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KANTOROVICH SPACES AND OPTIMIZATION
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This is an expository talk on interaction between mathematical programming and vector lattices at the Kantorovich
Memorial (St. Petersburg, January 8–13, 2004). Bibliography: 2 titles.

1. Optimization and order

Subdifferential calculus is a branch of functional analysis whose main source is the theory of extremal problems.
Consider an abstract minimization problem:

x ∈ X, f(x) → inf .

Here X is a vector space and f : X → R is a numeric function with possibly infinite values. We are usually
interested in the quantity inf f(x), the value of the problem, and in a solution, or optimum plan; i.e., a point
x satisfying f(x) = inf f(X). It is a rare occurrence to solve an arbitrary extremal problem explicitly, i.e.,
to exhibit the value of the problem and one of the solutions. As a rule, we must simplify the initial problem
by reducing it using the details of the objective function. The hypothesis behind this reduction is as follows.
Introducing an auxiliary function l, we consider the following problem:

x ∈ X, f(x) − l(x) → inf .

This perturbed problem is clearly as complicated as the initial problem provided that l is a linear functional over
X, i.e., an element of the algebraic dual X# of X. In other words, addressing the minimization problem for f ,
we assume known the mapping f∗ : X# → R given by the relation

f∗(l) := sup
x∈X

(l(x) − f(x)).

This mapping f∗ is called the Young–Fenchel transform of f . Observe that −f∗(0) is precisely the value of the
initial extremal problem.

This reduction makes the original problem into the change-of-variable problem for the Young–Fenchel trans-
form, i.e., into calculation of the aggregate (f ◦ G), where G : Y → X is some operator from Y to X. We
emphasize that f∗ is a convex function on the dual of X. This circumstance alone prompts us to await the most
convincing results in the key case of convexity of the initial objective function.

Defining the subdifferential of f at a point x by

∂f(x) := {l ∈ X# : (for any x ∈ X) (lx − lx � f(x) − f(x))},

we can proceed as follows. A point x is a solution to the initial minimization problem if and only if

0 ∈ ∂f(x).

The last containment is called the Fermat criterion. It is worth noting that the Fermat criterion is of little avail
if we lack effective tools for calculating the subdifferential ∂f(x). Putting it otherwise, we arrive at the question
of deriving rules for calculation of the subdifferential of a composite mapping ∂(f ◦ G)(y). Furthermore, the
adequate understanding of G as a convex mapping requires that some structure of an ordered vector space be
present in X.

Thus we are driven with necessity to studying convex operators between ordered vector spaces. The main
task of subdifferential calculus consists in finding explicit rules for calculation of the Young–Fenchel transform
and subdifferential of a composite mapping.
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2. Dominated extension

The question of calculating the subdifferential of a composite mapping is closely related to the Hahn–Banach
dominated extension theorem, which can be written within subdifferential calculus as follows:

∂(p ◦ ι)(0) = ∂p(0) ◦ ι.

Here p : X → R is a sublinear functional and ι is the identity embedding of some subspace of X. Thus we arrive
at the fundamental problem of dominated extension.

2.1. Let p be a sublinear operator from a vector space X into a preordered vector space E with dom (p) = X.
The collection of all linear operators from X into E dominated by p is called the support set or subdifferential
of p and denoted by ∂p; symbolically,

∂p := {T ∈ L(X, E) : (for any x ∈ X) Tx ≤ p(x)},
where L(X, E) is the space of all linear operators from X into E. We say that the members of ∂p support p.
Assume that X0 is a subspace of X and T0 : X0 → E is a linear operator such that T0x ≤ p(x) for all x ∈ X0. If
for all X, X0, T0, and p there exists an operator T ∈ ∂p extending T0 from X0 to the whole of X, then we say
that E admits dominated extension.

An ordered vector space enjoys the least upper bound property if each order-bounded subset possesses a least
upper bound. A vector lattice with the least upper bound property is called Dedekind complete. The concept of
Dedekind complete vector lattice goes back to L. V. Kantorovich (1912–1986), and so the competing terms Kan-
torovich space and K-space are appropriate. The next theorem contains a complete solution to the problem of
dominated extension for linear operators with values in a preordered vector space.

2.2. Theorem. A preordered vector space admits dominated extension if and only if it enjoys the least upper
bound property.

Historically, this theorem was established in two steps.

2.3. Hahn–Banach–Kantorovich theorem. Every Kantorovich space admits dominated extension.

This theorem by L. V. Kantorovich can be regarded as the first theorem of the theory of K-spaces.

2.4. Bonnice–Silvermann–To theorem. Each ordered vector space admitting dominated extension is a K-
space.

2.5. The problem of dominated extension originated with the Hahn–Banach theorem. Theorem 2.3 as stated
was discovered by L. V. Kantorovich in 1935 and was perceived as a generalization serving somewhat bizarre
purposes. Now it became a truism that convex analysis and the theory of ordered vector spaces are boon
companions. The equivalence between the dominated extension and least upper bound properties was first
established by W. Bonnice and R. Silvermann and T.-O. To; a crucial simplification is due to A. D. Ioffe.

3. Ordered structures admitting convex analysis

Studying subdifferentials, we encounter some algebraic structures with richer structure than that of vector
spaces. It is worth noting that the support set of every sublinear operator is operator-convex rather than simply
convex, i.e., the subdifferential of an operator satisfies the analog of the usual convexity property with scalars
replaced by so-called multiplicators, i.e., positive operators dominated by the identity operator. In other words,
dealing with the conventional convex objects in vector spaces, we are automatically driven to more involved
abstractions of convexity; i.e., convexity in modules over rings (in particular, over the multiplication ring of
a K-space with a strong order unit).

There is a deeper reason for interest in convexity-type objects in modules. Applications often supply us
with situations in which the divisibility hypothesis is utterly unreasonable. Such are all problems of integer
programming. In this connection, it seems to be of considerable importance to clarify the extent to which we
may preserve the machinery of subdifferential calculus in abstract algebraic systems.

3.1. We thus let A be an arbitrary lattice-ordered ring with positive unity 1A. This means that A is a ring with
some order ≤ on A making A into a lattice. Moreover, addition and multiplication are assumed compatible with
the order in a conventional and quite natural fashion. In particular, the set A+ of positive elements of the ring
A is a semigroup with respect to addition on A. We now consider a module X over A, or, in short, an A-module
X. This module, as well as all to follow, is always assumed unitary, i.e., 1Ax = x for all x ∈ X.

1450



3.2. Consider an operator p : X → E·, where E := E· ∪ {+∞}, as above, and E is an ordered A-module
(a little thought about this notion will prompt its natural definition). An operator is called A-sublinear or
modular-sublinear when the ring A is understood from the context if

p(πx + ρy) ≤ πp(x) + ρp(y)

for all x, y ∈ X and π, ρ ∈ A+. It is easy to see that the equality p(πx) = πp(x) may fail for some x ∈ X and
π ∈ A+ with π �= 0, which makes an essential difference with the case of R-sublinear operators. If p(πx) = πp(x)
for all x ∈ X and π ∈ A+, then p is called an A+-homogeneous operator.

3.3. An A-module E is said to possess the A-extension property if for any A-modules X and Y , A-sublinear
operator p : Y → E, and homomorphism T ∈ Hom A(X, Y ), the following Hahn–Banach formula is valid:

∂A(p ◦ T ) = ∂Ap ◦ T.

Moreover, if the subdifferential ∂p(y) is nonempty for each y ∈ Y , then we say that E admits convex analysis.
Let E be an ordered abelian group (i.e., an ordered Z-module). Put Eb := E+ − E+ and assume that Eb

is an erased K-space. Recall that by an erased K-space we mean a group that results from some K-space by
neglecting multiplication by real numbers; i.e., by forgetting part of information about the space.

3.4. To describe modules that admit convex analysis, we need one more notion. The orthomorphism ring
Orth (E) of a K-space is the band Id E

dd generated by the identity operator Id E in the ring Lr(E) of regular
operators in E. A subring A of Orth (E) is called almost rational if for every n ∈ N there exists a decreasing net
of multiplicators (πξ)ξ∈Ξ in A such that for every y ∈ E+ we have

1
n

y = o-lim
ξ∈Ξ

πξy = inf
ξ∈Ξ

πξy.

It can easily be proven that a ring A is almost rational if and only if every A-sublinear operator is A+-
homogeneous.

3.5. Theorem. An ordered A-module E admits convex analysis if and only if Eb is an erased K-space and
the natural representation of A in Eb is a ring and lattice homomorphism onto an almost rational subring of
Orth (Eb).

4. Kantorovich space and Boolean-valued reals

4.1. In the history of functional analysis, the rise of the theory of ordered vector spaces is commonly attributed
to the contribution of G. Birkhoff, L. V. Kantorovich, M. G. Krĕın, H. Nakano, F. Riesz, H. Freudenthal, et al.
At present, the theory of ordered vector spaces and its applications constitute a noble branch of mathematics,
representing, in fact, one of the main sections of contemporary functional analysis.

The credit for finding the most important instance of ordered vector spaces, an order-complete vector lattice,
or a K-space, is due to L. V. Kantorovich. This notion appeared in Kantorovich’s first fundamental article on
this topic, where he wrote, “In this note, I define a new type of space that I call a semiordered linear space. The
introduction of such a space allows us to study linear operations of one abstract class (those with values in such
a space) as linear functionals.”

Here L. V. Kantorovich stated an important methodological principle, the heuristic transfer principle for K-
spaces.

The heuristic transfer principle by L. V. Kantorovich was corroborated many times in the works of L. V. Kan-
torovich and his followers. Attempts at formalizing the heuristic ideas by L. V. Kantorovich have started at
the initial stages of K-space theory, which resulted in the so-called theorems of identity preservation (sometimes
a less exact term “conservation” is also employed). These theorems assert that if a proposition with finitely
many function variables is proven for the reals, then a similar fact is also true for the members of an arbitrary
K-space.

Unfortunately, no satisfactory explanation was suggested for the internal mechanism controlling the phenome-
non of identity preservation. Insufficiently clear remained the limits to applying the heuristic transfer principle.
The same applies to the general reasons for similarity and parallelism between the reals and their analogs in K-
space. The omnipotence and omnipresence of Kantorovich’s transfer principle found its full explanation within
Boolean-valued analysis.

1451



4.2. Boolean-valued analysis is a branch of functional analysis which uses a special model-theoretic technique,
the Boolean-valued models of set theory. Boolean-valued analysis elaborates the technique of studying properties
of an arbitrary mathematical object by means of comparison between its representations in two different set-
theoretic models whose construction utilizes principally distinct Boolean algebras. As such, we usually take the
classical Cantorian paradise in the shape of the von Neumann universe and a specially trimmed Boolean-valued
universe in which the conventional set-theoretic concepts and propositions acquire bizarre interpretations. Usage
of two models for studying a single object is a family feature of the so-called nonstandard methods of analysis.
For this reason, Boolean-valued analysis means an instance of nonstandard analysis in common parlance.

The proliferation of Boolean-valued analysis stems from the celebrated achievement of P. J. Cohen, who
proved, in the early 1960s, that the negation of the continuum hypothesis, CH, is consistent with the axioms of
Zermelo–Fraenkel set theory, ZFC. This result by P. J. Cohen, together with the consistency of CH with ZFC
established earlier by K. Gödel, proves that CH is independent of the conventional axioms of ZFC.

The intention to obviate obstacles to mastering the technique and results by P. J. Cohen led D. Scott and
R. Solovay to constructing the so-called Boolean-valued models of ZFC, which are not only visually attrac-
tive from the standpoint of classical mathematicians but also are fully capable of establishing consistency and
independence theorems. P. Vopěnka constructed analogous models in the same period of the early sixties.

4.3. Qualitatively speaking, the notion of Boolean-valued model involves a new conception of modeling, which
might be referred to as modeling by correspondence or long-distance modeling. We explain the particularities of
this conception as compared with the routine approach. Encountering two classical models of a single theory,
we usually seek for a bijection between the universes of the models. If this bijection exists, then we translate
predicates and operations from one model to the other and speak about an isomorphism between the models.
Consequently, this conception of isomorphism implies a direct contact of the models, which consists in witnessing
to a bijection of the universes of discourse.

Imagine that we are physically unable to compare the models pointwise simultaneously. Happily, we take an
opportunity to exchange information with the owner of the other model using some means of communication,
e.g., by having long-distance calls. While communicating, we easily learn that our interlocutor uses his model
to operate on some objects that are the namesakes of ours, i.e., sets, membership, etc. Since we are interested
in ZFC, we ask the interlocutor whether or not the axioms of ZFC are valid in his model. Manipulating the
model, he returns a positive answer. After checking that he uses the same inference rules as we do, we cannot
but acknowledge his model to be a model of the theory we are all investigating. It is worth noting that this
conclusion still leaves unknown for us the objects that make up his universe and the procedures he uses to
distinguish between true and false propositions about these objects.

All in all, the new conception of modeling implies not only giving up identification of the universes of discourse
but also admitting various procedures for verification of propositions.

To construct a Boolean-valued model, we start with a complete Boolean algebra B, a corner-stone of a special
Boolean-valued universe V(B) consisting of “B-valued sets” that are defined recursively as B-valued functions
over available B-valued sets. This V(B) will serve as a universe of discourse for ZFC. Also, we appoint B as the
target of the truth value sending each formula of ZFC to a member of B. More explicitly, with each formula ϕ of
ZFC whose every variable ranges now over V(B), we associate some element [[ϕ]] of the parental Boolean algebra
B. The quantity [[ϕ]] is the truth value of ϕ. We use truth values for validating formulas of ZFC. In particular,
every theorem ϕ of ZFC acquires the greatest truth value 1B , and we declare ϕ holding true inside the model
V(B).

Application of Boolean-valued models to problems of analysis rests ultimately on the procedures of ascending
and descending, the two natural functors acting between V(B) and the von Neumann universe V.

4.4. Gordon theorem. Let R be the reals in the model V(B). Assume further that R↓ stands for the descent
|R|↓ of the carrier of R furnished with the descents of the operations and order on R. Then the algebraic system
R is a universally complete K-space.

Moreover, there is a (canonical) isomorphism χ from the Boolean algebra B onto the Boolean algebra of band
projections Pr(R↓) (or onto the Boolean algebra of the unit elements C(R↓)) such that the following conditions
hold:

χ(b)x = χ(b)y ↔ b ≤ [[x = y]],

χ(b)x ≤ χ(b)y ↔ b ≤ [[x ≤ y]]

for all x, y ∈ R↓ and b ∈ B.
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4.5. This fact can be reformulated as follows: a universally complete Kantorovich space is the interpretation of
the reals in an appropriate Boolean-valued model. Moreover, it turns out that every theorem on the reals has an
analog for the corresponding Kantorovich space. Theorems are transferred by means of some precisely defined
Escher-type procedures: ascent, descent, and canonical embedding. Thereby, Kantorovich’s assertion that “the
elements of a Kantorovich space are generalized numbers” acquires a rigorous mathematical status.

5. Lower semicontinuous convex operators

Let X be a Banach space. Take a convex operator f : X → E· and a convex subset C ⊂ X. A feasible
element x0 ∈ C is called an ideal optimum or ideal solution of the optimization problem x ∈ C, f(x) → inf if
f(x0) = infx∈C f(x). Inspecting simple examples, we easily see that such an ideal optimum may be achieved on
an extremely rare occasion. This circumstance impels us to introduce various abstractions of ideal optimality
bearing in mind some particular classes of applications. One of these possibilities relates to continuous vector
functions with values in a Banach space X.

5.1. In this subsection, we assume that Q is an extremally disconnected compact set and E is the universally
complete (extended) K-space C∞(Q), i.e., the space of continuous functions from Q into R taking the values ±∞
only on meager sets. Throughout this section, X is a Banach space. Denote by C∞(Q, X) the set of all continuous
mappings z : dom (z) → X, where dom(z) is a certain dense open subset in Q which depends on z. Introduce the
addition operation in C∞(Q, X) according to the following rule: if dom(z1)∩dom (z2) = Q0, then dom (z1+z2) =
Q0 and (z1 + z2) (t) = z1(t) + z2(t) for all t ∈ Q0. Moreover, put (λz) (t) = λ · z(t) (t ∈ dom(z)), where λ is
a number. The mappings z1, z2 ∈ C∞(Q, X) are said to be equivalent if they coincide on dom (z1) ∩ dom (z2).
Finally, denote by E(X) the quotient set of C∞(Q, X) by the above equivalence relation. The usual translation
of operations from C∞(Q, X) makes E(X) into a vector space.

5.2. For every u ∈ C∞(Q, X), the function t → ‖u(t)‖ with t ∈ dom(u) is continuous and determines a unique
element of the space E := C∞(Q), which is one and the same for equivalent u and v ∈ C∞(Q, X). Now given
z ∈ E(X), define an element



z



∈ E according to the rule



z



(t) = ‖u(t)‖ (u ∈ z, t ∈ dom(u)).

It is easy to check the following properties of the mapping


·: E(X) → E:

(1)


z



≥ 0;



z



= 0 ↔ z = 0;

(2)


z1 + z2



≤


z1



+



z2



;

(3)


λz



= |λ| ·z



.

Henceforth, we will take the liberty of identifying each equivalence class z ∈ E(X) with one of its representa-
tives u ∈ z. If z ∈ E(X) and π ∈ Pr(E), then we denote by πz the vector function from dom (z) into X such
that (πz) (t) = z(t) for t ∈ Qπ ∩ dom (z) and πz(t) = 0 for t ∈ dom(z) \Qπ , where Qπ is a clopen subset of Q
corresponding to the projection π. Note that in this case



πz



= π



z



. We identify each element x ∈ X with

the constant mapping t → x (t ∈ Q) and suppose that X ⊂ E(X). Now if (xξ) is a family in X and (πξ) is a
partition of unity in Pr(E), then

∑

πξxξ is a mapping from E(X) taking the value xξ on the set Qπξ .

5.3. A linear operator T : X → E is called o-bounded or dominated if the image of the unit ball {Tx : ‖x‖ ≤ 1}
is an order-bounded subset of E. The set of all dominated operators from X into E is denoted by L0(X, E). For
every T ∈ L0(X, E) there exists the least upper bound



T



:= sup {|Tx| : x ∈ X, ‖x‖ ≤ 1},

sometimes called the abstract norm of T . It is clear that the mapping


·: L0 (X, E) → E satisfies the above-

listed properties 5.2 (1)–(3) too.
A mapping f : X → E is lower semicontinuous at a point x0 ∈ X if

f(x0) = sup
n∈N

inf {f(x) : x ∈ X, ‖x − x0‖ ≤ 1/n}.
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5.4. Theorem. For every lower semicontinuous mapping f : X → E there is a unique mapping ˜f : E(X) → E
satisfying the following conditions:

(1) for arbitrary π ∈ Pr(E) and u, v ∈ E(X), the equality πu = πv implies π ˜f(u) = π ˜f(v);

(2) ˜f is lower semicontinuous in the following sense:

(for any u ∈ E(X)) ˜f(u) = sup
ε↓0

inf { ˜f(v) : v ∈ E(X),


u − v



≤ε1};

(3) f(x) = ˜f(x) for all x ∈ X.

Moreover, f is convex, sublinear, or linear if and only if ˜f is a convex, sublinear, or linear mapping.

5.5. It can be shown that, in an appropriate Boolean-valued model V(B), the space E(X) is represented as a
conventional Banach space X ∈ V(B) while the operator ˜f is represented as an element ϕ ∈ V(B) serving as a
lower semicontinuous convex function ϕ : X → R· inside V(B). This fact together with Theorem 5.4 allows us
to study lower semicontinuous convex operators by means of Boolean-valued analysis.

6. A vector-valued variational principle

6.1. It can easily be seen that a dominated operator T ∈ L0(X, E) belongs to the subdifferential ∂εf(x) if and
only if ˜T ∈ ∂ε

˜f(x). This assertion suggests the following definition. An operator T ∈ L0(X, E) is called an
ε-subgradient of a convex operator f : X → E· at a point z ∈ E(X) if ˜T ∈ ∂ε

˜f(z). Denote by ∂εf(z) the set of
all ε-subgradients of f at a point z:

∂εf(z) := {T ∈ L0(X, E) : ˜T ∈ ∂ε
˜f(z)} = {T ∈ L0(X, E) : (for any x ∈ X) Tz − Tx ≤ f(z) − f(x) + ε}.

Let f : X → E· be a lower semicontinuous mapping. An element z ∈ E(X) is called a generalized ε-solution
of the optimization problem f(x) → inf if ˜f(z) ≤ infx∈X f(x) + ε. As usual, we have the Fermat criterion: z is
a generalized ε-solution of the problem f(x) → inf if and only if 0 ∈ ∂εf(z).

The following result claims that near to each ε-solution there is a generalized ε-solution, which yields an ideal
optimum to a perturbed objective function. In the case E = R, this fact is well known in the literature as the
Ekeland variational principle.

6.2. Theorem. Let f be a lower semicontinuous mapping from X into E·. Assume that f(x0) ≤ inf{f(x) :
x ∈ X} + ε for some 0 < ε ∈ E and x0 ∈ X. Then for every invertible 0 ≤ λ ∈ E there exists zλ ∈ E(X) such
that

˜f(zλ) ≤ f(x0),


zλ − x0



≤ λ,

˜f(zλ) = inf {f(x) + λ−1ε


zλ − x



: x ∈ X}.

6.3. Generalized Brønsted–Rockafellar theorem. Let f : X → E· be a lower semicontinuous convex
operator. Assume that T ∈ ∂εf(x0) for some x0 ∈ X, 0 ≤ ε ∈ E, and T ∈ L0(X, E). Then for every invertible
0 ≤ λ ∈ E there exists zλ ∈ E(X) and Sλ ∈ L0(X, E) such that



zλ − x0



≤ λ,



Sλ − T



≤ λ; Sλ ∈ ∂f(zλ).

6.4. A continuous vector function u ∈ C(Q, X) with u(q) ∈ C for all q ∈ dom (u) is a generalized exposed point
of C if there is a dominated operator S : X → E satisfying sup{Sx : x ∈ C} = ˜S(ũ) (i.e., S attains its supremum
on C at u). In this case, we call S a generalized supporting operator of C. If E = R, then we speak simply of
exposed points and supporting functionals.

From the Hahn–Banach theorem we easily see that each boundary point of a closed convex set C with
nonempty interior is an exposed point of C. It is not evident, however, that a nonempty closed convex set with
empty interior has any support point. The celebrated Bishop–Phelps theorem asserts that the set of exposed
points and the set of supporting functionals of C are both dense. Happily, some vector-valued version of this
fact is also true.
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6.5. Generalized Bishop–Phelps theorem. Assume that C is a nonempty closed convex subset of a Banach
space X and a dominated linear operator S0 : X → E is order-bounded on C. For every invertible ε ∈ E+ there
are a dominated linear operator S : X → E and a continuous vector function u ∈ C(Q, X) such that

‖S − S0‖ ≤ ε‖S0‖, sup{Sx : x ∈ C} = ˜S(ũ).

6.6. The most frequent version of the Bishop–Phelps theorem in Banach space theory reads: the set of bounded
linear functionals attaining their norm on the ball of a Banach space is norm dense in the dual space. The
vector-valued abstraction of this fact is as follows.

6.7. Theorem. For every dominated linear operator S0 : X → E and every real ε > 0 there exists a dominated

operator S : X → E such that ‖S − S0‖ ≤ ε‖S0‖ and ˜S(ũ) = ‖S‖ for some u ∈ C(Q, X) with ‖ũ‖ = 1.
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