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CONVEX ANALYSIS IN MODULES

8., §, Kutateladze UDC 513,88

The aim of the present article is to give a complete description of those ordered universal modules over
lattice~ordered rings which can have convex analysis, The problem of construction of convex analysis in mod-
ules arises from the essential requirements of the classical scalar theory of extremal problems. It is con~
cerned with the fact that the Young transformations of convex operators {1] have the property of module con-
vexity over the ideal center of the ranges of the considered operators. The reflection of this fact serves as
the operator convexity of subdifferentials. It is clear that each problem of convex analysis in modules is ulti-
mately a problem of dominated extension of a module homomorphism {2]. There are several theorems of this
type (see [3, 4] and the bibliography given there). Let us take special notice of [5], where a complete solution
of the corresponding problem for the ring Z of integers is given.

In the present article we establish a common defect of the existing Hahn— Banach type theorems for mod-
ules. Namely, we establish that there simply does not exist any specific "module” convex analysis. More pre~
cisely, to within elementary stipulations, convex analysis exisis precisely in the case of the Kantorovich
spaces, considered as modules over the algebras of their orthomorphisms. Moreover, in this connection the
additive minorants of the module-sublinear operator automatically turn out to be module homomorphisms. The
last statement constitutes, in essence, the main result of this article. The idea of its proof is quite clear,
Indeed, it is almost obvious that the extreme points of subdifferentials must commute with the multipliers,
Besides this, each subgradient is obtained by the "integration® of the extreme points. If remains to observe
that the corresponding integrals, i.e., the elements of the subdifferential of a canonical operator, commute
with orthomorphisms. Unfortunately, the realization of this idea is made difficult by the fact that K-spaces,
considered as modules over the rings of their orthomorphisms, are, as a rule, not injective. This difficulty
is overcome, since its essential part occurs only in the "group part" of these modules. However, in this con-
nection, we cannot avoid verification of small, but necessary, facts.

It should be observed that the facts, proved in this article, have a definite qualitative significance for
optimization theory, since they put precise meaning in Hurwicz's words [6] "The investigation of the phenome-
non of 'indivisibility' has led us beyond the bounds of linear spaces. But. .. in this connection we cannot expect
the majority of the important results that hold for linear spaces to remain valid,"*

In conclusion, I express deep gratitude to the participants of the seminars of A, D, Aleksandrov and V. L.
Markov for valuable discussion of the results of this article,

*Translator's note: This quotation is a retranslation from the Russian,

Institute of Mathematics, Siberian Branch, Academy of Sciences of the USSR, Novosibirsk. Translated
from Sibirskii Matematicheskii Zhurnal, Vol. 22, No. 4, pp. 118-128, July~-August, 1981, Original article
submitted March 3, 1980.
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1. Sublinear Operators in Modules

Let A be an arbitrary lattice-ordered ring with a positive identity 1. Further, let X be an A-module
and Y be an ordered A-module. All modules are naturally assumed to be unitary, Let us adjoin a greatest
element +% to Y, set ¥ =Y U{+}, and equip Y" with the natural structure of an A*-semimodule, Here, as
usual, A" is the semigroup of the positive elements of A,

An operator p:X —Y" is said to be A-sublinear with the effective domain dom (p) ={ze X : p(a) < +o}, if
p(ﬂﬁl)i + .Tf,zxz) < ﬂip(xi) + nzp(-z'z) (2:1, I, = X, Ty, Jip €& A+)-
In the case where dom (p) = X, the operator p:X —7Y (the dot over Y is omitted) is called simply an A-sub-
linear operator, Let us observe that p(0) = 0 for each A-sublinear operator p: X —Y. Indeed, p(0) = p(0-0) =

0; in addition, p{0) = p(0 + 0) = 2p(0). An operator p is said to be A*~homogeneous, if p(1x) = 7p{x) for all
zeX and n=E4".

Let the symbol Homp X, Y) denote the set of all the A-sublinear operators T:X —Y" such that dom (T)
is an A-submodule of X and the trace of T on dom (T) is an A-homomorphism, i.e., belongs to Homp (dom (T),
Y'). The set Homa(X, Y) is also equipped with the natural structure of an A*-semimodule.

For each sublinear operator p: X —Y" we define the subdifferential and the subdifferential at a point,
respectively, as follows:
84(p) = {T=Homa(X, Y) : Tz < pla) (2=X)},
0% (p) =17 € 9* (p): Tz = p(2) (z = dom (p))}.

Let us observe that 8A(p) = 8§(p) and, moreover,
() =TeHm,y (X, V):T(z —2)<p(z) —pl@) (=X)L

Since X and Y are, in particular, Z-modules, the subdifferentials 8%(p) and 8% (p) are defined and are denoted
by 8 (p) and 94 (p), respectively.

An A-module Y is said to have the property of A-extension if the following asymmetric Hahn— Banach
formula holds for set A-sublinear operator p:X —Y and each A-submodule X; of X:

84(p + 8+(X,)) = 04(p) + 9*(8+(Xs)),

where, as usual, 8y (X is the indicator operator of X;, i.e., 6y Xp :X —=Y" and 6y Xpx = 0 for z=X,, and

Oy Xgx = += in the contrary case. If, besides this, the subdifferential 8§(p) is nonempty for each z= X, then
the module Y is said to admit convex analysis.

Proposition 1,1. If an A-module Y has the property of A~extension and p:X —Y is an A-sublinear oper-
ator, then the following statements are valid:

(1) There exists an operator Te@4(p) such that Tx =y if and only if 7y = p(mx) for all neA.
(2) The operator p is A*-homogeneous if and only if 8,‘? (p) = @ for any z=X.

(3) The equality 8A(p-T) = 54 (p) - T holds for each A-module X; and each A-homomorphism 7 € Hom,(X,,
X).

Proof. Statement (1) is obvious.

@) If T8 (p) and me=A4¥, then spR) = 7Tx = Tmx = p(ax} = #p(x); whence p is AT-homogeneous. But
if it is known beforehand that A is an A-sublinear A*-homogeneous operator, then

ap(z) = stplx) — - plx) = p(ntz) — plnz) < platz — a~z) = plax).
for each x= 4. Thus, Bjé(p) # () by virtue of (1).

(3) This statement is established in the same manner as the Levine— Rockafeller lemma in [1].

2, Krein— Mil'man Theorem for Groups

Let Y be an ordered Abelian group (a Z-module), Let us set Yp =Y —Y" and assume that Y}, is an
obliterated K-space. Let us recall that the groups obtained from K-spaces by ignoring the muitiplications by
real numbers are called obliterated K-spaces. The following theorem holds.
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Bigard Theorem [5], An ordered Z-module Y has the property of Z-extension if and only if Yp is an
obliterated K-space.

Remark. In the sequel, we will use only the trivial part of the above theorem, which states that K-
spaces have the property of Z-extension, The Bigard theorem follows in full from the results given below,

Proposition 2.1. Let p:X — Y be a Z-sublinear operator. Then 8(np) = no{p) for each rn=eN,

Proof, The inclusion nd(p) < dnp) is obvious. Let us now assume that T <=d(np). We take any operator
T,=d8(p). Then T—nT,= dnlp—T.)). Since px) ~ Tgx = 0 for all z«X, the image im (T — nTy is contained in
Yp. Therefore, the operator B = (1/n)(T — nTy) has been properly defined, In addition, Bea(p — T,}. We now
set C = B+ T,. It is clear that C =d(p), and, in addition, nC = n((1 /0) (T — aTy)) + nTy = T. Finally, T = na(p).

COROLLARY 2.2. The equality 3, (p) =nrd(p) holds for each n=N.
k=1

Proof, It is sufficient to observe that the set on the left~hand side of the relation under consideration
is obviously contained in 3(np).

Proposition 2.3, Let T, T,=8(p}, be such that nT, = nT, for a certain neN . Then T, = Tj.

Proof, Since Ty~ T, =8(p—T,) and T,=d(p), it follows that im (T, — T} = ¥,. Hence the desired result
follows,

Proposition 2.4, Let p:X — Y be a Z-sublinear Z*-homogeneous operator and let z=X. Then the g-

limit
p=(y) =o0- lim (p (nz + y) — p (nz) = n!g]f\, (p(nz + y) — p (nz))
exists for each y=X. In addition, 8(py) = 8x{p).

Proof. Setting z, = p(ax + y) — p(nx), we get —pty) < zpy = z, for m = n. Moreover, d(p.) < d(p) and
px %) :_Px("X) =p.

COROLLARY 2.5, The equality (ap)x = npy is valid for each neN.

Let us also note the following obvious proposition.

Proposition 2.6, Set h,(z) =sup{Tz: T = d(p)} for each Z-sublinear operator p:X ~Y. Then by, is the
greatest Z-sublinear Z*-homogeneous operator dominated by p. Moreover, a(bp) = 5(p).

Let us recall that an operator T from 8(p) is said to be extreme if the relation 7,, 7,€d(p) and T, + Ty =
2T imply that T = T| = T,. The set of the extreme operators in 8(p) is denoted by Ch(p). Let us also recall that

the symbol (v )w, where & is an arbitrary set, denotes the set of all bounded Y-valued functions on . This
set is equipped with the structure of an ordered Z~module (of a submodule of the product ¥ %), The symbol
®s denotes the canonical Z-sublinear operator

sM:(Y”»Y, aw(f)zsup{,f(a):aem}.

If, in addition, & is a weakly order-bounded set of homomorphisms of X into Y, then the homomorphism
(s> : X— (Y¥)., is defined by the relation (sf)z:a— az.
Kiein—Mil'man Theorem. The following equality is fulfilled for each Z-sublinear operator p: X —Y:
(p) = Mecnp) ° <Ch(p).

Proof. The proof follows a well-known pattern (cf. [7]); however, it contains certain small nuances,

Let us consider the set P of all the Z-sublinear operators p; such that p1x) = pkx) for all x= X and,
moreover, p; is extremal for p. The last condition means that if 7,, 7,<3(p) are such that T+ 7,=28(p,),
then T\, 7, =d(p,). It is clear that peP. Let us order P in the natural manner and consider an arbitrary chain
Py in P. 1t is clear that p&x) + p;&®) = p;x) + p;(~x) = 0. Thus, the element py(z) = inf{p,(x) i poe P} ig de~ ‘
fined. Since addition is o-continuous, the operator p, is Z-sublinear, If is also directly verified that p,= P
Thus, by the Zorn lemma, P contains a minimal element q. By virtue of its minimality and Proposition 2.6,

q = hq Therefore, by Proposition 2.4, the operator gy is defined for each ze X, In addition, if T, T, =d(p)
are such that 7,+ T, 2d(q.), then T, T,=4d(q) by virtue of extremality of q, By virtue of Proposition 2.4 and
Corollary 2.5, we have T.x + Tyx = 2q{x), Since T;x = g{) and Tox = g}, we conclude that 7,, T d,0q) = 0lg.).
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Thus, qx is extremal for p, i.e., q = qx for all x=eX. The last statement implies that q is a homomorphism,
i.e., g=Ch(p). Thus, the set Ch(p) is nonempty for each p.

To complete the proof it is sufficient to consider the case where p is a ZT-homogeneous operator, In
this case, as already observed, for each z=X the operator py is extremal for p and, therefore, Ch (p=) = Ch (p).
Now, using Propositions 1.1 and 2.6, we obtain the desired representation. The theorem is proved,

Proposition 2.7. The equality Ch(np) = nCh(p)} is fulfilled for each Z-sublinear operator p:X —Y and
each neN,

Proof, At first, suppose that =Ch(np). Then, by Proposition 2.1, T =nS, where S d(p). Let us verify
that S=Ch(p). Indeed, if 28 =8, + S;, where S,, S.=d(p), then 2T = 2nS = nS; + nS;. Thus, nS = nS; = nS,. By
Proposition 2.3, we get 8 =8, = 8,, which was required.

Now, if TeCh(p) and 2nT = T, + Ty, where T,, T,=d(np), then, by Proposition 2.1, T; = nS; and Ty = nS,
for certain §,, S,=d(p). Moreover, 2nT = n@2T) = n(S; + S). Using Proposition 2.3, we have 2T =S, + S;
whence T = S{ = 8;. Consequently, Ty =nS; =nT = nSy = Ty. Thus, »n7 =Ch (np). The proposition is proved.

3. Orthomorphisms

Now let Y be a K-space and Iy be the identity operator in Y. The component generated by Iy in the K-
space of regular operators LY(Y) is denoted by Orth(Y). The elements of Orth(Y) are called orthomorphisms,
The properties of orthomorphisms in K~spaces have been studied in detail in [8]. We isolate the smallest nor-
mal subspace Z(Y) of Orth(Y) that contains Iy. This subspace is called the ideal center of Y. Let us observe
that Orth (Y) and Z (Y) are function algebras with respect to the natural ring and order structures, In addition,
Z(Y) serves as the foundation of Orth(Y) and Orth(Y) is the centralizer of Z(Y) in the ring LX(Y). In the seguel
we will need the following facts about orthomorphisms.

Proposition 3.1. The following statements are equivalent for each positive operator I = L’(Y):

(1) T is an orthomorphism.,

2) T + Ly is a lattice homomorphism.

(3) T + Iy has the Magaram property, i.e., it preserves order intervals,

Proof, We will establish that 2) = (1) and (3) = (1), since the reverse implications are obvious.

() = (1). We know [1] that the equality [0, S] = [0, Iy]S of order intervals in the space of operators
is a criterion for S to be a lattice homomorphism. Therefore, since Iy = T + Iy, there exists a multiplier v,
0 < v =< Iy, such that yT = Iy — . Hence y(T Pr — Pr T) = 0 for each projection Pr in Y, since orthomorphisms
commute with each other. In particular, for the projection Pr, on the kernel ker (y), which is obviously a
component of Y, we get YT Pry = 0. Besides this, YT Pr, = (Iy — ¥)Pry = Pry. Thus, ker &) ={0}. There-
fore T Pr = Pr T for each projection Pr. The last statement, as we know [8], implies that T is an orthomor-

phism,

(3) = (1). We know [8] that the following property is a criterion for an orthomorphism: If u, v&Y and
uAv=0, then Tu Av=0. Thus, let u Av=0. Then Tu Av<Tu<Tu+u=(T+I,)u Since T + Iy has the
Magaram property, it follows that Tu A v=Tz+z for a certain z in the order interval [0, u]. We have the esti-
mates v=TuAv=Tz+z>zand u = z = 0. Therefore 0=u Av=>zAz>0. Thus, z = 0, and consequently
Tu Av=0.

Proposition 3.2, Let A be a subring and sublattice of Orth(Y). For elements =, Y e A* such that 7 = Iy,

set
[n-1(y) =int{ = 4*: dn =4},

Then [~ !]: A — Orth(Y)? is an increasing A-sublinear operator and, moreover, v = [7~!](ry) for all Y= A4+

Proof. First of all, let us observe that n(8, A 6,) = nd, A nd; = for n6; = v and 76, = ¥, Hence [x—*1(y) <+
and n[n"’]('{) =q. If v, = 7, then alla=1(y;) A 11) =12 A 7%= 92 A\ Y« =11 Therefore [a~'1(y.) A= [=—'1(y). Thus,
the operator [7 -11 is increasing.

Let us now observe that, by what we have already proved, allma=ti(y) + [a~*1(y:)) = v + 1, for Yy, o= 4+,
Consequently, [a—1(y,+ 1) < [a~1(y) + [} (y.). Moreover, if u, y=4* then apla~1(y)=pnln-*}(y) = py, i.e.,
[n—1(py) < pla—*1(y). In other words, the operator [7~ 11 is A-sublinear.
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To complete the proof, let us observe that [x~'1(ny) <y and =nla~'l{ny}=xy. Hence ny=snln~1(ny). Now,
since ker (7) = {0} by virtue of the condition 7 = Iy, it follows that y=[x~'}=ay), which was required to be
proved,

4, Construction of the Subdifferential of a

Module~Sublinear Operator

In this section it is assumed that the ordered A-module Y is such that Y = ¥ — Y* ig an (obliterated)
K-space and that the ring A is a subring and sublattice of the ring of orthomorphisms Orth(Yy) and acts nat-
urally in Yy,

Proposition 4.1, Let Y = Yy, and & be an arbitrary set. If the group (Y”)oc is eguipped with the natursl
structure of a Z (Y)-module, then

3 (e,,) = Homy, (7)., 7).

Proof. Let Pr be an arbitrary projection in Y and a9 (sﬂ) Then — Prsw (—y)<aPry e, (Pry) =
Pra&‘Z (y). for ally = <Y&¢)cc . Thus, PrdaPr = ¢ for the complementary projection Prd = Iy — Pr, Therefore

aPr = PraPr. In spite of this PraPrd = 0, Finally, aPr = PraPr + proPrd = Pra, It follows from the last
relation that the operator o commutes with finite-valued elements of the form t; Pr, + ... + iy, Prm, where
t,=R*, and Pry are projections in Y, Since for each n=Z(¥) and each n=N there exist finite~-valued ele~
ments ap and B, such that 0 <<n— o, < ({/n)ly and 0<B, —n < (4/n)ly, it follows from the relations .o <oan < B
that o is a Z(Y)-homomorphism,

Proposition 4,2, Let p be an A-sublinear operator, Then amz(yb) < a* (p).

Proof, Let us take ne=A* and set an=xn A nly, for each n=N. Consider 7 e g* 4% (p) and a point x
from the domain of the operator p. Then

(n—a)plz) = plln —adz) = Tn— o)z = Tnr—o,Tz.

Thus, mp&) — Trx = ay(p®) — Tx). Since plz) — Tz =7, it follows from the last inequality that mp&) — Trx =
7p(x) - 7Tx, Since x is arbitrary, we get Tn = 7T, i.e., T=d*(p) . The proposition is proved,

THEOREM 4.3. 9(p) = 34(p) for each A-sublinear operator p: X — Y,

Proof, First of all, let us establish that if T<=Ch (p), then T'= gAnEEe (P). We take ne A* N Z(Y,). Let
us observe that m = nlp for a certain neN, since 1A = be. Since 14 acts in X as well as in Y as the corre-
sponding identity operator, we get

nl =nl T =nl+ {0l —n)T; nT =T+ Tlndy—n);
2nT =l +Tnly— o))+ (Ta+ (nls— )7,

By virtue of the obvious relations
al + Tnly—n) €dlnp), Ta+ (nl,— )T =dlnp)
and Proposition 2.7, by which nT.=Ch(np), we get nT = 7T + T@ala ~ 7). Thus, Tr= 7T,
Let us now consider the operator p; = p—~ T, where T=Ch(p). It is clear that im (p—T) < ¥,. By virtue

of what we have already proved, Ch(p,) — ¢*"%"(p1). Moreover, by the Krein—Mil'man theorem and Proposi-
tion 4.1, we have

d(py) =0 (gch(pl))"(Ch (P>,
g (8Ch(P1)) < HomAr‘.Z(Yb) (((Yb)Ch(pl))om V).

Hence it follows immediately that 9 (p;) = " “*?)P). Now, if S=a(p), then S~ T ea(p,), and therefore the

operator S—T is an A NZ(Y,) ~homomorphism, The operator T is of the same type, i.e., ge=gNHY

erence to Proposition 4.2 completes the proof,

(p). A ref-

COROLLARY 4.4, Each ordered A-module Y has the property of A-extension,




COROLLARY 4.5, Let py, py:X — Y be A-sublinear operators. If the effective domains dom (p,) and
dom (p,) are strongly situated in the common position, i.e.,

X, =dom (p,) N X, — dom (p,} N X,

for each A-module X, containing dom (p,} N dom (p,), then the symmetric Hahn— Banach formula holds:

65:1 (py + p2) = 02 {py) + 6,‘? (ps)
for each z = dom (p,) N dom {p,).

Proof, I T,=04(p,) and T, §4.(p.), then dom (T,)>dom (p,), dom (T.)= dom (p,), and Tix = p;x), Thx =
p,&). Therefore dom (T,+ T,) = dom (p,) N dom {p,} = dom (p, + p.) and (T; + To)x = (p; + py) (x). Consequently,
T+ T, =0%(p,+ p,). Thus, to complete the proof we should verify that a4(p, + p,) < 8*(p,) +8%(p,).

Let Te=d4(p,+p.) and set Xy = dom (T). It is clear that X, =dom (p,) Ndom (p.). By virtue of the conditions
satisfied by the effective domains of the considered operators, we have

X, X X, = dom {p,) N X, X dom (p,) N X, —im (A),

where Ax, = {xg, xp) for z,= X, Indeed, by the condition, for z,=X,, we have x;, 0) = &, Xp) ~ (Xp, X,), Where
To=2,— X3 I, .=Xy; z,=dom (p,) and z, =dom (p,). An analogous representation holds also for the element
(0, xp). Thus, for arbitrary z, y =X, there exist elements k., g= X, such that

z+hesdomip,), y+hesdomip,);
—z+ge=dom (p,), —y+gedom (p,).

In addition, py&x + b + ppy +W ~Thz—p;-x +g) + pyb+ g —pty +g) + pptb+ g —Th=—p;x +g) -
py + g + Tg. Thus, the element

plz, yy=inf{p,(z+h)+ply+h)—Th:he X, z+hsdom(p) N X, y-+hedomip) X}

is defined, The resultingoperatorp:X, XX, —Y is certainly Z-sublinear. Besides this, ninf U = inf 7(U) for each
ne At and each nonempty subset U of Y+, Hence, we successively get
aplz, y)=inf{ap,(z+h)+np.(y+h)—alh:heX, z+hedomp,),
y+ h=dom (p,)} = inf {p,(nz + nh) + p.(y + nh) — Tk : he X,
z+hedom (p,), y+ h = dom (p,)} = inf {p,(nz + nh) + p.(ny + nk) —
—Tnh: nh e X, nz+ nh < dom (p,), ny + nh = dom (p,)} =
=inf {p,(nx+ k) + p(ny+h) —Th: he X, nz+ h e dom (p,),
ny + h < dom (p.)} = p(nz, ny).

In other words, the operator p is A-sublinear, By Corollary 4.4, a certain T,=Hom, (X, X X,, Y) belongs to I &
87 (p). We set Tx = Ty(x, 0) and Tyx = (0, x) for z=X, and Tjx = Tox = + for z=X\X,, It is clear that dom X
(T = dom (Ty) = X, Moreover, for k=X, we have

T,k < plh, 0) < pu(h+0) + pol0 +0) — T0 = p,(h),
Toh < pl0, h) < p,(0+0) + polh + 0) — TO = p, (k).

Thus, T,<04(p,) and T,=0*(p.), and, moreover, T = T, + T, The corollary is proved,

5., Modules That Admit Convex Analysis

In this section we give fundamental results on the characterization of modules that admit convex analysis.

THEOREM 5.1. If an ordered A-module Y has the property of A-extension, then Yy is an obliterated K-
space,

Proof. At first, we establish that bounded sets in Y have supremums. For this we should show that each
family [a:, b (g<38)of pairwise intersecting order intervals, i.e., of intervals [a, bg] such that ag =by for
all &, n=E, has a common point,

Let us consider an A-module X that is the direct sum of E copies of the ring A, Further, let X4 be the
A-submodule of X defined as follows:

on{nzn(.)5X:§2=n(g):0}.
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Let us consider the operator p: X —Y defined by the relation

P = X n(®)" by~ () ag = 2 7@ ag - ©) (b — ap).
It is clear that the operator p is A-sublinear, Moreover, by virtue of the definition, for each element ne %,
we have
0=Fa@®=Fa"®—-n®=Iam'— I @
sk texE L tes
Applying the lemma about the double decomposition of the positive elements, we find a family =, (&, y=E) of
positive elements of A such that

amt = 2 g, () = J meeE ne B).
seg neE

Then for each ne X, we have

pwy= 2 a(mton— n(§>‘ag=§ngn<bn~ag>>o.

nes teE

Therefore, there exists an operator 7 e84(p) such that Tx = 0 for n=X,  We take any index =g and set
ﬂg(&) = 1A and m(n) = 0 for § # n. Then, since n;—a, =X, for all { and 7, it follows that Trg = Tmpfor all §=5
and a fixed ;=& In other words, —p¢ T = Ty < plmy) forarbitraryt, n=8. It remains to observe that
p(my) = by and pC-ng) =—ag,

To prove that the conditionally complete group Yy, is an obliterated K-space, it is sufficient to restore
the operation of multiplication by 1/2 in Yy,

Let us consider a y=Y¥+ and set ply) =inf{ze Y*:2:=>y). Since the set on the right-hand side of the last
equation is filtered by descent, the relations p{y) =y and 2p(y) 2 y are fulfilled by virtue of the o-continuity of
addition. Hence 2(mp(y;) + mp({,y)) = my, + my, for arbitrary s, m,=A* and arbitrary y,, y, e ¥*. Consequently,
p(my; + Mmyy) = TPy + mp(y,). Moreover, p: Y™ —Y is an increasing operator, Indeed, if y, = y,, then
2py) ANyd =2pg) A2y, =3 A2y, =2y, A yy=y, and therefore p(y,}=ply.) Ay, = ply,). In addition, let us ob-
serve that p(2y) =y for each yeY*. Indeed, p@Qy) =y and 2pQy) = 2y. Therefore 2p2y) = 2y; whence (y ~
PRy)) =— — p@y).

Let us now consider the operator q: Yy, — Y defined by the relation qfy) = p(y*). By virtue of what we have
already established, g is an increasing A-sublinear operator. Therefore d4(q) = . Now, for y=V¥, we set

[1/2ly =sup {Ty : T = 6*(g)}.

We take y=¥*. Then ny = 'y — 77y = p@rty) — p(r7y) = q@7n'y) = q@77y) = q@nty — 277y) = q@ny) = q(72y))
for each m=4. Therefore, by virtue of Proposition 1.1, there exists an operator T<34(q) such that T2y =

¥y =4qy) = pRy) =y. Therefore 2q(y) =q(2y) =y, since q is a Z"-homogeneous operator, Thus, [1 /21@y) =y
for all yeY*. Hence it follows immediately that the operator [1/2] is an increasing A-homomorphism, It is
clear that this operator is the desired one. The theorem is proved,

Remark, The scheme of proof of the conditional completeness of Y is, in essence, suggested by A. D,
Ioffe in the framework of the theory of fans, developed by him. Hence the divisibility of the group Y, can be
deduced with the help of a result of {5]. Here we observe that Theorem 5.1 clearly contains the well-known
Bonnice—S8ilverman— Tu theorem [2].

THEOREM 5.2, Let A be a d-ring, i.e., (mym)* = n;rwz and (mym)t = ngvrf for arbitrary n, =4 and mys 4+,

An ordered A-module Y has the property of A-extension if and only if Yy is an obliterated K-space and
the natural linear representation of A into Yy, is a lattice and ring homomorphism onto 2 sublattice and subring
of the ring of orthomorphisms Orth(Yy). In addition, BA(p) = 9(p) for each A-sublinear operator p:X — Y,

Proof, At first, suppose that Y has the property of A-extension. Then, by Theorem 5.1, Yp is an (oh-
literated) K-space. Let us consider the natural linear representation ¢ of the ring A into the space Y} defined
by the relation ¢(m)y = 1y, where ye=¥, and ned. First of all, we will establish that ¢ is a lattice homo-
morphism. To this end, for y=Y*+ we define an operator p: A —Y by the relation p(n) = mty, This operator is
an increasing A-sublinear operator. Therefore if 7e84(p), then 0 = T1a <y. Thus, Tr= *TlAa = 1y, where
y1=Tlp and y, =10, yl. If, in its turn, the element y, 10, y1 is fixed and we set T7 = y, for ne=A, then we
obtain an element of BA(p). Since the operator p is A*-homogenecus, we get the following relations frem Pro-
position 1.1:



@lat)y =a*y = pla) = sup {Tn : T =04(p)} = sup zl0, yl = pln)*y.

Let us now verify that im (¢) = Orth (¥,). To this end, we fix elements n=A4* and z, y=¥+ suchthat 0 = z <
ny. Then :rt1z<:rt1z<:rn1 ny = (nln)+y = p(n,n) for each m, = 4. Therefore, by Proposition 1.1, there exists an
operator T <d.(p) such that Tr =z, Thus, z = 7T1A, where T1,=1[0, yl. Therefore, the operator ¢(7) has the
Magaram property, Since 7 is arbitrary, we conclude from Proposition 3.1 that ¢(n) is an orthomorphism.

To complete the proof, it is sufficient to establish that if ¢ is a lattice homomorphism of A into the K-

space Orth(Yp), then d(p) = 84(p) for each A-sublinear operator p: X — Y, At first, let us consider the case
Y =Yp. We take a T=d(p) and a point z=X. Let us consider the operator tr = Tmx, where n=4. Since tr <

p(mx) = nlpx) + “p(=x), it follows that ker (¢) > ker (¢), and therefore the operator t admits a lowering t on the
lattice-ordered ring . A = A/ker (p). Let us equip Y with the associated structure of an exact module over A,
In this connection, A may be cons1dered as a subring and sublattice of Orth(Y). In addition, let us observe that
p(mx) = p(mx) for all L, men, ned, since p(mx) — p(mx) < pl(m— m)x) = (1, — M) tpk) + (1, — M) pEx).
Thus the operator p:A —Y that acts by the rule p(7) = p(mx) for n=m. is properly defined. It is clear that the
operator p is A-sublinear, Here t=a8(p). By virtue of Theorem 4.3, we have 8(p) = BA(p), ie., tr= 7rt1A for
neA. Hence Tnx = nTx, i.e., T<=d4(p).

Let us now consider the general case and again take a T=0(p) and a point z=X. Let us observe that for
each n=A4 we have

plaz) —alz = platz — a~z) — (at — ) Te < 2+ (plx) — Tz) + a~(p(—z) — T(—a)).

Thus the relation q(7) = p(mx) — 7Tx defines an operator that acts from A into Y}, It is clear that this operator
in A-sublinear, and therefore, by what we have already proved, 8(q) = 8A(qg). The operator st = Tnx — mTx ob-
viously belongs to 8(q), and therefore s7 = m1s1p = n(Tx — Tx) = 0. This means that T =4*(p). The theorem is
completely proved. k

Remark. The condition imposed earlier by us on the ring A can be altered; however, itis impossible to
completely get rid of this kind of condition if we desire to preserve the A*-homogeneity of a Z*-homogeneous
A-gublinear operator, Let us here observe that Theorem 5.2 shows that the property of extension neces-
sarily holds in a strengthened form, i.e., a group homomorphism defined on a subgroup and dominated by a
module-sublinear operator admits an extension to a module homomorphism.

We will need the following definition in the sequel, A subring A of the ring of orthomorphisms is said to
be almost rational if for each ne= N there exists a decreasing net of multipliers (m¢) from A such that (4/n)y =
o—ling ey = irgf n:y for eachyeY+,

Proposition 5.3, The ring A is almost rational if and only if each A-sublinear operator is A*-homo-
geneous.

Proof. At first, we assume that A-sublinear operators are A*-homogeneous. We take y e ¥+ and, using
Proposition 3,2, consider the A-sublinear operator y —~ [1r'1](y+)y, where Y= A, By assumption, this operator
is A*-homogeneous, i.e., y = [7"!](71A)y = 7[r"!](1A)y. Since y is arbitrary, it follows that [1~'](15) = "', As
7 let us consider the operator nls. Then, by virtue of the definition of the operator [7”!], we get

[n1,0-(1,) = inf{8= A+ : n8 =14},
whence the ring A is almost rational,

Now, suppose that the ring A is almost rational. Let us consider an A-sublinear operator p:X —Y.
First of all, we observe that for each n=4 such that 0 = # = 1A we have p(mx) = mpx) for all z=X even
withoutf the supposition that A is almost rational, Indeed, p{) = p(mx + (1A — Mx) = 7p&x) + 1A~ Mp&) = pX).
Thus, by virtue of Proposition 4.2, to establish the A*-homogeneity of p it is sufficient to verify that p is a
Z*-homogeneous operator. To verify the Z*~homogeneity of p, we take an neN and choose a family of multi-
pliers (mg) such that n; &4, and, in addition, 0 = mz= 1p and 7 ¥ (1 /n)1a. Let us set wg = - n- 1)7r£)+.
It is clear that o;=A4*. Moreover, 1A— (n—1)mz =154~ (0 — 1)/n)1p = (1/n)1p. Thus, .ug l/n)lA and, in
addition, wgt (1 /n)la. We take an element x= X, Then np(z) — p(rz) = Y+, and therefore

0 < wylnp(x) — plnx)) = nop(z) — plnow) =
Taking limit, we verify that p is a Z*-homogeneous operator,

THEOREM 5.4. An ordered A-module Y admits convex analysis if and only if Y}, is an obliterated K-
space and the natural linear representation of A into Y, is a ring and lattice homomorphism onto an almost

=
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rational ring of orthomorphisms.

Proof. The operators 7— 7'y and z —z*+, where n= 4, ye ¥+, and z=Y,, are obviously A-sublinear.
Therefore, if the A-module Y admits convex analysis, then these operators are A™-homogeneous by virtue of
Proposition 1,1. By virtue of Proposition 3.1, this means that the natural linear representation of A into Yy
is a ring and lattice homomorphism onto a subring and sublattice of Orth(Yy). By virtue of Proposition 5.3,
this subring is almost rational. To complete the proof, it is sufficient to realize the necessary factorizations,
as has been done in the proof of Theorem 5.2, and to refer to this theorem and Proposition 5.3.
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CONSTRUCTION OF THE m-JUMP

An., A, Mal'tsev UDC 517.11:518.5

The notion of the m-jump has appeared in Yu. L. Ershov's works {1, 2] in connection with the hierarchy
of m-degrees, introduced by him, and turns out to be very natural and useful. In the present article we prove
theorems, from which it follows, in particular, that the segments of m-degrees and pm-degrees formed by a
set and by the m~jump of this set are, in general, not isomorphic (as semilattices) for various sets, Indeed,
for sets A and B of natural numbers, let & be the complement of &, A ®B= {2ninc 4} U{2n+1ln=B}, and a
segment of the m-degrees be [a, b] = {ulu is an m-degree and @ < u = b}, where the m-~degrees a and b (the
endpoints of the segments) are fixed. Any such segment is a countable distributive upper semilattice with ¢
and 1 [2, 3]. Consequently, an arbitrary segment of m-degrees contains a countable number of initial seg-
ments (with a greatest element, i.e., these are also countable distributive upper semilattices with 0 and 1),
But there exists a continuum of nonisomorphic semilattices of this kind (an example of a suitable family of
semilattices is given at the end of this article); on the other hand, each such semilattice is realized in the
form of an initial segment in a certain segment of m-degrees that is formed by a certain set and its jump
(Theorem 1), Consequently, for each fixed segment of m-degrees formed by a set and its jump there exists
a continuum of segments of m-degrees of this type that are not isomorphic to it,

See, e.g., [4, 5] for the main definitions, Let ¢ be a one-place universal p.r, function [5]. For an arbi-
trary set A, its pm-cylindrification AP™ js & 1(A) and the m-jump mjd = (4 @ A)~, We always have A <.mjd
and 4 ® A< ,.mjA. See [1, 2] for these and many other properties of pm and mj.

Each denumerable distributive apper semilattice L with 0 and 1 is the direct limit of a certain sequence

%y %y

Dy—D— ...

of finite distributive lattices with the embeddings that preserve unions, 0, and 1; the converse is also true {2l
In the sequel, such a sequence for L is fixed for convenience of construction,
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