume given some dominated operators A1, . . . , AN , B ∈ L(m)(X,Y ) and ele-
ments u1, . . . , uN , v ∈ Y . The following are equivalent:

(1) For all b ∈ B, the inhomogeneous operator inequality bBx ≤ bv is a consequence of the
consistent simultaneous inhomogeneous operator inequalities bA1x ≤ bu1, . . . , bANx ≤ buN , i.e.,

{bB ≤ bv} ⊃ {bA1 ≤ bu1} ∩ · · · ∩ {bAN ≤ buN}.

(2) There are positive orthomorphisms α1, . . . , αN ∈ Orth(m(Y )) satisfying

B =

N
∑

k=1

αkAk; v ≥
N

∑

k=1

αkuk.

3. INFINITESIMAL TOOLS IN ACTION

Leibniz wrote about his version of calculus that “the difference from Archimedes style is only in
expressions which in our method are more straightforward and more applicable to the art of invention.”

Nonstandard analysis has the two main advantages: it “kills quantifiers” and it produces the new
notions that are impossible within a single model of set theory. By way of example let us turn to the
nonstandard presentations of Kuratowski–Painlevé limits and the concept of infinitesimal optimality.

Recall that the central concept of Leibniz was that of a monad.1 In nonstandard analysis the monad
µ(F) of a standard filter F is the intersection of all standard elements of F .

1 Cp. [15].
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Let F ⊂ X × Y be an internal correspondence from a standard set X to a standard set Y . Assume
given a standard filter N on X and a topology τ on Y . Put

∀∀(F ) := ∗{y′ | (∀x ∈ µ(N ) ∩ dom(F ))(∀ y ≈ y′)(x, y) ∈ F},

∃∀(F ) := ∗{y′ | (∃x ∈ µ(N ) ∩ dom(F ))(∀ y ≈ y′)(x, y) ∈ F},

∀∃(F ) := ∗{y′ | (∀x ∈ µ(N ) ∩ dom(F ))(∃ y ≈ y′)(x, y) ∈ F},

∃∃(F ) := ∗{y′ | (∃x ∈ µ(N ) ∩ dom(F ))(∃ y ≈ y′)(x, y) ∈ F},

with ∗ symbolizing standardization and y ≈ y′ standing for the infinite proxitity between y and y′ in τ ;
i.e. y′ ∈ µ(τ(y)). Call Q1Q2(F ) the Q1Q2-limit of F (here Qk, k = 1, 2, is one of the quantifiers ∀ or ∃).

Assume for instance that F is a standard correspondence on some element of N and look at the ∃∃-
limit and the ∀∃-limit. The former is the limit superior or upper limit; the latter is the limit inferior or
lower limit of F along N .

Theorem 2 (cp. [6, Sect. 5.2]). If F is a standard correspondence then

∃∃(F ) =
⋂

U∈N

cl

(

⋃

x∈U

F (x)

)

,

∀∃(F ) =
⋂

U∈N̈

cl

(

⋃

x∈U

F (x)

)

,

where N̈ is the grill of a filter N on X, i.e., the family comprising all subsets of X meeting µ(N ).

Convexity of harpedonaptae was stable in the sense that no variation of stakes within the surrounding
rope can ever spoil the convexity of the tract to be surveyed.

Stability is often tested by perturbation or introducing various epsilons in appropriate places. One of
the earliest excursions in this direction is connected with the classical Hyers–Ulam stability theorem for
ε-convex functions. Exact calculations with epsilons and sharp estimates are often bulky and slightly
mysterious.

Assume given a convex operator f : X → E• and a point x in the effective domain of f :

dom(f) := {x ∈ X | f(x) < +∞}.

Given ε ≥ 0 in the positive cone E+ of E, by the ε-subdifferential of f at x we mean the set

∂εf(x) :=
{

T ∈ L(X,E) | (∀x ∈ X) (Tx − f(x) ≤ Tx − f(x) + ε)
}

.

The usual subdifferential ∂f(x) is the intersection:

∂f(x) :=
⋂

ε≥0

∂εf(x).

In topological setting we use continuous operators, replacing L(X,E) with L(X,E).

Some cones K1 and K2 in a topological vector space X are in general position provided that

(1) the algebraic span of K1 and K2 is some subspace X0 ⊂ X; i.e., X0 = K1 − K2 = K2 − K1;

(2) the subspace X0 is complemented; i.e., there exists a continuous projection P : X → X such
that P (X) = X0;

(3) K1 and K2 constitute a nonoblate pair in X0.

Finally, observe that the two nonempty convex sets C1 and C2 are in general position if so are their
Hörmander transforms H(C1) and H(C2).

Theorem 3 (cp. [2, Th. 4.2.8]). Let f1 : X × Y → E• and f2 : Y × Z → E• be convex operators
and δ, ε ∈ E+. Suppose that the convolution f2 △ f1 is δ-exact at some point (x, y, z); i.e., δ + (f2 △
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f1)(x, y) = f1(x, y) + f2(y, z). If, moreover, the convex sets epi(f1, Z) and epi(X, f2) are in general
position then

∂ε(f2 △ f1)(x, y) =
⋃

ε1≥0,ε2≥0,
ε1+ε2=ε+δ

∂ε2
f2(y, z) ◦ ∂ε1

f1(x, y).

Some alternatives are suggested by actual infinities, which is illustrated with the conception of
infinitesimal subdifferential and infinitesimal optimality.

Distinguish some downward-filtered subset E of E that is composed of positive elements. Assuming
E and E standard, define the monad µ(E) of E as

µ(E) :=
⋂

{

[0, ε] | ε ∈ ◦E
}

.

The members of µ(E) are positive infinitesimals with respect to E . As usual, ◦E denotes the external
set of all standard members of E, the standard part of E .

Assume that the monad µ(E) is an external cone over ◦
R and, moreover, µ(E) ∩ ◦E = 0. In applica-

tion, E is usually the filter of order-units of E. The relation of infinite proximity or infinite closeness
between the members of E is introduced as follows:

e1 ≈ e2 ↔
(

e1 − e2 ∈ µ(E)
)

&
(

e2 − e1 ∈ µ(E)
)

.

Now

Df(x) :=
⋂

ε∈◦E

∂εf(x) =
⋃

ε∈µ(E)

∂εf(x),

which is the infinitesimal subdifferential of f at x. The elements of Df(x) are infinitesimal subgra-
dients of f at x.

Theorem 4 (cp. [2, Th. 4.6.14]). Let f1 : X × Y → E• and f2 : Y × Z → E• be convex operators.
Suppose that the convolution f2 △ f1 is infinitesimally exact at some point (x, y, z); i.e.,

(f2 △ f1)(x, y) ≈ f1(x, y) + f2(y, z).

If, moreover, the convex sets epi(f1, Z) and epi(X, f2) are in general position then

D(f2 △ f1)(x, y) = Df2(y, z) ◦ Df1(x, y).

Assume that there exists a limited value e := infx∈C f(x) of some program (C, f). A feasible point x0

is called an infinitesimal solution if f(x0) ≈ e, i.e., if f(x0) ≤ f(x) + ε for every x ∈ C and every
standard ε ∈ E .

A point x0 ∈ X is an infinitesimal solution of the unconstrained problem f(x) → inf if and
only if 0 ∈ Df(x0).

Consider some Slater regular program

Λx = Λx̄, g(x) ≤ 0, f(x) → inf;

i.e., first, Λ ∈ L(X,X) is a linear operator with values in some vector space X, the mappings f : X → E•

and g : X → F • are convex operators (for the sake of convenience we assume that dom(f) = dom(g) =
X); second, F is an Archimedean ordered vector space, E is a standard Kantorovich space of bounded
elements; and, at last, the element g(x̄) with some feasible point x̄ is a strong order unit in F .

Theorem 5 (cp. [6, Sect. 5.7]). A feasible point x0 is an infinitesimal solution of a Slater regular
program if and only if the following system of conditions is compatible:

β ∈ L+(F,E), γ ∈ L(X, E), γg(x0) ≈ 0,

0 ∈ Df(x0) + D(β ◦ g)(x0) + γ ◦ Λ.

By way of illustration look at the general problem of optimizing discrete dynamic systems.
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Let X0, . . . ,XN be some topological vector spaces, and let Gk : Xk−1 ⇉ Xk be a nonempty convex
correspondence for all k := 1, . . . , N . The collection G1, . . . , GN determines the dynamic family of
processes (Gk,l)k<l≤N

, where the correspondence Gk,l : Xk ⇉ Xl is defined as

Gk,l := Gk+1 ◦ · · · ◦ Gl if k + 1 < l;

Gk,k+1 := Gk+1 (k := 0, 1, . . . , N − 1).

Clearly, Gk,l ◦ Gl,m = Gk,m for all k < l < m ≤ N .

A path or trajectory of the above family of processes is defined to be an ordered collection of
elements x := (x0, . . . , xN ) such that xl ∈ Gk,l(xk) for all k < l ≤ N . Moreover, we say that x0 is the
beginning of x and xN is the ending of x.

Let Z be a topological ordered vector space. Consider some convex operators

fk : Xk → Z, k := 0, . . . , N,

and convex sets S0 ⊂ X0 and SN ⊂ XN . Assume given a topological Kantorovich space E and a

monotone sublinear operator P : ZN → E•. Given a path x := (x0, . . . , xN ), put

f(x) := (f0(x0), f1(x1) . . . , fk(xN )).

Let Prk : ZN → Z denote the projection of ZN to the kth coordinate. Then Prk(f(x)) = fk(xk) for all
k := 0, . . . , N .

Observe that f is a convex operator from X to Z which is the vector target of the discrete dynamic
problem under study. Assume given a monotone sublinear operator from X to E•. A path x is feasible

provided that the beginning of x belongs to S0 and the ending of x, to SN . A path x0 :=
(

x0
0, . . . , x

0
N

)

is

infinitesimally optimal provided that x0
0 ∈ S0, x0

N ∈ SN , and P ◦ f attains an infinitesimal minimum
over the set of all feasible paths. This is an instance of a general discrete dynamic extremal problem
which consists in finding a path of a dynamic family optimal in some sense.

Introduce the sets

C0 := S0 ×
N
∏

k=1

Xk, C1 := G1 ×
N
∏

k=2

Xk,

C2 := X0 × G2 ×
N
∏

k=3

Xk, . . . , CN :=

N−2
∏

k=0

Xk × GN ,

CN+1 :=

N−1
∏

k=1

Xk × SN , X :=

N
∏

k=0

Xk.

Theorem 6. Suppose that the convex sets

C0 × E+, . . . , CN+1 × E+

are in general position as well as the sets X × epi(P ) and epi(f) × E.

A feasible path
(

x0
0, . . . , x

0
N

)

is infinitesimally optimal if and only if the following system of

conditions is compatible:

αk ∈ L(Xk, E), βk ∈ L+(Z,E) (k := 0, . . . , N);

β ∈ ∂(P ); βk := β ◦ Pr
k

;

(αk−1, αk) ∈ DGk

(

x0
k−1, x

0
k

)

− {0} × D(βk ◦ fk)
(

x0
k

)

(k := 1, . . . , N);

−α0 ∈ DS0(x0) + D(β0 ◦ f0)(x0); αN ∈ DSN (xN ).
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Proof. Each infinitesimally optimal path u :=
(

x0
0, . . . , x

0
N

)

is obviously an infinitesimally optimal
solution of the program

v ∈ C0 ∩ · · · ∩ CN+1, P ◦ f(v) → inf .

By the Lagrange principle, the optimal value of this program is the value of some program

v ∈ C0 ∩ · · · ∩ CN+1, g(v) → inf,

where g(v) := β(f(v)) for all paths v with β ∈ ∂P . The latter has separated targets, which case is settled
(cp. [6, p. 213]).
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